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Abstract. Tensor Network methods have been established as a powerful technique for
simulating low dimensional strongly-correlated systems for over two decades. Employ-
ing the formalism of Matrix Product States, we investigate the phase diagram of the
massive Thirring model. We also show the possibility of studying soliton dynamics and
topological phase transition via the Thirring model.

1 Introduction

Tensor Network (TN) methods [1–3] provide a non-perturbative tool for studying (lattice) quantum
many-body systems. A common ingredient of TN algorithms is an entanglement-based ansatz for the
quantum many-body wave function, which allows an efficient description of the system in spite of the
exponential growth of the Hilbert space dimension with the number of lattice sites. Tensor network
methods have been extremely successful in one-dimensional problems, and are becoming competitive
for higher dimensional ones. They are free of the sign problem, and can be used to approximate
ground states, low-lying excitations, thermal states, and (to some extent) real-time evolution. In the
last years they have been applied to the Hamiltonian formulation of lattice gauge theories [4–26].

In this article, we consider the zero-charge sector of the massive Thirring model, where the model
is dual to the sine-Gordon theory [27]. In fact, early explorations of the Thirring model suggested
that the massless case is equivalent to a free scalar theory in two dimensions [28–30]. Without the
presence of mass, a fermion-antifermion pair created from the vacuum does not separate and forms a
bound state in two dimensions. Although, in general, this would not be possible if the fermions have
mass, Coleman illustrated that we can still have a bosonic description for the zero-charge sector of the
massive Thirring model [27]. Since in Euclidean space the sine-Gordon theory contains topological
structures, this connection allows one to simulate soliton dynamics through investigating the massive
Thirring model.

On the other hand, the sine-Gordon theory in Euclidean space is also dual to the vortex sector of
the classical XY model. This model undergoes a phase transition without the appearance of long-range
order in two dimensions, which is known as the Berezinskii-Kosterlitz-Thouless (BKT) transition [31,
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32]. It has been found that the topological excitations, vortices and anti-vortices, play an important
role in this system. At low temperatures, a vortex forms a bound state with an anti-vortex. The vortex-
anti-vortex pairs are condensed in the quasi-long-range order phase, where the correlation functions
decay with the distance as a power law. At high temperatures, the system is in a disordered phase and
the correlators exhibit the behavior of exponential decay. The BKT phase transition happens without
breaking the O(2)-symmetry of the XY model. Instead, these two phases are distinguished by different
scaling laws of the correlators.

This article is organized as follows. We begin by presenting the definition of the models and their
relationships in Sec. 2. We explain our implementation for lattice simulations in Sec. 3. In Sec. 4, we
formulate the Matrix Product State (MPS) ansatz and the algorithm we adopt. Finally, we present our
preliminary numerical results in Sec. 5, and conclude in Sec. 6.

2 Models and Dualities

The massive Thirring model is a theory of a single Dirac field on a (1+1)-dimensional space-time,
with the action defined by

S Th[ψ, ψ̄] =
∫

d2x
[
ψ̄iγµ∂µψ − m0 ψ̄ψ −

g

2
(ψ̄γµψ)2

]
, (1)

where m0 denotes the bare mass, and g is a dimensionless coupling constant.
In [27], the equivalence between the zero-charge sector of the massive Thirring model and the

sine-Gordon model was established. The sine-Gordon model is a theory of a single scalar field on a
(1+1)-dimensional space-time, with the action defined by

S SG[φ] =
1
t

∫
d2x
[
1
2

(∂µφ(x))2 + α0 cos φ(x)
]
, (2)

where α0 is a dimension-two bare coupling, and t is dimensionless. The correspondence between
operators and couplings is summarized by

ψ̄γµψ↔
1

2π
εµν∂νφ , ψ̄ψ↔

Λ

π
cosφ ,

4π
t
= 1 +

g

π
, (3)

where Λ is the ultra-violet cutoff. In particular, the first formula of Eq. (3) indicates the fermion
number,

∫ ∞
−∞ dx1 ψ̄γ0ψ, is equivalent to the topological charge of the sine-Gordon model, Q =∫ ∞

−∞ dx1
1

2π ε0ν∂νφ . The fermion-antifermion pairs, bound or not, are reinterpreted as the pairs of the
quasi-particles of the sine-Gordon theory, namely, solitons and anti-solitons.

It is well known that the sine-Gordon model is also dual to the vortex sector of the classical XY
model described by the Hamiltonian

HXY = −K
∑
〈i j〉

cos(θi − θ j) , (4)

where θ is an angle defined on the two-dimensional lattice, and K is a coupling constant. Below
the critical temperature, Tc (T < Tc), all angles are almost aligned. Yet, the long-range order is
destroyed by thermal fluctuations. Despite this, the system still has a quasi-long-range order phase,
with the correlation function decaying algebraically. At high temperatures (T > Tc), the system is in
a disordered phase and the correlator decays exponentially. To summarize,

〈cos(θi − θ j)〉 ∝

|i − j|−T/2πK when T < Tc ,
exp(−|i − j|/ξ) when T > Tc ,

(5)
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where ξ is the correlation length. In addition, we can describe the vortex sector of the XY model,
which is equivalent to the Coulomb gas, by the grand canonical partition function [33],

ZCG (βT K, βT εc) =
∏

r

∞∑
nr=−∞

exp

−βT
(2π)2K

2

∑
r

∑
r′

nrnr′GL(r − r′) − βT

∑
r
εcn2

r

 , (6)

where βT =
1
T and GL is the Green’s function for the two-dimensional Laplacian operator. We also

include the vortex density nr and the core energy of each vortex εc. One can find the sine-Gordon
representation of Eq. (6) as,

ZSG (βt, βtα0) =
∫

Dφ exp
(
−βt

∫
d2x
[
1
2

(∂µφ(x))2 − α0 cos φ(x)
])
, (7)

where βt =
1
t , and the sine Gordon action Eq. (2) is now written in Euclidean space (and thus the sign

in front of α0 is flipped). The correspondence of parameters is identified by

ZSG

(
1

(2π)2βT K
, 2e−βT εc

)
= A ZCG (βT K, βT εc) , (8)

where A is a constant, and e−βT εc is known as the fugacity. Finally, we summarize the correspondence
of the parameters of these three models in Table 1.

Thirring sine-Gordon XY

g
4π2

t
− π T

K
− π

m0Λ

π

α0

t
2e−βT εc

Table 1. Correspondence of the parameters of the massive Thirring model, sine-Gordon theory and the classical
XY model

3 Preliminaries of the Lattice Calculation

In our approach, the system is described by the quantum many-body wave function. To start with, we
employ staggered fermions as proposed by Kogut and Susskind [34]. In this formulation the lattice
Hamiltonian derived from the action of Eq. (1) reads

H(latt.)
Th = − i

2a

N−2∑
n=0

(
c†ncn+1 − c†n+1cn

)
+ m0

N−1∑
n=0

(−1)n c†ncn +
2g
a

N
2 −1∑
n=0

c†2nc2nc†2n+1c2n+1 , (9)

where c†n and cn are fermionic creation and annihilation operators obeying the anti-commutation rela-
tions, {c†n, cm} = δnm, {cn, cm} = 0, {c†n, c†m} = 0, and a is the lattice spacing. Furthermore, the fermion
variables can be mapped onto spins by using the Jordan-Wigner transformation,

cn = exp

πi
n−1∑
j=1

S z
j

 S −n , c†n = S +n exp

−πi
n−1∑
j=1

S z
j

 , (10)
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(a) The MPS. (b) The MPO. (c) The expectation value of the
MPO (b) in the state represented
by the MPS (a).

Figure 1. The graphical representation of Tensor Network states and algorithms based on it.

with S +n and S −n being the ladder operators of spin-1/2. We note that this step is not strictly required,
since TN can be applied to fermionic degrees of freedom. However, it is convenient to construct the
full Hamiltonian using the Pauli matrices. Therefore, the spin Hamiltonian we use in the simulation
is given by

Hspin = −
1
2a

N−2∑
n=0

(
S +n S −n+1 + S +n+1S −n

)
+ m0

N−1∑
n=0

(−1)n
(
S z

n +
1
2

)

+
2g
a

N
2 −1∑
n=0

(
S z

2n +
1
2

) (
S z

2n+1 +
1
2

)
.

(11)

We will explain how to solve the Hamiltonian numerically in Sec. 5. In addition, the total S z polar-
ization S z

tot =
∑

n S z
n is a conserved quantity, related to the charge in the fermionic language. We can

thus explore the zero-charge sector by requiring S z
tot = 0. Further details will be illustrated in the next

section.

4 Tensor Network Methods

The concept of entanglement is central to the Tensor Network states and the algorithms based on
them. Any pure state |Ψ〉 of a composite Hilbert space H = HA ⊗HB, HA = C

dA and HB = C
dB ,

has a Schmidt decomposition,

|Ψ〉 =
r∑

i=1

si |iA〉|iB〉 , (12)

where si’s, known as Schmidt coefficients, are positive, monotonically decreasing real numbers which
determine the entanglement with respect to the bipartition A|B, and r ≤ min(dA, dB). We can compute
the entropy of entanglement

S A|B = −Tr (ρA log ρA) = −
r∑

i=1

s2
i log s2

i , (13)

where ρA is the reduced density matrix for the subsystem A. If the system is weakly entangled, the
Schmidt coefficients often decrease very fast. This provides us with a way to approximate the state by
introducing an entanglement cutoff which truncates the number of the Schmidt coefficients from r to
r′ < r.

4
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Schmidt coefficients often decrease very fast. This provides us with a way to approximate the state by
introducing an entanglement cutoff which truncates the number of the Schmidt coefficients from r to
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4.1 Matrix Product States

For a N-partite system, with Hilbert space H =H0 ⊗H1 ⊗ · · · ⊗HN−1, Hn = C
d for every n, a MPS

is a state of the form [3]

|Ψ〉 =
∑

a0,a1,···
M[0]σ0

a0
M[1]σ1

a0,a1
· · ·M[N − 1]σN−1

aN−2
|σ0σ1 · · ·σN−1〉 , (14)

where M[n]σn are D × D matrices for 0 < n < N − 1, and vectors of dimension D for n = 0, N − 1
(see Fig. 1(a)). The parameter D is called the bond dimension. Any state of the Hilbert space can be
written as a MPS for D ≤ d�N/2�, while restricting D to a small value plays the role of a cutoff in the
Schmidt rank.

4.2 Density Matrix Renormalization Group

Our objective is to find a MPS approximation to the ground state (and excitations) of the model. This
can be achieved by a variational minimization of the energy over the set of MPS with fixed bond
dimension D, similar to the Density Matrix Renormalization Group (DMRG) algorithm [3]. The
algorithm is simplified when the Hamiltonian is written as a Matrix Product Operator (MPO), i.e. a
MPS in the operator vector space [1, 2], see Fig. 1(b).

H =
∑

b0,b1,··· ,bN−2

W[0]σ0,σ
′
0

b0
W[1]σ1,σ

′
1

b0,b1
· · ·W[N − 1]σN−1,σ

′
N−1

bN−2
|σ0σ1 · · ·σN−1〉〈σ′0σ′1 · · ·σ′N−1| , (15)

where W[n] are χ × χ matrices (χ dimensional vectors for the edges, since we adopt open boundary
conditions). We start with expressing the functional

E [Ψ] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (16)

in terms of a Tensor Network as Fig. 1(c). If the M[n] tensors for all but one site, k, are fixed, Eq. (16)
can be optimized over M[k] by solving a generalized eigenvalue equation [3]. This can be repeated
for all sites, from left to right and back, until sufficient convergence of E/N is achieved.

The Hamiltonian in Eq. (11) conserves the total S z polarization S z
tot =
∑

n S z
n. It is thus convenient

to restrict the search to a sector of specific S z
tot = S target. To this end we add a penalty term [5] to the

Hamiltonian

H(penalty)
spin = Hspin + λ


N−1∑
n=0

S z
n − S target


2

, (17)

where the magnitude of λ should be chosen to be large enough to ensure that all the states with
〈Ψ|∑N−1

n=0 S z
n|Ψ〉 � S target have energy above the lowest state in the desired sector. The MPO represen-

tation of the Hamiltonian of Eq. (17) is therefore given by

W[0] =
(
− 1

2a S + − 1
2a S − 2λS z 2g

a S z βnS z + γ
)
,

W[N − 1] =
(
βnS z + γ S − S + S z S z

)T
,

(18)

for the tensors at the boundaries and

W[n] =



− 1
2a S + − 1

2a S − 2λS z 2g
a

1+(−1)n

2 S z βnS z + γ
0 0 0 0 0 S −

0 0 0 0 0 S +

0 0 0 0 S z

0 0 0 0 0 S z

0 0 0 0 0



, (19)
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for the remaining sites, where

βn =
g

a
+ (−1)n m0 − 2λ S target , γ = λ


1
4
+

S 2
target

N

 +
g

4a
. (20)

5 Results

In this section, we present our results obtained in the presence of the penalty term with S target = 0.
Figure 2 illustrates our investigation of the ground state (GS) energy, extracted using the DMRG
algorithm as described in Sec. 4, for system size N = 40 and bond dimension D = 100. The plot
in Fig. 2(a) shows a scan on the (g,m0L) plane, with L denoting the spatial volume of the lattice. In
the regime g < 0, it is evident that the GS energy decreases when g turns more negative. This is in
accordance with Coleman’s argument that the GS energy is always negative and scales as λ1/(1+g/π),
where λ is a dilatation parameter [27]. Figure 2(b) exhibits the GS energy per site (E/N) as a function
of g. We observe that when g � −1.5, E/N is almost independent of the mass parameter m0. To
understand this behavior, we notice that the renormalization group (RG) analysis of the sine-Gordon
theory concludes that the (cosφ) operator is irrelevant when t > 8π. This corresponds to the region
g < −π/2. In other words, the Thirring model is indeed describing a free bosonic theory in this regime.
This can lead to the observed independence of m0.

To further examine the convergence of the algorithm, we also check S z
tot and the bipartite entan-

glement entropy computed using the GS extracted from our DMRG simulations. To calculate the
bipartite entanglement entropy, we divide the system into two equal-size subsystems, A and B, and
then determine the entanglement entropy S A|B using Eq. (13). Figure 3 displays results from this
study. We notice that in Fig. 3(a) the GS does not always converge to the desired S z

tot sector, even
in the presence of the penalty term with S target = 0. This happens when g � −1. In addition, it is
observed in Fig. 3(b) that S A|B shows unstable, scattering behavior. In order to understand this in-
stability, we perform DMRG simulations starting from a GS with S z

tot = 0 at g < −1, and slowly
changing g. Namely, we use the ground state with S z

tot = 0 obtained at a value of g as our initial MPS

(a) (b)

Figure 2. (a) GS energy density E/N of the Hamiltonian Eq. (17), with S target = 0. (b) GS energy density E/N
for different m0 a’s. The system size is 40 sites, with bond dimension D = 100 for both (a) and (b).
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(a) (b)

Figure 3. (a) S z
tot sector of the Hamiltonian Eq. (17), with S target = 0. (b) The bipartite entanglement entropy, with

the system divided into two equal-size subsystems, A and B. The system size is 40 sites, with bond dimension
D = 100 for both (a) and (b).

in the DMRG computation for another choice of g. With this procedure, we find that the instability
demonstrated in Fig. 3 disappears. Presently we are carrying out further investigation of this issue.

6 Conclusion and Outlook

In this project, we implemented the MPS method for the massive Thirring model on the lattice, em-
ploying staggered fermions. This article presents our exploratory numerical results from this work.
Our initial findings show that the DMRG computation for this model can be performed. Using the
dualities described in Sec. 2, we will investigate the topological phase transition and the soliton dy-
namics in the XY model and in the sine-Gordon theory.

It is well known that there is a BKT-type phase transition at T ∼ πK/2 in the XY model. From
Table 1, it means that this transition can be observed at g ∼ −π/2 in the massive Thirring model. The
issue is to use the dualities and the Jordan-Wigner transformation to write the XY-model vortex-anti-
vortex correlators in the format of MPO and MPS. This aspect of the project is now under investiga-
tion, and will appear in a separate publication in the near future [35].
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