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A “no-hair” test for binary black holes
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One of the consequences of the black-hole “no-hair” theorem in general relativity (GR) is that gravitational
radiation (quasi-normal modes) from a perturbed Kerr black hole is uniquely determined by its mass and spin.
Thus, the spectrum of quasi-normal mode frequencies have to be all consistent with the same value of the mass
and spin. Similarly, the gravitational radiation from a coalescing binary black hole system is uniquely determined
by a small number of parameters (masses and spins of the black holes and orbital parameters). Thus, consistency
between different spherical harmonic modes of the radiation is a powerful test that the observed system is a
binary black hole predicted by GR. We formulate such a test, develop a Bayesian implementation, demonstrate
its performance on simulated data and investigate the possibility of performing such a test using previous and
upcoming gravitational wave observations.

Introduction:— One of the remarkable predictions of gen-
eral relativity (GR) is that a stationary black hole can be fully
described by a small number of parameters — its mass, spin an-
gular momentum and electric charge [1–3]. As a consequence
of this “no-hair” theorem, frequencies of the gravitational ra-
diation (quasi-normal modes [4–6]) from a perturbed black
hole is fully determined by these parameters. Astrophysical
black holes are not expected to possess significant electric
charge; hence, different quasi-normal modes have to be con-
sistent with the same value of the mass and spin. Thus, the
consistency between multiple quasi-normal modes provides
a test of the “no-hair” theorem for stationary, isolated black
holes [7]. Similarly, the dynamics and gravitational radiation
from a binary black hole system are uniquely determined by
a small number of parameters (masses and spins of the black
holes and orbital parameters), and hence different spherical
harmonic modes of the radiation have to be consistent with
the same values of this small set of parameters. Thus, the
consistency between different modes of the observed signal is
a powerful test that the radiation emanated from a binary black
hole. Inconsistency between different modes would point to
either a departure from GR, or the non-black hole nature of
the compact objects.

Coalescence of binaries composed of chargeless black holes
would produce a perturbed Kerr black hole as the remnant,
and the late time gravitational-wave (GW) signal is described
by a spectrum of quasi-normal modes (see, e.g. [8]). While
the relatively simple structure of quasi-normal modes has
been known from black-hole perturbation theory for a long
time (see, e.g., [9] for a review), the radiation from the full co-
alescence (inspiral, merger and ringdown) have a much more
complex structure. Fortunately, recent numerical-relativity
simulations, together with high-order analytical calculations,
have produced semi-analytical waveforms describing the many
of the subdominant multipoles of the radiation that are relevant
for observations [10–12]. The availability of such waveforms
allows a powerful test of GR based on the consistency of
different modes of the radiation.

Testing the consistency between different multipoles of the
gravitational radiation:– In practice it is very difficult to
extract different multipoles of the radiation from the GW ob-

servation of a single binary black hole system — all we mea-
sure is a particular linear combination of the modes. Thus,
our strategy, developed below, is to introduce extra parameters
that describe inconsistency between different modes and to
constrain them using a Bayesian framework. This is similar in
spirit to the tests of the “no-hair” theorem using quasi-normal
modes, developed in Refs. [13, 14].

The two polarizations h+(t) and h×(t) of gravitational radi-
ation in GR can be written as a complex time series h(t) :=
h+(t) − i h×(t), which can be expanded in a basis of spin −2
weighted spherical harmonics [15] as:

h(t; n,λ) =
1
dL

∞∑
`=2

∑̀
m=−`

Y−2
`m (n) h`m(t;λ), (0.1)

where Y−2
`m are the basis functions of spin −2 spherical har-

monics, n := {ι, ϕ0} define the direction of radiation in the
source frame, dL is the luminosity distance to the binary, and
hlm(t;λ) are the spherical harmonic modes of the waveform,
which are completely described by the intrinsic parameters
λ of the system. We assume that the black holes are non-
spinning and the binary to be quasi-circular. Hence λ con-
sists of only the masses m1 and m2 of the black holes (it
is more convenient to describe the system in terms of the
chirp mass Mc := (m1m2)3/5/(m1 + m2)1/5 and mass ratio
q = m2/m1 ≤ 1). In GR, the gravitational radiation is dom-
inated by the quadrupole modes (` = 2,m = ±2); however
non-quadrupole modes can make an appreciable contribution
if the black holes have significantly unequal masses. The set
of intrinsic parameters λ := {Mc, q} completely determines
the multipolar structure (i.e., spherical harmonic modes) of
the waveform hlm(t).

In order to formulate a consistency test between different
multipoles, we rewrite Eq. (0.1) by splitting the contributions
from the dominant (` = 2,m = ±2) mode of gravitational
radiation, and the sub-dominant (higher order) modes

h(t; n,λ,∆λ) =
∑

m=±2

Y−2
2m(n)h2m(t,λ)

+
∑

H.O.M

Y−2
`m (n)h`m(t,λ + ∆λ) (0.2)
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FIG. 1: In the middle panel, the thick (thin) contours show the 50%
(90%) credible regions in the joint posteriors of two parameters
∆Mc and ∆q that describe discrepancies in the estimated parameters
using the quadrupole and non-quadrupole modes, estimated from a
simulated GR signal. Black histograms on the side panels show the
marginalized posteriors in ∆Mc and ∆q, while the cyan histograms
show the 1-dimensional posteriors in ∆Mc and ∆q estimated from the
data by introducing only one variation (say, ∆Mc) at a time, keeping
the other fixed (say, ∆q = 0). It can be seen that the posteriors are
fully consistent with the GR prediction of ∆Mc = ∆q = 0 (shown by
a “+” sign in the center panel and by thin black lines in side panels).
In the side panels, the dotted lines mark the 90% credible regions.
The simulated GR signal corresponds to a binary with total mass
M = 80M� and mass ratio q = 1/9 and an inclination angle ι = 60◦

observed by a single Advanced LIGO detector with an optimal SNR
of 25.

where the sum in the second term on the RHS is just over the
higher-order modes (H.O.M). Note that we allow a possibility
of inconsistency between the dominant mode and higher order
modes by introducing a deviation ∆λ := {∆Mc,∆q} in the set
of intrinsic parameters that describe the higher order modes;
in GR, ∆λ = 0.

An interferometric GW detector observes a linear combina-
tion of the two polarizations h+(t) and h×(t), given by

h(t) = F+(θ, φ, ψ) h+(t − t0) + F×(θ, φ, ψ) h×(t − t0), (0.3)

where F+ and F× are the antenna pattern functions of the GW
detector, t0 is the time of arrival of the signal at the detector,
and (θ, φ), ψ define the sky position and polarisation angle
of the GW source, respectively. For coalescing binary black
hole (BBH) systems in quasi-circular orbits, the observed
signal h(t) is described by a set of intrinsic parameters λ =

{Mc, q} and extrinsic parameters θ := {t0, ι, ϕ0, dL, θ, φ, ψ} in
GR. In addition to the parameters that describe signals in
GR, we introduce a set of parameters ∆λ describing difference
between the intrinsic parameters used to generate the dominant
and subdominant modes. The combined set of parameters is
denoted as ξ = {λ,θ,∆λ}.

The data d(t) = n(t) + h(t) contains the observed signal h(t)
given in Eq. (0.3) along with noise n(t), which is modeled
as a stationary Gaussian random process. Given data d and
assuming a particular model of the waveform given in (0.2) as
our hypothesis H, we can compute the posterior distribution
of the set of parameters ξ making use of the Bayes theorem,
which states:

P(ξ | d,H) =
P(ξ |H) P(d | ξ,H)

P(d |H)
. (0.4)

The posterior probability density P(ξ | d,H) that the data con-
tains a signal with parameters ξ is determined by the prior
probability distribution P(ξ |H) and the likelihood P(d | ξ,H)
that the data contains a signal described by parameters ξ;
P(d |H) is a normalization constant, called the evidence. For
stationary Gaussian noise with power spectral density S n( f ),
the likelihood can be written as:

P(d | ξ,H) = exp
[
− 1

2

∫ fhigh

flow

|d̃( f ) − h̃( f ; ξ,H)|2
S n( f )

d f
]

(0.5)

where flow and fhigh define the sensitivity bandwidth of the
detector, while d̃( f ) and h̃( f ) are the Fourier transforms of d(t)
and h(t), respectively.

Using the above definition for the likelihood function, one
proceeds to estimate ξ by stochastically sampling over the
entire parameter space of interest. In this work, we use the
emcee [16] package, a Python implementation of the affine-
invariant ensemble sampler for Markov chain Monte Carlo
(MCMC) proposed by [17]. This code can be easily par-
allelized to use multiple computing cores, giving it a ma-
jor advantage over traditional MCMC algorithms 1. From
the posterior distribution P(ξ | d,H) of the full parameter set,
we construct the posterior distribution P(∆λ | d,H) of the set
of parameters describing deviation from GR prediction, by
marginalizing the posterior over all other parameters {λ,θ}. If
the data is consistent with GR, we expect P(∆λ | d,H) to be
consistent with zero.

Simulations using GR waveforms:— We now demonstrate
the power of the proposed test by making use of simulated
GW observations from binary black holes, where the wave-
forms are modeled after the GR prediction. We employ the
recent inspiral-merger-ringdown waveform model proposed
by Mehta et al [12], which provide accurate Fourier-domain
models of the following spherical harmonic modes h`m( f )
of the expected GW signals from non-spinning binary black
holes: (` = 2,m = ±2), (` = 2,m = ±1), (` = 3,m = ±3),
(` = 4,m = ±4). (The other spherical harmonic modes that are
neglected only introduce an inaccuracy (mismatch) of less than
1% in the waveforms [12]). GW observations are simulated
by combining these signals with stationary Gaussian noise
with power spectral density anticipated in Advanced LIGO’s
“high-power, zero-detuning” configuration [20], making use

1 We have compared the posterior distributions obtained from our emcee
based code with that from the Nested-Sampling based LALInferenceNest
code [18] that is part of the LIGO Algorithm Library (LAL) software
suite [19]. Posteriors obtained from simulated GR waveforms containing
only the dominant (` = 2,m = ±2) modes observed by a single detector are
in good agreement.
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of Eqs. (0.1) and (0.3). We consider binaries with total mass
M := m1 + m2 in the range 40M� – 200 M� with mass ratio
q := m2/m1 in the range 1/9 – 1, with varying inclination
angles ι (angle between the orbital angular momentum of the
binary and the line of sight).

We perform the test by introducing variations in the higher
order modes: The higher-order modes h`m( f ;λ + ∆λ) are
generated by introducing an extra parameter ∆λ while the
quadrupole-modes h2±2( f ;λ) are generated by using the stan-
dard set of parameters λ in GR. We have experimented with
different choices for the deviation parameter ∆λ:

1. By introducing one deviation parameter at a time. That
is, ∆λ = ∆Mc or ∆λ = ∆q.

2. By introducing a concurrent deviation in two parameters
∆λ = {∆Mc,∆q}.

We show in Fig. 1 the results of the tests performed by varying
either one parameter or two parameters, for a binary with
total mass M = 80M�, mass ratio q = 1/9, inclination angle
ι = 60◦ producing a signal-to-noise ratio (SNR) of 25 (SNR in
higher modes is ∼ 10). We see that the posterior probability
density for the parameters ∆q and ∆Mc are consistent with
zero as in GR. As expected, the width of the posterior is
smaller when only one non-GR parameter is allowed to vary
at a time. Figures 2 and 3 show the 90% credible regions of
the posteriors of non-GR parameters for the case of binaries
with different masses, mass ratios and inclination angles. In all
cases, the SNR is set to 25. It is clear that binaries with large
mass ratios (q < 1/2) and inclination angles (ι > 60◦) will
allow precision tests of the GR predictions, reaching statistical
uncertainties of < 10−2 for ∆Mc/Mc and ∆q.
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FIG. 2: The figure shows the width of the 90% credible region of
∆Mc and ∆q for binaries with different mass ratios q (horizontal axis)
and inclination angles ι (legends). All binaries have a total mass
40M�. Best constraints are provided by binaries with high mass
ratios and/or large inclination angles.
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FIG. 3: Same as Fig. 2, except that the horizontal axis reports the
total mass M. All binaries correspond to a mass ratio q = 1/9.
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FIG. 4: Projected cumulative distribution of the mass ratio q (left)
and inclination angle ι (right) of simulated binary black holes that
are detectable by Advanced LIGO, based on our assumed component
mass distribution. The two distributions in the left plot corresponds
to two assumed distributions of the component masses (see text).

Astrophysical prospects:— Recent observations of GW
signals from merging binaries of black holes [21–26] and neu-
tron stars [27] by LIGO and Virgo have enabled the first tests
of GR in the highly relativistic regime [23–26, 28]. However,
the test proposed in this paper requires the observation of GW
signals where the subdominant modes can be observed with
appreciable SNR. These modes are excited predominantly for
binaries with large mass ratios. Also, due to the radiation
pattern, radiation from binaries with highly inclined orbits will
contain appreciable contribution from subdominant modes.
Hence binaries with large mass ratios (q . 1/2) and inclined
orientations (ι & 60◦) are particularly suitable sources for per-
forming the test described in this paper. Consequently, we do
not expect the test to be effective for GW signals observed by
LIGO and Virgo during their first two observational runs, for
which mass ratios are less than 2 and inclinations are close to
being face-on/face-off [23–26]. The detection rate of binaries
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with large mass ratios depends on the astrophysical merger
rate of such binaries, which is currently uncertain, while the
detection rate of binaries with large inclination angle is re-
lated to the same with small inclination angles by a simple
geometric factor.

Here we investigate the prospect of performing the pro-
posed test on binary black hole events that Advanced LIGO
and Virgo could observe over the next few years. We simulate
populations of binary black holes based on reasonable astro-
physical assumptions, and examine the distributions of the
mass ratio and inclination angle of detectable signals. In par-
ticular, we simulate binaries with two assumed distributions
of component masses in the source-frame [29]:

1. Masses following a power-law p(m1,2) = m−1
1,2 with

5M� ≤ m1,m2 ≤ 100M�.

2. Masses following a power-law p(m1) = m−2.35
1 on the

mass of the larger black hole, with the smaller mass
distributed uniformly in q and with 5M� ≤ m1,m2 ≤
100M�.

In both cases, binaries are distributed uniformly in the sky
with isotropic orientations. The distribution of the mergers in
redshift is chosen according to the prescription given in [30].
The cosmological redshift on the GW signals can be absorbed
by a rescaling of the masses m1,2(1 + z) where z is the redshift.
From the simulated events, we compute the SNR expected in
Advanced LIGO and apply an SNR threshold for detection (the
probability distributions are independent of the exact value of
the SNR threshold). The cumulative distribution of the mass
ratio q and inclination angle ι of binaries crossing the detection
threshold is plotted in Fig. 4. It can be seen that ∼ 20 − 40%
of the detectable binaries will have a mass ratio greater than 2,
out of which ∼ 15% will be observed with inclination angle
greater than 60◦. Thus, only a few percent of the observed
systems are likely to have large mass ratios (q < 1/2) and
inclined orbits (ι > 60◦). However, since Advanced LIGO and
Virgo are expected to observe hundreds of binary black hole
mergers over the next few years [29], we conclude that the
proposed test could be performed when detectors reach their
design sensitivity over the next few years, if not sooner.

Conclusions and future work:— In this paper, we pro-
posed a new method to test the consistency of an observed
GW signal with a binary black hole system predicted by GR.
The test relies on the fact that the multipolar structure of the ra-
diated GW signal is uniquely determined in GR by the masses
and spins of the black holes and no other parameters. Thus, if
we estimate the parameters of the binary from different spher-
ical harmonic modes of the observed signal independently,
those estimates will have to be consistent with one another.
Any inconsistency between the different estimates will point
to a deviation from GR or to the non-black hole nature of the
binary compact objects. We have used Bayesian parameter
inference to identify potential deviations from GR predictions,
using simulated GW signals. We provided the first estimates
of the expected precision of such tests that can be performed
using GW observations of binary black holes anticipated by
Advanced LIGO and Virgo in the next few years.

The specific implementation of the test presented in this pa-
per checks for the consistency of the masses (and spins, in the

case of spinning binaries) estimated from the quadrupole/non-
quadruple modes. If we have enough SNR to distinguish dif-
ferent modes, we can introduce deviation parameters for each
mode (say, ∆M`m

c and ∆q`m). This is analogous to checking
the consistency of different quasi-normal mode frequencies, as
the frequency evolution of the binary is determined by these
intrinsic parameters. In addition, one could also check the
consistency of the amplitudes of different modes, by introduc-
ing extra parameters describing deviations from the predicted
amplitudes. While this would expand the scope of this test,
in general, introducing more parameters would increase the
statistical uncertainties, due to correlations between different
parameters.

In this paper we have assumed, for simplicity, that the com-
panion black holes of the binary have negligible spins. Nev-
ertheless, the method can be easily generalized to the case of
binaries consisting of spinning black holes. We have also ne-
glected the systematic errors due to inaccuracies in waveform
modeling and detector calibration; these need to be understood
before implementing the test on real observations. We leave
these investigations to future work.
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