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Detection of gravitational waves has provided a new way to test black hole (BH)

models. We show how simple constraints can be obtained for models that go beyond

vacuum Einstein gravity solutions of binary BH mergers. Generic stationary metrics,

termed dirty BHs in the literature, are not vacuum solutions of the Einstein equations.

These models are, however, general enough to describe BHs surrounded by mat-

ter fields. Gravitational wave constraints already rule out certain parts of parameter

space for these solutions, including certain parameters describing objects without

horizons that have recently been studied in the context of pseudo-complex general

relativity.
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1 INTRODUCTION

Einstein’s theory of general relativity (GR) is one of the

most successful scientific theories of all times. In the second

decade of the twentieth century it replaced Newton’s theory

of gravity as the dominant paradigm to describe gravitational

physics. While Newtonian gravity successfully described a

wide range of terrestrial and solar system observations, care-

ful measurements backed by detailed calculations were able

to show that the solar system is not described by Newtonian

gravity.

One interesting aspect of Einstein’s theory is that it predicts

its own incompleteness through the celebrated singularity the-

orems. These theorems provide a number of conditions, which

if fulfilled in our Universe, imply that Einstein’s theory cannot

be a complete description of gravitation. Although quantum

effects are expected to modify gravity with Planck-scale cur-

vature, the singularity theorems do not actually depend on

quantum mechanics.

While it is widely expected that Planck-scale curva-

ture will be attained at the Big Bang and the centers of

black holes (BHs), BH entropy, and the information para-

dox suggest that vacuum GR may even fail profoundly

on horizon scales. Because of this, a complete theoretical

understanding of how BHs behave on horizon scales is still

lacking.

With the detections of coalescing binary BHs with grav-

itational waves (Abbott et al. 2016a, 2016c, 2016d, 2017a,

2018a) by the Advanced LIGO detectors (Aasi et al.

2015; Abbott et al. 2013, 2016b; Abramovici et al. 1992;

Harry 2010), we now have observational tools to probe

horizon-scale physics for dynamical BHs. In a certain sense,

BH gravitational wave data is now ahead of the theoretical

tools needed to exploit the observations. If there are modi-

fications to vacuum Einstein gravity on horizon scales, then

gravitational wave data may be sensitive to them. But there

is still great uncertainty as to what form any such modifica-

tions should take (Healy et al. 2012; Hirschmann et al. 2017;

Okounkova et al. 2017).

In the absence of specific model predictions, a number of

generic tests have been performed on gravitational wave data

looking for deviations from Einstein’s GR. So far, the data has

been found consistent with GR (Abbott et al. 2016a, 2016d,

2016e, 2017a, 2017b).

To emphasize the role of universal geometric properties

in BH physics, the concept of a dirty BH was introduced

by Visser (1992). These were not intended to be exact solu-

tions of certain theories with certain matter filed content,

but rather spacetime metrics with sufficient generality to

describe generic BHs. The versions that we will focus on here

are those describing stationary solutions. Stationary solu-

tions, such as the Kerr metric, are expected to be reasonably
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accurate descriptions for a large number of BHs in our Uni-

verse and even in the case of binary BH inspirals, numerical

simulations of vacuum Einstein gravity support the idea

that the near-horizon geometry of inspiralling BHs are well

described by stationary solutions at sufficient accuracy for

the current generation of gravitational wave detectors (Gupta

et al. 2018).

Dirty BHs can also encompass solutions of non-Einstein

theories. One such example is pseudo-complex general rel-

ativity (pcGR) (Hess & Greiner (2009), following Moffat

(1979), Mann & Moffat (1981, 1982), Kelly & Mann (1986),

and Einstein (1945, 1948). One of the features believed to be

associated with pcGR is a strong modification of near-horizon

physics. The theory has been used to justify the nonexistence

of horizons in gravitational collapse (Hess et al. 2010; Hess

& Boller 2018). The relationship between pcGR and gravita-

tional waves has been previously studied in Hess (2016, 2017)

and Nielsen & Birnholtz (2018).

2 MODEL AND SPACETIME METRIC

To obtain the functional form of the metric functions in a

specific theory, we should solve the equations of motion.

However, in situations where this is difficult, or the exact form

of the equations of motion or couplings to matter fields is

unknown, one can also proceed more generically and study

spacetime metrics that contain certain symmetries and unde-

termined metric functions whose form would ultimately be

determined by a full solution. We adopt here a dirty BH metric

of the following form:

g𝑡𝑡 = −
(

1 − 𝜓

Σ

)
, g𝑟𝑟 =

Σ
Δ

, g𝜃𝜃 = Σ,

g𝜙𝜙 =
(
(r2 + a2) + a2𝜓

Σ
sin2𝜃

)
sin2𝜃,

g𝑡𝜙 = g𝜙𝑡 = −a
𝜓

Σ
sin2𝜃, (1)

with Σ= r2 + a2cos2𝜃 and Δ= r2 + a2 −𝜓(r). If the function

𝜓(r) is chosen to satisfy𝜓 = 2Mr, then this solution is just the

Kerr solution of vacuum GR with mass M and specific angu-

lar momentum a=𝜒M. However, more general functional

forms are possible. A metric of this form was derived within

the context of pcGR (Caspar et al. 2012). In the work of Cas-

par et al. (2012), 𝜓(r) was taken to be of the form 𝜓 = 2m(r)r,

where

m(r) = M − B
2rn = M g(r), g(r) =

[
1 − b

(M
r

)n]
. (2)

Here, b is a new dimensionless parameter controlling the

modification from the Kerr solution. Its value in the vacuum

GR Kerr solution is zero. Quasi-normal modes for such dirty

BHs were studied by Medved et al. (2004).

An interesting feature of this metric is that the parameter b
can be chosen large enough such that the metric does not con-

tain a horizon. The Killing horizons of the Killing vector field

ka = 𝛿a
t −Ω𝛿a

𝜙
are located at the zeroes of r2 + a2 − 2m(r)r = 0,

where Ω= gt𝜙/g𝜙𝜙. No horizons exist when this equation does

not have real positive solutions, which occurs for b greater

than bmaxH
= Υn

maxH

(
1 − 𝜒2

2ΥmaxH

−
ΥmaxH

2

)
, where ΥmaxH

=

(n+
√

n2 − (n2 − 1)𝜒2)∕(n+1). Thus for sufficiently large b,

BHs can be said to be nonexistant (Hess et al. 2010; Hess &

Boller 2018). This limiting value is largest when 𝜒 = 0; in the

n= 2 case, it takes the value 16/27.

Equatorial circular orbits have four velocities, ua, given by

ua = dt
d𝜆
𝛿a

t +
d𝜙

d𝜆
𝛿a
𝜙
, (3)

where 𝜆 parameterizes the orbital path and can be chosen

to be the proper time in the case of time-like orbits. For

these orbits to be geodesic (Hess & Greiner 2009; Schö-

nenbach et al. 2014), bound only by gravity, we should

additionally solve the geodesic equation ua𝛻aub = 0. For

the metric (1), the only nontrivial equation of the four

geodesic equations is the r-component. This condition suf-

fices to determine the functions
dt
d𝜆

and
d𝜙

d𝜆
up to an over-

all normalization as a function of the r-coordinate. Since

the orbital frequency observed asymptotically is given by

𝜔= d𝜙/dt, the geodesic equation for the metric components

of (1) gives (𝜔a− 1)2(m−m′r)−𝜔2r3 = 0, where ′ denotes

an r-derivative. In the limit of m′ = 0, this gives the expected

behavior for the Kerr spacetime (Bardeen et al. 1972), and fur-

ther in the Schwarzschild limit of a= 0, it reduces to the famil-

iar Kepler-like relation between r and𝜔 (Abbott et al. 2017b).

3 BOUNDS FROM THE PRE-MERGER
INSPIRAL PHASE

In order to solve the two-body problem for two objects

of comparable mass orbiting each other, more is needed

than just the one-body metric (1). In Newtonian gravity, the

two-body problem of bound gravitational orbits is solved by

the Keplerian orbits. These Keplerian orbits, along with the

Einstein quadrupole formula for gravitational wave emission,

can be used to infer the basic properties of the binary source

of GW150914 (Abbott et al. 2017b).

Beyond the Newtonian order, post-Newtonian (PN) correc-

tions to the orbits also impact the gravitational wave signal for

relativistic systems. These relativistic corrections are regu-

lated (Blanchet 2014; Blanchet et al. 1995; Cutler & Flanagan

1994) by the PN parameter x∼(v/c)2, the dimensionless spins,

and the mass ratio q=M1/M2, with M =M1 +M2 being the

total mass and 𝜇=M1M2/M =Mq/(1+ q)2 the reduced mass.

For the dirty BH metric 1, we can add the parameter b, which

regulates the relative strength of the modification to the func-

tion 𝜓 . In the Newtonian and PN regimes, x∼M/r∼(M𝜔)2/3.

From the factor g(r) in (2), it can be seen that every appear-

ance of b involves suppression by at least the nth pN order.

Thus the leading order correction to the Newtonian frequency
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and phase evolutions depends on the modification, and we

approximate the b-dependent PN term to a leading order in b.

We maintain that the leading radiation effect is quadrupolar

and that the relevant time derivatives of the mass monopole

(total energy) and mass dipole (total momentum) vanish at the

leading order. In the wave zone, we expect the same relation

between the metric perturbation and the source quadrupole

as in vacuum GR, and so we expect the same wave polar-

izations and multipole decomposition. We therefore treat the

generation of gravitational waves as governed by a modified

quadrupole formula

ĖGW = −32

5

G
c5
𝜇2r4𝜔6g𝜚(r), (4)

where we allow for a possible deviation from the GR

quadrupole formula with a subleading term g𝜚(r). Examining

the energy carried by the waves far away suggests adopting

𝜚= 0, while we note that Hess (2016) used 𝜚= 1 for regulating

this emission.

The output of gravitational waves removes orbital energy

from the system, and we assume it descends through

quasi-circular orbits. Hess (2016) considered an orbital

energy of the form

Eorb = −𝐺𝑚1(r)m2(r)
2r

, (5)

and we generalize it to an expansion to second order in b:

Eorb = −𝐺𝑀𝜇

2r

[
1 − b

(M
r

)n
Q + b2

(M
r

)2n
Q2

]
, (6)

where Q = 1+qn

(1+q)n
and Q2 = qn

(1+q)2n 𝔣(n, 𝜀1, 𝜀2) depend on

the mass ratios and distributions.1 We note that Q= 1, Q2 = 0

corresponds to the model of Hess (2016, 2017). We also

introduce, for the deviation from vacuum GR, the shorthand

g̃(r) = 1 − g(R) = b
(M

r

)n
,

dg̃(r)
𝑑𝑟

= −n
r

g̃(r), (8)

such that to leading order in the deviation

dEorb

dr
= 𝐺𝑀𝜇

2r2
[1 − (n + 1)Qg̃(r)], (9)

which can be used in the equation for the energy balance

equation ĖGW = Ėorb = E′
orb

ṙ to find

−32

5

G
c5
𝜇2r4𝜔6g𝜚(r) = 𝐺𝑀𝜇

2r2
[1 − (n + 1)Qg̃(r)]ṙ. (10)

We note that for large b, the gravitational potential may

have a minimum at finite r = Mn
√
(n + 1)𝑏𝑄. At this point,

the energy balance approximation will certainly fail. Before

1The form factor

𝔣(n, 𝜀1, 𝜀2) = n
n+2∑
k=1

(−1)k Γ(n + k − 2)Γ(n + 2 − k)
Γ(n + 2)Γ(n − 1)

⋅

[
x−(n+2−k)

1∑
m=0

(−1)m(n−1)(x + (−1)m)−(n+k−2)

]||||||
1−𝜀2

𝜀1

(7)

can also depend on the how the singularities near r = 0 are regularized, but

we neglect such complexities here. In the simplest model, 𝔣(n, 𝜀1, 𝜀2) = 1.

reaching that point, the orbital angular velocity𝜔 can be elim-

inated from (10) by noting that, for quasi-circular orbits, there

is a relation between 𝜔 and r given, similar to Kepler’s third

law, by

𝜔2 = 𝐺𝑀

r3
[1 − (n + 1)Qg̃(r)], (11)

Using (10), this results in

ṙ = −64

5

G3M2𝜇

r3c5
[1 − (n + 1)Qg̃(r)]2g𝜚(r), (12)

which can be solved numerically to obtain the orbit.

To obtain the phase evolution of the orbital motion and of

the gravitational wave, it is useful to work in the frequency

domain in the PN framework (to leading and next-to-leading

orders). Differentiating the Keplerian relation (11) with

respect to time yields after some algebra

[3 − n(n + 1)Qg̃(r)] ṙ
r
= −2

𝜔

𝜔
. (13)

and we can change from r to 𝜔 using Equations (11) and (13)

r =
[
𝐺𝑀

𝜔2

]1∕3
[

1 − (n + 1)
3

Qg̃(𝜔)
]
, (14)

ṙ = −2

3

𝜔

𝜔
r
[

1 + n(n + 1)
3

Qg̃(𝜔)
]
, (15)

with g̃(𝜔) = g̃(r(𝜔)) = b(𝑀𝜔)2n∕3; g𝜚(r) = 1−𝜚g̃(𝜔). Hence

instead of (12) we have

𝜔 = 96

5

(G)5∕3

c5
𝜔11∕3[1 −𝔅𝑛𝑞𝜚(𝜔)], (16)

ḟ = 96

5

𝜋8∕3(G)5∕3

c5
f 11∕3[1 −𝔅𝑛𝑞𝜚(𝜔)], (17)

as the new chirp equations, with the standard chirp mass

= (M2𝜇3)1/5 and with g̃(𝜔) and numerical prefactors col-

lected into the modification at n-PN 𝔅𝑛𝑞𝜚(𝜔)

𝔅𝑛𝑞𝜚(𝜔) =
(
(n + 2)(n + 1)

3
Q + 𝜚

)
b(𝑀𝜔)2n∕3. (18)

We note also (17) in terms of the gravitational wave fre-

quency f =𝜔/𝜋 (twice the orbital frequency), with 𝔅𝑛𝑞𝜚(f ) =
𝔅(𝜔 = 𝜋𝑓 ).

This 𝔅𝑛𝑞𝜚(f ) modification can be compared to known

bounds on PN coefficients from gravitational wave observa-

tions. Using (17) in the integrals for the time and for the phase

(compare Cutler & Flanagan 1994)2

t = tc + ∫
df
ḟ

= tc −
5c5(𝜋𝑓 )−8∕3

256(G)5∕3

[
1 − 4

n − 4
𝔅𝑛𝑞𝜚(f )

]
,

(19)

𝜙 = 2𝜋 ∫ f 𝑑𝑡 = 2𝜋 ∫
f
ḟ

df

= − c5

16(𝜋𝐺f )5∕3

[
1 − 5

2n − 5
𝔅𝑛𝑞𝜚(f )

]
, (20)

2These forms must be trivially modified to apply to n= 2.5, 4 where the inte-

grals for 𝜙 and t, respectively, give the logarithms of 𝜋Mf rather than its

powers.
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TABLE 1 Pseudo-complex general relativity (pcGR) post-Newtonian (PN)
coefficients: a pcGR modification of order n introduces an n-PN
modification to the GR phase evolution. The final column gives the
approximate 90% credible intervals on the deviations from the vacuum
Einstein gravity values obtained from the two loudest events in the first
advanced LIGO observing run (Abbott et al. 2016a)

n 𝚼maxH
bmaxH

ppc-GR
n pGR

n 𝜹𝝓 (%) Range (𝜹𝝓)

1 1 0.5 20/9 6.44 34 (−20%, 5%)

2 4/3 16/27 320/27 46.2 26 (−130%, 15%)

3 1.5 27/32 −225/8 −652 4.3 (−110%, 10%)

and then applying the stationary phase approximation (Cutler

& Flanagan 1994), we obtain

Ψ = 2𝜋ftc − 𝜙c − 𝜋∕4 + 3

128(𝜋𝐺f )5∕3

×
[

1 + 20

(n − 4)(2n − 5)
𝔅𝑛𝑞𝜚(f )

]
. (21)

This form can be compared directly with the expected PN

coefficients in vacuum GR of Buonanno et al. (2009) (follow-

ing Iyer & Will 1993; Will & Wiseman 1996; and Blanchet &

Faye 2000), and with the limits set on deviations from them

by the observed gravitational waves in the inspiral regime in

Abbott et al. (2016a, 2016e) (based on Arun et al. 2006; Li

et al. 2012; Mishra et al. 2010; Talmadge et al. 1988; Yunes

& Pretorius 2009). This comparison is summarized in Table 1

for the leading pcGR PN terms for n= 1, 2, 3 and the cor-

responding GR PN phase coefficients of orders 1, 2, and 3.

All coefficients are calculated for the fiducial equal mass

nonspinning case (q= 1, a= 0); the pcGR coefficients are cal-

culated for the critical bmaxH
value of Equation (2), where

the horizon vanishes, and for 𝜚= 0. The table also compares

to the 90% credible intervals set on the relative deviations

(pmod-GR
n −p𝐺𝑅n )∕p𝐺𝑅n established for the two loudest events in

LIGO’s first observation run O1. These observational bounds

are obtained by varying individually the PN phase coeffi-

cients in models of vacuum GR. Here we compare them to

the leading-order deviations from dirty BHs. Although gener-

ically there will also be next-to-leading order corrections,

which will complicate a direct comparison with observational

results, we have ignored this subtle issue here, since any devi-

ation that does occur will have a dominant effect at the leading

order.

The limits on the deviations of PN coefficients can be trans-

lated into limits on b, which for n= 1, 2, and 3 are ∣b ∣ ≤ 0.85,

2.96, 118 respectively. This suggests that b(𝜋Mf )2n/3 is indeed

a small parameter throughout the system’s evolution and that

modifications from the dirt of dirty BHs should not produce

large deviations from the standard vacuum GR PN inspiral. In

particular, these should not largely affect the chirp mass .

For the GW150914 data, estimating the chirp mass directly

from f and ḟ at different inspiral times using the Newtonian

approximation (0PN, b= 0) shows that it remains nearly con-

stant up to a frequency of ∼150 Hz (Abbott et al. 2017b)

and is equal to roughly 30 solar masses. This corresponds

to (𝜋Mf )2/3∼0.17, which is consistent with treating 𝔅𝑛𝑞𝜚(f )
only at leading order but is inconsistent with the much larger

modified chirp mass (and correspondingly higher redshift)

estimated in Hess (2016, 2017) from the late part of the orbit.

The pcGR model of Hess (2016, 2017) can be considered

under the dirty BH formalism as the case n= 2, Q= 1, Q2 = 0,

𝜚= 1. For the critical value of b= 16/27, which delimits

the horizon-forming solutions, the leading coefficient pGR
2

changes from 320/27 to 800/27, which changes 𝛿𝜙 from 26

to 65% of the GR value. As Table 1 indicates, this value is

well beyond the range observed and reported by LIGO’s O1

results. Thus, at least for the parameter values and approx-

imations adopted here, these events are not consistent with

horizonless objects in pcGR.

4 CONCLUSIONS

Fully simulating binary BH mergers is difficult. Even in vac-

uum Einstein gravity, the efforts of a full community have

been necessary to build models sufficient for comparison

with gravitational wave data. In situations that contain matter,

quantum effects, or non-Einstein gravity, very little is known

about how full simulations should look.

We have shown how generic dirty BH models can be used

as a first indication of the types of effects these complica-

tions will induce. In this work, we have focused on the inspiral

regime, when the two objects are still orbiting each other. It is

also possible to extend this to other regimes observable with

gravitational waves, such as the post-merger phase (Cardoso

et al. 2016; Nielsen et al. 2018; Nielsen & Birnholtz 2018;

Westerweck et al. 2018). While we have compared our results

to those of inspiralling, heavy BH-like objects (Abbott et al.

2016a), it is also possible to use constraints from the inspi-

ral of neutron stars, such as the system GW170817 (Abbott

et al. 2018b). Tests with gravitational waves are complemen-

tary to observations with other techniques such as accretion

disk studies and imaging of supermassive BHs.

Models with a well-behaved Newtonian limit require the

chirp mass of the inspiralling system to be broadly consis-

tent with the values found using vacuum Einstein’s GR, and

this bounds both the total mass and luminosity distance to be

broadly consistent with those found using Einstein GR.

We have discussed the model in terms of a dimensionless

parameter b and power index n in Equation (2). For suffi-

ciently large values of b, the objects can be horizonless. We

find that horizonless objects in the n= 1 case are already

ruled out, independent of other solar system constraints (Will

2006).

The critical horizonless case with n= 2 and b= 16/27 dis-

cussed in Hess (2016) is in disagreement with the gravita-

tional wave data. For n= 3, the leading-order correction from

pcGR is a 3PN term, which is less tightly constrained by cur-

rent LIGO observations. Higher terms at 4PN and beyond are
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not yet fully calculated in GR, so a direct comparison with

these terms is not yet possible.
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