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We discuss the effect of heterogeneity on the chaotic properties of the Peyrard-Bishop-Dauxois
nonlinear model of DNA. Results are presented for the maximum Lyapunov exponent and the
deviation vector distribution. Different compositions of adenine-thymine (AT) and guanine-cytosine
(GC) base pairs are examined for various energies up to the melting point of the corresponding
sequence. We also consider the effect of the alternation index, which measures the heterogeneity
of the DNA chain through the number of alternations between different types (AT or GC) of base
pairs, on the chaotic behavior of the system. Biological gene promoter sequences have been also
investigated, showing no distinct behavior of the maximum Lyapunov exponent.

I. INTRODUCTION

There exists a large number of models devoted to
studying the dynamics of base pairs in DNA (see for
example [1] and references therein). Among them, the
Peyrard-Bishop-Dauxois (PBD) model [2] has been ex-
tensively used to account for a number of experimental
observations related to base pair openings in DNA. These
include the denaturation transition of short oligonu-
cleotides [3] and of peculiar periodic sequences [4], the
multi-step melting of heterogeneous DNA segments [5],
the formation of bubbles in the premelting regime [6],
as well as large openings due to thermal fluctuations in
gene promoters of various organisms at positions related
to transcriptionally relevant sites [7–15].

The PBD model is an one-dimensional coarse-grained
lattice model at the base pair level, considering a contin-
uous variable at each site which describes the stretching
of individual base pairs along the DNA sequence. The
model is an extension of an earlier version [16–18], where
a nonlinear stacking interaction term has been incorpo-
rated to mimic entropic effects, resulting in a sharp de-
naturation transition [2, 19]. Exact numerical results re-
garding the partition function and thermodynamic func-
tions of the PBD model have been obtained through the
transfer integral operator [19]. Statistical distributions
of bubble lengths for various temperatures and different
guanine-cytosine content of the DNA chain have been
presented using Monte Carlo simulations [20, 21]. Bub-
ble length distributions and their equilibrium properties
have been also discussed in detail for homogeneous DNA
chains [22].

Apart from various statistical properties, dynamical
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aspects of the PBD model have been also explored. The
dynamic structure factor of a bacteriophage regulatory
sequence has been evaluated for a range of temperatures
and particular features attributed to localized thermal
openings were observed [23]. It has been further shown
that the model exhibits a complex temporal decay of
the local displacement or energy autocorrelation func-
tions in a wide temperature range for homogeneous DNA
sequences [24]; distinct decay processes are obtained at
subpicoseconds and in the picoseconds to nanoseconds
time scales. More recently, protein aggregation and
oligomerization has been studied through the coalescence
of protein-induced DNA bubbles evolved according to the
PBD model [25].

Concerning intrinsic localized modes, a detailed study
on the earlier version of the model has led to estimates of
their characteristic size and lifetime in a thermalized ho-
mogeneous system [26]. Sub-harmonic discrete breathers
have been discussed in the driven PBD model, arising
from the anti-continuous limit, even for driving frequen-
cies above the linear frequency of the Morse on-site po-
tential where usual breather solutions do not exist [27].
In another context, the spontaneous formation of vibra-
tional hot spots in homogeneous PBD lattices [28] affects
macroscopic transport parameters of a charge carrier cou-
pled to DNA structural dynamics [29, 30], while, in re-
verse, electric current is able to form bubbles by exciting
the base pairs [31].

There are not many studies regarding calculations of
the Lyapunov exponents or other indicators of chaos in
the PBD model. An early work investigated the behavior
of the maximum Lyapunov exponent (mLE) of a homo-
geneous DNA sequence [32]. Though the focus of that
work was the former version of the model, with a linear
stacking interaction and a smoother denaturation transi-
tion, where accurate analytical estimates were presented
for the mLE through a combination of a Riemannian
geometry approach with the transfer integral operator
method, the dependence of the mLE on the energy den-
sity was also presented for the PBD model. Moreover it
was pointed out by the authors that the mLE, showing
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an abrupt change at the critical point, could serve as a
dynamical order parameter indicating a phase transition.
To the best of our knowledge there exist no investigations
of the effects of the sequence heterogeneity, which is al-
ways present in actual DNA molecules, on the chaotic
behavior of the PBD model. This is the subject of the
present work.

The paper is organized as follows. In Sect. II we out-
line the PBD model and lay out the numerical techniques
we use in our study, presenting also the quantities we ex-
amine. Sect. III contains the numerical results of our in-
vestigations and a discussion thereof. Finally, in Sect. IV
we summarize our findings and present our conclusions.

II. DNA MODEL AND NUMERICAL
TECHNIQUES

The Hamiltonian function of the PBD model, which
describes the displacements from equilibrium yi of the
bases forming the ith base pair in a DNA sequence of n
base pairs, is given by [2]

H =
∑n

i=1

[
1

2mp
2
i +Di(e

−aiyi − 1)2
]

+∑n
i=2

[
K
2 (1 + ρe−b(yi+yi−1))(yi − yi−1)2

]
. (1)

The Hamiltonian consists of three terms: the kinetic en-
ergy part with pi denoting the conjugate momentum of
yi, a Morse potential to model the effective interaction
energy of the complementary bases within the base pair
at the ith site, and an anharmonic coupling term be-
tween first neighbors to account for the effect of stacking
interaction.

To model the inhomogeneous nature of an actual DNA
chain, different parameters are used in the Morse poten-
tial for adenine-thymine (AT) and guanine-cytosine (GC)
base pairs. As the first sum in Hamiltonian (1) runs over
each base pair the use of different parameters for each
pair represents the disordered behavior of the DNA se-
quence. The parameter values we use in our study are
m = 300 amu for the effective mass of base pairs, for the
Morse potential we have DGC = 0.075 eV, aGC = 6.9
Å−1 for GC base pairs and DAT = 0.05 eV, aAT = 4.2
Å−1 for AT base pairs, while for the stacking interac-
tion we set K = 0.025 eV/Å−2, ρ = 2, and b = 0.35
Å−1. These parameters were fitted in [3] to accurately
model the melting curves of short DNA sequences and
subsequently used in a number of studies.

The PBD model is numerically integrated using the
fourth order symplectic Runge-Kutta-Nyström method
[33]. Symplectic integrators are a class of numerical in-
tegration methods devised particularly for Hamiltonian
systems. One of their main advantages is the ability to
accurately integrate Hamiltonian systems keeping their
energy E (i.e. the value of their Hamiltonian function)
bounded for very long times (see e.g. Chapt. VI of [34]
and references therein). In our simulations the time unit
is set to 1 ps and an integration time step τ = 0.011 ps

kept the relative energy error |E(t)−E(0)|/E(0) smaller
than 10−6.

In all our simulations the initial conditions for the
position coordinates are at equilibrium, i.e. yi = 0,
i = 1, 2, . . . , n and the momentum coordinates pi, i =
1, 2, . . . , n are chosen randomly from a standard normal
distribution with a zero mean and unit variance and then
scaled to obtain the desired total energy E (or equiva-
lently the energy density En = E/n). Lattices of n = 100
sites are considered for all simulations (apart from the
cases of biological promoters, see below) and periodic
boundary conditions are imposed, i.e. p0 = pn, y0 = yn,
and pn+1 = p1, yn+1 = y1.

In order to investigate the chaoticity of the PBD model
the mLE, χ1, is calculated by following the so-called stan-
dard method [35, 36]. The mLE can be used to discrim-
inate between regular and chaotic motions as χ1 = 0 for
regular orbits and χ1 > 0 for chaotic orbits. The mag-
nitude of the mLE can also be used as a measure of the
chaoticity: larger mLE values correspond to more chaotic
behaviors. In practice we estimate χ1 by computing the
finite time mLE

χ =
1

t
ln
||w(t)||
||w(0)|| , (2)

where w(0) and w(t) are deviation vectors from the stud-
ied orbit in the system’s phase space at times t = 0 and
t > 0 respectively, and || · || denotes the usual Euclidean
vector norm. Then the mLE χ1 is χ1 = limt→∞ χ. As
can be easily seen from Eq. (2) the mLE is measured in
inverse time units. Thus, in our study the χ is measured
in ps−1.

To efficiently and accurately follow the evolution of
the deviation vector w(t) we numerically integrate the
so-called variational equations [37], which govern the vec-
tor’s dynamics. The Hamilton equations of motion and
the variational ones are evolved alongside each other us-
ing the tangent map method outlined in [38–40]. In this
way we obtain a numerical estimation of the mLE χ1 af-
ter long enough integration times, which are typically of
the order of 105 ps. The initial choice of deviation vec-
tor is a normalized vector whose random coordinates are
uniformly chosen from the interval [−1, 1].

As a further investigation of the system’s chaotic
behavior, the normalized deviation vector distribution
(DVD)

ξi =
δy2i + δp2i∑n

i=1 (δy2i + δp2i )
(3)

is examined. Here, the δyi and δpi are the po-
sition and momentum coordinates of the de-
viation vector w(t) respectively, i.e. w(t) =
(δy1(t), . . . , δyn(t), δp1(t), . . . , δpn(t)). The DVD
gives a measure of the sensitivity of a certain region of
the chain to small variations of initial conditions, and
provides some idea of the ‘strength of the nonlinearity’
at each site as the system evolves [41, 42].
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To investigate the effect of the chain’s heterogeneity on
its chaoticity, two quantities are considered. First, the
AT/GC composition of the chain, quantified by the per-
centage of AT base pairs PAT , where PAT = 0% means a
pure GC chain, and PAT = 100% means a pure AT chain.
The second measure is the alternation index α [43], which
measures the chain’s heterogeneity by counting the num-
ber of times that the base pair type alternates (from AT
to GC or from GC to AT) along the DNA chain. As such,
a large alternation index corresponds to a ‘well-mixed’
chain, which in some respect may be considered quite
homogeneous. A small alternation index corresponds to
a ‘chunky’ chain, considered more heterogeneous. The
effects of both these measures on the chaoticity of the
system are discussed in Sect. III.

In all cases of different AT percentages and for all en-
ergies/temperatures up to melting, the major part of the
total energy (around 50%) is contained in the Morse po-
tential term of the Hamiltonian. For small energy densi-
ties the kinetic energy contributes equally to this term, or
slightly more as PAT increases, while the stacking inter-
action is negligibly small. However, as the energy density
increases the kinetic energy contribution drops, reaching
around 30% of the total energy at melting temperature,
in favor of both stacking and Morse potential terms. The
stacking interaction contribution increases with energy
density, but even at melting stays below 20%.

III. NUMERICAL RESULTS

A. Chaotic behavior of the PBD model

In order to investigate the chaoticity of the PBD model
we calculated the dependence of the finite time mLE χ on
the percentage of AT base pairs, PAT , and on the energy
density En. In particular, for each PAT and En value
considered we estimate the corresponding mLE χ1 by
performing statistical averages over 100 different simula-
tions. First, 10 random disorder realizations, i.e. arrange-
ments of AT and GC base pairs satisfying the considered
PAT requirement, are chosen and then, for each one of
these different realizations 10 random initial conditions
are evolved in time. The 100 evolutions of χ(t) created
from these simulations are then used to provide an aver-
age 〈χ(t)〉 value. In cases where there are not 10 distinct
realizations (i.e. for the homogeneous cases of pure AT
and pure GC, where PAT = 100% and PAT = 0% respec-
tively) then 100 random initial conditions are considered.

The process mentioned above for the calculation of
〈χ(t)〉 is illustrated in Fig. 1, where the particular case
of PAT = 30% and En = 0.0475 eV is presented. In
Fig. 1(a) the time evolution of χ for a particular disorder
realization compatible with the value PAT = 30% and
an initial condition satisfying En = 0.0475 eV is shown.
It is seen that after some initial fluctuations χ(t) shows
the tendency to stabilize at a positive value χ ≈ 0.47
ps−1. In Fig. 1(b) the same tendency is seen for the evo-
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FIG. 1: An illustration of the calculation of an average finite
time mLE 〈χ〉 for the particular case of PAT = 30% at a
given energy density En = 0.0475 eV. The time evolution
of χ is shown for (a) a single initial condition and disorder
realization, (b) 10 different initial conditions over the same
disorder realization, and (c) 100 simulations obtained from 10
random initial conditions of each one of 10 different disorder
realizations (gray curves). The computed averaged finite time
mLE 〈χ〉 along with its standard deviation (error bars) are
plotted in black in (c).

lution of χ for 10 different initial conditions (all of which
set En = 0.0475 eV) for the same disorder realization as
that of Fig. 1(a). This behavior clearly indicates that the
limiting value of χ does not dependent on the particular
initial condition. Furthermore, this value seems to not
depend much on the particular random disorder realiza-
tion as the computed finite time mLEs for all the 100
initial conditions considered for the 10 different disorder
realizations in the PAT = 30%, En = 0.0475 eV case
[gray curves in Fig. 1(c)] tend to roughly the same posi-
tive value, exhibiting only relatively small differences.

The results of Fig. 1 indicate that the chaotic behavior
of the PBD model, for a particular choice of the PAT

and En parameters, is predominantly characterized by
a single mLE value χ1, except for some extreme cases
discussed in Sect. III C below. A reasonable estimation of
this value can be obtained by the average 〈χ〉 of the final
χ values, while the corresponding uncertainty is simply
taken as the standard deviation of these values.

Repeating the procedure of Fig. 1 for several values of
PAT and En we can find the behavior of the system’s
mLE as the energy density and the content of AT base
pairs change. The results of this process are presented
in Fig. 2 where each curve corresponds to a particular
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FIG. 2: (Color online) Estimates of the system’s mLE χ1 as a
function of the energy density En, for several percentages PAT

of AT base pairs in the DNA chain, plotted up to the melting
point. The error bars represent the standard deviation in the
computation of the limiting values of 〈χ〉. Computed points
are connected with lines in order to facilitate the visualization
of the dependence of χ1 on En. Inset : The dependence of χ1

on temperature T .

PAT value. The estimates of χ1 are calculated up to the
chain’s melting point for each PAT . According to figure
2(b) of Ref. [21] the melting temperature Tm (in K) is
related to PAT through the equation

Tm = 365− 0.4PAT . (4)

Note that the slope of 0.4 degrees per 1% percentage
of AT or GC, indicated in Eq. (4), is in agreement
with experimental measurements over a large number
of different DNA samples [44]. In our simulations the

temperature T is estimated as T = 2Ekin
n /kB , where

Ekin
n =

(∑n
i=1 p

2
i /2m

)
/n is the mean kinetic energy per

base pair and kB is the Boltzmann constant. In Fig. 2 we
present for each AT concentration results up to En values
ending at the denaturation transition defined in Eq. (4).
The melting of chains having more GC pairs (with the
extreme situation being the PAT = 0% case) happens at
larger En values. This is due to the fact that a GC base
pair contains three hydrogen bonds, in contrast to AT
pairs which have only two such bonds, and consequently
more energy is needed for GC bonds to break. This sit-
uation is reflected in the parameters of the model. For
this reason curves of smaller PAT extend to higher En

values in Fig. 2.
For all percentages, the same trend is clearly visible

in Fig. 2: the χ1 values (and consequently the system’s
chaoticity) increases with energy density, with a minor
flattening out at larger En values. This behavior is in
agreement with the results presented in [32] for the ho-
mogeneous PBD model, but for different parameter val-
ues from the ones used here. From Fig. 2 we observe
slightly different behaviors at lower and higher energies

for different values of PAT . At lower energy densities,
En . 0.025 eV, there is a tendency for the chains with
higher AT content to be more chaotic, as indicated by
the higher values of the estimated mLEs. In this en-
ergy region it is evident that the curve of the homoge-
nous AT chain (PAT = 100%) is always at higher val-
ues than all other cases. However, in this energy range
the PAT = 0% case is not always the least chaotic one;
there is some crossing point, at about En ≈ 0.015eV,
below which the PAT = 10% and PAT = 30% cases are
less chaotic than the pure GC case. In the middle re-
gion, 0.025 eV . En . 0.035 eV, the composition of
the chain appears to have little effect on the system’s
chaoticity. All PAT curves show very similar behaviors
until En ≈ 0.035 eV, whereafter the chains with more GC
content seem to become somewhat more chaotic, up to
the melting point. In particular, for En & 0.035 eV the
curve which corresponds to a pure GC chain (PAT = 0%)
is always at higher χ1 values than the other curves. Fol-
lowing Ref. [45], we have obtained a critical exponent,
through the relation |χ1(T ) − χ1m| ∝ (Tm − T )a, where
χ1(T ) is the mLE at temperature T approaching melting
and χ1m is the mLE at the melting temperature Tm. A
value of this exponent a = 1.5 ± 0.2 has been obtained
for all different AT percentages.

The existence of these three different dynamical
regimes in the chaotic behavior of the PBD system is
consistent with the easier breaking of AT bonds. For
relatively small energies it is expected that the stronger
GC bonds lead to smaller oscillations, resulting to less
chaotic behavior. Thus, chains with more AT base pairs
show larger χ1 values and behave more chaotically in
this regime as these base pairs explore in larger extent
the nonlinear part of the corresponding Morse potential.
On the other hand, larger energies (but not large enough
to lead to the breaking of base pairs and to melting) cor-
respond to higher energy levels for each base pair. These
high energy levels in the narrower well of the GC Morse
potential (with respect to the AT pair) lead to more
chaos for the GC pairs than the AT ones. In the case of
AT base pairs these high energy levels are closer to the
rim of their Morse potential, allowing larger yn values,
which in turn make their behavior more linear. Thus, in
that energy regime lattices with small PAT values become
more chaotic. The smooth increase of χ1 curves between
these two energy regimes results in an intermediate re-
gion (0.025 eV . En . 0.035 eV) where the value of PAT

practically does not influence the system’s mLE. It is also
expected that for very small En values (i.e. En → 0 eV)
the nonlinear effects in Eq. (1) should become negligible
and the system will become less chaotic, irrespectively of
its content of GC and AT base pairs. This tendency is
present in Fig. 2 as the χ1 estimates are reduced when En

becomes very small, attaining values, for all PAT , which
are closer to each other.

In order to examine whether biologically functional
sequences exhibit characteristic chaotic properties, we
have investigated two particular gene promoters: a 86
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FIG. 3: (Color online) Evolutions of finite time mLEs χ above
the melting temperature, for ten different initial conditions of
a single disorder realization for the case of PAT = 90% at
En = 0.085 eV. Once the chain melts and the bonds com-
pletely separate, the system linearises and the finite time
mLE χ shows a behavior corresponding to a regular orbit.
The dashed line guides the eye at a slope of −1 in the log-log
scale.

base-pair long segment of the adenovirus major late pro-
moter (AdMLP) and a 129 base-pair long fragment of lac
operon promoter. The base-pair sequences of these DNA
stretches are shown in Refs. [8] and [12], respectively.
The statistically averaged mLEs of these sequences are
identical with the corresponding values obtained from
random sequences of the same length and AT percent-
age (PAT = 33.7% and 51.9% for the AdMLP and lac
operon, respectively), thus indicating no specific chaotic-
ity of gene promoters.

Above melting the base pair stretchings yn are bound-
less in the framework of the PBD model and the exponen-
tial terms in the Hamiltonian of Eq.(1) drop off to zero,
leading to effectively integrable behavior. The evolution
of the finite time mLE in this case is shown in Fig. 3. It
can be seen the after some time χ starts going to zero
with a slope of −1 in a log-log scale, as is expected for a
regular orbit (see for example [36] and references therein).

B. Deviation Vector Distributions

Based on the fact that deviation vectors eventually
are aligned to the direction defined by the mLE, DVDs
have already been used to visualize the motion of chaotic
seeds, i.e. regions of high ξi (Eq. 3) values, in chaotic,
nonlinear lattices [41, 42]. In this section we examine the
spatiotemporal evolution of such DVDs in conjunction
with the displacements of the system.

Looking at the time evolution of individual DVDs we
can see a correlation between regions of relatively large
displacements and the concentration of the DVD. This
correlation has been observed for different AT percent-
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FIG. 4: (Color online) (Top): Evolution of the DVD in the
case of one initial condition for a particular disorder realiza-
tion. The light regions are where the DVD is concentrated,
according to the color bar on the top of the figure. (Bottom):
Evolution of base pair displacements for the same realization.
Light colors signify high values and dark no significant dis-
placement according to the color bar on the top of the figure
(values are shown in Å). The bars on the right hand side indi-
cate the DNA sequence, showing the positions of AT (white)
and GC (black) base pairs. Energy density is En = 0.04 eV
and PAT = 50%.

ages and various energy densities that we have examined.
A typical result is shown in Fig. 4. The DVD is always
quite localized and appears to jump, with no apparent
pattern, between sites next to a relatively large displace-
ment. However, it is always localized close to sites ex-
hibiting base pair openings. From this we can infer that
in sites nearby to relatively larger base pair stretchings
in the DNA chain the behavior is particularly nonlinear,
in the sense that the DVD is concentrated in these re-
gions. There seems however to be no particular favor
shown to the size of the openings, with the DVD at dif-
ferent times localized around relatively larger or smaller
openings and not in the highest opening. It does however
appear to completely avoid non-excited regions.

At low energies, looking at the averaged DVD and dis-
placement patterns, over several initial conditions, for
a particular disorder realization, one can clearly distin-
guish the influence of the base pair distribution along
the DNA sequence. The displacements are larger on AT
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FIG. 5: (Color online) (Top): Evolution of the DVD at
low energy density, averaged over 100 initial conditions for a
single disorder realization. The light regions are where the
DVD is concentrated, according to the color bar on the top of
the figure. (Bottom): Evolution of base pairs displacements
averaged over the same 100 initial conditions. Light colors
signify maximum values and dark no significant displacement,
according to the color bar on the top of the figure (values are
shown in Å). The bars on the right hand side indicate the
DNA sequence, showing the positions of AT (white) and GC
(black) base pairs. En = 0.005 eV, PAT = 30%.

base pairs and especially in AT-rich regions, as expected.
The DVD tends to be concentrated in the larger homoge-
neous islands, i.e. in regions containing the larger num-
ber of consecutive sites of the same type of base pair.
This is demonstrated in Fig. 5, where the averaged DVD
and displacement patterns are shown for a hundred dif-
ferent initial conditions of energy density En = 0.005
eV, corresponding to the same disorder realization with
PAT = 30%. While the displacements are larger at the
AT sites, the DVD has a clear trend towards being con-
centrated at the larger homogeneous islands, regardless
of the base pair type of the island. This is a typical situ-
ation for any AT percentage at lower energies. However
at higher energies (e.g. at En = 0.03 eV), while the dis-
placements are always larger at the AT base pairs, the
averaged DVD loses its coherence with the larger homo-
geneous islands and is no longer concentrated there.

Using long simulations (up to 105 ps), we have also
computed the evolution of the DVD, averaged over 100
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FIG. 6: (Color online) (Top): Evolution of the DVD for
the 86 base-pair long AdMLP promoter, averaged over 100
initial conditions at En = 0.04 eV, corresponding to T ≈ 310
K. (Bottom): Evolution of the DVD for the 129 base-pair
long lac operon, averaged over 100 initial conditions at the
same energy density. The light regions show where the DVDs
are concentrated, according to the color bars on the top of
each figure. The bars on the right hand side indicate the
DNA sequence, showing the positions of AT (white) and GC
(black) base pairs for the two sequences.

different realizations, for the two functional sequences
considered previously, the AdMLP and lac operon pro-
moters, at energies corresponding to a physiological tem-
perature. The results are presented in Fig. 6. As it can be
seen from this figure (top), the DVD for the AdMLP case
distinctly avoids a region starting close to the transcrip-
tion start site +1 and extending upstream up to around
−20. This is a region presenting the lower propensity to
form large bubbles in the considered promoter stretch [9].
The DVD evolution for the lac operon (Fig. 6, bottom)
does not exhibit such a clear avoidance at any region and
no correlation with the known bubble opening probabil-
ities [12] can be made from these data.

C. Effect of the alternation index

In order to further investigate the effect of heterogene-
ity on the chaoticity of the system, following the influence
of the AT/GC composition, we now examine how the es-
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timate of χ1 changes with the alternation index α. In
[43] it was shown that the probability distribution func-
tion of α can be well approximated by a rather narrow
Gaussian distribution. Thus, in our analysis we consider
the most probable value of α, along with the extreme
cases of very large α, corresponding to a well-mixed dis-
order realization which can be thought to be effectively
homogeneous, as well as the case of very small α, corre-
sponding to a very unevenly distributed or heterogeneous
disorder realization. Particularly, we take the smallest
possible value of α (α = 2, where the AT and GC base
pairs are completely separated in two distinct parts along
the DNA chain), another small value α = 6, and simi-
larly the maximum value of α (where the minority base
pairs, AT or GC, are all isolated in between base pairs
of the other type, the majority one) along with another
large α value. We note that the maximum possible value
of α depends on PAT [43].

The dependence of the limiting value of the finite time
mLE on the energy density for all these cases of the al-
ternation index is depicted in Fig. 7(a), when the AT
percentage is PAT = 50%. The effects of α can be clearly
seen at low energies, below En ≈ 0.03 eV: The effectively
homogeneous cases (α=100 and 96) show lower chaotic-
ity than the most probable case (α=50), while the more
heterogeneous cases (α=2 and 6) are noticeably more
chaotic. As the energy is increased to the melting point,
the effect of α becomes negligible, but the overall pic-
ture of the homogeneous cases being less chaotic remains
slightly apparent.

We find that unsurprisingly the effect of α on the sys-
tem is most noticeable in the PAT = 50% case, where
there is an equal number of the two different types of
base pairs. In systems dominated by a single base pair
type, the effect of the few other base pairs is minimal
regardless of the disorder arrangement. This can be seen
in Figs. 7(b) and 7(c), demonstrating similar results
as in Fig. 7(a) for PAT = 70% and 90%, respectively.
As compared to the PAT = 50% case, the effect of the
value of the alternation index α is smaller at PAT = 70%
and almost vanishes at PAT = 90%. Similar results to
PAT = 70% and PAT = 90% have been obtained when
PAT = 30% and PAT = 10%, respectively.

IV. CONCLUSIONS

We have calculated the finite time maximum Lyapunov
exponent χ of the Peyrard-Bishop-Dauxois DNA model,
for different base pair compositions across the whole en-
ergy spectrum up to the melting point. Chaoticity in-
creases with energy for any composition of AT/GC base
pairs, including the homogeneous cases of pure AT or
pure GC chains. Three distinct regions of chaotic be-
havior have been found: (i) at lower energy densities
(En . 0.025 eV), DNA segments with more AT base
pairs are more chaotic, (ii) in a middle energy region the
composition of the chain has little impact on the chaotic-
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FIG. 7: (Color online) Estimate of the mLE χ1 as a function
of the energy density En for different values of the alternation
index α, for AT percentages (a) PAT = 50%, (b) PAT = 70%
and (c) PAT = 90%. In (a) the extremely heterogeneous cases
(α = 2, 6) are more chaotic at lower energies than either the
most probable case (α = 50), or the effectively homogeneous
cases (α = 96, 100). This effect is less noticeable in (b) and it
is not observed in (c).

ity, and (iii) at higher energy densities (En & 0.035 eV)
sequences with more GC base pairs appear to be slightly
more chaotic. The maximum Lyapunov exponent of bi-
ologically functional gene promoters does not exhibit a
distinct behavior compared to random sequences of the
same AT percentage.

The deviation vector distribution, which can identify
regions of more intense chaotic behavior, has been found
in individual realizations to be localized in regions along
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the DNA chain close to relatively large displacements.
The numerical simulations show that the DVD jumps be-
tween such regions nearby to a large displacement, with
no particular preference to the sites of highest displace-
ment. In addition, for relatively low energies a tendency
of the statistically averaged DVDs to be localized in ex-
tended regions containing the same type of base pairs was
found.

Another measure of heterogeneity, the alternation in-
dex α, appears to have some effect on the maximum Lya-
punov exponent in cases where there is not a predomi-
nance of one type of base pair, especially at low energies.
In particular, our findings show that in these cases ef-
fectively homogeneous segments (large values of α) are
generally less chaotic than more heterogeneous segments

(where α is small).
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