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We investigate topological Cooper pairing, including gapless Weyl and fully gapped class DIII
superconductivity, in a three-dimensional doped Luttinger semimetal. The latter describes effective
spin-3/2 carriers near a quadratic band touching and captures the normal-state properties of the
227 pyrochlore iridates and half-Heusler alloys. Electron-electron interactions may favor non-s-wave
pairing in such systems, including even-parity d-wave pairing. We argue that the lowest energy
d-wave pairings are always of complex (e.g., d + id) type, with nodal Weyl quasiparticles. This
implies %(E) ∼ |E|2 scaling of the density of states (DoS) at low energies in the clean limit, or
%(E) ∼ |E| over a wide critical region in the presence of disorder. The latter is consistent with the
T -dependence of the penetration depth in the half-Heusler compound YPtBi. We enumerate routes
for experimental verification, including specific heat, thermal conductivity, NMR relaxation time,
and topological Fermi arcs. Nucleation of any d-wave pairing also causes a small lattice distortion
and induces an s-wave component; this gives a route to strain-engineer exotic s+d pairings. We also
consider odd-parity, fully gapped p-wave superconductivity. For hole doping, a gapless Majorana
fluid with cubic dispersion appears at the surface. We invent a generalized surface model with ν-fold
dispersion to simulate a bulk with winding number ν. Using exact diagonalization, we show that
disorder drives the surface into a critically delocalized phase, with universal DoS and multifractal
scaling consistent with the conformal field theory (CFT) SO(n)ν , where n→ 0 counts replicas. This
is contrary to the naive expectation of a surface thermal metal, and implies that the topology tunes
the surface renormalization group to the CFT in the presence of disorder.

I. INTRODUCTION

One of the most useful concepts of modern day con-
densed matter physics is the topological classification of
quantum phases, which at the coarsest level divides into
two categories: topological and trivial. A hallmark signa-
ture of a topologically non-trivial system is the existence
of robust gapless states at an interface with the trivial
vacuum, exposing the information about the bulk topo-
logical invariant to the external world. This classification
encompasses insulators, semimetals and superconductors
(both gapped and gapless) [1–15]. In this paper we estab-
lish that a doped three-dimensional Luttinger semimetal
(LSM), describing a quadratic touching of Kramers de-
generate valence and conduction bands of j = 3/2 (effec-
tive) fermions [16, 17], can harbor myriad exotic gapless
and gapped topological superconductors.

The LSM provides the low-energy normal-state de-
scription for a plethora of both strongly and weakly cor-
related compounds, such as the 227 pyrochlore iridates
(Ln2Ir2O7, with Ln being a lanthanide element) [18–23],
half-Heusler compounds (ternary alloys such as LnPtBi,
LnPdBi) [24–26], HgTe [27], and gray-tin [28, 29].
Among these materials, the 227 pyrochlore iridates might
support only non-Fermi liquid or excitonic (particle-hole
channel) orders [30–38] (most likely magnetic such as the
all-in all-out [18, 20, 35], spin-ice [23] orders), since the

chemical potential lies extremely close to the band touch-
ing point [21, 22]. Nevertheless, it is possible to move the
chemical potential away from charge neutrality (e.g. via
chemical doping), which can be conducive for supercon-
ductivity. While Cooper pairing has not yet been found
in HgTe or gray-tin, some half-Heusler compounds (such
as YPtBi, LaPtBi, LuPdBi, LuPtBi) become supercon-
ducting below a few Kelvin [39–47]. This has led to a
surge of theoretical works recently [48–57]. Despite half-
Heuslers standing as fertile ground for topological phases
of matter, the nature of the actual pairing remains elusive
so far and therefore demands comprehensive theoretical
and experimental investigations.

In this paper, we study various experimental signa-
tures of superconducting states that could arise in a
three-dimensional LSM. Since the superconducting order
parameter is formed from spin-3/2 band electrons, the
SU(2) angular momentum addition rule (3/2)⊗ (3/2) =
0⊕1⊕2⊕3 implies that simple paired states reside in two
broad categories: (a) even-parity, such as local or intra-
unit cell pairing (with order parameter spin j ∈ {0, 2}),
and (b) odd-parity, momentum-dependent pairing (with
order parameter spin j ∈ {1, 3}) [51, 56]. We consider
these two cases separately. The unpaired conduction and
valence bands are each two-fold degenerate in the absence
of inversion symmetry breaking; degenerate states can be
labeled by a band pseudospin index. All spin-j pairings
can be classified according to their transformation under
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pseudospin rotations. The j = 0 and 2 channels trans-
form as pseudospin singlets (respectively s- and d-wave
pairings), while j = 1 represents a pseudospin triplet p-
wave pairing. We next provide a synopsis of our main
findings for even- and odd-parity pairings.

A. Even parity pairing: scenarios and main results

Even-parity local pairings are represented by anoma-
lous local bilinears of the spin-3/2 fermion field. Local or
intra-unit cell pairings can be mediated by short-range
interactions, such as spin exchange scattering. For su-
perconductivity at low densities in an LSM, momentum-
dependent pairing interactions can be strongly sup-
pressed relative to local ones. The mechanism for
this is virtual renormalization from higher energies, as
may also occur in bilayer graphene (a “two-dimensional
LSM”) [58–61] or structurally similar bilayer silicene [62].
The local pairing amplitudes couple to j = 0 and j = 2
spin SU(2) tensor operators.

Although the even-parity pairings are local bilinears in
the LSM, we focus on the situation where the supercon-
ductivity itself manifests mainly near the Fermi surface.
The Fermi surface is assumed to reside at finite carrier
density away from charge neutrality. The projection of
the j = 0 (j = 2) pairing onto the conduction or va-
lence bands give rise to momentum-independent (depen-
dent) s-wave (d-wave) superconductivity on the Fermi
surface [51, 56]. Both channels are band-pseudospin sin-
glets due to Kramers degeneracy. In this context we point
out an important role played by the normal state band
structure. We note that in a Dirac semiconductor six lo-
cal pairing bilinears, when projected onto the Fermi sur-
face, transform into two s-wave pairings and four p-wave
pairings (including the analogous paired state of the B-
phase, and three polar pairings of 3He), see Appendix C.
Thus while d-wave pairings in a doped LSM can be real-
ized from an extended Hubbard model (containing only
local or momentum-independent interactions), in Dirac
semiconductors they may require non-local interactions.
The same logic was employed by Berg and Fu to argue for
the naturalness of p-wave pairings from local interactions
in a (topological) Dirac insulator [63] 1

1 The reason behind obtaining the d-wave character of the SC gap
when projecting the local pairing onto the Fermi level is reminis-
cent of how Fu and Berg obtain an effective p-wave pairing by
projecting the initially local (inter-band) pairing onto the Fermi
surface of a doped Bi2Se3. In the latter case, the electron disper-
sion is linear and the Hamiltonian has a form of a dot-product
(p · L) of momentum p and L = 1 orbital momentum. In the
case of the Luttinger metal, on the other hand, the Hamiltonian
is a dot-product of a 5-dimensional vector formed from cubic har-
monics and the 5 components of the symmetric traceless tensors
(Dirac’s Γ matrices) that transform like L = 2 under the SU(2).
Thus, the L = 2 character results in the d-wave pairing when
projected onto the Luttinger Fermi surface, compared to L = 1

In this paper we carefully catalog the bulk structure of
the nodal loops, single or double Weyl nodes that arise
via combinations of the d-wave pairings (at the cost of the
time-reversal symmetry breaking). We show how strain
can promote particular d-wave pairings, whilst simul-
taneously inducing a parasitic s-wave component. We
also consider the effects of quenched disorder on the bulk
quasiparticle density of states (DoS). In addition, we de-
termine the anomalous spin and/or thermal Hall conduc-
tivities expected from possible time-reversal symmetry-
breaking orders. We now highlight our main results.

1. We determine the transformation of various lo-
cal pairings under the cubic point group symmetry and
the spectra of BdG quasiparticles inside various paired
phases. We show that while pseudospin singlet s-wave
pairing (transforming under the A1g representation) in-
duces a full gap, each of the five simple d-wave pairings
(belonging to T2g and Eg representations of the Oh point
group) produces two nodal loops on the Fermi surface
(see Sec. II and Table. I). However, due to the underly-
ing cubic symmetry it is always possible to find a spe-
cific phase locking among the d-wave components that
eliminates the nodal loops from the spectra and yields
only few isolated simple Weyl nodes (characterized by
monopole charges Wn = ±1). See Secs. III B and III C.
The DoS around each Weyl node vanishes as %(E) ∼ |E|2.
Within a weak coupling pairing picture, complex (e.g.
d+ id) Weyl superconductors are therefore energetically
favored over the simple d-wave nodal-loop pairings, since
the former cause an additional power-law suppression of
the DoS [%(E) ∼ |E| for nodal loop → |E|2 for Weyl].
Nodal superconductivity can also be realized when the
pairing interactions in the Eg and T2g channels are com-
parable, discussed in Sec III D, typically supporting sim-
ple Weyl nodes with Wn = ±1. By contrast, double-Weyl
nodes (with monopoles charges Wn = ±2) can only be
found inside the dx2−y2 + idxy phase, which results from
a competition between Eg and T2g pairings. This gives
%(E) ∼ |E| at low energies.

2. The emergent topology of BdG-Weyl quasipar-
ticles (and therefore the symmetry of the underlying
paired state) can be probed from the measurement of
the anomalous pseudospin and thermal Hall conductiv-
ities, discussed in Sec. III E. We show that despite pos-
sessing Weyl nodes the net anomalous pseudospin and
thermal Hall conductivities inside the Eg paired state
are precisely zero, while these are finite in any high sym-
metry plane inside the T2g paired states. On the other
hand, when pairing interactions in the Eg and T2g chan-
nels are of comparable strength, only the dx2−y2 + idxy
paired state supports non-trivial anomalous pseudospin
and thermal Hall conductivities (see Sec. III E). These
results stem from the momentum-space distribution of
the Abelian Berry curvature, shown in Figs. 4 and 5.

in the case of Ref. [63].



3

3. In strongly correlated quantum materials, a recur-
ring question is the coexistence of otherwise competing
orders. This includes the coexistence of charge-density-
wave and superconductivity in the cuprates, as well as
magnetic and superconducting phases in heavy-fermion
compounds. Here we demonstrate that the formation of
any d-wave pairing in an LSM breaks the cubic symme-
try and causes a small lattice distortion or nematicity
that in turn induces an even smaller s-wave component.
Thus any d-wave paired state is always accompanied by
a parasitic s-wave counterpart. Such non-trivial coupling
between d-wave and s-wave superconductivity with the
lattice distortion can be exploited to strain engineer var-
ious d + s paired states, by applying a weak external
strain in particular directions (see Sec. IV). Specifically,
strain applied along the [0, 0, 1], [1, 1, 1] and [1, 1, 0] direc-
tions respectively leads to the formation of s + d3z2−r2 ,
s+ dxy + dyz + dxz and s+ d3z2−r2 + dxy pairing. Exter-
nal strain along these three directions therefore induces
time-reversal-symmetric mixing of s- and d-wave pairing.

4. Impurities and quenched disorder can be partic-
ularly important in low-carrier systems. We investigate
the stability of various nodal topological superconductors
against the onslaught of randomness or disorder. Using
renormalization group and the ε-expansion, we find that
Weyl superconductors, comprised of Weyl nodes with
monopole charges ±1, remain stable for sufficiently weak
disorder, while at stronger disorder the system can un-
dergo a continuous quantum phase transition into a ther-
mal metallic phase where %(0) is finite. The disorder-
controlled quantum critical point is accompanied by a
wide quantum critical regime, where %(E) ∼ |E|, as long
as |E| � Tc (the superconducting transition tempera-
ture). By contrast, both double-Weyl and nodal-loop
paired states enter into a diffusive thermal metallic phase
for arbitrarily weak strength of disorder (see Sec. V). 2

5. In this work, we make an independent attempt
to understand the peculiar power-law suppression of the
penetration depth (∆λ) in YPtBi [47] by combining a
power-law contribution (arising from gapless quasiparti-
cles in the d-wave paired state, for example), with an ex-
ponential one, stemming from an s-wave component (due
to its inevitable coexistence with any d-wave pairing).
We find that even though both T -linear and T 2 fitting
give qualitative agreement, the former one yields a better
fit over a larger window of temperature (see Fig. 10). A
T -linear dependence may arise from either double-Weyl
nodes or nodal loop(s) in a clean system, but it might
also represent BdG-Weyl quasiparticles in the presence
of quenched disorder. The dirty BdG-Weyl system can
exhibit %(E) ∼ |E| scaling throughout a wide quantum

2 In the presence of strong inter-band coupling due to pairing inter-
actions nodal Fermi points gets replaced by BdG-Fermi surface
at lowest energy [53, 54]. Our conclusions remain valid above the
scale of BdG Fermi energy. Presently the stregth or importance
of such inter-band coupling in real materials is unknown.

critical fan. We propose future experiments to determine
the scaling of specific heat, thermal conductivity, NMR
relaxation time, STM measurements of surface Andreev
bound states, and anomalous thermal Hall conductivity
that can pin down the nature of the pairing in this class
of materials (see Sec. VI). Finally, we also discuss the
consequences for superconductivity of the lack of spatial
inversion symmetry, which is broken in the half-Heusler
family of materials, in Sec. VI and in Appendix J.

B. Odd parity pairing: robust surface states and
topological protection

Odd-parity pairing can arise in the LSM via j = 1 or
j = 3 spin SU(2) tensor operators, coupled to odd powers
of momentum to satisfy the Pauli principle. The j = 3
operator [Eq. (A5) in Appendix A] plays the key role
in proposals for p-wave, “septet” pairing that has been
extensively discussed in the context of YPtBi [47, 51, 53].
It could also arise in an exotic, isotropic f -wave pairing
scenario [49].

In this paper, we instead focus on simple isotropic p-
wave pairing, different from the gapless septet scenario
proposed by other authors [47, 51, 53]. This simpler odd-
parity pairing is nevertheless very rich, and can be viewed
as the spin-3/2 generalization of the B phase of 3He [15],
giving rise to fully gapped, strong class DIII topological
superconductivity [9, 48, 49, 52]. 3 Unlike model spin-
1/2 topological superconductors, the gapless surface Ma-
jorana fluid that arises from a higher-spin bulk can ex-
hibit nonrelativistic dispersion [48, 49]. The robustness
of “topological protection” for such a 2D surface fluid has
not been generally established, and we have shown pre-
viously that interactions can destabilize such states [52].
In the same work, however, we demonstrated that topo-
logical protection can be enhanced by quenched surface
disorder.

The motivation for studying strong topological super-
conductivity in the LSM is twofold. We seek to define
topological protection for surface states of higher-spin
superconductors, since this is an ingredient expected to
arise in candidate materials with strong spin-orbit cou-
pling. At the same time, the Eliashberg calculations in
Ref. [56] suggest that isotropic p-wave pairing gives the
dominant non-s-wave channel in a hole-doped LSM due
to optical-phonon–mediated pairing interactions.

For isotropic p-wave pairing in the LSM, we show that
the bulk winding number ν = 3 describes supercon-

3 This outcome is insensitive to the magnitude of chemical doping
away from the band touching point. As long the pairing takes
place in the vicinity of the Fermi surface (realized either in the
valence or conduction band), i.e. when the Fermi momentum

k±F =

√
2m±∗ µ is a real quantity or equivalently µ > 0(see Sec. II

for details), it is topological in nature.
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ductivity arising from either the |ms| = 3/2 valence or
|ms| = 1/2 conduction band; here ms denotes the spin
projection. Unlike the winding number, the dispersion
of the surface Majorana fluid does depend on |ms|. We
investigate the effects of quenched disorder on the cubic-
dispersing fluid that obtains in the hole-doped scenario.

The surface states of spin-1/2 TSCs with disorder are
by now well-understood, thanks in large part to their ex-
act solvability near zero energy using methods of confor-
mal field theory (CFT) [64, 65]. CFT predicts universal,
disorder-indepedent statistical properties of the surface
states, including power-law scaling of the average low-
energy surface density of states %S(ε) and “multifractal”
scaling of surface state wave functions. Predictions for a
given class depend only on the bulk winding number ν
[64, 65], e.g. %S(ε) ∝ |ε|−1/(2ν−3) for class DIII [65, 66].

For the cubic-dispersing surface states of the hole-
doped LSM with isotropic p-wave pairing, we compare
numerics to the corresponding ν = 3 CFT predictions
[52, 65, 67]. While our numerical results give disorder-
independent multifractal spectra for ν = 3, the agree-
ment with the SO(n)3 CFT [52, 65] is rather poor. (Here
n → 0 counts replicas, used to define the disorder-
averaged field theory [68].) We believe that this is due to
the limited system size afforded by our numerics; finite-
size effects are expected to be worse for stronger multi-
fractality [67] and multifractality is maximized for lower
winding numbers [65]. In addition, for ν = 3 the power-
law energy scaling of the average density of states pre-
dicted by the CFT accidentally coincides with that due
to the clean cubic dispersion, and is therefore not a useful
indicator in this particular case.

Instead of performing a finite-size scaling analysis (see
Ref. [69]), we invent a generalized surface theory that
allows the investigation of a Majorana surface fluid cor-
responding to a generic bulk winding number ν. Com-
puting both the scaling exponent for %S(ε) and the zero-
energy multifractal spectrum, we find excellent agree-
ment between the SO(n)ν CFT [52, 65] and numerics
for ν = 5, 7, predicted to exhibit much weaker multifrac-
tality.

Since the SO(n)ν theory is known to be stable against
the effects of interparticle interactions [65], our results
imply that surface states enjoy robust topological pro-
tection, with signatures such as the universal tunneling
density of states %S(ε) and the precisely quantized ther-
mal conductivity [70] that could be detected experimen-
tally. That we find critical delocalization for any ν is
surprising, since the naive expectation would be a surface
thermal metal phase. (The thermal metal would exhibit
disorder-dependent spectra.) Indeed, the CFT is techni-
cally unstable towards flowing into the thermal metal, see
Fig. 11. Our results for generic winding numbers suggest
that, in the presence of disorder, the topology fine-tunes
the surface to the CFT.

We emphasize that the clean limit for our generalized
surface model exhibits a stronger density of states van
Hove singularity with larger ν. This would suggest a

stronger tendency at larger winding numbers for the dis-
order to induce a diffusive surface thermal metal, due
to the high accumulation of states in a narrow energy
window that can be admixed by the disorder. It is all
the more surprising that we recover universal, critical
CFT results with better agreement for increasing ν. We
also expect that ν = 3 (relevant to the LSM) would give
results consistent with the SO(n)3 CFT for bigger sys-
tem sizes than we can access here, which could capture
the highly rarified wave functions and predicted strong
multifractality. This extrapolation from results at larger
winding numbers is in the same spirit as a large-N ex-
pansion.

It is also interesting to note that the simple general-
ized surface theory introduced here allows us to “dial
in” any of the infinite class of Wess-Zumino-Novikov-
Witten (WZNW) SO(n)ν conformal field theories (with
n → 0), simply by tuning one parameter ν ≡ 2k + 1,
with k ∈ {1, 2, 3, . . .}. By contrast, WZNW models with
higher levels typically arise only by fine-tuning more and
more parameters. This is because higher-level WZNW
models usually represent multicritical points in 1+1-
quantum field theories [71, 72]. In the context of TSC
surface states, (nonunitary) WZNW theories are robustly
realized without fine-tuning [52, 65, 69], an emerging
novel aspect of “topological protection” for 3D topologi-
cal superconductors.

C. Outline

This paper is organized as follows. The low-energy
description of a LSM, possible pairings (both even-
and odd-parity) and their classification are discussed in
Sec. II. The competition between even parity s- and
d-wave superconductivity is discussed in Sec. II E. In
Sec. III we focus on the competition amongst various d-
wave pairings belonging to different representations, and
the emergence of Weyl superconductivity at low tempera-
tures. We also compute the nodal topology of Weyl pair-
ings and its manifestation through anomalous pseudospin
and thermal Hall conductivities. Sec. IV is devoted to
the effects of external strain, while the effects of impuri-
ties on BdG-Weyl quasiparticles are addressed in Sec. V.
Connections with a recent experiment in YPtBi and pos-
sible future experiments to pin the pairing symmetry are
presented in Sec. VI. The bulk-boundary correspondence
and the surface states of odd-parity p-wave pairing are
discussed in Sec. VII. We conclude in Sec. VIII. Ap-
pendix A summarizes equivalent matrix formulations for
the LSM Hamiltonian. Additional technical details are
relegated to appendices.
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II. PAIRING IN THE LUTTINGER
SEMIMETAL

We review the low-energy description of a LSM, fol-
lowed by even- and odd-parity Cooper pairing scenarios.
We enumerate the nodal-loop structure of all even-parity
d-wave pairings. Finally, we compute the free energy, gap
equation and transition temperature within BCS theory.

A. Luttinger Hamiltonian

Quadratic touching of Kramers degenerate valence and
conduction bands at an isolated point [taken to be the
Γ = (0, 0, 0) point] in the Brillouin zone in three spatial
dimensions can be captured by the k · p Hamiltonian

HL =

∫
d3k

(2π)3
Ψ†k ĥL(k) Ψk, (2.1)

where the four-component spinor Ψk is defined as

Ψ>k =
(
ck,+ 3

2
, ck,+ 1

2
, ck,− 1

2
, ck,− 3

2

)
. (2.2)

Here ck,ms is the band electron annihilation operator
with spin projection ms ∈ {3/2, 1/2,−1/2,−3/2}. Such
quadratic touching is protected by the cubic symme-
try, which restricts the form of the Luttinger Hamilto-
nian [16, 17] operator to

ĥL(k) =

(
k2

2m0
− µ

)
Γ0 −

1

2m1

3∑
a=1

da(k)Γa

− 1

2m2

5∑
a=4

da(k)Γa, (2.3)

where µ is the chemical potential measured from the
band touching point. The d-vector appearing in the Lut-

tinger Hamiltonian is given by d(k) = k2 d̂(k̂), where

d̂(k̂) is a five-dimensional unit vector that transforms in
the l = 2 (“d-wave”) representation under orbital SO(3)
rotations. Its components can be constructed from the
spherical harmonics Y ml=2(θ, φ), see Appendix A. While Γ0

is a four-dimensional unit matrix, the five mutually anti-
commuting matrices appearing in the Luttinger Hamil-
tonian are given by

Γ1 = κ3σ2, Γ2 = κ3σ1, Γ3 = κ2,

Γ4 = κ1, Γ5 = κ3σ3.
(2.4)

Two sets of Pauli matrices {κα} and {σα}, with α =
0, 1, 2, 3 operate respectively on the sign [sgn(ms)] and
the magnitude [|ms| ∈ {1/2, 3/2}] of the spin projection
ms. The Γ matrices provide a basis for a symmetric
traceless tensor operator formed from bilinear products
of j = 3/2 matrices [Eqs. (A2) and (A3) in Appendix A],

and transform in the j = 2 representation of the spin
SU(2). Consequently, the Hamiltonian in Eq. (2.3), is
an A1g quantity in a cubic environment. For m1 = m2,

ĥL(k) exhibits continuous SO(3) rotational invariance.

Besides five mutually anticommuting Γ matrices and
the identity matrix (Γ0), we can define ten commutators
as Γab = [Γa,Γb] /(2i) ≡ −iΓaΓb for a, b = 1, · · · , 5 with
a 6= b that together close the basis for all four dimen-
sional matrices. The ten commutators are the genera-
tors of a (fictitious) SO(5) symmetry. Since d(k) = 0
at the Γ point of the Brillouin zone k = 0, the four
degenerate bands possess an emergent SU(4) symmetry
at this point. However, at finite momentum such sym-
metry gets reduced to SU(2) × SU(2), stemming from
the Kramers degeneracies of the valence and conduction
bands. In addition, the Luttinger Hamiltonian is invari-
ant under the time reversal transformation: k→ −k and
Ψk → Γ13Ψ−k. The anti-unitary time-reversal symmetry
operator is given by T = Γ1Γ3K, where K is the complex
conjugation and T 2 = −1. The Kramers degeneracy is
protected by inversion symmetry P : k→ −k.

Without any loss of generality, but for the sake of tech-
nical simplicity, we work with the isotropic Luttinger
model for which m1 = m2 ≡ m. The Luttinger Hamilto-
nian then has the alternative representation,

ĥL(k) =
[
(λ1 + 5λ2/2) k2 − µ

]
Γ0 − 2λ2 (J · k)

2
, (2.5)

with J = (Jx, Jy, Jz) and k = (kx, ky, kz). Here Jx,y,z

are SU(2) generators in the 3/2 representation. The
correspondence between Eqs. (2.3) and (2.5) is λ1 =

(2m0)
−1

, λ2 = (4m)
−1

. The Luttinger Hamiltonian can

be diagonalized as D†ĤL(k)D, with the energy spectra

ε±,σ(k) =

(
k2

2m0
− µ

)
± k2

2m
. (2.6)

Here + (−) corresponds to the |ms| = 1/2 conduction
(|ms| = 3/2 valence) band. We have assumed that
m0 > m1, so that these two bands bend oppositely.
The “band pseudospin” index σ ∈ ±1, and indepen-
dence of ε±,σ(k) on σ specifies the Kramers degenerate
states in each band. For a given k, one possible choice
is σ = sgn(J · k) (i.e. pseudospin-momentum locking),
but we will not need to fix this basis. The diagonalizing
matrix D is given by [17]

D =
[
2
(

1 + d̂5

)]−1/2
[(

1 + d̂5

)
Γ0 + i

4∑
a=1

Γa5

]
. (2.7)

The pseudospin locking in the valence and conduction
bands becomes transparent with a specific choice of the
momentum k = (0, 0, kz) for which the Luttinger Hamil-
tonian from Eq. (2.3) readily assumes a diagonal form

ĥL(kz) = Diag.

[
− k2

z

2m−∗
,
k2
z

2m+
∗
,
k2
z

2m+
∗
,− k2

z

2m−∗

]
−µ, (2.8)
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in the spinor basis defined in Eq. (2.2), where m±∗ =
m0m/|m0 ± m|. Therefore, for m0 > m the first and
fourth (second and third) entries yield Kramers degener-
ate spectra for the valence (conduction) band. Hence, the
pseudospin projection on the valence (conduction) band
is |ms| = 3/2 (1/2).4

B. Even-parity local pairings

In this section we review even-parity local pairing op-
erators that give rise to pseudospin-singlet s- and d-wave
channels when projected to the Fermi surface [51, 56].
We enumerate the nodal loop states that arise from indi-
vidual d-wave pairing (see Table I), and which form the
basis for nodal d+id Weyl superconductors in the sequel.
Odd-parity pairings are considered in Sec. II C.

The effective single-particle pairing Hamiltonian in the
presence of local or intra-unit cell superconductivity as-
sumes the form

H local
pp = ∆M

∫
d3r ΨTMΨ + H.c., (2.9)

where M is a 4 × 4 matrix, ∆M is the pairing ampli-
tude, T is the matrix transpose, and H.c. denotes the
Hermitian conjugate. The Pauli principle mandates that
MT = −M , implying that there are only six possible
independent bilinears of the form ΨTMΨ, since the al-
lowed matrices correspond to the generators of SO(4).
Therefore, the effective single-particle Hamiltonian in the
presence of all possible local pairings reads as

H local
pp =

∫
d3r ΨT

[
∆0Γ13 + ∆1Γ3 + ∆2Γ45

+ ∆3Γ1 + ∆4Γ25 + ∆5Γ24

]
Ψ

+ H.c., (2.10)

where we have used the product basis for the Clifford
algebra [Eq. (2.4)] to express the antisymmetric matri-
ces. We stress that the existence of the above six local
pairing operators does not depend on the character of
the normal state; it relies only on the fact that the low-
energy description of this state is captured by a four-
component spinor. Identical pairing operators arise for
massive Dirac fermions describing either topological or

4 Note that in the subsequent sections we use the same band-
diagonalization procedure to investigate the form of even-parity
local (or intra-unit cell) pairings as well as odd-parity non-local
(or extended) pairings around the Fermi surface. When projected
onto the valence (conduction) band, the pairings takes place
among the spin-3/2 fermions with spin projection |ms| = 3/2
(|ms| = 1/2), respectively. It turns out that the form of the local
pairings (s- and d-wave) around the Fermi surface do not depend
on the choice of the band, or equivalently, the spin projections
(see Sec. II B), while the form of the non-local p-wave pairing
crucially depends on whether the Fermi surface is realized in the
valence or conduction band (see Sec. VII).

normal insulators [63, 73, 74], Weyl semimetals (where
the four-component representation accounts for a pair of
Weyl nodes) [75], and T -preserving nodal-loop semimet-
als [76]. However, the physical meaning of these local
pairings crucially depends on the band structure of the
parent state.

To characterize local pairings, we now introduce an
eight-component Nambu spinor

ΨN =

[
Ψ

iΓ13

(
Ψ†
)> ] , (2.11)

where Ψ is the four-component spinor defined in
Eq. (2.2). We have absorbed the unitary part of the
time-reversal operator T in the lower block of the Nambu
spinor. This ensures that ΨN transforms the same way
as Ψ under spin SU(2) rotations, because the j = 3/2
generators {Jµ} satisfy the pseudoreality condition

−Γ13 (Jµ)
T

Γ13 = Jµ, µ ∈ {x, y, z}. (2.12)

In this basis the single-particle Hamiltonian opera-
tor in the presence of six local pairings [introduced in
Eq. (2.10)] assumes a simple and instructive form

H local
pp =

∫
d3r Ψ†N ĥ

local
pp ΨN ,

ĥlocalpp = (τ1 cosφ+ τ2 sinφ)

×
[

∆0Γ0 + ∆1Γ1 + ∆2Γ2

+ ∆3Γ3 + ∆4Γ4 + ∆5Γ5

]
, (2.13)

where φ is the U(1) superconducting phase. The Pauli
matrices {τα} act on the particle-hole (Nambu) space.
The identity matrix Γ0 represents s-wave pairing. By
contrast, as the Clifford matrices transform irreducibly
in the j = 2 representation of the spin SU(2), the cor-
responding pairing channels ∆1,...,5 are all (effectively)
d-wave. In terms of cubic symmetry, the pairing pro-
portional to Γ0 belongs to the trivial A1g representation.
The three pairings proportional to Γ1,2,3 transform as a
triplet under the T2g representation. By contrast, those
proportional to Γ4 and Γ5 transform as a doublet under
the Eg representation in a cubic environment.

In the Nambu basis, a Bogoliubov-de Gennes Hamil-

tonian ĥ(k) automatically satisfies the particle-hole sym-
metry

−MP ĥ
T(−k)MP = ĥ(k), MP = τ2 Γ13, (2.14)

owing to the reality condition Ψ†N (k) = ΨT
N (−k)MP and

Pauli exclusion. For momentum-independent pairing op-
erators, Eqs. (2.12) and (2.14) imply that only tensor
operators composed from products with even numbers
of spin generators (e.g. {JµJν}) are allowed. These
are precisely the identity and the anticommuting Clif-
ford matrices (see Appendix A). Therefore, all d-wave
pairings can also be considered as quadrupolar pairings.
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Pairing
in LSM Pairing near Fermi surface

IREP
(Nature) Quasiparticle spectrum

∆0 Γ0 ∆0σ0 A1g (s-wave) Fully gapped

∆1 Γ1 ∆1d̂1σ0 ≡
√

3∆1

(
k̂yk̂z

)
σ0 T2g (dyz) Gapless: 2 Nodal loops,

{
k2
x + k2

z = k2
F , ky = 0

k2
x + k2

y = k2
F , kz = 0

}

∆2 Γ2 ∆2d̂2σ0 ≡
√

3∆2

(
k̂xk̂z

)
σ0 T2g (dxz) Gapless: 2 Nodal loops,

{
k2
y + k2

z = k2
F , kx = 0

k2
x + k2

y = k2
F , kz = 0

}

∆3 Γ3 ∆3d̂3σ0 ≡
√

3∆3

(
k̂xk̂y

)
σ0 T2g (dxy) Gapless: 2 Nodal loops,

{
k2
y + k2

z = k2
F , kx = 0

k2
x + k2

z = k2
F , ky = 0

}

∆4 Γ4 ∆4d̂4σ0 ≡
√

3
2 ∆4

(
k̂2
x − k̂2

y

)
σ0 Eg (dx2−y2) Gapless: 2 Nodal loops,

{
k2
⊥ + k2

z = k2
F , kx = +ky

k2
⊥ + k2

z = k2
F , kx = −ky

}

∆5 Γ5 ∆5d̂5σ0 ≡ ∆5

2

(
2k̂2
z − k̂2

x − k̂2
y

)
σ0 Eg (d3z2−r2) Gapless: 2 Nodal loops,

 k⊥ = kF

√
2
3 , kz = + 1√

3
kF

k⊥ = kF

√
2
3 , kz = − 1√

3
kF


TABLE I: Classification of six local pairing operators in Eq. (2.13) for the Luttinger semimetal, and corresponding nodal-loop
structures for five basis d-wave pairings. These pairing operators are time-reversal even (constituting a six dimensional basis for
local pairings), and we shall consider the time-reversal odd s+id (see Sec. II E) and d+id (see Sec. III and Table II) combinations
in subsequent sections. First column: All six possible local pairings in a Luttinger semimetal. Second column: Representation
of the corresponding pairing close to the Fermi surface in the conduction or valence band. Third column: Transformation of
each pairing under specific irreducible representation of the octahedral group Oh (nature of individual pairing). Fourth column:

Quasiparticle spectrum inside each individual paired state. Here k±F =
√

2m±∗ |µ| is the Fermi momentum in the conduction

and valence band, respectively, and k⊥ =
√
k2
x + k2

y. Since the form of the local pairing does not depend on the choice of band,

we here take k± → kF for notational simplicity. For a general discussion on pairing in a cubic system, see Ref. [77].

Since Eq. (2.14) is automatic, we can combine it with
the usual form of time-reversal symmetry to get the chi-
ral condition

−MS ĥ(k)MS = ĥ(k), MS = τ2. (2.15)

Thus pairings in Eq. (2.13) proportional to τ1 (τ2) are
even (odd) under time-reversal (for a fixed phase φ).

We focus on superconductivity in an LSM doped to fi-
nite electron or hole density, away from charge neutrality.
The nature of these pairings becomes transparent after
projecting onto the valence or conduction band. With
local pairings the result is the same for both bands, see
Appendix B for details. If we assume that pairing occurs
only in close proximity to the Fermi surface and does not
mix the bands, the projected pairing Hamiltonian takes
the form

ĥ
local
band
pp = (τ1 cosφ+ τ2 sinφ)σ0

[
∆0 +

5∑
j=1

∆j d̂j

]
, (2.16)

as shown in Table I (see also Appendix A). Here the
Pauli matrices {σα} act on the pseudospin (Kramers)
degenerate states within the projected band. All even-
parity pairing operators map to pseudospin singlets.

The band-projected kinetic energy term arising from

Eq. (2.3) assumes the simple form in the Nambu basis

ĥband0 (k) =

[
±
(

k2

2m±∗

)
− µ

]
τ3σ0, (2.17)

where m±∗ = m0m/|m0 ± m| (and m0 > m). Here +
(−) denotes the |ms| = 1/2 conduction (|ms| = 3/2 va-
lence) band. While both the kinetic and pairing terms
involve the Clifford matrices before the projection, only
the kinetic term of the Luttinger Hamiltonian depends
on the five d-wave harmonics d(k). Post projection, the
kinetic term is trivial and the five pairing operators be-
come d(k) components. Therefore, the band structure in
the normal state plays a paramount role in determining
the projected form of the local pairing operators. The
Nambu-doubled four-component spinor describing quasi-
particle excitations around the Fermi surface is defined

as ψ†k =
[
c†↑,k, c

†
↓,k, c↓,−k,−c↑,−k

]
, and the time-reversal

operator in the reduced space reads as T = iσ2K, so that
T 2 = −1 as usual.

As a counterexample, we note that the same six lo-
cal pairings projected into the valence/conduction bands
in a massive Dirac semiconductor give rise to two even-
parity s-wave and four pseudospin-triplet, odd-parity p-
wave pairing, including analogous to the fully gapped B-
phase and three polar pairings in 3He, see Appendix C,
Table III. Hence, realization of various superconductivity
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close to a Fermi surface crucially depends on the normal
state band structure, at least for low carrier densities.

The quasiparticle spectra inside each of the six local
pairing states of the LSM are as follows. The s-wave
pairing gives a fully gapped spectrum everywhere on the
Fermi surface. On the other hand, each component of
the five d-wave pairings supports two nodal loops, along
which the Fermi surface remains gapless. The equations
determining the nodal loop for each d-wave pairing are
reported in the rightmost column of Table I. As a result
each d-wave pairing supports “topologically protected”
flatband surface states that span the images of the bulk
nodal loops on each surface [51, 53]. We note that mix-
ing between the conduction and valence bands in paired
states of the LSM can also produce novel effects, such as
bulk quasiparticle Fermi surfaces (instead of nodal points
or lines) [53, 54].

The density of states (DoS) in the presence of iso-
lated nodal loops vanishes as %(E) ∼ |E|. In Sec. III we
will show that underlying cubic symmetry causes spe-
cific phase locking among different components of the
d-wave pairings belonging to either T2g or Eg representa-
tion (see Table I), at the cost of the time-reversal symme-
try. Consequently, the paired state only supports simple
Weyl nodes at a few isolated points on the Fermi surface,
around which the DoS vanishes as %(E) ∼ |E|2. Such
reconstruction of the quasiparticle spectra thus causes
a power-law suppression of the DoS and that way op-
timizes the condensation energy gain. Thus we expect
Weyl superconductors to be energetically favored over
the nodal-loop pairings, at least within the framework of
weak BCS superconductivity and for dominant d-wave
pairing coupling strengths.

C. Odd-parity, momentum-dependent pairings

In the isotropic case (m1 = m2 = m), odd-parity pair-
ings can be classified via angular momentum addition
[56]. A basis of 10 Hermitian, particle-hole–odd operators
with well-defined SU(2) spin j is given by [c.f. Eq. (2.13)]

τ1,2 ⊗
{
Jµ, j = 1
Tµνγ , j = 3

}
. (2.18)

Here Tµνγ is a completely symmetric, traceless tensor
operator formed from triple products of Jµ generators,
see Eq. (A5). Eq. (2.14) implies that particle-hole al-
lowed pairing operators obtain by multiplying any of
the matrices in Eq. (2.18) by odd powers of momen-
tum. The resulting momentum-dependent pairing oper-
ator with particle-hole matrix τ1 (τ2) is even (odd) under
time-reversal [Eq. (2.15)].

For orbital p-wave pairing (l = 1), angular momentum
addition gives l⊗j ≡ jtot = 0 ⊕ 1 ⊕ 2 for j = 1 and jtot =
2 ⊕ 3 ⊕ 4 for j = 3. We highlight a few combinations.
The jtot = 0 corresponds to a fully gapped, isotropic p-
wave superconductor. For weak pairing this represents

strong topological superconductivity [9, 48, 49], which
we study in detail in Sec. VII, below. The jtot = 1 state
corresponds to gapless “px-wave” pairing. The jtot = 2
states arising from j = 1 and j = 3 spin can mix, since
only the total angular momentum is well-defined [56].

The p-wave “septet” order considered in the context of
YPtBi is also built from the j = 3 operator [47, 51, 53].
Finally, we note that isotropic f -wave pairing of the form

τ1,2 ⊗ Tµνγkµkνkγ , jtot = 0,

turns out to give the same band-projected Bogoliubov-
de Gennes Hamiltonians as the isotropic p-wave case,
Eq. (7.4), except that the pairing potential is multiplied
by an additional factor of k2 in each case.

D. Free energy and gap equation

We now discuss the free energy and resulting gap equa-
tions for the five d-wave pairings summarized in Table I.
At zero temperature the free energy of a superconductor
is given by [78]

Fj =
|∆d|2

2gd
− a3

∫
|ξk|<ΩD

d3k

(2π)3

√
ξ2
k + |∆d|2d2

j (k), (2.19)

where dj(k), j ∈ {1, . . . , 5} are the d-wave harmonics

(see the second column of Table I), ξk ≡ k2

2m∗ − µ, a
denotes the lattice spacing, gd is the coupling strength,
and we set ~ = 1 throughout. The pairing is restricted to
an energy window set by the (effective) Debye frequency
ΩD. We introduce dimensionless variables defined via
fj ≡ Fj/[µ

2%(µ)], x ≡ |k|/kF , λd ≡ gd%(µ), ∆̂d ≡ ∆d/µ,
and ωD ≡ ΩD/µ, where %(µ) = 2a3m∗

√
2m∗µ/(2π2) is

the DoS at the Fermi level. In what follow we throughout
use the above set of dimensionless variables.

In terms of these dimensionless variables the corre-
sponding gap equation is of the form:

1

λd
=

ωD∫
−ωD

dy

√
1 + y

2

∫
dΩ

4π

d2
j (y,Ω)

Ej(y,Ω)
tanh

[
Ej(y,Ω)

2kBT

]
.

(2.20)
where y = x2 − 1, Ω denotes the angular variables,

and Ej(y,Ω) ≡
√
y2 + |∆̂d|2d2

j (y,Ω) is the (dimension-

less) bulk quasiparticle energy. At zero temperature, the
above gap equation can be simplified provided the pairing
takes place within a thin shell around the Fermi momen-
tum so that ωD � 1, yielding

1

λd
=

∫
dΩ

4π
d̂2(Ω) ln

ωD +
√
ω2
D + |∆̂d|2 · d̂2(Ω)

∆̂d · d̂(Ω)

 ,
(2.21)

where d̂(Ω) is a purely angle dependent form-factor. This
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FIG. 1: The temperature dependence of the superconduct-
ing gap for (a) dx2−y2 and (b) d3z2−r2 pairings, calculated
with λd = 1 and ωD = 0.02. The two gaps have identical
transition temperature (Tc) given by Eq. (2.24), but are gen-
erally different at any lower temperature T < Tc, with the
zero-temperature values approximately given by Eq. (2.22).

equation can be solved analytically in the standard BCS
weak-coupling approximation, |∆d| � ωD, yielding

∆x2−y2(0) = ∆xy(0) = 3.355ωD exp(−5/λd);

∆3z2−r2(0) = 3.501ωD exp(−5/λd). (2.22)

The appearance of the factor of 5 in the exponent can
be traced to the angle-average of the d-wave form-factors∫

dΩ d̂2(Ω)/(4π) = 1/5, resulting in an exponential sup-
pression of the gap compared to the well known s-wave
result: ∆s(T = 0) ≈ 2ωD exp(−1/λs) [78].

It may appear surprising, at first glance, that the two
Eg d-wave harmonics have different values of the super-
conducting gap in Eq. (2.22) at T = 0. This is not a
mistake, and the numerically exact solution of the gap
equation Eq. (2.20) leads to the identical conclusion,
see Fig. 1, with about 4% difference between the zero-
temperature values of the gap. This fact, identical to the
case of d-wave pairing of spin-1/2 particles, is actually
well documented [77] but perhaps not always appreci-
ated. What is true is that the two Eg harmonics have
the same Tc, by virtue of belonging to the same repre-
sentation of the cubic point group, but the same can-
not be said about the order parameters below Tc, as our
Fig. 1 demonstrates. Degeneracy lifting within the Eg
sector was previously discussed in Ref. [77], however ne-
cessitating consideration of the sixth order terms in the
expansion of the Landau potential, valid near Tc. Here
we demonstrate, perhaps more transparently, that the
zero-temperature solutions of the gap equations (2.22)
display splitting within the Eg doublet. Our analysis is
valid far away from Tc (including at zero temperature)
where the argument of Ref. 77 can no longer be applied.
Simply put, the magnitudes of the superconducting order

FIG. 2: Superconducting gap profiles for (a) dx2−y2 and (b)
d3z2−r2 pairing on an isotropic Fermi sphere (realized for
m1 = m2), with the red curves representing the nodal lines
of the gap (see Table I). It is obvious that the two gap struc-
tures cannot be related by any SO(3) rotation. By contrast,
any of the three T2g gaps can be obtained by an appropriate
rotation of the dx2−y2 gap, shown in panel (a).

parameters within the Eg doublet are not equal because
of the different geometry of the nodal loops in dx2−y2 and
d3z2−r2 paired states, as shown in Fig. 2. Said differently,
there is no way to rotate these two harmonics into each
other by any SO(3) rotation (let alone by any operation
of a cubic point group). The difference in the order pa-
rameter amplitudes becomes smaller on approaching Tc
(see Fig. 1), consistent with the analysis in Ref. [77]. 5

We conclude that the two Eg solutions have differ-
ent gap values. These solutions however have the iden-
tical transition temperature Tc, protected by the cubic
symmetry. Indeed, the expression for Tc follows from
Eq. (2.20), yielding

1

λd
=

∫ ωD

−ωD
dy

(1 + y)
5
2

2y
tanh

(
y

2kBTc

)∫
dΩ

4π
d̂2
j (Ω).

(2.23)

Symmetry requires that
∫

dΩ d̂2
j/(4π) = 1/5 for all d-

wave harmonics (belonging to Eg and T2g representa-
tions), and thus all five d-wave pairings must have the
identical Tc. Weak-coupling (ωd � 1) yields

kBTc =
2eγ

π
ωD e

− 5
λ ≈ 1.134ωD e

− 5
λ , (2.24)

where γ ≈ 0.577 is the Euler’s number. It follows from

5 This outcome can be contrasted with the scenario for a p-wave
pairing. Let us assume that the system is spherically or SO(3)
symmetric. Then each component of p-wave superconductor,
namely px, py and pz pairings, possesses identical transition
temperature, free-energy and gap size at T = 0, since the p-
wave pairings transform as a “vector” under SO(3) symmetry.
By contrast, five d-wave pairings transform as components of a
“rank-2 tensor” under SO(3) rotation, leading to the mentioned
degeneracy lifting in the free-energy and gap size at T = 0.
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the above and from Eq. (2.22) that the ratio

∆d(0)

kBTc
=

{
2.96 for x2 − y2, xy, xz, yz
3.09 for 3z2 − r2,

(2.25)

is non-universal, and should be contrasted with the well
known result ∆s(0)/kBTc = 1.76 for s-wave pairing [78].

Despite having the same transition temperature,
d3z2−r2 pairing will be realized as it has a higher (by
modulus) condensation energy gain, which can be appre-
ciated from the difference between the free energies in
the normal (N) and superconducting (SC) states

∆f |T=0 =
ω2
D

2

∫
dΩ

4π

√1 +
∆̂d(0)2

ω2
D

d̂2
j (Ω)− 1


(2.26)

in terms of the dimensionless parameters defined earlier
(see Appendix D for the details of the derivation). Note
that the above expression should not be thought of as the
Landau free energy—indeed, ∆̂d(0) here is not a varia-
tional parameter, but rather the self-consistent solution
of the zero-temperature gap equation (2.21). Expanding

the integrand in the powers of (∆̂d/ωD), we obtain:

fN − fSC =
|∆̂d|2

20
+O(|∆̂d|4). (2.27)

As emphasized above, this equation expresses the well
known fact that the Cooper pair condensation energy is
proportional to the square of the superconducting order
parameter. Consequently, the cubic harmonic with the
largest value of ∆d, namely 3z2− r2, will have the lowest
energy, as verified by our numerical solution in Fig. 1.

E. s+ id pairing

Recall that in addition to d-wave pairings, the even-
parity local pairing also contains an s-wave component
that transforms under the A1g representation (first row
in Table I). Such solution is generically fully gapped, with
the exception of accidental nodes in an extended s-wave,
which occur if the Fermi surface happens to cross the
lines of nodes (for instance, ∆(k) = cos(kx) cos(ky) has
nodes at kx,y = ±π/2). We exclude this latter possibil-
ity based on the fact that this would require a very large
doping of the Luttinger semimetal in order to achieve the
necessarily large kF . For low carrier density (kF → 0) the
amplitude of such an extended s-wave pairing also van-
ishes as we approach the band-touching points. Hence,
the nucleation of extended s-wave pairing is energetically
more expensive.

In this section, we instead investigate the possibility of
a time-reversal symmetry breaking s+ id pairing. Such a
solution necessarily involves a combination of two differ-
ent irreducible representations, and one generically finds

∆s 6= ∆d in the Bogoliubov quasiparticle dispersion:

Es+id(k) =

[
ξ2
k + |∆s|2 + |∆d|2d2(k)

]1/2

, (2.28)

where the five d-wave form-factors d(k) are listed in Ap-
pendix A. It is intuitively clear that for such an s + id
solution to be realized, pairing strengths λs and λd need
to be comparable: otherwise, a pure s-wave or a pure
d-wave (more precisely, d + id) will dominate. One can
therefore imagine that by tuning the ratio r = λd/λs,
the s + id solution might be realized in an intermediate
parameter range. To see whether this is indeed the case,
we must solve a gap equation similar to Eq. (2.21) in
Sec. II D for each of the two gap components

∆̂s

λs
=

ωD∫
−ωD

dy

2

∫
dΩ

4π

√
1 + y ∆̂s√

y2 + |∆̂s|2 + |∆̂d|2d2(y,Ω)
, (2.29)

∆̂d

λd
=

ωD∫
−ωD

dy

2

∫
dΩ

4π

√
1 + y ∆̂d d

2(y,Ω)√
y2 + |∆̂s|2 + |∆̂d|2d2

j (y,Ω)
, (2.30)

where ∆̂j = ∆j/µ and y = (k/kF )2 − 1 are the dimen-
sionless parameters, introduced in Sec. II D.

The coupled system of equations (2.29)–(2.30) does not
lend itself to an analytical solution, nevertheless the solu-
tion can be obtained numerically, with the result shown
in Fig. 3(a). At first, for low values of r = λd/λs, the

only solution to Eq. (2.30) is a trivial one: ∆̂d = 0, result-
ing in a pure s-wave solution. As the strength of d-wave
pairing grows, a non-zero value of ∆̂d (blue diamonds)
starts developing above a certain value rc1 u 5, and an
s+ id solution appears in a finite region of the phase dia-
gram rc1 < r < rc2 (magenta shading in Fig. 3a). Above
the second critical point, r > rc2 ≈ 7.75, only a trivial
solution ∆̂s = 0 is possible, resulting in a pure d-wave for
large coupling strength λd. See Appendix F for details.

So far, it appears that the initial intuition was correct
and that the s + id solution exists in an intermediate
regime of coupling strength rc1 < r < rc2. However, one
must carefully consider other competing orders: in par-
ticular, since we are entertaining the possibility of time-
reversal symmetry broken phases, we must also include
d+id order into the consideration. Allowing for the d+id
solution (specifically, dx2−y2 +id3z2−r2 pairing, as it is en-
ergetically the most favorable state in the Eg sector, see
Sec. III B), we find that ∆d+id rises precipitously with
increasing λd (black squares in Fig. 3(a). It is clear that
the d + id order parameter grows parametrically faster
than that of the pure d-wave and that it should dom-
inate for sufficiently large λd. This is intuitively clear
since the d+id solution only has point nodes, as discussed
in Sec. III, and is therefore energetically more favorable
than the pure d-wave with its line nodes. This argument
can be made rigorous by comparing our result for dx2−y2

from Eq. (2.22) to that of dx2−y2 + id3z2−r2 solution [see
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FIG. 3: Competition between s + idx2−y2 and dx2−y2 +
id3z2−r2 pairings as a function of pairing strength ratio λd/λs,
computed for a fixed λs = 0.4. (a) Zero-temperature gap
values in the d+ id channel (black squares), as well as the s-
component (circles) and d-component (diamonds) of the s+id
solution. The shaded magenta region indicates the (unstable)
s+id phase with non-zero values of both s and d-components.
(b) The corresponding free energies in these two channels.
The vertical dotted line indicates the position of a first-order
phase transition from a pure s-wave pairing on the left, to the
(d+ id) pairing on the right.

Sec. III B and Eq. (3.6)]:

∆̂d = 3.355 ωD exp

(
− 5

λd

)
,

∆̂d+id = 2.705 ωD exp

(
− 5

2λd

)
. (2.31)

Hence the d+ id order parameter is parametrically larger
than the pure d-wave one because of the value in the
exponent. Therefore the question is: can the s+ id phase
survive the competition against its d+ id rival?

To answer this, we plot the energies of the two solu-
tions in Fig. 3(b), from which it becomes evident that
d+ id has lower energy than pure s-wave or s+ id, pro-
vided r > r0 ≈ 2.9 (to the right of the vertical dashed
line in Fig. 3). The entire region of existence of the pu-
tative s + id phase lies at coupling strength r > r0, and
we conclude that the s + id phase is therefore energeti-
cally unstable. Instead, there is a first-order phase tran-
sition (i.e. an energy level crossing) at r = r0 from pure

s-wave directly into the d + id phase. The phase dia-
gram is summarized in Figure 3(b). Such outcome is
rooted in the underlying cubic symmetry of the system,
for which Eg is a two-component representation, permit-
ting a dx2−y2 + id3z2−r2 pairing to compete with (and
finally win over) the s+ idx2−y2/3z2−r2 pairing. By con-
trast, in a tetragonal environment, the dx2−y2 pairing
belongs to a single-component B1g representation, and
consequently a s + idx2−y2 pairing can easily be found
for comparably strong λs and λd (for example, see the
magenta shaded region in Fig. 3). Therefore, our for-
malism is specifically tailored to address the competition
among the pairings (including the local as well as the
non-local ones), belonging to different multi-component
representations, in a cubic environment; even though we
here explicitly study only the competition between the
simplest A1g pairing and the Eg pairings, it can be gen-
eralized to address the competition between Eg and T2g

pairings, as well as A1g and T2g pairings. We leave these
exercises for future investigations.

III. WEYL SUPERCONDUCTORS

In this section we consider competition among
the even-parity, d-wave pairings enumerated above in
Sec. II B and Table I. The conclusions are identical for
weak-pairing superconductivity arising from a finite den-
sity Fermi surface in either the |ms| = 1/2 conduction
or |ms| = 3/2 valence bands, and thus, for notational
simplicity, we take m±∗ → m∗.

We explicitly demonstrate below that pairing energy
minimization and the underlying cubic symmetry cause
specific phase locking amongst various components of
the d-wave pairings in both the Eg and T2g sectors.
As a result, simple Weyl superconductors are expected
to emerge at low temperature if the pairing strength
in the d-wave channel dominates. We first review the
nodal topology of such Weyl superconductors, since we
will be interested in its manifestation in various mea-
surable quantities (such as the anomalous thermal and
pseudospin Hall conductivities, discussed in Sec. III E).

A. Topology of Weyl superconductors

Since all d-wave pairings are band pseudospin-singlets
we can further simplify the reduced BCS Hamiltonian

ĥpair = ĥband0 (k) + ĥ
local
band
pp [see Eqs. (2.16) and (2.17)] as a

direct sum of two 2×2 blocks (reflecting the pseudospin-
degeneracy). To illustrate the nodal topology of such a
system, it is now sufficient to consider one such block,
which can schematically be written as

ĥk = Ek [n̂k · τ ] . (3.1)
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For simple Weyl nodes Ek is a general linear function of
all three momenta. Here n̂k is a unit vector, a function of
only polar (θ) and azimuthal (φ) angles, and the τ s are
three standard Pauli matrices operating on the particle-
hole/Nambu index. The monopole charge of a Weyl node
(Wn) is then defined as

Wn =
1

4π

∫ 2π

0

dφk

∫ π

0

dθk

[
n̂k ·

(
∂n̂k

∂θk
× ∂n̂k

∂φk

)]
,

(3.2)
which for simple Weyl nodes Wn = ±1 (see also discus-
sion in Refs. [75, 79–83]). The Weyl node with monopole
charge +1 (−1) corresponds to a source (sink) of Abelian
berry curvature of unit strength.

The topological nature of the BdG-Weyl quasiparticles
can also be assessed from the gauge invariant Abelian
Berry curvature (Ωn,k), given by

Ωn,k,a =
(−1)n

4
εabc n̂k ·

[
∂n̂k

∂kb
× ∂n̂k

∂kb

]
, (3.3)

with a, b, c = x, y, z, and n = 1, 2 are the Bogoliubov
band indices. The Berry curvature distribution in various
Weyl superconducting phases will be displayed below.

Due to the bulk-boundary correspondence, Weyl
superconductors (arising from time-reversal symmetry
breaking d+ id pairings) support topologically protected
pseudospin-degenerate Fermi arc surface states, which
connect the projections of the Weyl nodes on the sur-
face in the reciprocal space. By contrast, in the presence
of a nodal-loop pairing the pseudospin degenerate surface
states are completely flat and correspond to the images
of the bulk loop [3]. A detailed analysis of these topolog-
ically protected surface Andreev bound states is left as a
subject for a future investigation. In the absence of in-
version symmetry such surface states lose the pseudospin
degeneracy, which could be directly observed in scanning
tunneling microscopy (STM) measurements. Weyl nodes
in the normal state can also be realized in a LSM via
Floquet driving [84].

B. Eg pairing

We first investigate the effect of underlying cubic sym-
metry in the Eg channel. Since Eg is a two-component
representation, encompassing dx2−y2 and d3z2−r2 pair-
ings, optimal minimization of the condensation energy
then enforces nucleation of dx2−y2 + id3z2−r2 pairing
(within the framework of weak-coupling pairing). The
matrix coefficients in the reduced BCS Hamiltonian

ĥ
Eg
pair =

(
k2

2m∗
− |µ|

)
τ3 +

√
3|∆4|
2k2
F

(
k2
x − k2

y

)
τ1

+
|∆5|
2k2
F

(
2k2
z − k2

x − k2
y

)
τ2, (3.4)

FIG. 4: Distribution of the Abelian Berry curvature for the
nodal Weyl superconductor arising due to dx2−y2 + id3z2−r2

(Eg) pairing. The source (with outward arrows) and sink
(with inward arrows) are symmetrically placed about the four
possible body-diagonal directions of the spherical Fermi sur-
face (an octupolar arrangement). The net Berry curvature
through any high-symmetry plane therefore vanishes and the
paired state does not support any anomalous pseudospin or
thermal Hall conductivity.

then appear as sum of the squares in the expression for
the Bogoliubov dispersion, where kF =

√
2m∗µ is the

Fermi momentum. Here and in what follows, we assume
that µ > 0 for weak BCS superconductivity that arises
from a spherical Fermi surface in the conduction band.
The conclusions are identical for the hole-doped system.
The time-reversal symmetry in such a paired state is
spontaneously broken, and the quasiparticle spectra van-
ishes only at eight isolated points on the Fermi surface
±kx = ±ky = ±kz = kF /

√
3, precisely where the nodal

loops for individual dx2−y2 and d3z2−r2 pairings cross
each other (see Table I and Fig. 2). These isolated points
are Weyl nodes and the phase can be considered a ther-
mal Weyl semimetal, since the BdG-Weyl quasiparticles
carry well-defined energy (but not well-defined electric
charge). At the cost of shedding the time-reversal sym-
metry, the dx2−y2 + id3z2−r2 paired state eliminates the
line-nodes of its individual components (see the fifth and
sixth rows of Table I). The distribution of the Abelian
Berry curvature for the dx2−y2 +id3z2−r2 Weyl supercon-
ductor is shown in Fig. 4. For possible dx2−y2 + id3z2−r2

pairing in the close proximity to a Fermi surface of spin
or pseudospin-1/2 electrons in heavy-fermion compounds
see also Ref. [85].

Competition within Eg: Given the discussion in
Sec. II D, we know that the two Eg components have dif-
ferent values of the superconducting gap below Tc. The
basis of the Eg representation obtains from two indepen-
dent diagonal components of a symmetric, 3×3 traceless
tensor [see Eq. (A3)] and is therefore not unique. Indeed,
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dropping the normalization factors for brevity, one can
choose the following basis functions either

Basis A: d1(k) = k2
x − k2

y, d2(k) = 2k2
z − k2

x − k2
y,

Basis B: d3(k) = k2
z − k2

x, d4(k) = k2
z − k2

y, (3.5)

Basis C: d5(k) = 2k2
x − k2

y − k2
z , d6(k) = 2k2

y − k2
x − k2

z .

Note that in this subsection and in Appendix D, only
d1,...,6 are the above-defined Eg sector harmonics. This
is a different notation than that employed everywhere
else in this paper, as exemplified by Table I.

Notice that bases A,B,C are not independent of one
another; for instance, d4 − d3 = d1, d3 + d4 = d2,
d5 + d6 = −d2 and so on. Nevertheless, these bases are
distinct in the sense that no SO(3) rotation can convert
one basis into another. As a result, the corresponding
gaps will have different configurations of nodal loops that
cannot be interconverted by rotations, and also different
gap values! This raises a non-trivial question: which one
of these three bases has the lowest energy, when we allow
to form a time-reversal symmetry breaking (dm+idn) or-
der parameter? The details of the analysis are relegated
to Appendix E. Here we quote only the final results.

The zero-temperature value of the superconducting
gap is given by

∆
(X)
Eg

(T = 0) = NX ωd exp

(
− 5

2λd

)
, (3.6)

with NA = 2.705, NB = 2.451, NC = 2.145 non-universal
numerical prefactors in the weak-coupling approxima-
tion, see Appendix E. To the lowest order in |∆|2, the
condensation energy gain in the (dm + idn) state is

∆f ≈ −
|∆Eg |2

4

∫
dΩ

4π

n∑
j=m

d̂2
j = −

|∆Eg |2

10
+O(|∆d|4),

(3.7)

and thus the solution with the largest value of the zero-
temperature gap, namely the (dx2−y2 + id3z2−r2) paired
state, has the lowest energy. However, the location of the
nodal points in any d + id paired state is insensitive to
the choice of basis.

Finally, we note that the preferred pairing channel is
selected by the minimum of the free energy, indepen-
dent of the chosen basis. We introduce different bases
[L ≡ A,B,C in Eq. (3.5)] only because it is conventional
to express (e.g.) L1 + iL2 paired states in terms of com-
ponents L1,2 that are each themselves basis elements, not
linear combinations thereof.

Nodal topology : We now investigate the nodal topol-
ogy of the eight isolated Weyl nodes inside the dx2−y2 +
id3z2−r2 paired state. Since the Weyl nodes are placed
along eight possible [1, 1, 1] directions, we introduce a ro-

tated co-ordinate frame

qx =
kx + ky − 2kz√

6
, qy =

kx − ky√
2

, qz =
kx + ky + kz√

3
,

(3.8)

keeping our focus around k = ±(1, 1, 1)kF /
√

3. In this
rotated co-ordinate system the Weyl nodes are located
at q = (0, 0,±1)kF . The reduced BCS Hamiltonian [see
Eq. (3.4)] for the dx2−y2 + id3z2−r2 state then becomes

ĥ
Eg
pair = ± [vxτ1qx + vxτ2qy + vzτ3δqz] +O(k−2

F ), (3.9)

where vx = vy =
√

2|∆Eg |/kF , vz = kF /m∗ and δqz =
qz ± kF . Eq. (3.2) then implies that the Weyl nodes

located at k = ±(1, 1, 1)kF /
√

3 are characterized by
monopole charge Wn = ±1 [see Eq. (3.2)]. We also find

that the Weyl nodes located at k = (−1,−1, 1) kF /
√

3,

(−1, 1,−1) kF /
√

3 and (1,−1,−1) kF /
√

3 are character-
ized by monopole charge Wn = +1. On the other
hand, the Weyl nodes located at k = (1, 1,−1) kF /

√
3,

(−1, 1, 1) kF /
√

3 and (1,−1, 1) kF /
√

3 have monopole
charge Wn = −1. See also Fig. 4. For an illustration
of nodal topology of dx2−y2 + id3z2−r2 paired state, also
consult Fig. 1 of Ref. [85].

DoS : The nodal topology determines the scaling of the
DoS inside the dx2−y2 + id3z2−r2 paired state. Since the
Weyl nodes bear monopole charge Wn = ±1, the DoS at
low enough energy vanishes as %(E) ∼ |E|2/|Wn| ∼ |E|2.
Recall the DoS in the presence of a nodal line also scales
as %(E) ∼ |E|. Therefore, by sacrificing the time-reversal
symmetry the system gains condensation energy through
power-law suppression of the DoS at low energies.

C. T2g pairing

Since T2g is a three-component representation, we de-
note the phases of the complex superconducting pairing
amplitudes associated with the dxy, dxz and dyz pairings
as φxy, φxz and φyz, respectively. The nodal loops asso-
ciated to each of the three pairing channels in isolation
can only be eliminated by the choice 6

(φxy, φxz, φyz) =

(
0,

2π

3
,

4π

3

)
, (3.10)

The resulting quasiparticle spectrum exhibits eight iso-
lated gapless points on the Fermi surface. In particular,

6 This paired state is characterized by an eight-fold degeneracy,
which can be appreciated in the following way. Four degener-
ate states are realized with (φxy , φxz , φyz) = (0, 2π/3, 4π/3),
(0, 2π/3 + π, 4π/3), (0, 2π/3, 4π/3 + π), (0, 2π/3 + π, 4π/3 + π).
The remaining 4-fold degeneracy is achieved by φxz ↔ φyz [51,
85], leaving φxy unchanged (set by the global U(1) phase lock-
ing).
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FIG. 5: Distribution of the Abelian Berry curvature for
the nodal Weyl superconductor arising from a specific phase
locking amongst dxy, dxz and dyz (T2g) pairings, given by
Eq. (3.10). Weyl node pairs are enumerated in Eq. (3.12). In
the figure, the top and bottom pair of nodes represent set (a),
left and right pair set (b), front and back pair set (c), and the
two diagonally opposite ones set (d). The net Abelian Berry
curvature of such a paired state does not vanish through any
high-symmetry plane, and concomitantly the paired state ex-
hibits nontrivial anomalous pseudospin and thermal Hall ef-
fects.

for the specific choice (φxy, φxz, φyz) = (0, 2π/3, 4π/3)
the reduced BCS Hamiltonian reads as

ĥ
T2g

pair =

(
k2

2m∗
− |µ|

)
τ3 +

∆T2g

k2
F

[√
3

4
kz (kx − ky) τ2

+

√
3

2

(
kxky −

1

2
kzkx −

1

2
kzky

)
τ1

]
, (3.11)

and the energy spectrum vanishes at

(a) = (0, 0,±1) kF , (b) = (0,±1, 0) kF ,

(c) = (±1, 0, 0) kF , (d) = ± (1, 1, 1) kF /
√

3. (3.12)

Note that the pairs of Weyl nodes denoted by (a), (b)
and (c) are located on the three C4v axes, while the Weyl
nodes (d) are located on one of the four C3v axes. As we
discuss below, any other phase locking amongst the three
components of the d-wave pairing produces at least one
nodal loop in the quasiparticle spectrum. Thus within
the framework of a weak-coupling pairing mechanism the
above phase locking is energetically most favored. The
distribution of the Abelian Berry curvature in the pres-
ence of this pairing is shown in Fig. 5. Next we discuss the
nodal topology of the Weyl nodes reported in Eq. (3.12).

Nodal topology : The reduced BCS Hamiltonian in the
close proximity to the Weyl nodes (a) assumes the form

ĥ
T2g

pair,(a) = ± [τ3vzδpz − τ1vxpx + τ2vypy] , (3.13)

FIG. 6: The distribution of the Abelian Berry curvature in
the presence of kz(kx + iky) pairing on the spherical Fermi
surface. Notice that there is no flux line along the equator
of the Fermi surface where the BdG quasiparticles support
a nodal loop. The Berry flux through the kx − ky plane is
finite and consequently the paired state supports non-zero
anomalous pseudospin and thermal Hall conductivities in the
xy plane, given by Eq. (3.27).

where δpz = kz ± kF , px =
kx+ky√

2
, py =

kx−ky√
2

, vz =

kF /m∗, vx = vy =
√

6|∆T2g
|/4kF . Therefore, the Weyl

nodes located at k = (0, 0,±kF ) have monopole charge
Wn = ∓1. Following a similar analysis we find that the
Weyl nodes located at k = (0,±kF , 0) are accompanied
by monopole charge Wn = ±1, and those residing at
k = (±kF , 0, 0) have monopole charge Wn = ∓1.

Following the discussion presented in Sec. III B, we can
immediately come to the conclusion that the Weyl nodes
(d) [see Eq. (3.12)] are also simple, and the members

k = ±(1, 1, 1)kF /
√

3 have monopole charge Wn = ±1.
Therefore, the DoS around all eight simple Weyl nodes
vanishes as %(E) ∼ |E|2. All eight Weyl nodes arising
due to the pairing in the T2g sector are simple Weyl nodes
with unit monopole charge, similar to the situation for Eg
pairing. However, the arrangement of these Weyl nodes
on the Fermi surface are completely different in these two
sectors (compare Figs. 4 and 5), which bears important
consequences for the anomalous thermal and pseudospin
Hall conductivities, see Sec. III E.

Alternative phase locking : We now briefly discuss a
few other possible phase lockings among three compo-
nents of T2gpairings: (i) ∆1 = ∆2 = 0, (ii) ∆3 = 0,
(φxy, φxz) = (0, π/2), (iii) (φxy, φxz, φyz) = (0, 0, 0). The
single-component paired state (i) supports two nodal
loops. The equations of these two nodal loops, along
which the gap on the Fermi surface vanishes, are given
in the fourth row of Table I.

The reduced BCS Hamiltonian with relative phase
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locking (ii) in the above list reads as

ĥ
T2g

pair,(ii) =

(
k2

2m∗
− µ

)
τ3 +

√
3 |∆T2g

|
k2
F

kz (kxτ1 + kyτ2) .

(3.14)
The quasiparticle spectrum in the ordered phase supports
(a) a pair of simple Weyl nodes at the north and south
poles of the Fermi surface, i.e. at k = (0, 0,±kF ), and
(b) a nodal loop along the equator of the Fermi surface
(kz = 0) with radius kF . The reduced BCS Hamiltonian
around the isolated nodal points are given by

ĥ
T2g,poles

pair,(ii) = ± [vzδkzτ3 + vxkxτ1 + vykyτ2] , (3.15)

where δkz = kz ± kF , vz = kF /m∗ and vx = vy =√
3|∆T2g

|/kF . Therefore, the Weyl nodes residing at the
opposite poles of the Fermi surface are characterized by
the monopole charge Wn = ±1. While the DoS due to
isolated nodal points vanishes as %(E) ∼ |E|2, that aris-
ing from the nodal loop scales as %(E) ∼ |E|. Therefore,
the low-energy thermodynamic responses are dominated
by the nodal loop. This is also commonly referred as
kz(kx + iky) pairing. The distribution of the Abelian
Berry curvature on the Fermi surface in the presence of
kz(kx+iky) pairing is displayed in Fig. 6. In a cubic envi-
ronment this paired state is degenerate with kx(kz + iky)
and ky(kz + ikx) pairings. The nodal topology of these
two states are same as the former one.

Finally, in the presence of phase locking appearing as
(iii), the quasiparticle spectrum supports two isolated
nodal loops, determined by

3k2 −
∑

i,j=x,y,z

kikj = 2k2
F ,

∑
j=x,y,z

kj = ±kF . (3.16)

These two nodal loops are symmetrically placed around
one of the body-diagonal [1, 1, 1] directions.

Note that while (i) and (iii) produce two nodal loops
in the spectrum of the BdG quasiparticles, (ii) yields
only one nodal loop and a pair of simple Weyl points.
Therefore, at least within the weak coupling scenario
for pairing (ii) appears to be energetically more favored
among these three possibilities. Recently, a similar pair-
ing [kz(kx+iky)] has also been discussed in the context of
URu2Si2 [79], possessing tetragonal symmetry. However,
in a cubic environment the kz(kx+iky) pairing can be en-
ergetically inferior to the one discussed in Sec. III C, with
(φxy, φxz, φyz) = (0, 2π/3, 4π/3) for example, since this
pairing only produces eight isolated simple Weyl nodes
on the Fermi surface, yielding %(E) ∼ |E|2 and thereby
causing power-law suppression of the DoS at low energies.

D. Competition between Eg and T2g pairings

We now briefly discuss the competition among vari-
ous d-wave pairings when the pairing interaction in the

Eg and T2g channels, respectively denoted by gEg and
gT2g (say), are of comparable strength. Under this cir-
cumstance, two distinct possibilities can arise: (a) These
two paired states are separated by a first-order transition
with the pairings discussed in Sec. III B and Sec. III C,
residing on opposite sides of the discontinuous transition,
respectively for gEg > gT2g and gT2g > gEg , or (b) there
can be a region, roughly when gEg ∼ gT2g , where pairings
belonging to these two distinct representation can coex-
ist. Leaving aside the possibility (a), we here further
elaborate on the second scenario, by restricting ourselves
to a weak coupling pairing picture.

When pairing from these two channels coexists, at
the cost of the time-reversal symmetry, one can mini-
mize the number of gapless points on the Fermi surface
(thereby causing gain in the condensation energy). Since
T2g and Eg channels are respectively three- and two-
component representations, all together we can find six
possible time-reversal symmetry breaking paired phases
(note these are simplest possibilities), shown in the first
column of Table II.

Following the discussion and methodology presented
earlier in this section, we realize that only the dx2−y2 +
idxy paired state gives rise to double-Weyl points, with
Wn = ±2, on two poles of the Fermi surface. The DoS of
low-energy BdG quasiparticles in the presence of double-
Weyl nodes goes as %(E) ∼ |E|. More detailed discussion
on the nodal topology of the dx2−y2 + idxy paired state
is presented in the next section. The rest of the pair-
ings only support simple Weyl nodes with Wn = ±1 [see
Appendix G], and result in %(E) ∼ |E|2 at low energies.

We also note that in the dxz+idx2−y2 and dyz+idx2−y2

paired states, besides the simple Weyl nodes in the kx−ky
plane there also exist a pair of nodes at two opposite
poles of the Fermi surface. With the former pairing the
reduced BCS Hamiltonian around the poles reads as

Hpole
d+id = ±vzδkzτ3 ± vxkx −

|∆T2g
|

k2
F

k2
yτ2, (3.17)

where vz = kF /m∗, vx = |∆T2g
|/kF , and δkz = kz ± kF .

For such isolated nodes Wn = 0. Therefore, this pair
of nodes are non-topological in nature and their exis-
tence is purely accidental. However, if such a node ex-
ists the DoS near the pole vanishes as %(E) ∼ |E|3/2,
and the low-energy thermodynamic responses of the
dxz/yz + idx2−y2 states will be dominated by these acci-
dental nodes. We postpone any further discussion on the
competition among all six time-reversal symmetry break-
ing paired states and the nature of the ultimate ground
state for a future work.

E. Anomalous thermal and spin Hall conductivities

One hallmark signature of spin-singlet pairing is the
separation of the spin and charge degrees of freedom.
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Paired State Nodes Locations Nodal topology DoS ASHC ATHC

dxy + idx2−y2 2 (0, 0,±1) kF Double Weyl (Wn = ±2) %(E) ∼ |E| σs,0xy = 2~
8π

kF
π κ0

xy =
2π2k2

BT
3h

kF
π

dxy + id3z2−r2 8

(
0,±

√
2√
3
,± 1√

3

)
kF ,(

±
√

2√
3
, 0,± 1√

3

)
kF Single Weyl (Wn = ±1) %(E) ∼ |E|2 0 0

dxz + idx2−y2

2

4

(0, 0,±1) kF ,(
± 1√

2
,± 1√

2
, 0
)
kF

Accidental nodes

Single Weyl(Wn = ±1)

%(E) ∼ |E|3/2

%(E) ∼ |E|2
0

0

0

0

dyz + idx2−y2

2

4

(0, 0,±1) kF ,(
± 1√

2
,± 1√

2
, 0
)
kF

Accidental nodes

Single Weyl(Wn = ±1)

%(E) ∼ |E|3/2

%(E) ∼ |E|2
0

0

0

0

dxz + id3z2−r2 4
(

0,±
√

2√
3
,± 1√

3

)
kF Single Weyl (Wn = ±1) %(E) ∼ |E|2 0 0

dyz + id3z2−r2 4
(
±
√

2√
3
, 0,± 1√

3

)
kF Single Weyl (Wn = ±1) %(E) ∼ |E|2 0 0

TABLE II: Weyl superconductors that obtain via d+id combinations of T2g and Eg local pairings. First column: Various possible
(all together 6) broken time-reversal paired states resulting from the competition between T2g and Eg pairings. Second column:
The number of nodes in the spectrum of BdG quasiparticles inside corresponding paired state. Third column: The location of
the gapless points on the Fermi surface. Fourth column: The nodal topology of the BdG-Weyl fermions. Fifth column: Scaling
of the density of states (DoS) of the BdG quasiparticles around the nodes. Sixth and seventh columns: Anomalous (pseudo)spin
Hall conductivity (ASHC) and anomalous thermal Hall conductivity (ATHC) in each such time-reversal symmetry breaking
paired state. Here, kF =

√
2m∗µ is the Fermi momentum. How the various Weyl nodes arise from nodal-loop intersections is

shown in Fig. 16. Note that dxz/yz + idx2−y2 also support a pairs of nodes at the opposite poles of the Fermi surface. These
nodes are, however, accidental and do not bear any topological charge nor do they contribute to ASHC or ATHC.

Electric charge is carried by the superconducting con-
densate, a macroscopic collection of charge 2e spinless
bosonic Cooper pairs, while spin is fully carried by the
fermionic excitations (BdG quasiparticles) that do not
carry definite electric charge. In particular, such spin-
charge separation bears important consequences for non-
s-wave (such as d-wave) singlet pairing. For example, in
a spin-singlet d-wave superconductor with broken time-
reversal symmetry, the BdG quasiparticles can give rise
to anomalous spin and thermal Hall conductivities.

One well-studied example is the dx2−y2 + idxy state,
which could be germane to cuprate high-Tc supercon-
ductors [86–91]. A state with this symmetry is also pos-
sible in the LSM (see Table II). Recently this pairing has
also been discussed in the context of URu2Si2 [79] and
SrPtAs [81]. Such a paired state bears close resemblance
to the integer quantum Hall effect. In two dimensions
(where it is fully gapped), the dx2−y2 + idxy state sup-
ports quantized spin (since spin is a conserved quantity)
and thermal (since energy is conserved) Hall conductiv-
ities [92–96]. We here do not discuss the experimental
setup for the measurement of the anomalous spin or ther-
mal Hall conductivities, which are readily available in
the literature [94–96]. Instead we emphasize these two
responses inside various Weyl superconductors that can
directly probe the net Berry flux enclosed by the paired
phase, while the lack of the time-reversal symmetry can
directly be probed by Faraday and Kerr rotations [97].
We also note that in the absence of inversion symmetry
(which is the situation in half-Heusler compounds) the

notion of (pseudo)spin Hall conductivity becomes moot,
while thermal Hall conductivity remains well-defined.

Let us first pick a specific example of a Weyl supercon-
ductor, dx2−y2 + idxy pairing, accommodating the Weyl
nodes with monopole chargeWn = ±2 at k = (0, 0,±kF ).
The reduced BCS Hamiltonian for such a pairing in the
kz = 0 plane is

ĥd+id(k, kz = 0) =

{(
k2
⊥

2m∗
− µ

)
τ3 +

∆T2g

k2
F

(2kxky) τ1

+
∆Eg

k2
F

(
k2
x − k2

y

)
τ2

}
⊗ σ0, (3.18)

where k2
⊥ = k2

x + k2
y, which describes a quantum anoma-

lous thermal/spin Hall insulator, characterized by the
Chern-Number Cn = 2 in the (kx, ky) plane. Appearance
of the Pauli matrix σ0 reflects that the band pseudospin
is a good quantum number inside the paired state. Note
that the pseudospin texture in the (kx, ky) plane asso-
ciated with the reduced BCS Hamiltonian in Eq. (3.18)
assumes the form of a skyrmion, and the skyrmion num-
ber is the Chern number (Cn). If we express the above

Hamiltonian as ĥd+id(k, kz = 0) = Ek⊥ [n̂k⊥ · τ ], the in-
plane skyrmion number is given by

Cn =

∫
d2k⊥

4π

[
n̂k⊥ ·

(
∂n̂k⊥

∂kx
× ∂n̂k⊥

∂ky

)]
. (3.19)

At T = 0, such time-reversal symmetry breaking thermal
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insulator yields a quantized spin Hall conductivity

σxy,0s = σxys (T = 0) =
~

8π
× Cn ≡

~
4π
, (3.20)

in the xy-plane, where ~/2 is the spin-charge and

(~/2)
2
/h ≡ ~/(8π) is the quantum of spin Hall conduc-

tance. The above thermal insulator also supports nonzero
thermal Hall conductivity, which as T → 0 is given by

κ0
xy = lim

T→0
κxy(T ) = 2× π2k2

BT

6h
Cn =

2π2k2
BT

3h
. (3.21)

In the above expression addition factor of 2 comes from
the spin-degeneracy as two components of the spin pro-
jection carry heat-current in the same direction. In two
dimensions the unit of anomalous spin and thermal Hall
conductivities are respectively Js and WK−1. Between
the spin and thermal Hall conductivity as T → 0 there
exists a modified Wiedemann-Franz relation, given by

lim
T→0

κxy(T )/T

σxy,0s

=
4π2

3

(
kB
~

)2

= Lm, (3.22)

where Lm ≈ 2.2731×1023 K−2s−2 is the modified Lorentz
number.

Note that the three-dimensional dx2−y2 +idxy Weyl su-
perconductor can be envisioned as stacking (in the mo-
mentum space) of corresponding two-dimensional class
C spin quantum Hall Chern insulators [described by
Eq. (3.18)] along the kz direction within the range
−kF ≤ kz ≤ kF . The interlayer tunneling is captured
by (k2

z/2m)τ3σ0. Concomitantly, the contribution to
the anomalous spin and thermal Hall conductivity from
each such layer is respectively given by Eq. (3.20) and
Eq. (3.21). Therefore, the anomalous spin and ther-
mal Hall conductivities as T → 0 of a three dimensional
dx2−y2 + idxy paired state are respectively given by

σxy,0s,3D = σxy,0s

∫ kF

−kF

dkz
2π

=
~

4π
×
(
kF
π

)
, (3.23)

κ0
xy,3D = κ0

xy

∫ kF

−kF

dkz
2π

=
2π2k2

BT

3h
×
(
kF
π

)
.(3.24)

In three dimensions the unit of anomalous spin and
thermal Hall conductivities are respectively Jsm−1 and
WK−1m−1. Also note that the two double-Weyl nodes
located at k = (0, 0,±kF ) acts as source and sink of
Abelian Berry curvature in the reciprocal space, and the
(kx, ky) plane encloses quantized Berry flux. The anoma-
lous spin Hall conductivity [and thus also the anomalous
thermal Hall conductivity, tied with the spin Hall conduc-
tivity via the modified Wiedemann-Franz relation, see
Eq. (3.22)] is directly proportional to the enclosed Berry
flux. Upon unveiling the topological source of anomalous
spin and thermal Hall conductivities in a Weyl supercon-
ductor, we can now proceed with the estimation of these
two quantities in the Eg and T2g paired states.

1. Anomalous responses for Eg pairing

We first focus on the Eg channel. Recall that the
dx2−y2 +id3z2−r2 paired state supports eight simple Weyl
nodes with Wn = ±1. From the arrangement of the
source and sink of the Abelian Berry curvature discussed
in Sec. III B, we immediately come to the conclusion that
the net Berry flux passing through any high symme-
try plane is precisely zero (see Fig. 4). Therefore, the
dx2−y2 + id3z2−r2 paired state, despite possessing Weyl
nodes, gives rise to net zero anomalous spin or thermal
Hall conductivity. Qualitatively, this situation is simi-
lar to the all-in all-out ordered phase in the presence of
sufficiently strong repulsive electronic interactions [23].

2. Anomalous responses for T2g pairing

In the T2g paired state, with a specific phase locking
(φxy, φxz, φyz) = (0, 2π/3, 4π/3), shown in Sec. III C, the
low-temperature phase also supports eight simple Weyl
nodes [see Eq. (3.12)] with monopole charge Wn = ±1.
The topology of each such nodal point has been discussed
in details in Sec. III C and the distribution of the Abelian
Berry curvature is depicted in Fig. 5. Notice that even
through time-reversal symmetry breaking Eg and T2g

pairings supports eight simple Weyl nodes, their location
and distribution of the Berry flux in various high symme-
try planes are completely different (compare Figs. 4 and
5). Consequently, the anomalous spin and thermal Hall
conductivity in the T2g paired state are distinct from its
counterpart in the Eg channel. For concreteness, we here
focus on these two responses in the xy plane and a plane
perpendicular to a [1, 1, 1] direction.

For anomalous spin and thermal Hall conductivity in
the xy plane the Weyl nodes denoted as (b) and (c) do
not contribute and contributions come only from the two
pairs of Weyl nodes identified as (a) and (d) in Eq. (3.12).
After carefully accounting for the enclosed Berry flux we
find the anomalous spin and thermal Hall conductivities
in the xy plane are respectively given by

σxy,0s,3D =
~kF
8π2

Nxy, κ
0
xy,3D =

π2k2
BTkF

3hπ
Nxy, (3.25)

where Nxy = 1 − 1/
√

3. Following the same spirit, we
find that these two quantities in the yz plane are identical
to the above expressions, while those in the xz plane is
obtained by replacing Nxy → Nyz = 1 + 1/

√
3.

By contrast, in a plane perpendicular to the [1, 1, 1] di-
rection all four pairs of Weyl nodes contribute to anoma-
lous spin and thermal Hall conductivities, yielding

σ
[111],0
s,3D =

2

3
× ~kF

8π2
, κ0

[111],3D =
2

3
× π2k2

BTKF

3hπ
. (3.26)

Note that anomalous spin and thermal Hall conductivi-
ties are also finite along three other body diagonals.
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FIG. 7: (a) The Feynman diagram contributing to the Lan-
dau free energy fstr ∼ Φj∆j∆0, capturing the non-trivial
coupling amongst the s-wave and d-wave pairings, and an
external strain. Here solid lines represent fermions, wavy
(dashed) lines d (s)-wave pairing, and the spiral line the strain
field. (b) Scaling of the universal function F (ωD, t) on ωD for
various fixed values of t (quoted in the figure), appearing in
Eq. (4.6), where ωD = ΩD/EF , t = kBT/EF , ΩD is the Debye
frequency, EF is the Fermi energy, and T is the temperature.

Recall that the kz(kx+ iky) paired state supports only
a single pair of simple Weyl nodes at two poles of the
Fermi surface. Consequently, a net non-zero quantized
Berry flux is enclosed by the kx − ky plane, yielding

σxy,0s,3D =
~

8π
×
(
kF
π

)
, κ0
xy,3D =

π2k2
BT

3h
×
(
kF
π

)
. (3.27)

Similarly, the two other degenerate paired states kx(kz +
iky) and ky(kz+ikx) support anomalous spin and thermal
Hall conductivities of equal magnitude, but respectively
in the kz − ky and kz − kx planes.

Following the same set of arguments we find that all
five time-reversal odd paired states, resulting from the
competition between T2g and Eg, yield net zero anoma-
lous spin and thermal Hall conductivities, apart from the
dx2−y2 + idxy phase, as shown in Table II.

IV. EXTERNAL STRAIN AND s+ d PAIRING

We now discuss the effects of external strain on the
paired states. Generic external strain in a Luttinger
semimetal can be captured by the Hamiltonian

ĥstr = Φ1 Γ1 + Φ2 Γ2 + Φ3 Γ3 + Φ4 Γ4 + Φ5 Γ5, (4.1)

where Φj (for j = 1, . . . , 5) represents the strength of the
strain. Since we are interested in the effects of external
strain on the paired state that only exists in the close
proximity to the Fermi surface, we also project the above
five strain operators onto the Fermi surface. We assume
that the external strain is too weak to significantly mix
the valence and conduction bands. In the proximity to
the Fermi surface the effects of generic strain are then

encoded in

ĥFSstr ≡
5∑
j=1

Φj d̂j (τ3σ0) , (4.2)

where τ3 is the diagonal particle-hole (Nambu space) ma-

trix and the d̂js are defined in Appendix A [Eq. (A1)].
Note that external strain does not couple with the spin
degrees of freedom and preserves time-reversal and inver-
sion symmetries, but breaks the cubic symmetry.

Since each component of d-wave pairing breaks the cu-
bic symmetry, nucleation of any such pairing causes a
small lattice distortion or electronic nematicity. In exper-
iment, the onset of such nematicity can be probed from
the measurement of the divergent nematic susceptibility
around the transition temperature (Tc) (see for example
Refs. [98, 99]). Externally applied strain can directly cou-
ple with the appropriate d-wave pairing (depending on
the direction of the applied strain), and in that way can
be conducive for the nucleation of a specific component of
this pairing. In other words, strain couples with d-wave
pairing as an external field. In particular, an externally
applied strain induces nontrivial coupling between s-wave
and d-wave pairings and such coupling enters the expres-
sion for Landau free energy as fstr ∼ Φj∆j∆0. Here the
index j corresponds to a particular component of exter-
nal strain/d-wave pairing, bearing the same symmetry,
and ∆0 is the order parameter for s-wave pairing. To
gain quantitative estimation of such non-trivial coupling
we compute the triangle diagram shown in Fig. 7(a).7 8

The contribution of the triangle diagram to the Landau
free energy is

fstr = −Φj∆
µ
l ∆ν

0

1

β

n=∞∑
n=−∞

∫
d3k

(2π)3
Tr

[(
τµd̂l

)
× G (iωn,k)

(
τ3d̂j

)
G (iωn,k) (τν) G (iωn,k)

]
, (4.3)

where β = (kBT )
−1

is the inverse temperature and
ωn = β−1(2n+1)π is the fermionic Matsubara frequency.
In the above expression µ, ν = 1, 2. To test whether the
coexistence of s and d wave pairing breaks time-reversal
symmetry or not we have introduced the superscript µ, ν
to the pairing amplitudes ∆l and ∆0, respectively for
these two channels. Specifically, non-zero Tr for (i) µ = ν
corresponds to time-reversal symmetry preserving s + d
pairing, (ii) µ 6= ν implies onset of time-reversal symme-

7 For discussion on the coupling amongst various magnetic, namely
the all-in all-out and itinerant spin-ice, orders with an external
strain, see Ref. [23].

8 Notice that coupling between d-wave and s-wave pairings with
electronic nematicity or external strain relies solely on the sym-
metry of the LSM of spin-3/2 quasiparticles. Such coupling is
non-trivial if we compute the term fstr from the full band struc-
ture of the doped LSM, as shown in Appendix H (see Fig. 17).
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try breaking s+id pairing, due to an external strain. The
minus (−) sign in the above expression comes from the
fermion bubble. We here assume that all bosonic fields
[see Fig. 7(a)] are carrying zero external momentum and
frequency, yielding the leading order contribution to the
Landau potential. The fermionic Greens function is

G (iωn,k) = − iωn + τ3ξk
ω2
n + ξ2

k

, ξk =
|k|2

2m
− µ. (4.4)

We find that fstr ∝ Tr [τµτν ] = 2δµν . Hence, exter-
nal strain supports a time-reversal-symmetry preserving
combination of s-wave and d-wave pairings. For strain
assisted time-reversal symmetry breaking superconduc-
tivity, see Ref. [100]. After the Tr algebra we arrive at
the following expression

fstr = 2δµν
Φj∆

µ
l ∆ν

0

β

n=∞∑
n=−∞

∫
d3k

(2π)3

ξk

(
d̂l d̂j

)
[ω2
n + ξ2

k]
2

=
1

2
δµν δj,l

Φj∆
µ,l
d ∆ν

s

40π2

∫
dk

k2

ξ2
k

× sech2

(
ξk

2kBT

) [
sinh

(
ξk
kBT

)
− ξk
kBT

]
.(4.5)

In the final expression the Kronecker delta δj,l arises from
the integral over the solid angle in three dimensions. This
delta function indicates that the external strain and the
d-wave pairing must break the cubic symmetry in the ex-
act same way, such that fstr is ultimately an A1g quan-
tity. The final integral over momentum will be performed
in the close proximity to the Fermi surface. We then ar-
rive at the final expression

fstr = [δµν δj,l Φj∆
µ
l ∆ν

0 ]
% (EF )

40π2EF

∫ √
1+

ΩD
EF√

1−ΩD
EF

x2

(x2 − 1)
2

× sech2

(
x2 − 1

2t

) [
sinh

(
x2 − 1

t

)
− x2 − 1

t

]
dx

= [δµν δj,l Φj∆
µ
l ∆ν

0 ]
% (EF )

40π2EF
F (ωD, t) , (4.6)

where % (EF ) is the DoS at Fermi energy EF , ΩD is the
Debye frequency, ωD = ΩD/EF , and t = kBT/EF . The
functional dependence of F (x, y) is displayed in Fig. 7(b).
Next we discuss some specific examples when external
strain is applied along certain high symmetry directions.

Strain along [0, 0, 1]: First, we consider a situation
when the external strain is applied along one of the C4v

axes. For the sake of simplicity we consider the external
strain to be applied along the ẑ direction. Such strain can
only couple with d3z2−r2 pairing. Thus, a strain along ẑ
direction results in an s + d3z2−r2 paired state, a time-
reversal symmetry preserving combination of s-wave and
Eg pairings.

Strain along [1, 1, 1]: Next we consider a situation
when the external strain is applied along one of the body

diagonal or [1, 1, 1] directions (one of the C3v axes). The
coupling between such strain and the d-wave pairings
can be appreciated most conveniently if we rotate the
reference coordinate according to Eq. (3.8). In the ro-
tated basis strain is applied along the ẑ direction (now
aligned along the body diagonal). After performing the
same transformation for all d-wave pairings, augmented
by the argument we presented above, we realize that only
dxy + dyz + dxz pairing directly couples with the [1, 1, 1]
strain. Thus, strain along [1, 1, 1] direction results in an
s+dxy+dyz+dxz paired state, a time-reversal symmetry
preserving combination of s-wave and T2g pairings.

Strain along [1, 1, 0]: Finally, we discuss the effect of an
in-plane external strain, applied along [1, 1, 0] direction.
Following the same set of arguments we conclude that
when the strain is applied along the [1, 1, 0], it directly
couples with dxy + d3z2−r2 pairing. Thus, an external
strain along [1, 1, 0] direction is conducive to the forma-
tion of an s+ dxy + d3z2−r2 paired state, a time-reversal
symmetry preserving combination of s-wave, T2g and Eg
pairings.

We conclude that by applied strain along different di-
rections one can engineer various time-reversal symme-
try preserving combinations of s- and d-wave pairings.
This mechanism can in particular be useful to induce ex-
otic paired states in weakly correlated materials, such as
HgTe and gray tin, which possibly can only accommodate
phonon-driven s-wave pairing in the absence of strain.
The above outcome can also be stated in a slightly differ-
ent words as follows. Anytime a d-wave pairing nucleates
in a Luttinger metal, it immediately causes a lattice dis-
tortion or nematicity. Consequently, any d-wave pairing
will always be accompanied by an induced s-wave compo-
nent, which, as discussed in Sec. VI, may bear important
consequences in experiments. In Appendix H we show
that induced s-wave component due to lattice distortion
is indeed finite, by minimizing a phenomenological Lan-
dau potential, where symmetry allowed terms up to the
quartic order are taken into account. Notice existence of
a small s-wave component does not break any additional
symmetry deep inside the d-wave (or d + id-type Weyl)
paired state. Thus, a non-trivial coupling between d-
wave and s-wave pairings and the lattice distortion does
not affect flat-band (for pure d-wave pairing) or Fermi
arc (for d+ id-type pairing) surface states as long as the
pairing interaction in the d-wave channel dominates. Ap-
pearance of induced s-wave component plays an impor-
tant role in the interpretation of the penetration depth
data in YPtBi, discussed in Sec. VI.

V. EFFECTS OF IMPURITIES ON BdG-WEYL
QUASIPARTICLES

We now discuss the effects of quenched disorder
(static impurities) on BdG-Weyl quasiparticles. Under-
standing the effects of impurities on regular Weyl and
Dirac fermions has attracted ample attention in recent
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FIG. 8: A qualitative phase diagram of a dirty thermal Weyl
semimetal (ThWSM) at finite temperature (T ). Here Tc is the
superconducting transition temperature and t∗(= T∗/TC) is
a crossover temperature above which the BdG-Weyl quasi-
particles are not sharp. The red dot at δ = 0 represents the
disorder-controlled ThWSM-thermal metal (ThMetal) quan-
tum critical point, and the shaded region represents the as-
sociated quantum critical regime (δ is the reduced disorder
strength, see text). The shape of the crossover boundaries at
finite temperature are roughly determined by |δ|νz ∼ |δ|1.5,
leading to a wide quantum critical regime. For a more quanti-
tative estimation of a similar phase diagram at finite temper-
ature or energy, see Refs. [107, 108]. Scaling of the average
density of states [%(E)] in various regimes of the phase di-
agram is displayed in the figure. Here the labeling of the
temperature and disorder axes are qualitative.

times [101–120]. However, the role of randomness on
BdG-Weyl/Dirac quasiparticles is still at an early stage
of exploration (see however Refs. [115, 116]).

In the context of superconductivity in the Luttinger
semimetal (LSM), the band projection (Sec. II B and Ap-
pendix B) modifies the form of the particle-hole and chi-
ral time-reversal symmetries in Eqs. (2.14) and (2.15),
respectively. For the conduction band (say), we can ex-
press particle-hole (P), time-reversal (T), and chiral time-
reversal (S ≡ P ⊗ T) symmetry conditions in terms of
the 4 × 4 band-projected Bogoliubov-de Gennes (BdG)

Hamiltonian ĥ(k) as follows,

−M (b)

P ĥT(−k)M (b)

P = ĥ(k), M (b)

P = τ2 σ2 : P,

M (b)

T ĥ∗(−k)M (b)

T = ĥ(k), M (b)

T = σ2 : T,

−M (b)

S ĥ(k)M (b)

S = ĥ(k), M (b)

S = τ2 : S.

(5.1)

The band Hamiltonian has indices in Nambu (τ) and
band pseudospin (σ) spaces. Eq. (5.1) obtains from the
corresponding conditions in the 8 × 8 LSM-BdG Hamil-
tonian by replacing Γ13 → σ2, which is the band projec-
tion of the (unitary part) of the time-reversal operator,
see Eq. (2.14).

Even though all candidates for Weyl superconductors

have multiple Weyl nodes (> 2), for the sake of the sim-
plicity of the discussion, we consider its simplest realiza-
tion with only two Weyl nodes, with opposite chiralities
(left and right), located at ±K. Linearizing the band

Hamiltonian ĥ(k) in the vicinity of the pair, we get

ĥ(W )

0 = −iη3 σ0

3∑
j=1

vj τj ∂j . (5.2)

Here η3 = +1 (−1) for the Weyl node with Wn = +1
(−1) [Eq. (3.2)]. The Weyl Hamiltonian is 8 × 8, with
Pauli matrices {ηµ} acting on the chirality.

The symmetry conditions in Eq. (5.1) become

−M (W)

P

(
ĥ(W )

)T

(−k)M (W)

P = ĥ(W )(k), M (W)

P = η1 τ2 σ2,

M (W)

T

(
ĥ(W )

)∗
(−k)M (W)

T = ĥ(W )(k), M (W)

T = η1 σ2,

−M (W)

S ĥ(W )(k)M (W)

S = ĥ(W )(k), M (W)

S = τ2.

(5.3)

The particle-hole and time-reversal matrices M (W)

P and
M (W)

T both flip the node chirality. By contrast, the “chi-
ral” version of time-reversal is the same in all cases
[MS = τ2 in Eqs. (2.15), (5.1), and (5.3)]. Note also that
in all cases, the time-reversal matrix is antisymmetric
[e.g., M (W)

T = −(M (W)

T )T], while the particle-hole matrix

is symmetric [e.g., M (W)

P = (M (W)

P )T]. These conditions
imply that T2 = −1 and P2 = +1 [9].

It is easy to check that Eq. (5.2) satisfies particle-hole
symmetry with M (W)

P , as defined above. In the LSM, such
a Weyl pair arises from d + id pairing. It means that

one component of the Hamiltonian ĥ(W )

0 is time-reversal-
odd. Here the component proportional to τ2 breaks time-
reversal invariance. The symmetry can be restored by
setting v2 = 0, although this flattens the band along the
parent nodal loop.

Since Weyl superconductors in our analysis arise from
singlet pairings, we will assume that the disorder pre-
serves band pseudospin (σ) SU(2) symmetry. Band pseu-
dospin is not identical to the ms = ±1/2 (conduction
band) or ms = ±3/2 (valence band) physical spin-3/2
index, since the band projection of the spin generator[
≡ Jµ|ms|(k)

]
is momentum-dependent, and moreover de-

pendent upon the explicit gauge choice of the band diag-
onalizer. Nevertheless, one can check that

−σ2

[
Jµ|ms|(−k)

]T

σ2 = Jµ|ms|(k),

so that the projected spin operators are odd under time-
reversal, just like the band pseudospin operators {σ1,2,3}.
Magnetic impurities would therefore effectively couple to
the band pseudospin. Although time-reversal is broken
in any of the d + id scenarios outlined in Sec. III that
give rise to isolated Weyl nodes, we assume that there is
no magnetic impurity that breaks pseudospin symmetry.
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Under this assumption, the BdG-Weyl Hamiltonian

ĥ(W ) commutes with all {σν}. Then we can replace the
P2 = +1 physical particle-hole condition in Eq. (5.3) with
an effective P2 = −1 one,

−M (Eff)

P

(
ĥ(W )

)T

M (Eff)

P = ĥ(W ), M (Eff)

P = η1 τ2. (5.4)

Since time-reversal symmetry is already broken in the ab-
sence of disorder, Eq. (5.4) is the only effective symmetry
expected to hold even in the presence of disorder. Since
P2 = −1, the system belongs to class C. By contrast,
the P2 = +1 condition in Eq. (5.3) would give class D.
As often occurs, a continuous symmetry [here band pseu-
dospin SU(2)] changes the random matrix classification
of a Hamiltonian with a given “microscopic” specification
of P, T, and S [9].

Incorporating generic quenched disorder in class C, we
get the BdG-Weyl Hamiltonian

ĥ(W ) = ĥ(W )

0 + A0(r) · τ + B1(r) · τ η1

+ B2(r) · τ η2 + v3(r) η3. (5.5)

In this equation, τ = τ1x̂ + τ2ŷ + τ3ẑ is the vector of
Nambu matrices. There are 10 allowed perturbations,
which take the form of (i) an axial [since it is missing the
η3, c.f. Eq. (5.2)] vector potential A0(r), (ii) two vector
components B1,2(r) of a tensor disorder potential,9 and
(iii) a Weyl node-graded (axial) scalar potential v3(r).

We will further simplify our treatment by neglecting
quenched random fluctuations of the Weyl (d+id) pairing
amplitudes, so that we drop disorder terms in B1,2 that
couple to τ1,2. Note that B1,2 disorder can qualitatively
account for pair breaking effects. Since we are interested
in sufficiently low energies or temperatures (T � Tc),
the amplitude of the d-wave pairings can be assumed to
be frozen. Under this circumstance, we are allowed to
neglect disorder proportional to B1,2. However, we note
that close to Tc one should account for all symmetry al-
lowed disorder, appearing in Eq. (5.5), which goes be-
yond the scope of the present analysis. In our renormal-
ization group (RG) scheme explained below, the remain-
ing subset still closes under the one-loop RG. Thus we
retain six random potentials, {A1,2,3

0 , B3
1 , B

3
2 , v3}. Phys-

ically, A3
0(r) corresponds to the electric charge density,

i.e. encodes scattering off of Coulomb impurities (despite
the fact that it appears as a vector potential component
to the BdG-Weyl quasiparticles). Real and imaginary
quenched fluctuations of the s-wave pairing are encoded
in {A1,2

0 }. The potential v3(r) is a node-staggered chem-
ical potential or “random Doppler” shift. A0 and v3

9 In relativistic notation, the 6 independent components of B1 and
B2 couple to the independent elements of σµν ≡ iγµγν , where
{γµ} are the four 4 × 4 γ-matrices acting on the spinor field
formed from the sum of left- and right-handed Weyl components.
See for example [121].

scatter only within a given node. The remaining poten-
tials {B3

1 , B
3
2} describe internode backscattering due to

short-ranged impurities.10

In Eqs. (5.7) and (5.8) above, the disorder potentials

ϕj ∈ {A1,2,3
0 , B3

1 , B
3
2 , v3}. However, for these six we as-

sign only four variances,

A3
0 : ∆0, (Electric potential),

A1,2
0 : ∆1, (Real and imaginary s-wave pairing),

B3
1,2 : ∆2, (Internode backscattering),

v3 : ∆3, (Random Doppler [axial potential]).

(5.6)

We here control the renormalization group (RG) calcula-
tion in the following way. Each disorder field is assumed
to obey the following distribution

〈ϕj (x)ϕk (y)〉 = δjk
∆j

|~x− ~y|d−m
(5.7)

in position space or

〈ϕj (~q)ϕk (0)〉 = δjk
∆j

|q|m
, (5.8)

in momentum space and the limit m → 0 corresponds
to the Gaussian white noise distribution, which we are
ultimately interested in. This form of the white noise
distribution stems from the following representation of
the d-dimensional δ-function

δ(d)(x− y) = lim
m→0

Γ
(
d−m

2

)
2mπd/2Γ(m/2)

1

|x− y|d−m
. (5.9)

For additional details of this methodology readers should
consult Refs. [111, 114]. An ε-expansion can be per-
formed with the construction m = 1− ε, and ultimately
for Gaussian white noise disorder we set ε = 1 at the end

10 Note that random charge impurities couple as the third com-
ponent of the axial vector potential, while the two planar com-
ponents stem from the real and imaginary components of the
random singlet s-wave pairing. Therefore, the strength of these
two types of disorder coupling (respectively described by ∆0 and
∆1 below) at the microscopic level are different. In the pres-
ence of generic disorder the Fermi velocities along the z direction
(along which the quasiparticle spectrum supports Weyl nodes in
clean system), denoted by v3 and in the x − y plane, denoted
by v1 = v2 = v⊥ receive different renormalizations from the dis-
order. Even if we impose isotropy at the bare level (assuming
v1 = v2 = v3 = v), such symmetry is no longer respected at inter-
mediate scale as we coarse-grain the theory. Nonetheless, we are
allowed to perform the perturbative RG analysis with one Fermi
velocity, but we need to treat the anisotropy parameter, defined
here as α = v⊥/v3, as a running coupling. But, as we demon-
strate below that at the clean Weyl fixed point as well as the
thermal Weyl semimetal-thermal metal quantum critical point,
α is a marginal variable and does not affect the disorder-driven
quantum critical behavior in a dirty thermal Weyl semimetal (at
least to the one-loop order).
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of the calculation.

The RG flow equations to the leading order in the ε-
expansion read as

βv3
= −4v3

3
[∆0 + ∆1 + ∆2 + ∆3] = v3(1− z),

βα = α
2

3
[∆0 −∆1] , β∆0

= ∆0

[
−ε− 8

3
∆2

]
,

β∆1
= ∆1

[
−ε+

4

3
(∆0 −∆1)

]
,

β∆2 = ∆2

[
−ε+

4

3
(∆0 − 2∆1 −∆2)

]
,

β∆3
= ∆3

[
−ε+

8

3
(∆0 + ∆1 − 2∆2 + ∆3)

]
, (5.10)

in terms of dimensionless disorder couplings ∆̂j =
∆jΛ

ε/(2π2v2
3). For brevity we drop the ‘hat’ notation

in the above flow equations. Here, Λ is the ultraviolet
momentum up to which BdG-Weyl quasiparticles possess
linear dispersion. The flow equation of v3 then yields a
scale-dependent dynamic scaling exponent

z = 1 +
4

3
[∆0 + ∆1 + ∆2 + ∆3] . (5.11)

Notice that the bare dimension for all disorder couplings
[∆j ] = −ε. Therefore sufficiently weak disorder is ir-
relevant at the BdG-Weyl fixed point. We here tacitly
bypass the possibility of coexisting rare regions in this
system [116, 118, 119], which suggest that Weyl fermions
may become unstable for infinitesimal strength of disor-
der and enter into a metallic phase, where the DoS at
zero-energy is finite. However, the DoS at zero energy
due to the rare regions is extremely small and over al-
most the entire energy window the outcomes from the
perturbative analysis hold.

The above coupled flow equations support only two
fixed points in the (∆0,∆1,∆2,∆3) plane:

1. The stable fixed point located at (∆0,∆1,∆2,∆3) =
(0, 0, 0, 0) is the BdG-Weyl “thermal semimetal” phase.

2. On the other hand, the fixed point located at
(∆0,∆1,∆2,∆3) = (0, 0, 0, 3/8) ε has only one unstable
direction. It represents a quantum critical point (QCP),
describing a quantum phase transition (QPT) from ther-
mal Weyl semimetal to diffusive thermal metal. In the
thermal metallic phase the DoS at zero energy is finite,
and BdG quasiparticles possess finite elastic impurity
lifetime and mean-free path (in the plane-wave basis).

It is worth pointing out that even though we can tune
the strength of any one of the four disorder couplings,
the thermal Weyl semimetal-thermal metal QPT is ulti-
mately driven by the random Doppler shift, which cou-
ples to the Weyl fermions as the axial potential. Also note
that the anisotropy parameter α is a marginal parame-
ter at both fixed points. Therefore both fixed points are
multicritical in the five-dimensional space {α,∆0,1,2,3}.
For now we neglect the effect of α and focus only on the

FIG. 9: A qualitative phase diagram of a dirty thermal dou-
ble Weyl semimetal (WSM) or thermal line-node semimetal
(LNSM) at finite temperature. Above a crossover temper-
ature t∗ = T∗/TC , BdG quasiparticles are not sharp. The
crossover boundary between the pseudo-ballistic semimetal-
lic phase and the diffusive thermal metallic phase scales as
∼ exp[−A/W ], where W denote the strength of disorder and
A(= 0.35 here) is, however, a non-universal (material depen-
dent) constant. Scaling of the density of states in various
regimes of the phase diagram is quoted in the figure. For
quantitative estimation of this phase diagram see Ref. [108].
Here the labeling of the temperature and disorder axes are
qualitative.

four-dimensional subspace spanned by the disorder.

At the thermal Weyl semimetal-metal QCP the dy-
namic scaling exponent [see Eq. (5.11)] is given by

z = 1 + ε/2 ⇒ z = 3/2, (5.12)

for the Gaussian white noise distribution (ε = 1). The
correlation length exponent at the disorder controlled
QCP is given by

ν−1 = ε ⇒ ν = 1, (5.13)

for ε = 1. Eq. (5.12) implies that the average density of
states at the QCP scales as %(E) ∼ |E|(d−z)/z = |E|.
The product νz = 3/2. Consequently, the crossover
boundaries at finite temperature or energy are deter-
mined by T ∗ or E∗ ∼ |δ|νz and are concave upward,
where δ = (∆−∆∗) /∆∗ is the reduced distance from
the disorder-controlled QCP located at ∆ = ∆∗. As a re-
sult a wide quantum critical regime occupies the largest
portion of the phase diagram of a dirty thermal Weyl
semimetal at finite temperature, as shown in Fig. 8.

On the other hand, the thermal double-Weyl
semimetal as well as the thermal nodal-loop semimetal
become unstable towards the formation of a thermal
metal for arbitrary weak strength of disorder due to
the clean linearly vanishing density of states %(E) ∼
|E| [80, 108, 120]. This can be substantiated from the
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computation of the scattering lifetime (τ) from a self-
consistent Born approximation, leading to

W

∫ EΛ

0

dE
%(E)

~τ−2 + E2
= 1 ⇒ ~

τ
= EΛ exp

(
− A

W

)
,

(5.14)
where W is the strength of disorder, EΛ is the ultravio-
let energy cut-off, and A is a non-universal (material de-
pendent) constant. Thus, the self-consistent solution of
τ indicates that BdG-Weyl fermions in thermal double
Weyl and nodal-loop semimetals acquire finite lifetime
and the system immediately becomes a diffusive thermal
metal. Note that the DoS at zero energy also follows the
profile of 1/τ , and the phase boundary in Fig. 9 follows
the functional form in the above equation. This outcome
is in agreement with the scaling analysis, which suggests
that disorder is a marginally relevant perturbation in the
presence of double Weyl nodes or line nodes [108]. 11

Strong pairing that causes intermixing between the
conduction and valence bands could induce small “in-
flated node” Bogoliubov Fermi surfaces [53, 54]. Arbi-
trarily weak disorder would smear these, leading to dif-
fusive thermal metallic behavior with a nonzero density
of states at sufficiently small energy. The considerations
of this section would still apply for energy scales larger
than that of the band intermixing.

VI. CONNECTION WITH EXPERIMENTS:
PENETRATION DEPTH IN YPtBi

Even though there exists experimental evidence sug-
gestive of superconductivity in some half-Heusler materi-
als, the actual nature of the pairing in these compounds
is not very clear at this stage [39–47]. In this respect,
a recent experiment revealed a very interesting feature
through the measurement of the penetration depth [47].
This experiment [47] suggests that the change in the pen-
etration depth (∆λ) vanishes in a power-law fashion with
temperature ∆λ ∼ Tn, which is suggestive of the ex-
istence of gapless BdG quasiparticles inside the paired
state. However, the precise value of n remains a subject
of debate. In Ref. [47] a reasonably good fit was found
with n = 1.20± 0.02, but only over a limited window of
temperature 0.1 ≤ T/Tc ≤ 0.2 (approximately), where
Tc ≈ 0.78K is the superconducting transition temper-
ature in YPtBi. Such power-law dependence was then
interpreted as the signature of a paired state with nodal
loops, for which the DoS vanishes as %(E) ∼ |E| in a
clean system. Since ∆λ follows the power-law of the
DoS, the deviation from a pure T -linear dependence was

11 We note that the accidental nodes found at two opposite poles
in the presence of dxz/yz + idx2−y2 pairing (see Table II) are,
however, stable against sufficiently weak randomness [114].
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FIG. 10: Various possible fits for the experimentally mea-
sured data of the penetration depth (∆λ) in YPtBi as a func-
tion of the reduced temperature t = T/Tc (replotted from
Ref. 47 with permission). Here Tc = 0.78K is the supercon-
ducting transition temperature in YPtBi. For details of these
fittings and the corresponding physical picture, see Sec. VI.

attributed to impurities.

We here make an independent attempt to understand
the dependence of the penetration depth (∆λ) on the
reduced temperature t = T/Tc and fit the available data
with the following functional form

∆λ(t) = λ(0)

√
π∆0

2kBTc

1

t
exp

(
− ∆0

kBTc

1

t

)
+ cn t

n, (6.1)

and provide alternative explanation for the experimental
observation in Ref. [47]. The first term on the right-
hand side [denoted by ∆λs(t)] is the canonical pene-
tration depth dependence in an s-wave superconductor,
whereas the power law terms correspond to the presence
of gapless BdG quasiparticles for which the DoS van-
ishes as %(E) ∼ |E|n. The resulting fits are displayed
in Fig. 10. With the above functional dependence of the
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penetration depth ∆λ(t) we search for the fitting param-
eters, such as λ(0) (zero temperature penetration depth
of the s-wave component), ∆0/(kBTc) and n (takes only
integer values), to obtain the best possible fit within the
temperature window 0.05 ≤ t ≤ 0.33, such that gapless
BdG quasiparticles are sharp. For t > 0.33 agreement
between the fit function and experimental data is fortu-
itous. A possible microscopic justification for the scaling
of ∆λ(t), see Eq. (6.1), is presented later in this section.

The solid line in Fig. 10(a) shows the best fit ob-
tained by keeping only the linear in temperature term
in Eq. (6.1) in addition to the s-wave contribution. We
find the best fit with the zero-temperature value of the s-
wave gap ∆0 = 2.08kBTc, which is close to the BCS value
∆BCS = 1.76kBTc, with the amplitude of the linear term
c1 = 1.04µm. Interestingly, the fit results in the zero-
temperature value of the penetration depth λ(0) ≈ 23µm,
which is three orders of magnitude larger than found in
conventional superconductors such as aluminum, as re-
marked by the authors of Ref. 41 who also measured a
high value of λ(0)exp = 2µm in YPtBi. As Fig. 10(a)
illustrates, a pure s-wave dependence (dotted line) is not
a good fit to the data, even though it would result is a
value of λ(0) ≈ 3µm that is closer to the experiment [41].
We obtain a good agreement with the experimentally
observed scaling of the penetration depth over a large
temperature window by adding an s-wave component for
which the zero temperature absolute value of penetra-
tion depth λ(0) ≈ 23µm � λ(0)exp(= 2µm) [41]. This
observation indicates that the requisite strength of the
s-wave component is rather small in comparison to the
dominant d-wave pairing, as the superfluid density con-
tribution scales with 1/λ(T )2.

On the other hand, including the s-wave component
is crucial to accurately fit the data. Indeed, attempts to
fit to a pure power-law, see Fig. 10(b), are unsatisfac-
tory as the fits only work in the low-temperature regime
t . 0.2. Moreover, the extracted power-law exponent de-
pends sensitively on the width of the fitted temperature
region and given the narrow temperature range, it is diffi-
cult to distinguish between a T -linear fit [solid red line in
Fig. 10(b)], the T 2 fit [dash-dotted blue line in Fig. 10(b)]
or, say, the T 1.2 fit adopted by the authors in Ref. 47
[dashed line in panels (a) and (b) of Fig. 10]. Of course
the three curves deviate from each other at higher tem-
peratures t > 0.25, but by that time neither one of them
fits the experimental data even remotely. In principle,
one can try to fit the experimental data by varying the
contribution from the s-wave component, which, how-
ever, immediately affects the temperature window over
which the fitting function from Eq. (6.1) yields agreement
with the experiment. Such semi-quantitative variation of
our procedure does not change the fact that an s-wave
contribution is necessary to produce sensible agreement
within reasonable temperature window. Experimentally
it is conceivable to find the contribution of the s-wave
component by comparing the gap size at the nodal and
anti-nodal points (since only the s-wave component is

uniform over the entire Fermi surface), as it has been
done in YBCO [143].

Based on the above analysis and the comparison be-
tween panels (a) and (b) in Fig. 10, we conclude that it is
necessary to include the s-wave component to properly
fit the penetration depth data. The pure s-wave fit is
unsatisfactory, as remarked earlier, and a power-law con-
tribution must be considered. We now turn to the com-
parison between different such power-law contributions.
The red and blue lines in Fig. 10(c) show the ∆λs(t)+c1t
and ∆λs(t) + c2t

2 fits to the data, respectively. The red
curve incorporating the T -linear component fits the data
better [the same fit as the solid line in panel (a)]. By con-
trast, attempts to fit the data with ∆λs(t)+c2t

2 form not
only fall below the target in the range 0.05 < t < 0.25,
but also requires in an unphysically large fitting param-
eter λ(0) ∼ 103µm. We cannot however exclude possible
presence of a small T 2 component in addition to the dom-
inant s-wave and T -linear terms.

Based on the above analysis, we conclude that super-
conductivity in YPtBi is best described by a combination
of a fully gapped s-wave component and a gapless BdG
quasiparticles with linear in energy density of states. The
latter is commonly attributed to the nodal lines in the
gap, such as a d-wave or p-wave. However we stress that
this is not a unique explanation and we list several pos-
sible sources of T -linear dependence below.

Source of T 2 dependence: Within a simple picture for
pairing in the Luttinger system, there is only one possi-
ble source for T 2 dependence of the penetration depth:
namely, the existence of gapless quasiparticles at isolated
points on the Fermi surface where the DoS vanishes as
%(E) ∼ |E|2 at low energy. Only a Weyl superconduc-
tor, constituted by Weyl nodes with monopole charge
Wn = ±1 yields such DoS, see Secs. III B and III C. In
this work, we have presented several examples of Weyl
superconductors; any such candidate is capable of pro-
ducing a T 2 dependence of the penetration depth at low
temperatures.

Sources of T -linear dependence: Unlike the aforemen-
tioned case of T 2 dependence, the origin of a T linear
contribution to ∆λ is not unique, with several possible
sources resulting in the gapless BdG fermions displaying
the linear scaling %(E) ∼ |E| of the DoS. Once again
within a simple picture of pairing in the Luttinger sys-
tem, we can identify three possible origins of such E-
linear scaling of the DoS. They are the following.

1. A double Weyl superconductor, with isolated Weyl
nodes characterized by the monopole charge Wn = ±2.
Such Weyl nodes are also referred to as double-Weyl
nodes, and yield %(E) ∼ |E| at low energies (below the
superconducting gap). But, as we have seen above [see
Table II and Sec. III D], examples of such a double-Weyl
superconductor are sparse and so far we can only iden-
tify one candidate, namely, the dx2−y2 +idxy paired state,
that can support a linear scaling of the DoS. Thus, based
on various examples of Weyl superconductors discussed
in this work, one may conclude that this possibility is the
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least likely one. Nucleation of such a phase will, however,
be associated with a two-stage transition.

2. A tempting source of %(E) ∼ |E| is existence of
at least one nodal loop in the spectrum of BdG quasi-
particles. So far we have found ample examples in the
presence of local or intra-unit cell pairings that support
nodal loops in the ordered phase (see Table I, Sec. III C).
However, for each such possibility there is always a com-
peting ordered phase of the d + id type that accommo-
dates simple and isolated Weyl nodes (with Wn = ±1)
on the Fermi surface. Since %(E) ∼ |E|2 inside the sim-
ple Weyl superconductors, nucleation of such paired state
will cause power-law suppression of the DoS, thus opti-
mizing the gain in the condensation energy. We therefore
conclude that Weyl nodal-point superconductors are en-
ergetically superior to the ones with nodal loops, at least
within the framework of the weak coupling BCS pairing.

3. The last, but most likely, possibility is the following.
The underlying paired state supports simple BdG-Weyl
quasiparticles with the Weyl nodes that are characterized
by the monopole charge Wn = ±1 in Eq. (3.2). But, due
to the presence of impurities in the system, the thermo-
dynamic responses measuring the DoS (for instance, the
penetration depth ∆λ) are determined by the disorder-
driven quantum critical regime associated with the Weyl
superconductor-thermal metal QPT, see Fig. 8. At such
a transition, the dynamical critical exponent z = 3/2
(possibly exact in light of recent field-theoretic and nu-
merical works, see Sec. V) yields the density of states
%(E) ∼ |E|−1+d/z ∼ |E|, linear in energy. Such an ori-
gin of a T -linear contribution to the penetration depth
is quite natural in YPtBi, since the carrier density is ex-
tremely low, making the system susceptible to impurities.

We believe that the last possibility is the most likely
scenario in YPtBi and other half-Heusler compounds for
the following reasons. Nucleation of simple-Weyl nodes
in the gap is possibly energetically the best option among
various available candidates for nodal pairings as it pro-
vides the optimal power-law suppression of DoS at low-
energy (leaving aside fully gapped paired states that re-
quire non-local pairing, see Sec. II C). But, due to the
presence of randomness/impurities, the thermodynamic
responses are dominated by the wide quantum criti-
cal regime associated with disorder-controlled Weyl-to-
thermal metal QPT. Note that this critical regime oc-
cupies the largest portion of the phase diagram of the
disordered Weyl superconductor at finite temperature,
as shown in Fig. 8.

Sources of s-wave component : Perhaps the most enig-
matic aspect of our analysis of the recent experimental
data on the penetration depth [47] is the unambiguous
presence of an s-wave component, which is however quite
natural in light of the discussion presented in Sec. IV. Re-
call that nucleation of any d-wave pairing (or any combi-
nation of multiple d-wave pairing) breaks the cubic sym-
metry, which naturally introduces a lattice distortion or
electronic nematicity in the system. In turn, the cooper-
ative effect of the d-wave pairing and such lattice distor-

tion introduces a non-trivial s-wave pairing in the system.
Therefore, incorporating the contribution of s-wave pair-
ing is fully consistent with the symmetry of the prob-
lem: indeed, the s-wave A1g pairing appears on equal
footing with the nodal d-wave channels in the vicinity of
the Fermi surface, see Table I. Additionally, one could of
course imagine a more trivial origin of the s-wave pairing,
such as due to the electron-phonon coupling, considered
in a recent theoretical work [56].

Since the chemical potential in superconducting half-
Heusler compounds, such as YPtBi, lies in close prox-
imity to the quadratic band touching points, it is quite
natural to anticipate that intra-unit cell pairings or lo-
cal pairings (s-wave and five d-waves listed in Table I)
stand as prominent candidates. This is the reason why
so far we have focused on these pairings, leaving aside
non-local or longer-range pairings, which will be the sub-
ject of discussion in Sec. VII. Since some of the half-
Heusler compounds display magnetic order, we also be-
lieve that non-s-wave pairing is possibly the dominant
intra-unit cell pairing, which has received some support
from simple microscopic calculations [55, 56]. In light of
the above discussion, the s-wave component, when it is
manifest, is not interaction driven but rather an induced
one. Our whole discussion on experimental aspects of
pairing in Luttinger system thus evolves around various
d-wave pairings that can ultimately lead to simple Weyl
superconductors via the formation of the d+ id state (see
section III).

The proposed scaling of the penetration depth in
Eq. (6.1) may require the existence two Fermi surfaces,
as a small (induced) s-wave component in the presence
of a dominant d + id type pairing only shifts the loca-
tion of the Weyl nodes (discussed in Appendix I). The
presence of two Fermi surfaces is quite natural in YPtBi,
since the inversion symmetry is broken in half-Heuslers.
Consequently, the Kramers (or pseudo-spin) degeneracy
of the Fermi surface is lost. Under that circumstance, it
is conceivable that only one of the Fermi surfaces hosts
Weyl nodes, while the other one becomes fully gapped,
in the presence of an s + d + id pairing, justifying the
proposed scaling of penetration depth in Eq. (6.1). The
details of the analysis is presented in Appendix J. On
the other hand, from the fits shown in Fig. 10, we realize
that inclusion of the s-wave component is important to
obtain a good fit at slightly higher temperatures, where
the DoS can deviate from pure |E|-linear dependence due
to the induced s-wave component. Hence, the existence
of two Fermi surfaces (one being gapless while the other
one being fully gapped) may not be necessary for the ap-
plicability of Eq. (6.1), as the component is operative at
higher temperature. Only future experiments can resolve
these two competing scenarios. We also note that even
in the absence of inversion symmetry both Fermi sur-
faces remain gapless for a pure d+ id pairing. It should,
however, be noted that s- and d-wave pairings are mixed
solely due to the spin-3/2 nature of quasiparticles (see
Sec. IV) not the inversion asymmetry, as both pairings
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are even under the spatial inversion. We should men-
tion that once s-wave pairing is induced by a (dominant)
d-wave pairing, it can further be amplified by electron-
phonon coupling, which is always present in any real ma-
terial.

As a final remark of this section, we should point out
another possible source of an s-wave component in YPtBi
or any half-Heusler compound. Note that half-Heusler
compounds break the inversion symmetry, which man-
dates that even (such as s- and d-wave) and odd (such
as p- and f -wave) parity pairings always coexist [141].
Presently the strength of inversion symmetry breaking is
not clear in this class of materials (likely to be weak as no
experiment has found a clear signature of inversion asym-
metry). Nevertheless, when the interaction is conducive
for a unixial p-wave pairing, which can produce line-
nodes in the ordered phase and thus yield %(E) ∼ |E|,
the ordered phase is always accompanied by an s-wave
component [47, 51]. The s + p paired state can be im-
mune to pair-breaking effects when inversion symmetry
breaking is sufficiently strong [142]. However, such a uni-
axial p-wave pairing can be energetically inferior to an
isotropic, but fully gapped p-wave pairing, discussed in
Sec. VII. On the other hand, for low carrier density it is
likely that local d-wave pairings are energetically favored
over the non-local pairings (such as p- and f -wave), and
naturally accompanied by an s-wave component. Given
the uncertainty in our knowledge of various quintessential
parameters in these materials, it is of absolute necessity
to perform complimentary thermodynamic and transport
measurement to unambiguously determine the symmetry
of the paired state. Finally, we briefly comment on such
possible future experiments that can help pin down the
pairing symmetry in these compounds.

A. Future experiments and pairing symmetry

The existence of simple Weyl superconductors can be
pinned down, at least in principle, by systematically con-
trolling the impurity concentration in the system, for ex-
ample. Note that with the decreasing strength of impu-
rity scattering (as the material gets cleaner), the T -linear
dependence of the penetration depth is expected to get
suppressed and a T 2 dependence should become domi-
nant. This feature, for example, can be probed by the
following measurements:
• Specific heat (Cv) measurements inside the super-

conducting phase, although difficult given the low critical
temperatures (0.78 K in YPtBi) in half-Heuslers, can be
instrumental in unveiling the pairing symmetry. With
an underlying simple Weyl superconductor, Cv should
display a gradual onset of T 3 dependence at low temper-
ature (T � Tc) and disappearance of T 2 scaling as the
concentration of impurities is reduced (the system then
falls on the Weyl side of the phase diagram, escaping the
critical regime), see Fig. 8. By contrast, with increasing
impurity scattering, the T 2 dependence of specific heat is

expected to gradually get replaced by the Fermi-liquid-
like T -linear dependence as the system moves into the
thermal metallic side of the transition.
• Measurements of the anomalous thermal Hall con-

ductivity [see Sec. III E] 12, as well as probing the surface
Andreev bound Fermi arc states with the STM quasi-
particle interference (QPI) techniques are expected to
distinguish among various candidates of Weyl pairing
listed in Table II.
• The nuclear magnetic resonance (NMR) relaxation

time (T1) can also be a good probe to elucidate the scal-
ing of the low-energy DoS since 1/T1 ∼ T [%(E → T )]2

(Korringa’s relation). Therefore, as the impurity concen-
tration is gradually increased, the inverse of the NMR re-
laxation time should display a crossover from T−1

1 ∼ T 5

(dominated by BdG-Weyl quasiparticles) to T−1
1 ∼ T 3

(inside the quantum critical regime), to T -linear behav-
ior (in the thermal metallic phase) scaling, see Fig. 8.
• The longitudinal thermal conductivity (κjj) can also

be a good probe to expose various regimes of the phase
diagram. Specifically, κjj/T scales as (a) T when the
BdG-Weyl quasiparticles dominate the transport (clean
limit), (b) T 2/3 in the entire quantum critical regime, (c)
approaches a constant value in the thermal metallic side
as T → 0, see Fig. 8. Note that the magnitude of ther-
mal conductivity will in general be different along various
crystallographic directions due to the natural anisotropy
in the Weyl paired state.

Above, we have discussed the experimental implica-
tions of the Weyl-paired superconducting state and how
it evolves as a function of impurity scattering strength.
If, on other hand, the T -linear dependence of the penetra-
tion depth in Fig. 10 arises from an underlying line node,
then the measurements of the specific heat can be a good
tool to pin down such a nodal structure. In the presence
of a nodal loop (or double-Weyl node), T 2-dependence
of the specific heat is expected to occupy a progressively
wider window of temperature with a gradual decrease of
impurity scattering, see Fig. 9. By contrast, with increas-
ing strength of impurity scattering, the T 2 dependence
will be gradually replaced by the T -linear dependence in
Cv (dominated by a thermal metal). The inverse of the
NMR relaxation time in the presence of a nodal loop in
the quasiparticle spectra is then expected to display a
smooth crossover from T−1

1 ∼ T 3 (dominated by pseudo-
ballistic quasiparticles) to T -linear dependence (governed
by thermal metallic phase), as the disorder in the system
increases. Notice κjj/T is expected to display a T -linear
scaling, but only when the heat-current flows in the basal
plane containing the nodal loop. Otherwise, with increas-
ing (decreasing) impurity strength the residual value of
κjj/T as T → 0 should increase (decrease) [123]. By con-

12 With the current estimation of various parameters in YPtBi [51,
56] we find κxy ∼ C 1.5×10−4 Wk−1m−1, where the parameter
C ∼ 1 depends on the pairing symmetry [see Sec. III E], which
can, in principle, be measured [122].
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trast, in the presence of double-Weyl nodes (separated
along ẑ direction (say), for example), κzz/T ∼ constant,
while κjj/T ∼ T at low temperature, where j = x, y.

We realize that it may be very difficult to tune the con-
centration of impurities experimentally, the task further
complicated by the fact that nodal superconductivity is
easily destroyed by (non-magnetic) impurities. Neverthe-
less, one could still make meaningful conclusions about
the pairing by exploring the phase diagram at a fixed im-
purity concentration, as a function of temperature. For
instance, descending in temperature to the left of the
disorder controlled diffusive QCP [the red dot in Fig. 8],
one would expect to see the crossover from the critical
regime (where Cv ∼ T 2, T−1

1 ∼ T 3 and κjj/T ∼ T 2/3)

to the pure Weyl regime (with Cv ∼ T 3, T−1
1 ∼ T 5 and

κjj/T ∼ T 1). Therefore, we believe that it is still con-
ceivable to pin the actual nature of the pairing symmetry
in half-Heusler compounds with the presently available
experimental tools. We hope our detailed discussion will
motivate future experiments in this class of materials.

VII. STRONG TOPOLOGICAL
SUPERCONDUCTIVITY: ODD-PARITY

ISOTROPIC p-WAVE PAIRING

In this section we study superconductivity in the Lut-
tinger semimetal (LSM) with isotropic p-wave pairing.
This odd-parity pairing is the spin-3/2 generalization of
the B phase of 3He [15]. The paired state represents
a time-reversal invariant, class DIII (strong) topological
superconductor (TSC) [9]. The topology induces a two-
dimensional (2D) gapless Majorana fluid to appear at the
material surface. Our goal is to investigate the stability
(“topological protection”) of this 2D Majorana fluid to
perturbations that are inevitable at the surface of a real
material: quenched impurities and residual interparticle
interactions.

In a previous work [52], we investigated exactly these
questions in the Luttinger Hamiltonian [Eqs. (2.1) and
(2.5)] with isotropic p-wave pairing, but with one cru-
cial difference. In Ref. [52], we assumed that m > m0,
i.e. that both bands in Eq. (2.6) “bend together”, as
in the light and heavy hole bands of GaAs [17]. As-
suming that both bands participate in superconductiv-
ity, the bulk winding number ν = 4 in that case, and
the surface Majorana fluid exhibits coexisting linear and
cubic dispersing branches [49]. We showed that interac-
tions can destabilize the clean fluid [52], inducing sponta-
neous time-reversal symmetry breaking and surface ther-
mal quantum Hall order13 [9, 95, 124, 125]. By con-
trast, we demonstrated that quenched surface disorder is
a strong perturbation that induces critical Anderson de-

13 We note that such surface order can also arise in the presence of
p+ is pairing in the bulk [126].

localization, with multifractal surface wave functions and
a power-law divergence of the disorder-averaged density
of states. These results were obtained numerically via
exact diagonalization, and were found to agree very well
with the predictions of a certain 2D conformal field the-
ory (CFT). The CFT is the current algebra SO(n)ν (with
ν = 4), where n→ 0 is a replica index [65]. We concluded
that the surface states are governed by this CFT in the
presence of arbitrarily weak disorder. Moreover, in a sep-
arate work we established that the class DIII SO(n)ν the-
ory is stable against the effects of residual quasiparticle-
quasiparticle interactions [65]. The main takeaway of
Ref. [52] was that disorder can enhance topological pro-
tection at the surface of a higher-spin TSC.

The SO(n)ν CFT can be “derived” via certain confor-
mal embedding rules for surface states of model spin-1/2
TSCs [65]. In the case of the LSM with p-wave pairing
studied here and for the closely related model in [52],
these rules do not obviously apply. In particular, the
conformal embedding argument assumes that the clean
limit is also a CFT, i.e. free relativistic fermions (in 2+0
dimensions; in the absence of interactions, we can study
the problem at a fixed single particle energy [65]). By
contrast, the clean surface states of higher-spin TSCs typ-
ically have higher (e.g. cubic) dispersion [48, 49], and are
not conformally invariant.

Here we consider the problem in the LSM, where elec-
tron and hole bands bend oppositely. This gives rise to
a different winding number (ν = 3) and different surface
states, depending on the doping. In fact, we invent here a
generalized surface model (see Sec. VII C) that allows us
to efficiently simulate noninteracting surface states cor-
responding to a bulk TSC in class DIII with arbitrary
integer winding number ν. The model has ν-fold disper-
sion, such that the large-ν limit corresponds to a highly
flattened surface band with a strongly diverging clean
DoS.

On physical grounds, the most general expectation for
class DIII in this case would be that disorder induces a
surface thermal metal [127]. In two spatial dimensions,
the thermal metal phase in class DIII is stable due to
weak antilocalization. Moreover, the SO(n)ν CFT fixed
point, while stable against interactions, is technically un-
stable towards flowing into the thermal metal [52]; see
Fig. 11. Despite this, in Ref. [52] for winding number
ν = 4 and here for generic ν ≥ 3, we provide strong nu-
merical evidence that any disorder induces the quantum
critical scaling associated to SO(n)ν , with universal pre-
dictions for experiment that depend only on ν. These
include power-law scaling for the tunneling density of
states, a quantized thermal conductivity divided by tem-
perature [52, 70], and a universal multifractal spectrum
of local DoS fluctuations. These states are also robust
against interactions for any ν [65].

Our results suggest a deep connection between the
bulk topology of three-dimensional TSC and the univer-
sal physics of the quench-disordered two-dimensional Ma-
jorana surface fluid, despite the fact that key attributes
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of the clean surface depend on details of the bulk. In
particular, it suggests a topological generalization of the
conformal embedding rule [SO(nν)1 ⊃ SO(n)ν⊕SO(ν)n]
used to link ν clean relativistic Majorana fermions to the
SO(n)ν CFT in the presence of disorder [65]. This topo-
logical generalization should apply in the replica limit
n→ 0 to any surface band structure for any strong class
DIII TSC with winding number ν ≥ 3, subject to time-
reversal invariant quenched disorder.

Beyond fundamental interest, the Eliashberg calcula-
tions in Ref. [56] suggest that isotropic p-wave pairing
gives the dominant non-s-wave channel in a hole-doped
LSM due to optical-phonon–mediated pairing. For this
reason we focus mainly on the hole-doped model in the
following, which has ν = 3 (see below).

Clean surface
with ν-dispersion

Thermal 
metal

SO(n)ν
(Critical
Delocalization)

Topology-tuned
RG Flow to CFT

FIG. 11: Schematic phase diagram for the noninteracting
2D surface states of a class DIII bulk topological supercon-
ductor. The fixed point representing the clean surface band
structure (red dot) is unstable in the presence of time-reversal
preserving quenched disorder for any ν ≥ 3, where ν is the
integer bulk winding number. The precise form of the clean
limit depends on details. For a spin-1/2 bulk, one can have
ν species of massless relativistic Majorana fermions, with dis-
order that enters as a nonabelian gauge potential scattering
between these [65]. For isotropic p-wave pairing in the LSM
studied here with winding number ν = 3, the surface states in
the hole-doped case consist of a single two-component surface
fermion with cubic dispersion, see Fig. 12(a) and Eq. (7.9)
[48], c.f. Refs. [49, 52]. Our generalized surface theory in
Eq. (7.23) has ν-fold dispersion for the corresponding winding
number. The disordered system should be described by a class
DIII non-linear sigma model with a Wess-Zumino-Novikov-
Witten (WZNW) term. The WZNW term prevents Ander-
son localization [65, 127]. This theory has a stable thermal
metal phase (green dot) and an unstable, critically delocalized
fixed point. The latter (yellow dot) is governed by the SO(n)ν
CFT [65, 70]. Our numerical results are generally consistent
with the SO(n)ν theory, see Figs. 13–15, implying that the
renormalization group trajectory away from the clean limit is
fine-tuned by the topology to flow into the CFT (solid vertical
flow), instead of flowing into the thermal metal (dashed flow).
The same conclusion was reached for a model with ν = 4 in
Ref. [52].

A. Bulk and surface theory

We write the Luttinger Hamiltonian in terms of the
Nambu spinor defined by Eq. (2.11),

H =
1

2

∫
d3k

(2π)3
Ψ†N (k) ĥ(k) ΨN (k), (7.1)

where the 8 × 8 Bogoliubov-de Gennes (BdG) Hamilto-
nian is

ĥ(k) = ĥL(k) τ3 + ∆p (J · k) τ1. (7.2)

Here ĥL is the Luttinger operator from Eq. (2.5) and J
denotes the vector of spin-3/2 generators [see Eq. (A4)].
The Pauli matrices {τµ} act on the particle-hole (Nambu)
space. The parameter ∆p is the real p-wave pairing am-
plitude; with this choice, Eq. (7.2) is time-reversal in-
variant [see Eq. (2.15)]. It also satisfies the particle-hole
condition in Eq. (2.14), using Eq. (2.12).

We assume weak BCS pairing so that µ > 0 (µ < 0)
describes superconductivity in the |ms| = 1/2 conduc-
tion (|ms| = 3/2 valence) band of the Luttinger Hamil-
tonian. The physical bulk quasiparticle energy spectrum
of Eq. (7.2) is fully gapped,

E±(k) =

√
(|λ1 ± 2λ2|k2 − |µ|)2

+
[(

2∓1
2

)
∆pk

]2
, (7.3)

where 2λ2 > λ1 is required so that conduction and va-
lence bands bend oppositely [or m0 > m in Eq. (2.6)],
and E+ (E−) corresponds to superconductivity in the
conduction (valence) band. The assumption of weak BCS
pairing around a finite Fermi surface means that we can
project the BdG Hamiltonian into the |ms| = 1/2 con-
duction or |ms| = 3/2 valence band. The results are

ĥ1/2(k) =
[
(λ1 + 2λ2)k2 − µ

]
τ3 +

∆p

2

[
−kz − k̄2

k

− k2

k̄
kz

]
τ1,

ĥ3/2(k) =
[
(λ1 − 2λ2)k2 − µ

]
τ3

+
∆p

α(k)

[
−kz β(k) k̄3

k3 kz β(k)

]
τ1, (7.4)

where k ≡ kx − iky, k̄ = k∗, and

α(k) =
2

3

(
4k2
z + |k|2

)
, β(k) =

(
4k2
z + 3|k|2

)
. (7.5)

Here we have diagonalized (J · k)2 but not (J · k), so
that the matrix elements are rational functions of the
momentum components. This is essential for obtaining a
local surface theory, derived below.

We employ the winding number defined by Schnyder
et al. [9] to characterize the topology of the bulk. Af-
ter rotating τ3 → τ2, one introduces the matrix 4 × 4
matrix Q(k) = U−1(k) ΛU(k), where U(k) diagonalizes

ĥ|ms|(k), and Λ = diag(1, 1,−1,−1) is the flattened ma-
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(a) (b)

FIG. 12: Surface Majorana fluid band structure for the Lut-
tinger Hamiltonian with isotropic p-wave pairing. This is a
class DIII, strong topological superconductor with winding
number |ν| = 3 for pairing arising from either the conduction
or valence bands. Results shown here are obtained from a lat-
tice regularization and termination of Eq. (7.2); the momen-
tum kx is measured in units of the lattice spacing a. The left
panel (a) shows the cubic-dispersing two-dimensional surface
states obtained for hole-doping, see Eq. (7.9). Only positive
kx is depicted, since the results are symmetric under reflection
about kx = 0. The BdG parameters are ∆p = 1, λ1 = 0.1,
λ2 = 0.5 and µ = −1. The right panel (b) shows a relativistic
cone centered at k = 0 and a gapless ring in the electron-
doped case. The parameters are the same as for (a), except
that µ = +1.

trix of energy eigenvalues. Then Q is off-diagonal,

Q =

[
0 q
q−1 0

]
, (7.6)

and the winding number is given by

ν =

∫
d3k

24π2
εijk Tr

[
(q−1∂iq)(q

−1∂jq)(q
−1∂kq)

]
, (7.7)

with repeated indices summed. We find that |ν| = 3
for the valence and conduction bands. From here on we
ignore sgn(ν), which can only be important at an inter-
face (e.g., a physical surface) where this sign flips. Our
winding number is in agreement with Ref. [48] for the
|ms| = 3/2 band, but differs from that obtained for the
|ms| = 1/2 band, in which ν = 1 was claimed. We show
below that surface state calculations support our results.
We believe that the discrepancy comes from the fact the
authors of Ref. [48] used a Fermi surface winding number
method [128], which gives the correct winding number
only if the system is non-degenerate.

To obtain the effective surface Hamiltonian we fol-
low the conventional approach of terminating in the z-

direction and diagonalizing ĥ|ms|(k, kz → −i∂z) where
k = kx, ky denotes momentum parallel to the surface.
For the |ms| = 3/2 valence band, applying hard-wall
boundary conditions we obtain zero energy surface states

at k = 0 of the form

|ψ0,ms〉 = |τ2 = sgn(ms)〉 ⊗ |ms〉 ⊗ |fms〉. (7.8)

The particle-hole spin locks along the +τ2 (−τ2) direc-
tion for positive (negative) ms [49, 52]. In Eq. (7.8),
〈z |fms〉 = fms(z) denotes the bound state envelope func-
tion.

Using first-order k · p perturbation theory we obtain
the surface effective Hamiltonian,

ĥ(S)

3/2(k) ∝ ∆p

k2
F

[
0 ik̄3

−ik3 0

]
. (7.9)

Eq.(7.9) satisfies the projected version of the particle-hole
symmetry in Eq. (2.14),

−M̂ (S)

P

[
ĥ(S)

3/2

]T

(−k) M̂ (S)

P = ĥ(S)

3/2(k), M̂ (S)

P = σ1,

(7.10)

and the projected time-reversal symmetry [Eq. (2.15)]

−M̂ (S)

S ĥ(S)

3/2(k) M̂ (S)

S = ĥ(S)

3/2(k), M̂ (S)

S = σ3. (7.11)

Here the matrices {σµ} act on the components ms =
±3/2.

Fig. 12 shows the clean Majorana surface bands
obtained numerically from a lattice regularization of
Eq. (7.2) for (a) |ms| = 3/2 valence-band–hole and (b)
|ms| = 1/2 conduction-band–electron superconductivity.
Below we focus on the hole-doped case in which the sur-
face fluid has cubic dispersion [Eq. (7.9)]. The surface
fluid in the electron-doped case is depicted in Fig. 12(b),
and exhibits a linear Majorana cone around k = 0 and
a zero-mode ring at finite surface momentum; the latter
structure is inconsistent with ν = 1 [48, 49].

B. Quenched surface disorder, class DIII SO(n)ν
conformal field theory, and numerical results

We now turn to perturbations of the surface theory, fo-
cusing on the cubic-dispersing Majorana fluid that arises
from hole-doped superconductivity. We can write the
surface Hamiltonian as

H(S)

0 =
1

2

∫
d2r ηT M̂ (S)

P

(
σ− ∂

3 − σ+ ∂̄
3
)
η, (7.12)

where η → ηms is a two-component Majorana spinor and
r is the position vector. The chiral derivative operators
are {∂, ∂̄} ≡ (1/2)(∂x ∓ i∂y), while σ± ≡ σ1 ± iσ2. Here
we have set the prefactor of Eq. (7.9) equal to one.

The simplest class of surface perturbations are con-
stant bilinears. Such an operator can be written as
ηTM̂ (S)

P Λη, with Λ a 2×2 Hermitian matrix. The only bi-
linear that satisfies particle-hole in Eq. (7.10) (i.e., which
does not vanish under Pauli exclusion) is the mass term
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Λ = σ3 ' Jz. This is the projection of the spin operator
perpendicular to the surface. The nonzero expectation
value of this term (due e.g. to a coupling with an external
Zeeman field) would open a surface energy gap and signal
time-reversal symmetry breaking. The time-reversal bro-
ken state would reside in a plateau of a surface thermal
quantum Hall effect [9, 95, 124, 125].

These considerations are almost identical to 3He-B [9,
15], which has spin-1/2 and ν = 1. The only difference
is that the derivatives in Eq. (7.12) appear to the first
power for ν = 1, whereas here we get the ν = 3 power
for the spin-3/2 bulk.

Residual quasiparticle-quasiparticle interactions
should be short-ranged (due to screening by the bulk
superfluid). Since η is a two-component Majorana field,
the most relevant interaction that we can write down is

H(S)

I = u

∫
d2r η1∇η1 · η2∇η2. (7.13)

The coupling strength u has dimensions of length for cu-
bic dispersion and is therefore irrelevant in the sense of
the renormalization group (RG) [48].

Finally we turn to quenched disorder, which is always
present at the surface of a real sample. We assume the
disorder is non-magnetic, but may arise due to neutral
adatoms, charged impurities, grain boundaries, etc. In
other words, any time-reversal invariant surface potential
perturbation is allowed. Since the only bilinear without
derivatives is the massive, time-reversal odd Jz operator
discussed above, we must broaden the search to include
bilinears with derivatives. The most relevant possible
potential can be encoded in the Hamiltonian

H(S)

D = − i
2

∫
d2r

ηT(r) M̂ (S)

P σα

←→
∂

∂xβ
η(r)

Pαβ(r).

(7.14)

In this equation repeated indices are summed, α, β ∈
{x, y}. We assume that Pαβ(r) is a white-noise-correlated
random potential with variance λ. Then λ has dimen-
sions of 1/(length)2 and is a relevant perturbation to the
clean cubic band structure.

The effects of disorder cannot be treated pertur-
batively. The standard procedure would produce a
disorder-averaged nonlinear sigma model in class DIII,
which possesses a stable thermal metal phase [127, 129].
Although the thermal metal is perturbatively accessible
in the sigma model with the WZNW term, the critical
SO(n)ν CFT fixed point is not, except for the limit of
large ν. Therefore we resort to numerics in the remain-
der of this section. The question we want to answer is
whether disorder flows into the SO(n)ν CFT or the ther-
mal metal, see Fig. 11.

The noninteracting BdG Hamiltonian implied by
Eqs. (7.12) and (7.14) has momentum space matrix ele-

ments[
ĥS

]
k,k′

=

[
0 ik̄3

−ik3 0

]
δk,k′ + (kx + k′x)

[
0 1
1 0

]
Px(k− k′)

+ (ky + k′y)

[
0 −i
i 0

]
Py(k− k′), (7.15)

where we have taken Pαβ(r) to be diagonal in its lower
indices. Gaussian white noise disorder can be efficiently
simulated in momentum space using a random phase
method [67],

Pα(k) =

√
λ

L
eiθα(k) exp

(
−k

2ξ2

4

)
, (7.16)

where θα(−k) = −θα(k), but these are otherwise inde-
pendent, uniformly distributed random phases. The pa-
rameters L, ξ and λ denote the system size, correlation
length, and disorder strength respectively. For exact di-
agonalization, we choose periodic boundary conditions
so that k = (2π/L)n, and the components of n ∈ {Z,Z}
run over a square with −Nk ≤ ni ≤ Nk, for i = 1, 2.
Here Nk determines the size of the vector space in which
we diagonalize, which is 2(2Nk + 1)2. While the choice
of L is arbitrary, we use it to fix the ultraviolet momen-
tum cutoff Λ = 2πNk/L. The correlation length ξ and
the dimensionful disorder strength λ are then measured
in terms of powers of Λ. The random-phase approach is
equivalent to the disorder-average up to finite-size cor-
rections [67]. We perform the calculations in momentum
space in order to avoid fermion doubling.

To characterize the disordered surface theory, we study
the scaling of the disorder-averaged DoS %S(ε) and wave
function multifractality, measures that are expected to
show universal behavior at the SO(n)3 fixed point. The
clean surface has %S(ε) ∝ |ε|−1/3 due to the cubic dis-
persion. For winding number ν, in the presence of time-
reversal preserving disorder the SO(n)ν theory predicts
the scaling behavior of the disorder-averaged DoS [65, 66]
to be %S(ε) ∝ |ε|−1/(2ν−3). In the case of the hole-doped
LSM with ν = 3, the clean and dirty CFT predictions
coincide. For the generalized surface theory introduced
below [defined via Eq. (7.23)] or the ν = 4 model studied
in Ref. [52], the clean and dirty predictions differ, so that
the DoS provides a useful diagnostic. We will plot the
integrated density of states (IDoS) N(ε). For the SO(n)ν
theory

N(ε) ≡
∫ ε

0

dε′ %S(ε′) ∼ |ε|(2ν−4)/(2ν−3). (7.17)

The other measure that we will employ here as a nu-
merical test for the SO(n)ν CFT is wave function multi-
fractality. The disorder-induced spatial fluctuations of
the local DoS %S(ε, r) are encoded in the multifractal
spectrum τ(q) [65, 127]. The τ(q) spectrum measures
the sensitivity of extended wave functions to the sample
boundary. By partitioning a large area L×L of the sur-
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FIG. 13: Numerical results for the surface states of the
hole-doped Luttinger semimetal with isotropic p-wave pairing
in the bulk and time-reversal symmetry preserving disorder
on the surface. The winding number of the bulk is ν = 3.
The left plot shows the multifractal spectrum [Eqs. (7.18)–
(7.20)] for two typical lowest energy surface wave functions
in fixed disorder realizations. The dotted red curves are the
numerical results, while the solid blue curve is the analytical
prediction from the SO(n)3 CFT [Eqs. (7.20)–(7.22)]. The
curves marked (i) and (ii) correspond to two different disor-
der strengths λ; the second one is shifted vertically for clarity.
Since λ has dimensions of 1/(length)2, it is measured in units
of the squared momentum cutoff Λ2 (see text). The system
size is a 109 × 109 grid of momenta. Box sizes b=1 and b=5
are used to extract τ(q) [see Eqs. (7.18) and (7.19)]. The
right plot shows the integrated density of states N(ε). In
this case, both the clean limit and the SO(n)3 theory predict

N(ε) ∼ ε2/3 [Eq. (7.17)]. The full surface density of states is
exhibited in the inset. For ν = 3 the effects of disorder are
strong, as indicated by the analytical result for the universal
multifractal spectrum (blue curves, left panel). It is almost
“frozen” [a frozen state has τ(q) = 0 for q > qc [67, 130, 132–
134]]. This means that the typical wave function consists of a
few rare peaks with arbitrarily large separation, see Fig. 1(b)
in Ref. [67] for an example. We expect that finite size effects
are quite severe in this case, responsible for the deviation be-
tween the analytical prediction and numerics. See Figs. 14
and 15 for higher ν, which give much better agreement.

face with boxes of small size b << L, one can define the
box probability µn and inverse participation ratio (IPR)
Pq in terms of a particular wave function ψ(r) via

µn =

∫
An d

2r |ψ(r)|2∫
L2 d2r |ψ(r)|2

, Pq ≡
∑
n

µqn, (7.18)

where An denotes the nth box. In the case of a typical
critically delocalized wave function, one expects that

Pq ∼ (b/L)
τ(q)

, (7.19)

where τ(q) is self-averaging and universal [127]. For TSC
surface states, the multifractal spectrum τ(q) is expected
to have the form [65, 67, 130]

τ(q) =


(q − 1)(2− θν q), q < |qc|,
(
√

2−
√
θν)2q, q > qc,

(
√

2 +
√
θν)2q, q < −qc,

(7.20)
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FIG. 14: Same as Fig. 13, but for the generalized surface
model in Eq. (7.23) with ν = 5. Numerical results are shown
as red dotted curves, while analytical predictions (blue solid
curves) for τ(q) and N(ε) obtain from the SO(n)5 CFT.
Box sizes b=3 and b=6 are used to extract τ(q). The dis-
order strength λ formally has units of 1/(length)6, hence
proportional to the sixth power of the momentum cutoff Λ.
The absolute disorder strength is of the same order as in
Fig. 13, with the same system size. The termination threshold
qc =

√
6 ' 2.45 [see Eq. (7.21)].

where

qc ≡
√

2/θν . (7.21)

The spectrum is quadratic below the termination thresh-
old q = ±qc, beyond which it is linear [127, 130, 131].

For disordered class DIII surface states and winding
number ν, the SO(n)ν theory predicts [65]

θν = 1/(ν − 2), ν ≥ 3. (7.22)

Eqs. (7.17) and (7.22) are exact results that obtain from
the primary field spectrum of SO(n)ν in the replica
n → 0 limit. Isotropic p-wave pairing in the Luttinger
semimetal gives ν = 3, so that θν = 1 and qc =

√
2 ' 1.4.

This corresponds to quite strong multifractality, which
presents some difficulties as we will see. By contrast,
large ν gives θν � 1 and qc � 1, corresponding to weakly
multifractal (nearly plane-wave) states.

Fig. 13 depicts our numerical results for the τ(q) spec-
trum for two different disorder strengths, and the IDoS
N(ε) for one disorder strength. As mentioned above, the
IDoS is not particularly useful for ν = 3 because the
clean and dirty CFT predictions coincide. Moreover, the
strong divergence in the corresponding DoS %(ε) makes
it difficult to get sufficient resolution in the peak itself.

We find that the multifractal spectrum becomes
disorder-independent for sufficiently large disorder
strengths. This is important, because the thermal metal
phase should exhibit weak multifractality and a weak
DoS divergence, but both features would be disorder- and
scale-dependent due to weak antilocalization [129]. We
observe rough agreement between the analytical SO(n)3

CFT prediction [Eqs. (7.20)–(7.22)] and the numerics.
This should be compared to the ν = 4 model studied in
Ref. [52], wherein quite good agreement was obtained.
Even better results are found for the higher-ν model ex-
plicated in the next section, see Figs. 14 and 15.
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FIG. 15: Same as Fig. 13, but for the generalized sur-
face model in Eq. (7.23) with ν = 7. Numerical results are
shown as red dotted curves, while analytical predictions (blue
solid curves) for τ(q) and N(ε) obtain from the SO(n)7 CFT.
Box sizes b=3 and b=6 are used to extract τ(q). The dis-
order strength λ formally has units of 1/(length)10, hence
proportional to the tenth power of the momentum cutoff Λ.
The absolute disorder strength is of the same order as in
Fig. 13, with the same system size. The termination threshold
qc =

√
10 ' 3.16 [see Eq. (7.21)].

We attribute the relatively poor fit for τ(q) in Fig. 13
to the strong multifractality predicted by SO(n)3. This
is indicated by the solid blue curve in the top panel of
Fig. 13. The analytical τ(q) is almost “frozen.” A frozen
state has τ(q) = 0 for q > qc ≥ 1 [130]. A critically
delocalized, but frozen state consists of a few rare prob-
ability peaks, with arbitrarily large separation between
these [67, 130, 132–134]. The peaks are sufficiently rare
that their heights do not scale with a power of the system
size L, similar to an Anderson localized state. (The term
“frozen” originates via a mapping to the classical glass
transition in the random energy model [130, 133, 134].)
Frozen states also resemble the “random singlet” wave
functions of the Jordan-Wignerized random bond XY
model in 1D, which have the quality of random telegraph
signals [135]. In a previous study [67], we found that the
momentum space method does not scale well for frozen
states, and we believe this is the source of the relatively
poor fit in Fig. 13.

Note that it is only meaningful to compare the mul-
tifractal spectrum to the analytical prediction over the
range |q| < qc, since the spectrum becomes linear out-
side of this. Only the difference in slopes at q = ±qc are
meaningful [69].

C. Generalized surface: Higher winding numbers
and numerical results

If we believe that finite size effects are responsible for
the relatively poor fit between numerics and the SO(n)3

CFT in Fig. 13, the obvious way to improve is to increase
the system size. Instead of doing this (which requires
more computer memory), we take another approach.

We conjecture that the Majorana surface fluid of a
class DIII TSC with bulk winding number ν ∈ 2Z + 1
(odd) can be captured by the generalized 2 × 2 surface

model[
ĥ(ν)

S

]
k,k′

=

[
0 ik̄ν

−ikν 0

]
δk,k′ + (kx + k′x)σ1 Px(k− k′)

+ (ky + k′y)σ2 Py(k− k′). (7.23)

For ν = 1 we get the spin-1/2 surface states of 3He-
B, while ν = 3 corresponds to the hole-doped LSM
[Eq. (7.15)]. Again taking Px,y to be random phase, white
noise variables as in Eq. (7.16), the disorder strength λ
is relevant for any ν ≥ 3, while it is irrelevant for 3He-B.

How do we know that the surface Hamiltonian in
Eq. (7.23) can be taken to represent a TSC, without con-
necting it to a bulk model for general ν? Certainly the
clean limit of this model is artificial and extremely unsta-
ble (to both disorder and interactions) for large ν. Both
attributes follow from the strongly diverging clean DoS,

%(ε) ∼ |ε|−(ν−2)/ν . (7.24)

However, if the “topological tuning” scenario articulated
in Fig. 11 is correct, then any clean starting point should
lead to the same disordered fixed point, the SO(n)ν
CFT [65].

We can infer the bulk winding number ν by computing
the surface winding number WS. This obtains by adding
the homogeneous time-reversal symmetry-breaking mass
term mσ3 to the clean band structure in Eq. (7.23), and
computing [15]

WS(m) =
εαβγ

3!(2π)2

∫ ∞
−∞

dω

∫
d2k Tr

[(
Ĝ−1∂αĜ

)
×
(
Ĝ−1∂βĜ

)(
Ĝ−1∂γĜ

)]
, (7.25)

where Tr denotes the trace over the two spinor com-
ponents, and α, β, γ ∈ {ω, kx, ky} (repeated indices are

summed). The surface state Green function’s Ĝ(ω,k,m)
is given by

Ĝ(ω,k,m) ≡
[
−i ω 1̂ + ĥm(k)

]−1

, (7.26)

where ĥm = ĥ(ν)

S |Pα=0 +mσ3 is the clean, gapped surface
Hamiltonian. The surface winding number determines
the thermal Hall conductivity [95, 124, 125, 136–138]

κxy =WS κ◦, (7.27a)

κ◦ =π2k2
BT/6h. (7.27b)

Here h is Planck’s constant.

It is easy to check that

WS(m) = (ν/2) sgn(m). (7.28)

For ν = 1 this is the standard “half-integer” (shifted)
surface quantum Hall effect familiar from 3He-B and
topological insulators [9, 15]. For a relativistic Majo-
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rana surface fluid, it can be shown that the maximum
possible value of WS is the bulk winding number divided
by two [65]. We conclude that the surface Hamiltonian
in Eq. (7.23) is a representative surface band structure
for a class DIII TSC with winding number ν.

Following the same logic of the previous section, we
compare the numerical diagonalization of Eq. (7.23) in
momentum space to the predictions of the SO(n)ν CFT.
Results for ν = 5 and ν = 7 are shown in Figs. 14 and
15, respectively. In these cases, the multifractal spectrum
τ(q) and the IDoS N(ε) match very well the correspond-
ing CFT predictions in Eqs. (7.20)–(7.22) and (7.17), re-
spectively. The reason for the better matching is the
weaker multifractality of the critical wave functions with
increasing ν, as predicted by the CFT.

The SO(n)ν fixed point is stable against residual
quasiparticle-quasiparticle interactions [65]. In addition
to universal energy scaling of the DoS and wave function
multifractality (both which could be detected via STM),
the ratio of the thermal conductivity to temperature T
is predicted to be quantized in the T → 0 limit: [9, 70]

lim
T→0

κxx
T

=
|ν|
π

κ◦
T
, (7.29)

where κ◦ was defined by Eq. (7.27b).

VIII. CONCLUSIONS AND OUTLOOK

To summarize, we have presented possible topologi-
cal superconducting phases, including both gapless and
gapped, in a doped Luttinger system (see Sec. II). We
showed that while pseudospin singlet s-wave pairing
yields a trivial fully gapped state, the d-wave counter-
parts (belonging to either T2g or Eg representations)
often (if not always) lead to Weyl superconductors at
low temperature at the cost of the time-reversal sym-
metry (see Sec. III). We argued that the simple Weyl
nodes (sources and sinks of Abelian Berry curvature, see
Figs. 4–6) that arise from complex combinations of sim-
ple d-wave nodal loops cause a power-law suppression
of the density of states %(E) ∼ |E| (for nodal-loop) →
|E|2 (for simple Weyl nodes) at low energies. There-
fore, Weyl paired states are generically expected, at least
within the framework of weak coupling pairing.

While any Weyl pairing supports one-dimensional
(pseudospin degenerate) Fermi arcs as surface Andreev
bound states, only the T2g paired state can lead to non-
trivial anomalous pseudospin and thermal Hall conduc-
tivities at low temperature (Sec. III E). The simple Weyl
BdG quasiparticles remain sharp in the presence of weak
randomness in the system (in contrast to double-Weyl
fermions in the dxy + idx2−y2 phase or nodal-loop states,
see Fig. 9). Stronger bulk disorder in the BdG-Weyl sys-
tem induces a continuous quantum phase transition into
a thermal metallic phase (Sec. V and Fig. 8). The criti-

cal regime occupies a large portion of the phase diagram,
where %(E) ∼ |E|, as shown in Fig. 8, which induces
the corresponding scaling of physical observables such as
specific heat, thermal conductivity, etc.

We demonstrated that nucleation of any d-wave pairing
always causes a small lattice distortion or nematicity that
in turn gives rise to a non-trivial s-wave component in
the paired state (see Fig. 7). Such symmetry-guaranteed
coupling between d- and s-wave pairing with a lattice dis-
tortion may allow one to strain-engineer various exotic
s+ d pairings, specifically in weakly correlated materials
(Sec. IV). We found that, within a simple picture of pair-
ing, time-reversal symmetry breaking s+ id order seems
to be extremely unlikely (with s-wave and d + id-type
pairings being separated by a first order transition, see
Fig. 3). This interesting possibility cannot be completely
ruled out (Sec. II E). We also showed that when the pair-
ing interactions in the T2g and Eg channels are of com-
parable strength, a myriad of gapless topological super-
conductors can be realized in the system (see Sec. III D,
Table II and Fig. 16), while only the dxy+ idx2−y2 paired
state, supporting double-Weyl fermions, would exhibit
non-trivial anomalous thermal and spin Hall conductiv-
ities (Sec. III E). However, in the presence of inversion
symmetry breaking (the situation in half-Heusler com-
pounds) only thermal Hall conductivity remains sharply
defined.

In terms of these nodal pairings we also attempted to
understand the recent experimental data for the penetra-
tion depth in YPtBi [47], suggestive of the existence of
gapless quasiparticles inside the paired state. We showed
that T -linear fit, when augmented by a contribution from
an ordinary s-wave component (always present with any
d-wave pairing via the aforementioned coupling to the
strain), matches extremely well with the experimental
penetration depth data in YPtBi [47], see Fig. 10. We
argued that this T -linear contribution may originate from
either nodal loops in simple d-wave pairing for example
(see Fig. 2), or from the effect of quenched disorder (such
that the system gets stuck inside the wide quantum crit-
ical regime in Fig. 8) on simple Weyl nodes stemming
from the d + id pairing. Although we strongly believe
that the former source of T -linear dependence is most
likely, we proposed various experiments on specific heat,
thermal conductivity, NMR relaxation time, Hall con-
ductivity etc. (Sec. VI), which can possibly pin the actual
nature of the pairing in half-Heusler compounds [39–47].

Finally, we investigated the effects of disorder on the
cubically dispersing surface states that arise from odd-
parity, fully gapped p-wave pairing (as in 3He-B). Us-
ing a generalized surface model with ν-fold dispersion
for winding number ν ≥ 3, we demonstrated excellent
agreement between numerical results and the conformal
field theory (CFT) SO(n)ν for higher ν. The CFT char-
acterizes the critical delocalization of the surface in the
presence of disorder, whilst the naively expected thermal
metal phase is absent in our numerics. This suggests a
deep connection between the bulk topology on one hand,
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and the disordered surface physics on the other, remi-
niscent of key aspects of the integer quantum Hall ef-
fect. A key open question is whether there exists a topo-
logical generalization of the conformal embedding rule
[SO(nν)1 ⊃ SO(n)ν ⊕ SO(ν)n], employed to explain the
robustness of CFT results in the case of spin-1/2 topo-
logical superconductors [65].

Perhaps the most urgent issue in the context of
superconductivity in a doped Luttinger semimetal is
that of pairing mechanisms. Recently, it has been ar-
gued that such pairing can in principle be mediated by
electron-phonon interactions, specifically due to optical
phonons [56]. However, given that promising candidates
such as half-Heuslers and 227 pyrochlore iridates also dis-
play magnetic orders, pairing in these materials may also
arise from strong electronic interactions. Understanding
the effects of magnetic fluctuations on various pairing
scenarios is a challenging, but crucial question that we
leave for a future investigations.

Note added : After our paper was posted to the arXiv,
another preprint [139] appeared, which also discusses the
topology of various paired states, using a slightly differ-
ent language. Qualitatively our conclusions appear to be
same.
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Appendix A: Luttinger model components

In this Appendix we present some essential details of
the Luttinger Hamiltonian. The d-vector appearing in
Eq. (2.3) is a quadratic function of momentum measured
from the Γ = (0, 0, 0) point of the Brillouin zone, where
Kramers degenerate valence and conduction bands touch

each other, namely d = k2 d̂. The quantity d̂ is a five-
component unit vector and its components are given by

d̂1 =
i
[
Y 1

2 + Y −1
2

]
√

2
=

√
3

2
sin 2θ sinφ =

√
3 k̂yk̂z,

d̂2 =

[
Y −1

2 + Y 1
2

]
√

2
=

√
3

2
sin 2θ cosφ =

√
3 k̂xk̂z,

d̂3 =
i
[
Y −2

2 + Y −2
2

]
√

2
=

√
3

2
sin2 θ sin 2φ =

√
3 k̂yk̂x,

d̂4 =

[
Y −2

2 + Y 2
2

]
√

2
=

√
3

2
sin2 θ cos 2φ =

√
3

2

[
k̂2
x − k̂2

y

]
,

d̂5 = Y 0
2 =

1

2

(
3 cos2 θ − 1

)
=

1

2

[
2k̂2
z − k̂2

x − k̂2
y

]
. (A1)

Note that
∑5
j=1

(
d̂j

)2

= 1. In the above expression

Y ml ≡ Y ml (θ, φ) are the spherical harmonics with angular
momentum l = 2.

Five mutually anticommuting Γ matrices appearing in
Eq. (2.3) are constructed from J = 3/2 matrices accord-
ing to

Γ1 =
1√
3
{Jy, Jz}, Γ2 =

1√
3
{Jx, Jz},

Γ3 =
1√
3
{Jx, Jy}, Γ4 =

1√
3

[
(Jx)2 − (Jy)2

]
,

Γ5 =
1

3

[
2(Jz)2 − (Jx)2 − (Jy)2

]
, (A2)

while Γ0 denotes the four dimensional identity matrix.
Here {A,B} = AB + BA is the anticommutator. The
{Γ1, . . . ,Γ5} are components of the rank-two symmetric
traceless tensor operator

Tµν =
1√
3

[
{Jµ, Jν} − 2

3
δµ,νJ2

]
, (A3)

which transforms in the j = 2 representation of SU(2)
under spin rotations. In the basis specified by Eq. (2.2),
the spin-3/2 matrices are defined as

Jx =
1

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 , Jz =
1

2

 3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 ,

Jy =
i

2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√

3

0 0
√

3 0

 . (A4)

A full basis for 4×4 matrices can be formed by adding
the identity and the 10 commutators {Γab = −iΓaΓb} to
the 5 {Γa} matrices. The matrices in the product basis
{Γab} do not transform irreducibly under the spin SU(2).
An irreducibly decomposed basis of tensor operators in-
stead uses the three Jx,y,z generators (j = 1) and seven
components of a rank-three, traceless symmetric tensor
formed from products of these,

Tµνγ ≡ J (µJνJγ) − (traces),

3∑
µ=1

Tµµν = 0, (A5)

where (µνγ) means complete symmetrization of these in-
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dices. The latter transforms as j = 3 under spin SU(2)
rotations. The tensor operator Tµνγ plays the key role
in the proposal for odd-parity, orbital p-wave “septet”
superconductivity in [47, 51, 53].

Appendix B: Band Projection in Luttinger system

In this appendix we present the band projection
method in the Luttinger system. We first focus on
the non-interacting part of the theory. In the eight-
component spinor basis, defined in Eq. (2.11) the
isotropic Luttinger Hamiltonian reads as

ĥNL (k) = τ3ĥL(k), (B1)

where ĥL(k) is the four-dimensional Luttinger Hamilto-
nian defined in Eq. (2.3), with m1 = m2 = m. The Lut-
tinger Hamiltonian can be brought into diagonal form

under the following unitary transformation D†N ĥNLDN ,
where DN = U1U2 is the diagonalizing matrix, with

U1 = τ0 ⊗D, U2 = τ0 ⊗

 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , (B2)

with D is already defined in Eq. (2.7). Upon performing
the unitary rotation with the diagonalizing matrix the
Luttinger Hamiltonian takes the form

D†N ĥ
N
LDN =

(
k2

2m0
− µ

)
diag. (σ0, σ0,−σ0,−σ0)

+
k2

2m
(σ0,−σ0,−σ0, σ0) . (B3)

In the last expression the bold (normal) entries corre-
spond to conduction (valence) band, which then leads
to the kinetic energy in the conduction band reported
in Eq. (2.17). The kinetic energy in the valence band
also assumes the form of Eq. (2.17), but with the mod-
ification that effective mass parameter reads as m∗ =
mm0/(m − m0). Therefore, valence and conduction
bands bend in opposite directions when the effective mass
parameters in the Luttinger model satisfy m > m0.

The diagonalization process on pairing operators yields

D†N
[
(τ1 cosφsc + τ2 sinφsc)⊗ M̂4×4

]
DN

= (τ1 cosφsc + τ2 sinφsc)⊗
[
â2×2 b̂2×2

ĉ2×2 d̂2×2

]
. (B4)

In the final expression â2×2(d̂2×2) captures the form of

a given pairing (M̂4×4) on conduction (valence) bands,

while two other entries namely ĉ2×2, b̂2×2 capture the
coupling between the valence and conduction bands.
Throughout this work we neglect such coupling assuming

that the pairing only takes place in the close proximity
to the Fermi surface.

Appendix C: Band Projection in massive Dirac
system

In this appendix we present the band diagonalization
procedure and transformation of six local pairings in a
Dirac semiconductor. In the basis of a four-component

Dirac-spinor defined as Ψ> =
(
c+↑ , c

+
↓ , c
−
↑ , c
−
↓

)
, where cκσ

is the fermionic annihilation operator with parity κ = ±
and spin-projection σ =↑, ↓, the massive Dirac Hamilto-
nian reads as

HD = viγ0γjkj +mγ0 − µ, (C1)

where j = 1, 2, 3, and summation over repeated indices
are assumed. Here, kjs are three spatial component of
momentum, measured from the Γ = (0, 0, 0) point of the
Brillouin zone, m is the Dirac mass and µ is the chemical
potential. Fermi velocity v is assumed to be isotropic
for the sake of simplicity, which from now onward we set
to be unity. Mutually anti-commuting four-component
Hermitian γ matrices are defined as

γ0 = κ3σ0, γ1 = κ2σ1, γ2 = κ2σ2,

γ3 = κ2σ3, γ5 = κ1σ0. (C2)

Two sets of Pauli matrices {κµ} and {σµ}, with µ =
0, 1, 2, 3 respectively operate on parity and spin index.
The above Hamiltonian is invariant under the following
discrete symmetry operations: (a) reversal of time (T ),
generated by T = iγ1γ3K, where K is the complex conju-
gation, (b) parity or inversion (P), under which r→ −r
and P = γ0, (c) charge conjugation (C), under which
CΨC−1 = γ2Ψ∗. In the massless limit (m → 0), de-
scribing a quantum critical point between two topolog-
ically distinct insulating phases, the Dirac Hamiltonian
also enjoys an emergent continuous U(1) chiral symme-
try, generated by γ5 [140].

Since all four dimensional representation of five mu-
tually anti-commuting matrices are unitarily equivalent,
we can express the above five matrices from Eq. (C2) in
term of Γjs and Γjks introduced in Eq. (2.4) according
to

γ0 = Γ43, γ1 = Γ24, γ2 = Γ14, γ3 = Γ5, γ5 = Γ4, (C3)

or equivalently

Γ1 = γ25, Γ2 = γ15, Γ3 = γ05, Γ4 = γ5, Γ5 = γ3, (C4)

where γlm = iγlγm. Therefore, all possible, namely six,
local-pairings in this system are also captured by the ef-
fective single-particle Hamiltonian H local

pp in Eq. (2.10),
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which in terms of the γ matrices can be expressed as

H local
pp = −

∫
dr

{[
∆sΨγ13Ψ + ∆pΨγ02Ψ + ∆1Ψγ3Ψ

+ ∆2Ψγ05Ψ + ∆3γ1 + ∆0Ψγ25Ψ

]}
. (C5)

where Ψ is the four-component Dirac-spinor, introduced
earlier. Also notice that we have changed the notations
for the pairing amplitudes ∆as from Eq. (2.10). The
purpose will be clear in a moment.

We now conveniently define an eight-component
Nambu spinor to cast all local pairing in a massive Dirac
system in a compact form

ΨN =

[
Ψ

γ13

(
Ψ†
)> ] . (C6)

Note that γ13 is the unitary part of the time-reversal
operator. In this eight-component basis, the Nambu-
doubled massive Dirac Hamiltonian from Eq. (C1) takes
the form

HNam
D = τ3⊗[γ01kx + γ02ky + γ03kz + γ0m− µ] . (C7)

The newly introduced set of Pauli matrices {τµ} operate
on the Nambu index. In the same basis the single-particle
Hamiltonian in the presence of all local pairings is given
by

H local
pp = (τ1 cosφ+ τ2 sinφ)

[
∆s + ∆pγ5

+

3∑
µ=0

∆µγµ

]
, (C8)

where φ is the superconducting phase. Now we can take
the advantage of the spinor basis introduced in Eq. (C6),
to classify all six local pairings according to their trans-
formation under the Lorentz transformation (LT). Re-
spectively the pairing proportional to ∆s and ∆p trans-
forms as scalar and pseudo-scalar Majorana mass under
the LT. The set of pairings {∆µ}, with µ = 0, 1, 2, 3,
transforms as a “four”-vector under the LT. While the
pseudo-scalar and the spatial-components (µ = 1, 2, 3)
of the vector pairings are odd under the parity (P), the
scalar and the temporal-component of the vector pairing
are even under parity [see Table III].

The unitary operator that diagonalizes the massive
Hamiltonian [see Eq. (C7)] is given by τ0D̃ (k,m), where
k = (kx, ky, kz),

D̃ (k,m)

=



kx−iky√
2λ(λ−m)

kz√
2λ(λ−m)

−kx+iky√
2λ(λ+m)

−kz√
2λ(λ+m)

−kz√
2λ(λ−m)

kx+iky√
2λ(λ−m)

kz√
2λ(λ+m)

−kx−iky√
2λ(λ+m)

0 λ−m√
2λ(λ−m)

0 λ+m√
2λ(λ+m)

λ−m√
2λ(λ−m)

0 λ+m√
2λ(λ+m)

0

 ,
(C9)

and λ =
[
k2 +m2

]1/2
. After performing a unitary rota-

tion with diagonalizing matrix, the Nambu-doubled Mas-
sive Dirac Hamiltonian from Eq. (C7) becomes

τ3D̃†HNam
D τ3D̃ = −µ diag. (σ0, σ0,−σ0,−σ0)

+
√

k2 +m2 diag. (σ0,−σ0, ,−σ0, σ0) . (C10)

In the above expression, the quantities in the bold (nor-
mal) font correspond to the conduction (valence) band.
We here restrict ourselves with the situation when the
chemical potential is placed in the conduction band, i.e.,
when µ > 0. We now make a large mass expansion of
the kinetic energy term, yielding√

k2 +m2 − µ =
k2

2m
− (µ−m) ≡ k2

2m
− µ̃, (C11)

where µ̃ = µ−m is the renormalized chemical potential,
measured from the bottom of the conduction band, and
kF =

√
2mµ̃ is the Fermi vector. Hence, the kinetic

energy for massive Dirac fermions in the close proximity
to the Fermi surface assumes the form

H0 =

(
k2

2m
− µ̃

)
τ3σ0. (C12)

Next we perform the same band projection on six lo-
cal pairings shown in Eq. (C8). After this transforma-
tion the pairing assumes the schematic form shown in
Eq. (B4). Since, we have assumed that chemical poten-
tial lies within the conduction band, we are only inter-
ested in the two-component representation of the pair-
ings, namely â2×2. The band-projected version of all six
local pairings, quasiparticle spectra etc. are displayed in
Table III.

Appendix D: Superconducting condensation energy

We hereby present the calculation of the zero-
temperature free energy of a d-wave superconductor. The
derivation is standard, and we only provide it here for
the sake of completeness, since the final result is already
quoted in Eq. (2.26) in the main text and is also used to
compute the free energy in the case of the (s+id) pairing
considered below in Section F.

The free energy F is given by Eq. (2.19) in the main
text, and can be expressed in dimensionless units f =
F/[µ2ρ(µ)], where µ is the chemical potential and ρ(µ) =



37

Pairing
Transformation

under LT
IREP
D3d T P Pairing near FS Quasiparticle spectrum

∆s Scalar mass A1g X X ∆sσ0 Fully gapped

∆p γ5 Pseudo-scalar mass A1u X × ∆pd · σ, d =
(
k̂x,−k̂y, k̂z

)
Fully gapped

∆0 γ0 0th-vector component A1g X X ∆0σ0 (m/kF ) Fully gapped

∆1 γ1 1st-vector component Eu X × ∆1d · σ, d =
(

0,−k̂z, k̂y
)

Gapless:

{
2 Dirac points at

kx = ±kF , ky = 0 = kz

}
∆2 γ2 2nd-vector component Eu X × ∆2d · σ, d =

(
−k̂z, 0,−k̂x

)
Gapless:

{
2 Dirac points at

ky = ±kF , kx = 0 = kz

}
∆3 γ3 3rd-vector component A2u X × ∆3d · σ, d =

(
k̂y, k̂x, 0

)
Gapless:

{
2 Dirac points at

kz = ±kF , kx = 0 = ky

}
TABLE III: Classification of six local pairing operators for a 4-component, massive three-dimensional Dirac semiconductor. The
purpose of this table is to show how the parent band structure is crucial to determine the character of local pairing operators;
in particular, the results are completely different from the Luttinger semimetal, shown in Table I. First column: Possible
local pairings for Dirac fermions. Second column: Transformation of each such local pairing under the Lorentz transformation
(LT) [73, 74]. Third column: Transformation of each such pairing under D3d point group (relevant for CuxBi2Se3) [63]. Fourth
and fifth columns: Transformation of each pairing under time-reversal (T ) and parity (P), respectively. Sixth column: Form of
each local pairing close to the Fermi surface (FS). Seventh Column: Quasiparticle spectra and the nodal topology close to the
Fermi surface. The four-component Hermitian γ matrices satisfy the anti-commutation Clifford algebra {γµ, γν} = 2δµν and
the exact representation of γ matrices are given in Eq. (C2). Note that the 0th or temporal component of the vector pairing
yields a gapless Fermi surface in a doped Dirac semimetal (i.e., when m → 0). Otherwise, the gap on the Fermi surface is
suppressed by a factor k−1

F , where kF =
√

2mµ̃ is the Fermi vector and µ̃ is the chemical potential measured from the bottom
of the conduction band. The Dirac points on the Fermi surface in the presence of spatial components of the vector pairing
produces the quasiparticle density of states %(E) ∼ |E|2. The details of the band projection method are presented in Sec. C.

2a3m∗
√

2m∗µ/(2π2) is the density of states at the Fermi
level. We then obtain:

f =
|∆̂d|2

2λd
(D1)

− 1

2

ωD∫
−ωD

dy
√

1 + y

∫
dΩ

4π

√
y2 + |∆̂d|2(1 + y)2d̂(Ω)2,

where, using the notation introduced in the main text,
∆̂ = ∆/µ is the dimensionless order parameter, ωD =
ΩD/µ is the dimensionless Debye frequency (in the units
of µ), and y = ξk/µ = (k/kF )2 − 1 is the dimensionless
energy of the normal quasiparticles relative to the Fermi
level. Note that the factor of

√
1 + y in the integrand

appears because of the square-root dependence of the
DoS in a 3D normal metal. All the angle dependence of
the superconducting order parameter is contained in the

factor d̂(Ω), normalized in a standard way such that the
cubic harmonics form an orthonormal basis. A resolution
of identity is obtained when summed over all harmonics:

1 =
∑
j

〈dj |dj〉 =
∑
j

∫
dΩ

4π
|dj(Ω)|2. (D2)

We now use the weak-coupling approximation, ωd � 1
(i.e. Ωd � µ), allowing us to approximate 1 + y ≈ y in

the integrand, thus obtaining

f =
|∆̂d|2

2λd
−
∫

dΩ

4π

ωD∫
0

dy

√
y2 + |∆̂d|2d̂(Ω)2. (D3)

Attempting to expand the square root in powers of
(|∆̂d|2/y2) would result in an infra-red divergence, with

the first term yielding an expression of order |∆̂d|2 ln(y),
and the subsequent terms even more divergent. This is
to be expected, since the zero-temperature free energy is
a non-analytic function of ∆d. Instead, we proceed by
formally evaluating the integral over y in Eq. (D3):

f =
|∆̂d|2

2λd
− 1

2

∫
dΩ

4π
ωD

√
ω2
D + |∆̂d|2d̂(Ω)2 (D4)

− |∆̂d|
2

∫
dΩ

4π
d̂(Ω)2 ln

ωD +
√
ω2
D + |∆̂d|2d̂(Ω)2

|∆̂d| d̂(Ω)

 .

The last term is a non-trivial integral, however we have
encountered it before, namely in the zero-temperature
gap equation (2.21):

1

λd
=

∫
dΩ

4π
d̂(Ω)2 ln

ωD +
√
ω2
D + |∆̂d|2d̂(Ω)2

|∆̂d| d̂(Ω)

 .

(D5)
We recognize that the last integral in Eq. (D4) is there-
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fore nothing else but |∆̂d|2/2λd. This term cancels the
first term in Eq. (D4), thus resulting in the final expres-
sion for the free energy

fSC = −1

2

∫
dΩ

4π
ωD

√
ω2
D + |∆̂d|2d̂(Ω)2. (D6)

This is the same expression as quoted in Eq. (2.26) in
the main text. The normal state free energy is obtained
by setting ∆d = 0, so that fN = −ω2

D/2 (it contains
the Debye frequency because this was our choice of the
ultraviolet cutoff in the initial Eq. (D2)). The Cooper
pair condensation energy is thus

fSC − fN = −ω
2
D

2

∫
dΩ

4π


√√√√1 +

(
∆̂2
d

ω2
D

)
d̂2
j (Ω)− 1

 .
(D7)

Now we can expand the square root in the powers of the
small parameter ∆̂d/ωD, resulting in

fSC − fN = −∆̂2
d

4

∫
dΩ

4π
d̂2
j (Ω) +O

(
|∆̂d|4

)
(D8)

Because all the cubic harmonics are normalized to form
a complete basis [see Eq. (D2)], the solid-angle integral∫

dΩ
4π d̂

2
j (Ω) = 1/5 is the same for each of the five harmon-

ics, yielding Eq. (2.27) in the main text.

We note that although the condensation energy now
has a well defined expansion in powers of |∆|2, the gap
itself is a non-analytic function of the coupling strength
λd, as is standard. We emphasize that Eq. (D8) should
not be thought of as the Landau free energy; rather, it is
the zero-temperature condensation energy expressed in
terms of the self-consistent solution ∆d of the gap equa-
tion, shown in Eq. (D5).

Appendix E: d+ id pairing: energetics and
competition within Eg channel

In Sec. III B, we have established that there are three
inequivalent ways of choosing the basis functions for the
two-dimensional representation Eg, namely:

A: d1(k) =

√
3

2
(k2
x − k2

y), d2(k) =
1

2
(2k2

z − k2
x − k2

y);

B: d3(k) =

√
3

2
(k2
z − k2

x), d4(k) =

√
3

2
(k2
z − k2

y); (E1)

C: d5(k) =
1

2
(2k2

x − k2
y − k2

z), d6(k) =
1

2
(2k2

y − k2
x − k2

z).

In this section, we provide the details of the derivation
and solution of the gap equation for these cases.

The zero-temperature gap equation, Eq. (2.22), ac-

quires the following form in the case of dm + idn pairing:

1

λd
=

1

2

ωD∫
−ωD

dy
√

1 + y

∫
dΩ

4π

|dm|2 + |dn|2√
y2 + |∆d|2(|dm|2 + |dn|2)

,

(E2)
where y = (k/kF )2 − 1. The general structure of the
form-factors is as follows:

|dm(k)|2 + |dn(k)|2 =

(
k

kF

)4

[a2(θ) + b2(θ) cos2(2φ)]

= (1 + y)2[a2(θ) + b2(θ) cos2(2φ)]. (E3)

In order to make progress analytically, we shall adopt the
weak-coupling approximation ωD � 1, leading to y � 1
and allowing us to simplify 1 + y ≈ 1. The integral over
y can then be computed analytically, resulting in

1

λd
=

∫
dΩ

4π
[a2(θ) + b2(θ) cos2(2φ)]× (E4)

× ln

(
ωD +

√
ω2
D + |∆d|2(a2 + b2 cos2(2φ))

∆d

√
a2 + b2 cos2(2φ)

)
.

Under the assumption of weak coupling, |∆d| � ωD, the
numerator under the logarithm can be approximated by
2ωD, allowing one to make further progress analytically.

The integration over φ can then readily be performed
using the following two identities

I0(a, b) ≡ 1

2π

∫ 2π

0

dφ ln(
√
a2 + b2 cos2(2φ))

= ln

(
a+
√
a2 + b2

2

)
,

I1(a, b) ≡ 1

2π

2π∫
0

dφ cos2(2φ) ln(
√
a2 + b2 cos2(2φ))

=
1

4
+

1

2
ln

(
a+
√
a2 + b2

2

)
− a
√
a2 + b2 − a

2b2
.

Further denoting 〈f〉 = 1
2

∫ 1

−1
d(cos θ)f(θ) to lighten the

notation, we can write down the gap equation as follows:

1

λd
=

(
〈a2〉+

〈b2〉
2

)
ln

(
2ωD
∆d

)
−〈a2I0(a, b)〉−〈b2I1(a, b)〉

Note that the angle average∫
dΩ

4π

[
d̂m(θ, φ)2 + d̂n(θ, φ)2

]
= 〈a2〉+

〈b2〉
2

=
2

5
,

since each of the 5 d-wave harmonics averages to 1/5.
This allows us to finally write down the solution for the
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gap in a closed form:

∆d = 2ωD exp

[
−5

2
(P0 + P1)

]
exp

(
−5

2
λd

)
, (E5)

where P0 ≡ 〈a2I0(a, b)〉 and P1 ≡ 〈b2I1(a, b)〉 are simple
c-numbers that can be computed explicitly for each of the
three choices of the basis, shown in Eq. (E1), yielding

A: P0 = −0.1008, P1 = −0.0199, (E6)

B: P0 = −0.0487, P1 = −0.0326, (E7)

C: P0 = −0.0099, P1 = −0.0181. (E8)

We then arrive at the final expression for the gap ampli-
tudes for each choice of the basis

∆
(A)
Eg

(T = 0) = 2.705ωd exp

(
− 5

2λd

)
, (E9)

∆
(B)
Eg

(T = 0) = 2.451ωd exp

(
− 5

2λd

)
, (E10)

∆
(C)
Eg

(T = 0) = 2.145ωd exp

(
− 5

2λd

)
. (E11)

As anticipated, different choices of bases result in differ-
ent zero-temperature values of the (d+ id) gap, with the
basis A (dx2−y2 + id3z2−r2) having the largest gap value
and therefore the lowest energy. But any d + id paired
state from same basis produces identical nodal structure
in the ordered phase.

We note that the choice of the basis does not how-
ever affect the value of the superconducting transition
temperature, with all three choices resulting in the same
value of Tc given by the solution of the equation similar
to Eq. (2.23):

1

λd
=

1

2

∫ ωD

−ωD
dy

(1 + y)
5
2

y
tanh

(
y

2kBTc

)
×

×
∫

dΩ

4π

[
d̂2
m(Ω) + d̂2

n(Ω)
]
. (E12)

Using the fact that 1 + y ≈ 1 in the weak-coupling ap-
proximation, we obtain

kBT
(d+id)
c =

2eγ

π
ωDe

− 5
2λ ≈ 1.134ωDe

− 5
λ , (E13)

where γ ≈ 0.577 is the Euler’s number. There-
fore, despite possessing the same transition temperature,
dx2−y2 +id3z2−r2 has the lowest energy among three time-
reversal broken candidates for the d+ id paired states in
the Eg channel, and thus always wins at low temperature.

Appendix F: s+ id pairing and competition with
d+ id phase

In this section, we provide technical details of the
derivation for the s + id phase, which we studied in

Sec. II E. Our starting point is the system of coupled gap
equations Eqs.(2.29)–(2.30), valid in the weak-coupling

approximation ∆̂d � ωD � 1. We stress that the weak
coupling approximation is justified here, since we are
concerned with solving the coupled gap equations in the
vicinity of the second-order phase transition at r = rc1
(r ≡ λd/λs), where ∆̂d vanishes. In the following, we
consider the most general case when the Debye frequen-

cies for the s-wave and d-wave components, ω
(s)
D and ω

(d)
D

respectively, are not necessarily the same. This would be
the case if, for instance, the origin of the s-wave com-
ponent is due to electron-phonon coupling, whereas the
d-wave pairing is mediated by electronic interactions.

To avoid the unnecessary complications associated
with the integration over the angle φ, we hereby consider
the case of s+id3z2−r2 pairing, since the form-factor only
depends on the polar angle θ. We then have the following
coupled gap equations

1

λs
= ln(2ω

(s)
D )− 1

2

1∫
−1

d(cos θ) ln
(√

∆̂2
s + ∆̂2

dd̂
2(θ)

)
, (F1)

1

λd
= ln(2ω

(d)
D )− 1

2

1∫
−1

d(cos θ)d̂2(θ) ln
(√

∆̂2
s + ∆̂2

dd̂
2(θ)

)
.

(F2)

The integration cannot be completed in the closed form,
however it is possible to obtain an approximate solution
in the vicinity of the transition rc1 by expanding in the
powers of the small parameter ∆̂d/∆̂s. We then obtain

1

λs
= ln

(
2ω

(s)
D

∆̂s

)
− 3

20

(
∆̂d

∆̂s

)2

+O

(
∆̂d

∆̂s

)4

, (F3)

1

λd
=

1

5
ln

(
2ω

(d)
D

∆̂s

)
− 27

280

(
∆̂d

∆̂s

)2

+O

(
∆̂d

∆̂s

)4

.(F4)

From the first equation, we get ∆̂s u 2ω
(s)
D exp(−1/λs),

since the vanishing d-wave component does not alter the
pure s-wave solution at rc1 to the leading order. Substi-
tuting ∆̂s into the second equation, we find(

∆̂d

∆̂s

)2

=
56

27

[
1

λs
− ln

(
ω

(s)
D

ω
(d)
D

)
− 5

λd

]
, (F5)

from which it follows that for ∆̂d to have a non-trivial
solution, λd must have a lower bound:

λd
λs

> rc1 =
5

1− λs ln

(
ω

(s)
D

ω
(d)
D

) , (F6)

and the results in Sec. II E are quoted for ω
(s)
D = ω

(d)
D . In

particular, if the two Debye frequencies are the same, we
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have rc1 = 5, as verified by direct numerical calculation
[see Fig. 3(a) and Sec. II E]. Eq. (F6) also tells us that
the ratio of the Debye frequencies cannot be chosen arbi-

trarily and must satisfy ω
(s)
D /ω

(d)
D < e

1
λs in order for the

(s + id) solution to exist. Put alternatively, it requires
that the s-wave coupling constant is not too large

λs < 1/ ln
(
ω

(s)
D /ω

(d)
D

)
, (F7)

otherwise the pure s-wave will dominate and the d-wave
component will never have a chance to develop.

As noted in Sec. II E, the mere existence of the s+ id
solution does not guarantee that it will be realized in
nature, unless it is lower in energy than the competing
d+ id phase. We must therefore compare the free energy
of the s+ id solution (which is essentially a pure s-wave
in the vicinity of rc1) to that of the d + id phase from
Eq. (3.7), leading to

fs − fN = −
(
ω

(s)
D

)2
2

∫
dΩ

4π


√√√√1 +

(
∆̂s

ω
(s)
D

)2

− 1


= −∆̂2

s

4
+O

(
∆̂4
s

)
, (F8)

fd+id − fN = −
∆̂2
d+id

10
+O

(
∆̂4
d+id

)
. (F9)

Substituting the zero-temperature gap values ∆̂s =

2ω
(s)
D exp(−1/λs) and ∆̂d+id = 2.705ω

(d)
D exp(−2.5/λd)

from Eq. (3.6) into the free energies, we find

fs − fd+id = −
(
ω

(s)
D

)2
e−

2
λs + 0.734

(
ω

(d)
D

)2
e
− 5
λd . (F10)

For a non-trivial s + id wave solution to exist, λd must
exceed the minimal value given in Eq. (F6). Substituting
it into the above expression for the free energy, we find

fs − fd+id >
(
ω

(s)
D

)2
e−

2
λs

[
0.734 e

1
λs

(
ω

(d)
D

ω
(s)
D

)
− 1

]
.

(F11)
Therefore, for s-wave to be more stable than d+id at rc1,

the necessary condition is exp(1/λs) < 1.362ω
(s)
D /ω

(d)
D , or

equivalently

1

λs
< 0.309 + ln

(
ω

(s)
D

ω
(d)
D

)
. (F12)

Combining this expression with Eq. (F7), we see that λ−1
s

must belong to a rather narrow interval, given by

ln

(
ω

(s)
D

ω
(d)
D

)
<

1

λs
< 0.309 + ln

(
ω

(s)
D

ω
(d)
D

)
, (F13)

for the (s+id) phase to have a chance to exist. Substitut-
ing Eq. (F12) into the inequality Eq. (F6), we conclude

that for s + id to be energetically stable, the following
lower bound on λd is necessary

λd >
5

0.309
≈ 16.2. (F14)

Note that this bound is universal, independent of the ra-
tio of the Debye frequencies. We reiterate that the above
derivation is rigorous since the weak-coupling approxima-
tion is always justified near the r = rc1 transition (since

∆̂d vanishes at that point).

As remarked in Sec. II E, the condition in Eq. (F14) is
extremely unlikely to be realized in nature, and if true,
it would certainly lie outside the realm of weak-coupling
approximation at the apogee of s + id phase (it would

imply that ∆max
s+id > ω

(d)
D ). Therefore for all practical

applications, we can safely conclude that (s + id) order
is always energetically inferior to its rival (d+ id) phase.
This conclusion is corroborated by the direct numerical
evaluation of the free energies, an example of which is
shown in Fig. 3(b). Invariably, we find a direct first-
order phase transition from a pure s-wave into the d+ id
phase as the ratio of the coupling constants r = λd/λs is
increased.

We can shed more light on the reason why the s + id
solution is less energetically stable by considering the gap
equations (2.29)–(2.30) in the weak-coupling approxima-

tion ∆̂ � ωD � 1. The gap equations [see Eqs. (2.29)
and (2.30)] can further be simplified in the vicinity of
the second-order phase transition at r = rc1, where the
magnitude of ∆̂d can be made arbitrarily small. In this
limit we can approximate ∆̂s u 2ωD exp(−1/λs) and the
d-wave pairing amplitude can then be obtained from [fol-
lows from Eqs. (F1)–(F5)](

∆̂d

∆̂s

)2

u
280

27

[
1

5λs
− 1

λd

]
. (F15)

The non-trivial solution for ∆̂d is only possible provided
λd/λs > 5, explaining the value rc1 ≈ 5 obtained nu-
merically, see Fig. 3(a). We now must compare the
free energy of this solution (which is essentially a pure
s-wave in the vicinity of rc1) to that of d + id from
Eq. (3.7). In order for s+ id phase to have lower energy
than the d + id, in the vicinity of rc1, we require that
λ−1
s < − ln

(
C2
d+id/10

)
≈ 0.309, where Cd+id = 2.705,

see Eq. (3.7). Substituting this into Eq. (F15), we
see that for a non-trivial s + id solution to exist, one
must ensure the lower bound on the pairing strength
λd > 5λs & 16.2. Such a huge value of λd is unphysi-
cal, and moreover, the assumption of the weak coupling
would break down in this case. Even allowing for differ-
ent Debye frequencies for the s- and d-wave components
– justified if the origin of s-wave pairing is not the same,
for instance due to conventional electron-phonon mecha-
nism – does not alter the outcome, with the lower bound
on λd & 16.2 remaining roughly same as before. This
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(a) (b)

(c) (d)

(e) (f)

FIG. 16: Weyl superconductors that obtain via d+ id combi-
nations of T2g and Eg local pairings. Each figure shows the
double- or single-Weyl nodes (block dots) that arise from the
nodal-loop intersections. The pairings are (a) dxy + idx2−y2 ,
(b) dxy + id3z2−r2 , (c) dxz + idx2−y2 , (d) dyz + idx2−y2 , (e)
dxz + id3z2−r2 , and (f) dyz + id3z2−r2 . Properties of these
states are enumerated in Table II. Nodal loops shown in green,
red, blue, brown, and purple respectively corresponds to the
ones associated with the dxy, dxz, dyz, dx2−y2 , and d3z2−r2

pairings, respectively. Equations for these loops appear in the
rightmost column of Table I. Notice that dxz/yz+idx2−y2 also
supports a pair of gapless points at the north and south pole
of the Fermi surface. These nodes do not possess any topo-
logical invariant and thus their existence is purely accidental.
Here all momentum axes are measured in units of the Fermi
momenta kF .

conclusion is corroborated by numerics, where we cer-
tainly have not been able to find an energetically viable
s+ id solution for any λd . 8.

Appendix G: Nodal topology of d+ id pairing:
competing T2g and Eg channels

In Sec. III D we have highlighted six possible time-
reversal symmetry breaking paired states when the pair-
ing interaction in the T2g and Eg channels are of com-
parable strength. Nodal topology of these paired states
were announced in Table II. In Sec. III E we have dis-
cussed the nodal topology of dx2−y2 + idxy paired state
in details. We here present the computation of nodal
topology of other five paired states, shown in Table II.

• dxy + id3z2−r2 pairing: The location of the nodal
points for this paired state are given in the second row of
Table II. To extract the nodal topology of these isolated
points on the Fermi surface, we first focus on the Weyl
node located at kx = 0, ky = kF

√
2/3, kz = kF

√
1/3,

and conveniently define a set of new momentum variables

pz =
kz√

3
+

√
2ky√
3
, py =

√
2kz√
3
− ky√

3
, px = kx. (G1)

The Weyl nodes are now located at p = (0, 0, kF ). Ex-
panding the kinetic energy around the Weyl node we ob-
tain the following reduced BCS Hamiltonian

ĥdxy+id3z2−r2
= τ3vzδpz + vxτ1px + vyτ2py, (G2)

where δpz = pz − kF , vx =
√

2|∆T2g |/kF , vy =

|∆Eg |/(
√

2kF ), and vz = kF /m. The above nodal point,

as well as the one located at k = −
(

0,
√

2/3,
√

1/3
)
kF

are characterized by monopole charge Wn = +1 [fol-
lows from Eq. (3.2)]. By contrast, Wn = −1 for the

Weyl nodes at k = ±
(

0,
√

2/3,−
√

1/3
)
kF . We de-

note the above four Weyl nodes as “(a)”. For the

Weyl nodes located at k = ±
(
kF
√

2/3, 0, kF
√

1/3
)

the

monopole charge is Wn = +1, and Weyl nodes located at

k = ±
(√

2/3, 0,−
√

1/3
)
kF have Wn = −1. The last

four Weyl nodes are denoted as “(b)”.

• dxz + idx2−y2 pairing: Let us first focus on the Weyl

nodes located at k = ±(1, 1, 0)kF /
√

2 [see Table II], and
conveniently rotate the momentum axis according to

px =
kx + ky√

2
, py =

kx − ky√
2

, pz = kz. (G3)

Weyl nodes are now located at p = ±(kF , 0, 0). Expand-
ing the kinetic energy around the Weyl nodes we obtain
the following reduced BCS Hamiltonian

ĥdxz+idx2−y2 = ±vxδpxτ3 + vyτ1pz + vzτ2py, (G4)

where δpx = px ± kF , vy =
√

3|∆Eg |/kF , vz =√
3|∆T2g |/

(√
2kF

)
and vx = kF /m. Therefore, two Weyl

nodes located at k = ±(1, 1, 0)kF /
√

2 have the monopole
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FIG. 17: Scaling of the function F (x, y), defined in Eq. (H7),
with x for various choices of y. Here, x = µ/EΛ and y =
T/EΛ are respectively dimensionless chemical potential and
temperature, with EΛ = Λ2/(2m), and t ≡ y. The function
F determines the strength of the coupling between the s-
wave and d-wave pairing with lattice distortion or electronic
nematicity, determined through fLuttstr shown in Eq. (H6).

charge Wn = +1. By contrast, the Weyl nodes located at
k = ±(−1, 1, 0)kF /

√
2 have monopole charge Wn = −1.

• dyz + idx2−y2 pairing: Analysis of the nodal topol-
ogy for this paired state is identical to the previous
one. We find that Weyl nodes at k = ±(1, 1, 0)kF /

√
2

have monopole charge Wn = −1 and Weyl nodes at
k = ±(1,−1, 0)kF /

√
2 have monopole charge Wn = −1.

• dxz+id3z2−r2 pairing: Following the analysis of nodal
topology for dxy + id3z2−r2 pairing, denoted as “(a)”, we

find that Weyl nodes at k = ±
(

0,
√

2/3,
√

1/3
)
kF have

monopole charge Wn = +1, while Wn = −1 for the ones

located at k = ±
(

0,−
√

2/3,
√

1/3
)
kF .

• dyz + id3z2−r2 pairing: From the analysis of nodal
topology for dxy + id3z2−r2 pairing, denoted as “(b)”, we

find that Weyl nodes at k = ±
(√

2/3, 0,
√

1/3
)
kF have

monopole charge Wn = +1, while Wn = −1 for the ones

located at k = ±
(
−
√

2/3, 0,
√

1/3
)
kF .

Appendix H: Coupling between s-wave and d-wave
pairing with electronic nematicity in doped LSM

In Sec. IV of the main paper, we established a non-
trivial coupling between the s-wave and d-wave pairings
with electronic nematicity, which can also be induced by
applying a weak external strain. In Sec. IV we presented

the calculation upon projecting all these ingredients onto
the Fermi surface, assuming that the external strain is
sufficiently weak and that pairing predominantly takes
place in the close proximity of the Fermi surface. How-
ever, such non-trivial coupling does not depend on this
approximation, and we here demonstrate that it is non-
trivial even if we take into account the entire Luttinger
band of spin-3/2 fermions, with the chemical potential
(µ) placed away from the band touching point. The gen-
eral form of external strain in the Luttinger model has
already been displayed in Eq. (4.1). The contribution
from the Feynman diagram shown in Fig. 7(a) now takes
the form

FLuttstr = −1

8
Φj∆

µ
l ∆ν

0

1

β

∞∑
n=−∞

∫
d3k

(2π)3
Tr

[
(τµΓl)

× G(iωn, µ,k) (τνΓ0)G(iωn, µ,k) (τ3Γj)G(iωn, µ,k)

]
,

(H1)

where

G(iωn, µ,k) =
iωn + µ+ ĤL

(iωn + µ)2 − E2
⊕ iωn − µ+ ĤL

(iωn − µ)2 − E2
,

(H2)

is the Greens function of spin-3/2 fermions in the Lut-
tinger model, with E = k2/(2m) and

ĤL =
k2

2m

5∑
j=1

Γj d̂j . (H3)

First of all note that for non-vanishing Tr we require
j = l and µ = ν, implying that (1) the component of
the d-wave pairing and of the external strain must break
the cubic symmetry in an identical fashion (since j = l),
and (2) external strain supports a time-reversal invariant
superposition of s-wave and d-wave pairing (since µ = ν).
These conclusions are identical to the one we found by
computing the triangle diagram [see Fig.7(a)] in the close
proximity to the Fermi surface after the band projection.
In what follows we compute the above expression from
the entire Luttinger band for spin-3/2 fermions.

After some straightforward algebra and completing the
integral over the solid angle we arrive at the following
expression (setting ~ = kB = 1)

FLuttstr =
µT

10π2

∞∑
n=−∞

∫ Λ

0

k2dk

[
E4 +

[
(11− 10π2)ω2

n − (1 + 10π2)µ2
]
E2 + 10π2(ω2

n + µ2)2
]

[E4 + 2E2(ω2
n − µ2) + (ω2

n + µ2)2]
2 , (H4)

where Λ is the ultraviolet momentum cut-off up to which the spectra of conduction and valence band scale
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quadratically with momentum. The above contribution
to the free energy can now be written compactly as

FLuttstr =
µm3

Λ3
F

(
µ

EΛ
,
T

EΛ

)
, (H5)

where EΛ = Λ2/(2m) is the ultraviolet energy cut-off and
the two parameters inside the function F are therefore
dimensionless. Also note that in natural units (~ = kB =

1), mass (m) is a dimensionless parameter and Λ bears
the dimension of inverse length. Hence, we can suitably
define a free-energy density fLuttstr associated with FLuttstr

according to fLuttstr = FLuttstr Λ3, where

fLuttstr = µm3F

(
µ

EΛ
,
T

EΛ

)
, (H6)

and

F (x, y) = y

∞∑
n=−∞

∫ 1

0

z2dz

10π2

[
z8 +

[
(11− 10π2)Ω2

n − (1 + 10π2)x2
]
z4 + 10π2(Ω2

n + x2)2
]

[z8 + 2z4(Ω2
n − x2) + (Ω2

n + x2)2]
2 , (H7)

with z = k/Λ, x = µ/EΛ, y = T/EΛ, and Ωn = ωn/EΛ.
Here, ωn = (2n + 1)πT is the fermionic Matsubara fre-
quency. The scaling of the function F (x, y) with x for
various choices of y are shown in Fig. 17.

Therefore, the non-trivial coupling between the s-wave
and d-wave pairing with lattice distortion or electronic
nematicity in a Luttinger semimetal solely arises from
the spin-3/2 nature of the quasiparticles. Note that such
coupling exists only in the presence of a Fermi surface,
as fLuttstr → 0 when µ→ 0.

Finally we show that the induced s-wave component
(∆s) is finite due to the lattice distortion (Φ) in the pres-
ence of a dominant d-wave pairing (∆d). To this end we
write down the phenomenological Landau potential to
the quartic order, given by

fquar. = r1∆2
d + u1∆4

d + r2∆2
s + u2∆4

s + u12∆2
s∆

2
d

+ a Φ ∆s ∆d, (H8)

where r1, r2, u1, u2, u12, a are phenomenological (and
nonuniversal) parameters. Earlier we showed the scaling
of the coefficient of cubic term, namely a, with various
band parameters. All the terms appearing in the first line
of fquar. are the standard one, while the cubic coupling is
very specific to spin-3/2 fermions in cubic environment.
In what follows, we work in the regime where r1 < 0, but
r2 > 0. Hence, the d-wave pairing is spontaneously de-
veloped in the system, while the s-wave component can
only be induced. In this regime ∆s,Φ� ∆d and we can
obtain analytic solutions for ∆d and ∆s by minimizing
fquar., yielding

∆d = ±
√

2u1

r1
≡ ±∆0

d, ∆s = − aΦ∆0
d

2
[
r2 + U12 (∆0

d)
2
] .

(H9)
Therefore, cubic coupling between the s-wave and d-wave
pairings with lattice distortion or electronic nematicity
is responsible for non-trivial solution of induced s-wave
pairing. By contrast, the standard quartic coupling be-

tween two pairing channels, proportional to u12 reduces
the strength of the the induced s-wave pairing.

This analysis can immediately be generalized when
r1 > 0, but r2 < 0 so that the s-wave pairing is spon-
taneously generated in the system. Under that circum-
stance presence of an external strain (Φ) can induce a
d-wave pairing as we argued the main text.

Appendix I: Nodal topology of s+ d-wave pairings

In this appendix, we briefly review the nodal topology
of various d-wave and d+id-type pairings in the presence
of an accompanying s-wave pairing, which can be induced
by lattice deformation (due to dominant d-wave pairings,
see Sec. IV). We show that when the s-wave component
is sufficiently small it only shifts the location of (a) nodal-
loops of an individual d-wave pairing or (b) point nodes
arising from d+ id-type pairings.

1. s + dx2−y2 pairing: The effective single-particle
Hamiltonian for s+ dx2−y2 pairing reads as

H = τ3

[
k2

2m
− µ

]
+ τ1

[
∆s −

√
3∆d

2k2
F

(
k2
x − k2

y

)]
, (I1)

where ∆s and ∆d are respectively the amplitude of s-
wave and dx2−y2 pairing, and conveniently we chose the
relative phase between these two pairings to be π (hence
preserves time-reversal symmetry). The spectra of the
above single-particle Hamiltonian are given by

E = ±


[

k2

2m
− µ

]2

+

[
∆s −

√
3∆d

2k2
F

(
k2
x − k2

y

)]2


1/2

.

(I2)
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The equations for two nodal-loops are then given by

2k2
x + k2

z = k2
F , ky = ±

[
k2
x − k2

F

2∆s√
3∆d

] 1
2

. (I3)

Therefore, s + dx2−y2 pairing continues to support two

nodal-loop as long as ∆s/∆d <
√

3/4 ≈ 0.43, similar
to the situation in pure dx2−y2 pairing. Following the
same strategy one can show that s+dxy, s+dxz, s+dyz
and s+ d3z2−r2 pairings continue to support two nodal-
loops as long as the accompanying s-wave component is
sufficiently small.

2. s + d3z2−r2 + idx2−y2 pairing: Recall the pure
d3z2−r2 + idx2−y2 pairing supports eight Weyl nodes at

±kx = ±ky = ±kz = kF /
√

3. With the addition of the
s-wave pairing eight Weyl nodes get shifted to

±kx = ±ky =
kF√

3

[
1 +

∆s

∆d

] 1
2

,

kz = ± kF√
3

[
1− 2

∆s

∆d

] 1
2

, (I4)

The reason why s + d3z2−r2 + idx2−y2 pairing contin-
ues to support eight Weyl nodes is the following (see
also main text). Note that individually s + d3z2−r2 and
s + dx2−y2 pairing supports two nodal-loops for weak
enough s-wave component. Therefore, eight Weyl nodes
in the s + d3z2−r2 + idx2−y2 paired state are located at
the intersection points of four nodal-loops. Following the
same approach we find that for a specific phase locking,
namely (φxy, φxz, φyz) = (0, 2π/3, 4π/3), among three d-
wave pairings belonging to the T2g representation sup-
ports eight Weyl nodes when accompanied by a small
s-wave component (only shifted from the ones reported
in Sec. IIIc).

Appendix J: Inversion symmetry breaking and two
gap structure

In this appendix we present the detailed analysis of
the quasiparticle spectra for the s + d + id type paired
state, but in the absence of the inversion symmetry. We
showed in the previous appendix that addition of a small
s-wave pairing to either d-wave or d+id-type pairing does
not change the nodal topology, only shifts the location of
the nodal-loops or point nodes. In this appendix, we will
show that if we add an inversion asymmetric term to the
kinetic energy (1) Kramers degeneracy of the pseudo-spin
degenerate Fermi surface is lost and we end up with two
Fermi surfaces, and then (2) in the presence of an s-wave
component to the dominant d+ id-type pairing, it is con-
ceivable to keep only one of the Fermi surfaces gapless,
while the other one becomes fully gapped. By contrast,
in the absence of s-wave pairing, a pure d + id pairing
continues to support eight Weyl nodes on both Fermi

surfaces. We substantiate this statement by focusing on
the dx2−y2 + id3z2−r2 pairing. Our analysis can be gen-
eralized to other pairings (such as the one with specific
phase locking (φxy, φxz, φyz) = (0, 2π/3, 4π/3) within the
T2g sector), discussed in Sec. IIIc.

The non-interacting Hamiltonian in the absence of
the inversion symmetry (with its simplest realization) is
given by

HInv.
0 =

(
k2

2m
− µ

)
τ3 + τ3v (σ · k) , (J1)

where v bears the dimension of Fermi velocity and mea-
sures the strength of inversion symmetry breaking. Three
Pauli matrices {σµ} for µ = 1, 2, 3 operate on the
pseudo-spin index. The spectra of above Hamiltonian
is k2/(2m)−µ+ τv|k| for τ = ±1, confirming the lack of
Kramers degeneracy (due to inversion asymmetry).

Now in the presence of dx2−y2 + id3z2−r2 pairing
the quasiparticle spectra of BdG fermions are given by
±Eτ,k, where

Eτ,k =

[(
k2

2m
− µ

)2

+ v2k2 + 2τvk

(
k2

2m
− µ

)
+

∆2

k4
F

{
3

4

(
k2
x − k2

y

)2
+

1

4

(
2k2
z − k2

x − k2
y

)2}]1/2

, (J2)

for τ = ±. Hence, the Weyl nodes are now located at

± kx = ±ky = ±kz = kτ0 , (J3)

where for τ = ±

kτ0 =
√

2mµ+m2v2 + τmv. (J4)

Both Fermi surfaces are gapless (irrespective of the
strength of inversion symmetry breaking) and each of
them accommodates eight Weyl nodes. Note that in the
above expression kF 6=

√
2mµ due to the presence of two

Fermi surfaces. Here kF should be considered as a large
momentum scale such that kx, ky, kz � kF .

With the addition of the s-wave component the energy
spectra inside the s + dx2−y2 + id3z2−r2 pairing in the
absence of inversion symmetry breaking are given by

Eτk =

[{(
k2

2m
− µ

)
+ τvk

}2

+
∆2
d

4k4
F

(
2k2
z − k2

x − k2
y

)2
+

(
∆s −

√
3∆d

2k2
F

(
k2
x − k2

y

))2 ]1/2

. (J5)

The locations of the Weyl nodes on two Fermi surfaces
(denoted by index τ = ±) are given by

(
±kτx,±kτy ,±kτz

)
,

where

kτx =
1√
3

[(√
2mµ+m2v2 + τmv

)2

+
√

3k2
F

∆s

∆d

]1/2

,
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kτy =
1√
3

[(√
2mµ+m2v2 + τmv

)2

−
√

3k2
F

∆s

∆d

]1/2

,

kτz =
1√
3

[√
2mµ+m2v2 + τmv

]
. (J6)

Note that real solutions for kτx and kτz exist for any
strength of inversion symmetry breaking and s-wave com-
ponent. However, both k±y are real-valued only when
v < v0, where

v0 =
1

2m

[√
3k2
F

∆s

∆d
+

4√
3

m2µ2

k2
F

∆d

∆s
− 4mµ

]1/2

. (J7)

On the other hand, for v > v0 only one Fermi surface (the
bigger one, with τ = +1) hosts eight Weyl nodes, while
the other one (the smaller one, with τ = −1) becomes
fully gapped.

Therefore, depending on the strength of the inversion
symmetry breaking it is conceivable to realize a situa-
tion when the s + dx2−y2 + id3z2−r2 pairing gives rise
to one nodal and one fully gapped Fermi surfaces. This
situation stands as a possible microscopic origin for the
proposed two gap structure in the penetration depth [see
Eq. (6.1) of main text]. It must be noted that the accom-
panying s-wave component in the presence of dominant
d + id type pairing is not induced by the lack of the in-
version symmetry, as both of them are even under the
spatial inversion. The s-wave component is induced by
lattice distortion mediated by the dominant d-wave pair-

ings, discussed in Sec. IV of the main paper. Nonetheless,
once the s-wave component is established in the system
by lattice distortion (due to dominant d-wave pairing) it
can receive further assistance from electron-phonon in-
teraction which is always finite in real system.

We note that the actual inversion symmetry breaking
term in YPtBi for example is more complex than the
one we discussed in this appendix [51]. The sole pur-
pose of the present analysis is to demonstrate that in
the absence of inversion symmetry, s + d + id pairing
can give rise to two gap structure: one of the Fermi
surfaces remains gapless, supporting Weyl nodes, while
the other one becomes fully gapped. The last observation
provides a microscopic justification for the two-gap struc-
ture we subscribe in Sec. VI to compare our theoretical
predictions with the experimental observation. However,
due to lack of microscopic details in a correlated system,
such as actual strength of inversion asymmetry, and its
renormalization due to electronic interactions and dis-
order, strength of electron-phonon coupling and elastic
constants (required to estimate the actual strength of
induced s-wave component), further theoretical justifica-
tion of our proposed scenario in a specific material such
as YPtBi is very difficult (a common limitation in any
correlated system). Thus, we have to rely on compli-
mentary experiments (apart from the penetration depth
measurement), discussed in depth in Sec. VIA, to test the
validity of the our proposed scenario in superconducting
half-Heusler compounds.
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