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Appendix text: Analysis of GFP::IFT22 in T. brucei

GFP::1IFT22 was previously shown to traffic in the trypanosome flagellum (Adhiambo
et al, 2009), but conditions for proper quantification were not available at the time.
We therefore acquired videos of GFP::IFT22 trafficking and quantified the movement
by kymograph analysis (Buisson et al, 2013). Anterograde movement of GFP::IFT22
occurred at a frequency of 0.84 s™ and at an average speed of 2.73 + 0.69 pm/s (n =
218). These values are in the same range as observed for GFP::IFT27 (Huet et al,
2014) or GFP::IFT52 (Buisson et al, 2013). RNAI silencing of IFT22 surprisingly
resulted in a defect of retrograde transport (Adhiambo et al, 2009). To confirm this
phenotype was specific and not due to an off-target effect, an RNAI-resistant version
of IFT22 was fused to GFP (GFP::IFT22escue) to discriminate it from the product of
the endogenous gene and expressed in the IFT22"NA cell line (Fig. S6A). For the sake
of simplicity, this IFT22"VA+GFP::IFT22 RNAI resistant cell line will be called
IFT22R. Western blot analysis using an antiserum against IFT22 demonstrated that
the GFP::IFT22.se fusion protein displayed the expected motility on gel (expected
MW of 52 kDa) and was detected alongside the endogenous protein (expected MW of
24 kDa) (Fig. S6B). Video-microscopy on live cells demonstrated typical IFT
trafficking (Appendix video S1). Addition of tetracycline triggered RNAi knockdown

2RNAT ol line alone

of the endogenous IFT22 with the same efficiency as in the IFT2
(Fig. S6B) and, as expected, the GFP::1FT22esce fusion protein was not affected (Fig.
S6B, last lane). This result was confirmed in live cells (Appendix video S2). Of note,
the signal-to-noise ratio for GFP-1FT22se in the flagellum was better in induced
conditions, indicating a competition with the endogenous untagged IFT22 protein.
Immunofluorescence assays (IFA) with an anti-IFT172 monoclonal antibody and a
marker of the axoneme were used to further characterize the phenotypes (Fig. 6B). As
expected, knockdown of IFT22 in the IFT22"NA cell line led to the emergence of cells
with tiny flagella usually filled with IFT material (Fig. 6B, second row), as previously
reported (Adhiambo et al, 2009). By contrast, expression of the GFP::IFT22escue
rescued the phenotype as these cells displayed normal IFT distribution and possess
flagella of normal length (Fig. 6B, third row). These results formally prove that the
phenotype is indeed due to IFT22 knockdown and not to off-target effects and
demonstrate that IFT22 is a bona fide IFT protein that is essential for retrograde

transport.
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Appendix Figure S1: IFT22 nucleotide analysis
A. SDS-PAGE gels of purified IFT22 from T. brucei and M. musculus. (FL = full-

length)

B. SEC profiles of TbIFT22 and MmIFT22. The SEC elution profiles for both native

and refolded TbIFT22 are shown in different shades of green.

different G-nucleotides can be resolved. Right:

HPLC nucleotide-elution profiles. Left: Nucleotide controls confirming that

Comparison of different

procedures for nucleotide removal to obtain nucleotide-free IFT22. Treatment

with 8 M urea effectively removed GTP carried along through co-purification

from E. coli extracts.



D. SDS-PAGE gels of purified IFT22/74/81 core complexes from different
organisms. IFT74/81 constructs were designed based on sequence alignments (see
Fig. S3D) and resulting complexes are ThIFT22/74342.401/81397.450, CrIFT22/7439s.
459/81390-442, MMIFT22/7435-106/81389-441.

E. HPLC GTP-elution profiles of the indicated purified IFT22 proteins and
IFT22/74/81 core complexes from different organisms. Same amounts of each
protein (complex) were injected (20 ul, 100 puM).

F. GTPase activity assay for ThIFT22 and the ThIFT22/74/81 core complex. The
release of inorganic Phosphate (P;) upon addition of 1 mM GTP to the proteins
was followed for 20 min. As a negative control, hydrolysis of 1 mM GTP in
buffer was monitored and subtracted from the protein curves for rate
quantifications (left image). GTPase activity rates (TbIFT22: 1.7 x 10° min™;
ThIFT22/74/81 core: 4.7 x 10° min™) were calculated based on a linear standard
curve generated from different P; concentrations (right image).

G. Unbiased Fo-Fc electron density maps (green, 2.5 o) of IFT22-bound nucleotides
for structures solved in this study. IFT22 is shown in grey in cartoon
representation in similar orientations for each structure and nucleotides are

depicted as sticks.
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Appendix Figure S2: Multiple sequence alignment of IFT22 homologs

Clustal Omega multiple sequence alignment of homologous IFT22 sequences from



different organisms and the classical Rab GTPases Rab8A and RabllA from
H. sapiens. Surface conservation is shown according to ConSurf grades (only for
IFT22 sequences). Secondary structure elements from the GTP-TbIFT22 crystal
structure (green and yellow) are indicated above the sequence, as are residues
interacting with IFT74 (orange dots) and IFT81 (grey dots). Conserved sequence
motifs of small GTPases are marked with blue boxes with consensus sequences
inscribed below. Residues mutated in this study are encircled. (Hs = Homo sapiens,
Mm = Mus musculus, Dr = Danio rerio, Tb = Trypanosoma brucei, Cr =
Chlamydomonas reinhardtii and Ce = Caenorhabditis elegans)
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Appendix Figure S3: Probing the IFT22-74/81 interface



. SDS-PAGE gels of purified bIFT22/7479.401/81x.450 complexes with (left, x = 1)
and without (right, x = 143) IFT81 CH domain. Only the complex with CH
domain crystallized.

. SEC profiles for the TbIFT22/7479.401/811.450 and TbOIFT22/7479.401/81143-450
complex.

. TbIFT22/7479.401/811.450 crystals. Crystallization solution: 15% (v/v) glycerol,
7.5% (w/v) PEG4000 and 100 mM HEPES pH 7.5.

. Clustal Omega multiple sequence alignment of the IFT22-binding region of
homologous IFT74 and IFT81 sequences from different organisms. Surface
conservation is shown according to ConSurf grades. Secondary structure elements
from the IFT22/74/81 crystal structure are indicated above the sequence, as well
as residues interacting with IFT22 (green dots). Tetrahymena and Giardia are
organisms lacking an IFT22 homolog. (Hs = Homo sapiens, Mm = Mus
musculus, Dr = Danio rerio, Th = Trypanosoma brucei, Cr = Chlamydomonas
reinhardtii and Ce = Caenorhabditis elegans, Tt = Tetrahymena thermophila, Gi
= Giardia intestinalis).

Co-expression and Ni-NTA pulldown of WT and various TbIFT22 mutants with
TbIFT74342.401/81397.450 core complexes. Figure panels labeled ‘Expression’
shows the total expression demonstrating that all IFT22 mutants are strongly
expressed. The panels labeled ‘Ni pulldown’ demonstrate that some of the IFT22
point mutants are no longer able to interact with IFT74/81 core complexes.

(left) SEC profiles of TbIFT22, TbIFT22/7479.401/811-450 and TbIFT22 incubated
with TbIFT22/7479.401/811.450 prior to SEC. (right) SDS-PAGE of the fractions
from the SEC elution of ‘TbIFT22/7479.401/811.450 + TBIFT22* shows that IFT22
does not associate with the core complex, which is in contrast to co-expressed
TbIFT22/7479.401/811.450. The zoom-in box shows that IFT81;.450 has been partly
degraded giving rise to at least 3 additional bands on the SDS-PAGE
corresponding to 1-3kDa smaller size of IFT81 (confirmed by MS).



cclll-cclV interactions

ccl-ccll interactions ccll-cclll interactions

Appendix Figure S4: Interactions between coiled-coil regions of the IFT74/81
complex.
Cartoon representation of the TbIFT74/81 coiled-coil scaffold (center). Dashed
boxes indicate four distinct regions of interaction between the different coiled-
coils: ccl-ccll, ccll-cclll, cclll-cclV and ccll-cclll-ccV. Zoomed-in views show

interacting residues in stick representation.
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Appendix Figure S5: Structural comparison of different microtubule-binding
CH domains.

A. Cartoon representation of the crystal structure of the TbIFT81 CH domain with the
unusual C-terminal helices al and all labeled.

B. Cartoon representation of the crystal structure of the CrIFT81 CH domain (PDB
ID: 4lvp) with a similar C-terminal helix orientation.

C-D. Cartoon representation of the crystal structures of the microtubule-binding CH
domains of HSNDCB80 (PDB ID: 3iz0) and HsEB1 (PDB ID: 3col). All structures
are shown in the same orientation after superpositioning onto the TblIFT81 CH
domain. The rmsd for each superposition is indicated.
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E. Left: Cartoon representation of the relative position of all helix and ccl that tethers
the IFT81 CH domain onto coiled coil region ccl. Right: Zoomed-in view of
interacting residues of all and ccl.

F. Cartoon representation of IFT74/81 and NDC80/NUF2 after superimposing the N-
terminal CH domains (dashed box). While the IFT81 CH domain interacts with
the coiled-coil moiety of the IFT74/81 heterodimer, the NDC80 CH domain is
fixed through interactions with the NUF2 CH domain resulting in different

overall architectures of the two complexes.
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Appendix Figure S6: In vivo analysis of the IFT22p;754 in Trypanosoma brucei

A. Strategy used to evaluate the biological significance of IFT22 mutations. Boxes
represent coding sequences and undulated lines correspond to mRNA. Cell lines
used contain the two endogenous copies (trypanosomes are diploid) of IFT22, a
single copy of an RNAI-resistant version (dashed blue) fused to GFP (green)
expressed from the PFR (paraflagellar rod, a well-characterised flagellar gene,

Bastin et al 1998) locus and a construct for expression of double-stranded 1FT22
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RNA under the control of tetracycline-inducible promoters. In the absence of
tetracycline, there is no dsSRNA and mRNAs originating from all three genes are
present. However, addition of tetracycline triggers the production of dsRNA that
result in degradation of transcripts from the endogenous genes but not from the
recoded one.

B. Western blot analysis of the indicated cell lines probed with the anti-IFT22
antibody (bottom) and with an anti-PFR as loading control (top).

C. Western blot analysis of the IFT22"A+GFP::IFT22p;7s4 cell line probed with the
anti-1IFT22 antibody (bottom) and with an anti-BiP as loading control (top). These
samples were loaded on a blot together with the samples shown in Fig. 6A and
thus share the same lane for molecular markers.

D. Kymographs showing the movement of the GFP::IFT22p;754 in the presence (left)
or the absence (right) of endogenous IFT22. Note the improved signal-to-noise
ratio in the latter case.

E. IFA in the indicated conditions using the mAb25 (marker for the axoneme, middle
panels) and an anti-IFT172 antibody (marker for IFT, bottom panels). The top
panels show the phase contrast image merged with DAPI (cyan) that stains
nuclear and mitochondrial DNA. Scale bar is 5 pum.

F. Dot plot representation of flagellum length in the indicated cell lines and

conditions.
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Appendix Figure S7: Ciliopathy-causing mutation of a conserved IFT81 leucine

is located in the IFT22 binding site.

A. Mapping of HsIFT81 L435 onto the TbIFT22/74/81 structure reveals that the
corresponding L443 in TbIFT81 is located right in the interface with IFT22

making several hydrophobic interactions (see displayed interactions in the box to

the right).

A. Sequence alignment of IFT81 residues from different organisms interacting with

IFT22. The patient mutation L435 is encircled in blue and is a conserved leucine

residue.

C. Surface conservation display of the IFT74/81 region interacting with IFT22
showing that L443 is part of a conserved IFT22-binding site.
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