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1 Introduction

To investigate the physical properties and ultrafast dynamics of nanometer scaled de-

vices and materials, experimental probes which provide nanometer spatial- and femtosec-

ond temporal resolution are required. Electrons with a kinetic energy below 1 keV are

strongly sensitive to electric fields and have a de Broglie wavelength on the order of 1 Å,

which allows for spatial resolution down to the sub-nm scale. Whereas ultrafast electron

diffraction is a well-known tool to investigate the lattice structure of bulk materials in

reciprocal space [1] [2], ultrafast imaging with low-energy electrons can be used to study

nanoscale electric fields and photocurrents in real space. For this purpose, Müller et. al.

developed a femtosecond point-projection electron microscope (fsPPM) [3] [4]. The prin-

ciple of a PPM is simple: A point-like nanotip electron source emits a divergent electron

beam which interacts with a sample. The apex of a nanotip has a radius of ≈ 25 nm,

which leads to a large local field enhancement. This confines electron emission to a very

small space, which is ideal for a point-like source. To achieve femtosecond temporal

resolution, the pump-probe technique is applied. The electron source is triggered with

an ultrashort laser pulse, resulting in the emission of an ulrashort electron probe pulse.

Several challenges arise from the usage of ultrashort electron pulses: In contrast to

ultrashort light pulses, electron pulses disperse in vacuum. First, electrons with dif-

ferent energies have different velocities and need a different amount of time to travel

the same distance, which reduces the temporal resolution of the microscope. Because

point-projection microscopy with low energy electrons is a lens-less design, tip-sample

distances of only a few microns are achievable, reducing the impact of this effect.

Second, electrons are charged particles and interact with each other. During propaga-

tion through vacuum, a compact electron cloud expands due to repelling Coulomb forces,

broadening the electron pulse in the spacial and temporal domain. This effect is called

space charge and can be overcome by operating the electron source in the single-electron

regime, which produces electron pulses consisting of only one electron.

For the operation of a fsPPM, the repetition rate of the laser system is an important

parameter. For the pump-probe technique to work, the time between two laser pulses

needs to be longer than the relaxation time of the reversible process under investigation,

hence a low repetition rate is advantageous. At the same time, a high tip current is

desired for the best signal-to-noise ratio. This can either be achieved by a high repeti-

4



tion rate, or a high pulse energy. While the tip current is limited by thermal instability

at fast laser systems like 80 MHz oscillators, space charge effects constrain the use of

few-kHz amplified laser systems with high pulse energies.

In this thesis, ultrafast electron emission from a gold nanotip at the transition through

the single-electron regime is investigated at repetition rates between 200 kHz and 1 MHz.

Emission processes are identified, the impact of space charge on the spatial resolution of

the microscope is measured, and maximum image intensity is compared between multiple

laser repetition rates.
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2 Theoretical background

This chapter introduces the theoretical background of photoemission from laser triggered

nanotip electron emitters. The first section describes the electron emission processes

from metals in general, while the second section outlines the special characteristics of

the nanotip geometry.

2.1 Electron emission from metals

In general, electron emission means extraction of electrons from matter into the vacuum.

In a metal, the valence electrons can be described as a free electron gas, trapped inside

a potential well. Electron emission can occur by excitation above the vacuum barrier

or by tunneling through the vacuum barrier. Tunneling requires an energy state with

equal potential behind the vacuum barrier, created by an electric field.

The average number of electrons populating an energy state Ei inside a metal is given

by the Fermi-Dirac distribution

n̄i =
1

e(Ei−EF )/kBT + 1
(1)

with the Fermi energy EF , the absolute temperature T and the Boltzmann constant kB.

The difference between the Fermi energy and the vacuum potential is called the work

function Φ. It is characteristic for every material, with typical values between 2 eV and

5 eV [5]. It is also dependent on the surface and electric fields altering the height of

the vacuum barrier, in which case the effective work function Φ∗ is used, considering all

influences. At a temperature of T = 0 K, every state up to the Fermi energy is populated,

but none above. At a temperature of T > 0 K, electrons below the Fermi level start to

populate higher energy states. Figure 2.1 shows the Fermi-Dirac distribution at T = 0 K

and T = 1200 K.
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Figure 2.1: Fermi-Dirac distribution at 0 K (blue) and 1200 K (red). At temperatures T > 0 K
electrons from energy states below the Fermi level populate energy states above
the Fermi level.

2.1.1 Static electron emission

Thermionic emission is the emission of electrons at high material temperatures due to

the increasing population of energy states above the vacuum barrier. For significant

thermionic emission, high temperatures of T > 1000 K are required.

If an external electric field Edc is applied, the width and height of the vacuum barrier

decreases. This is called the Schottky Effect. Equation (2) describes the lowering of the

work function as a function of Edc with electron charge e and the vacuum permittivity

ε0.

∆W =

√
e3Edc

4πε0
W ∗ = W −∆W. (2)

At low electric fields, where the width of the barrier is still so large that tunneling is

negligible, the effect only enhances thermionic emission. Therefore, this regime is named

field enhanced thermionic emission. At high electric fields of several volts per nanometer,

where the width of the barrier is of the order of the electron wavelengths, tunneling

becomes significant and electrons are emitted, even at a temperature of T = 0 K. This

effect is called cold field emission or CFE.
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Figure 2.2: Different principles of electron emission. To be emitted, electrons have to over-
come, or tunnel through, the vacuum-barrier. In case of multiphoton emission,
the electrons absorb as many photons as needed to exceed the work function.
The absorption of more photons than necessary is called above threshold photoe-
mission. An external electric field, which can be static or originate from incident
light, bends and lowers the vacuum barrier due to the Schottky effect. If its
width is sufficiently small, electrons tunnel through it. In case of a DC field this
is called cold field emission, in case of light strong-field emission.

2.1.2 Photoemission

Another mechanism for electron emission is the interaction with photons. An electron

can absorb one or multiple photons to get excited into a higher energy state. The pho-

tons transfer their energy Ephotons = n · h̄ω to the electron, with n being the number of

photons absorbed, h̄ the reduced Planck constant and ω the frequency of the photons.

If the energy of one photon (n = 1) is larger than the work function, single-photon

photoemission occurs. For h̄ω < Φ, n > 1 photons are required. This is called mul-

tiphoton photoemission. The probability of absorbing multiple photons decreases with

the number of photons. The emission current Jn, originating from an n-photon emission

process, is proportional to the nth power of the light intensity I:

Jn ∝ In (3)

Hence, multiphoton photoemission becomes important when ultrashort laser pulses with

high peak intensities are employed. The total emitted current is the sum of all contribut-
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ing nth order processes, which is proportional to an effective nonlinearity n∗:

J =
∑
n

Jn J ∝ In
∗

(4)

An electron can absorb more electrons than necessary to overcome the vacuum barrier.

This process is called above threshold photoemission (ATP).

2.1.3 Optical field emission

The laser field is an alternating external electromagnetic field, periodically increasing

and lowering the vacuum potential. At very intense light fields, the lowering is strong

enough to allow for significant electron tunneling, called optical field emission [6]. It

can be seen as cold field emission caused by the incident laser field. A lightfield with

a wavelength of 750 nm has an optical period of 2.5 fs, resulting in tunneling windows

below 1 fs [7]. The Keldysh parameter [8]

γk =

√
Φ

2UP

(5)

is used to differentiate between emission regimes, where UP is the ponderomotive poten-

tial of the driving laser field given by

UP =
e2E2

l

4meω2
, (6)

with the field amplitude El, frequency ω and the electron mass me. For γk � 1, the

photon energy is large compared to the kinetic energy the electron gains from acceleration

in the laser field. In this weak-field regime, the light field is treated as a perturbation and

the emission process is described by multiphoton photoemission. For γk � 1, the laser

field becomes strong enough to accelerate the electron to kinetic energies comparable

to or larger than the electrons binding energy. In this strong field regime, the emission

process is better described by laser field induced tunneling.

2.2 Metal nanotips as ultrafast electron emitters

When a metal with a highly curved surface feature is placed in an electric field, charges

accumulate in that feature, causing an enhancement of the field. This affects static fields

as induced by a bias voltage applied to the metal, as well as oscillating fields like an

incident laser pulse.
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The ratio between the electric field at this feature Es and the electric field at a flat

surface E0 is called the field enhancement factor β

β =
Es

E0

. (7)

For gold nanotips, field enhancement factors between 3 and 50 are reported and depend

on the opening angle of the tip and the apex radius. The maximum field strength at

the apex Emax can be approximated by

Emax =
U

κR
(8)

with the bias voltage U and the apex radius R. In reality, the apex is not a perfect sphere

and κ describes the reduction of the field due to a deviation from it. In literature, κ ≈ 5

is often used for typical field emission tips [9].

The strong field enhancement, combined with the nonlinearity of multiphoton photoe-

mission, leads to an extreme localization of electron emission, which suits metal nanotips

perfectly for electron point sources.

2.3 Electron pulse propagation in vacuum

Ultrashort electron pulses disperse while propagating through vacuum, which has to be

taken into account for the operation of an ultrafast electron point-projection microscope.

Therefore, several effects have to be considered.

Photoemitted electrons from a metal are not monochromatic. Electrons with a different

kinetic energy propagate at a different speed and need a different amount of times to

travel the same distance. This leads to a broadening of the pulse in the direction of prop-

agation and reduces the temporal resolution of the microscope. Paarmann et. al. [10]

simulated electron propagation from nanotip emitters and concluded that this effect is

small compared to time of flight differences induced by the path length differences in

the divergent beam. Because low-energy point-projection microscopes do not require

any electron optical elements between the nanotip source and the sample, propagation

distances of only a few microns are achievable, minimizing the impact of both effects.

A more important effect is the so-called space charge effect. Electrons are charged par-

ticles and repel each other. The force F acting on two electrons can be described by the
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Coulomb law

F =
1

4πε0

2e

r2
, (9)

with the vacuum permittivity ε0, the elementary charge e and the distance between the

electrons r. It is an inverse square dependence, so at small distances the force gets very

large. An electron cloud emitted from a nanotip has a very high electron density, leading

to large forces between the electrons and to a significant expansion of the cloud during

propagation, as depicted in Figure 2.3. Space charge has a large impact on spatial and

temporal resolution [11] but it can be avoided by the usage of single-electron pulses.

Figure 2.3: Space charge broadening of an electron pulse, du to Coulomb repulsion of the
electrons.
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3 Experimental setup for ultrafast point-projection

microscopy

The following chapter describes the point-projection microscopy setup used in this thesis.

It was developed by Melanie Müller [3] to investigate nanoscale devices and materials

on ultrafast timescales in real-space. First, the general concept of a point-projection

microscope is discussed. Then, the experimental realization is described, which is divided

into three parts: the microscope itself, which is placed in an ultrahigh vacuum chamber,

the commercial laser system that generates the ultrashort laser pulses and the optical

setup between the laser system and the vacuum chamber.

3.1 General concept

Figure 3.1: Principle of a point-projection microscope, not to scale. A point-like source illu-
minates a sample from a small distance d and its shadow image is detected in a
large distance D. With d� D, large magnifications of the sample are achievable.

A point-projection electron microscope consists of a point-like electron source, which

is placed in close proximity d to a sample [12] [13]. The created shadow image of the

sample is detected in significant distance D, leading to a magnification

M =
D

d
, (10)

as depicted in Figure 3.1. The electron source is realized by a laser-triggered nanotip

electron emitter. Time resolution is achieved by the pump-probe technique. An ultra-

short laser pulse is split into a pump and a probe excitation pulse, one of which can be
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delayed with respect to the other with a delay stage. While the pump pulse excites a re-

versible process in the sample, the probe excitation pulse is used to trigger the nanotip

electron emitter. By changing the delay between the pump and the probe excitation

pulse, the reversible process can be imaged at defined points in time with femtosecond

temporal resolution.

3.2 Femtosecond point-projection microscope

Figure 3.2: Scheme of the point-projection electron microscope. Electrons are photoemitted
from a gold nanotip by a probe laser pulse. A negative voltage applied to the
tip accelerates the electrons towards the sample. The resulting electron shadow
image is converted into light by a combination of an MCP and phosphor screen
and then captured by a CMOS camera outside the chamber. The sample can be
excited by a pump laser pulse for time-resolved measurements.

All electron optics, from electron pulse generation to detection, have to be in an ultrahigh

vacuum environment and thus are placed in a vacuum chamber capable of maintaining

pressures down to 10−11 mbar. A schematic overview is depicted in Figure 3.2. The

electron source is a gold nanotip, provided from the group of Markus Raschke from the
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University of Boulder. It is electrochemically etched from a polycrystalline gold wire

and has a tip opening angle of 12◦ and an apex radius of 50 nm. Figure 3.3 shows a

scanning electron microscope image of the tip. The pump and probe laser beams enter

the chamber through glass windows and are focused by off-axis parabolic mirrors inside

the chamber. To place and align the tip apex inside the 6 µm focus of the probe ex-

citation beam, the tip is mounted on a nanometer precision 4-axis positioning system.

A negative voltage of a few hundred volts is applied to the tip. It lowers the effective

work function of the tip and accelerates the photoemitted electrons towards the sample,

which is mounted on a separate 6-axis positioning system, facing the tip apex. Again,

nanometer precision allows for alignment in the pump laser beam as well as selection of

the region of interest. For high magnification, the tip-sample distance d is usually a few

microns. In this thesis however, it is several hundred microns to achieve the required

field of view. The shadow image, which is created by the electrons passing the sample,

is detected in a distance D ' 10 cm. A micro-channel-plate (MCP) multiplies incident

electrons, which are then further accelerated onto a phosphor screen. A negative voltage

can be applied to the front of the MCP to suppress low-energy secondary electrons. A

Hamamatsu Orca Flash CMOS camera outside the chamber picks up the light emitted

from the phosphor screen via a mirror.

For one measurement, a Keysight B2987A electrometer was connected to the tip to

directly measure the current emitted by the tip. It was able to supply a voltage up to

1000 V and measure the current down to femtoamperes at the same time.
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15µm

Figure 3.3: Scanning electron microscope image of a gold nanotip like the ones used in this
thesis. The tips are provided by the group of Markus Raschke from Boulder
University. They are produced by electrochemical etching of a polycrystalline
gold wire. A grating coupler is cut into the shaft 20 µm from the apex by fo-
cused ion beam milling. It can be used for the excitation of surface plasmon
ploaritons [14] [15]. In this thesis, only electron emission induced by direct laser
illumination on the nanotip apex was investigated.

3.3 Laser system

The laser system is based on a Ti:Sapphire oscillator [16] (Venteon Pulse One) seeding a

Yb-fiber laser amplifier and a two-stage optical parametric chirped pulse amplifier [17]

(Laser Quantum venteon OPCPA) which can be operated at a repition rate of 2 MHz,

1 MHz, 500 kHz or 200 kHz. Figure 3.4 shows a schematic overview of the laser system.
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Figure 3.4: Overview of the laser system. From the output spectrum of an 80 MHz
Ti:Sapphire oscillator, a narrow band around 1030 nm gets separated. It passes
a laser diode (LD) pumped three stage fiber pre-amplifier and a rod-type main
amplifier. Pulse pickers (PP) reduce the repetition rate to either 2 MHz, 1 MHz,
500 kHz or 200 kHz. By second harmonic generation (SHG), light with half the
wavelength is produced. It pumps two optical parametric amplifier stages, that
amplify the main part of the oscillator spectrum.

A Coherent Verdi pumps the Ti:Sapphire oscillator, which runs at a repetition rate of

80 MHz, and generates ultrashort laser pulses of 5 fs pulse length and 2 nJ pulse energy.

Its spectrum is very broadband and ranges from about 550 nm to 1200 nm. The spectral

components at 1030 nm are separated and pass a laser diode (LD) pumped fiber amplifier.

Its output serves as the pump beam for the OPCPA, which then amplifies the rest of

the oscillator spectrum.

The pump amplification happens in four stages: three fiber pre-amplifiers and one rod-

type main-amplifier. Pulsepickers after the first and second pre-amplifier reduce the

repetition rate to 2 MHz, 1 MHz, 500 kHz or 200 kHz. The laser then passes the rod-

type fiber which provides most of the energy.

By second harmonic generation (SHG) in a nonlinear crystal, light with a wavelength

of 515 nm is produced. It pumps a two-stage optical parametric amplifier (OPA), which

amplifies the main part of the oscillator spectrum. Figure 3.5 shows the output spectrum

of the laser system.
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Figure 3.5: Spektrum of the output of the laser system.

3.4 Optical setup

Dispersion compensating mirrors and a pair glass wedges on linear stages were used

to pre-compensate for dispersion induced by glass windows and air between the laser

output and the tip.

The laser power was adjusted by a pair of continuously variable reflecting neutral den-

sity filters. One was placed on a linear stage to be adjustable. First, it was placed after

the beam stabilization and the laser power was measured behind the tip, neglecting the

small amount absorbed by the tip. This is shown in Figure 3.6. While in the beginning,

the stage was moved manually and everything worked fine, it was later automated by a

computer-controlled stepper motor, attached with rubber bands. This induced a drift

of the laser focus inside the chamber. To compensate for that, the stage was placed

before the beam stabilization. Then the second, static, filter was put after the beam

stabilization in a slight angle to the beam so the powermeter could pick up the reflection

and measure the power without passing the tip as depicted in Figure 3.7.
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Figure 3.6: Optical setup 1. Once the stepper motor was attached to it, the variable filter
induced a position dependent displacement of the laser spot, that the beam sta-
bilization could not compensate for, because the filter was placed after it. The
power-meter picked the beam after passing the tip, making it sensitive for tip
positioning.

Figure 3.7: Optical setup 2. Placing the filter before the beam stabilization solved the prob-
lem. Also, the power meter picks up a reflection before the beam passes the tip,
removing influence of the tip position.

For the measurement the variable filter was set to a starting position and then moved

in small steps to scan the laser power. For each position, a laser power and image

acquisition was performed. Data was averaged up to 10 minutes per step when the

signal was low.
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4 Characterization of the nanotip electron source

For the use in a point-projection microscope, the highest possible electron intensity is

desired. This increases statistics and decreases measurement time. The upper limit for

electron intensity is defined by several disadvantageous effects that emerge at high laser

powers and electron counts: electrons emitted by optical field emission have a larger

energy spread compared to multiphoton photoemission [18] and emission of more than

one electron per pulse leads to space charge effects. Both impact spatial and temporal

resolution of the microscope negatively and need to be avoided.

Prior to this work, the point-projection microscopy setup was operated with the Ti:Sapphire

oscillator only. With its 80 MHz repetition rate, only small pulse energies could be used

to avoid thermal damage of the tip. The electron source was operated in a regime far

away from optical field emission, and with on average 10−4 emitted electrons per pulse,

space charge was not an issue. The laser system was recently upgraded by the laser

amplifier described in section 3.3. Now, the lower repetition rate allows for higher pulse

energies and both optical field emission and space charge regimes can be reached. The

aim of this thesis is to identify the optimal operation conditions of the nanotip electron

source for the use in the ultrafast point-projection microscope, operated with the new

laser system at repetition rates between 200 kHz and 1 MHz. In the following chapter,

first, the image analysis is described. Then, the laser fluence dependency of the image

intensity is investigated to make a statement about the contributing emission processes

and the reduction of image sharpness due to space charge effects is discussed at different

laser repetition rates. In the last section the total electron emission as measured by the

electrometer is compared to the electrons reaching the detector, identified by the image

intensity.

4.1 Image analysis

For the characterization of the nanotip electron source, the shadow image of an empty

copper TEM grid is investigated at different laser pulse energies. The image intensity

relates directly to the electron pulse intensity and the reduction of image sharpness

is used as an indicator for space charge broadening. The defined edges of the TEM

grid are used to determine image blurring, while the electron pulses freely passed the

unobstructed holes, which is beneficial for intensity determination. Figure 4.1 shows

two point-projection images, acquired at different laser pulse energies. A reduction of

19



image sharpness at higher pulse energy is visible. Because the images are normalized,

the differences in intensity are not visible. The protrusions on the edges of the TEM

grid are local accumulations of charge, deflecting the electron pulse.

(a) 1.42 nJ pulse energy (b) 5.35 nJ pulse energy

Figure 4.1: Normalized point-projection images of a copper TEM grid at two different laser
pulse energies. Image sharpness in image b) is reduced by space charge broadening
of the electron pulses. The dark spot in the mid-left of the images originates from
the structure of the MCP: The channels are tilted by an angle of 8◦ with respect
to the normal. If electrons enter the channels in a similar angle, the gain of the
MCP is reduced. Tip voltage: −150 V. MCP front voltage: −10 V.

A quantitative method for image sharpness determination is required. The intensity

profile across an edge of the TEM grid contains a steeper transition from high to low

intensity when the image is sharper. The error-function

F (x) =
a

2

(
1 + erf

(
x− µ
σ
√

2

))
+ b, (11)

with a scaling factor a, an offset b, the center µ and the standard deviation σ, is fitted

to this intensity profile. The resulting sigma is used as an indicator for image sharpness

and thus space charge broadening. The intensity profile was created by choosing the

most homogeneous edge available and averaging all perpendicular pixel lines across it.

Figure 4.2 shows edge intensity profiles at three different pulse energies, as well as the

fitted error functions.
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Figure 4.2: Normalized intensity profiles across an edge at different laser pulse energies with
fitted error functions. A steeper transition (smaller standard deviation σ of the
error function fit) relates to a sharper image.

The observed image blurring is not uniform, as Figure 4.3 shows. The blurring is more

pronounced on the right side than on the left side and has a preferred, slightly radial

direction. It seems like the source of the blurring lies somewhere outside the field of

view. The exact shape of the blurring varied throughout the experiments, a specific

correlation needs yet to be identified. A possible explanation is given in section 4.5.

Figure 4.3: Same picture as in Figure 4.1 on the right, but with increased dynamic range
to make the blurring effect more visible to the human eye. Blurring is more
pronounced on the right side than on the left side and has a preferred direction.
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4.2 Laser fluence dependency of photoemission

In this section, the dependence of electron emission intensity on the incident laser pulse

energy is investigated. The following figures show the mean intensity of an entire image

as a function of the laser pulse energy. The data is plotted on a double logarithmic

scale, where a power law function results in a straight line. Its slope corresponds to the

exponent, which is in this case the effective nonlinearity of the electron emission process.

In Figures 4.4 and 4.5 image intensity follows a power law up to a pulse energy of

≈ 1 nJ. The slopes relate to a nonlinearity of 3.1 and 5.3. Above ≈ 1 nJ, the intensity

transitions into a lower order dependency of n < 1. The orders of ≈ 3 and ≈ 5 are

indicating multiphoton photoemission: Gold has a work function of 5 eV. With the bias

voltage of −200 V and an assumed apex radius of 25 nm, Equations (2) and (8) give a re-

duction of the work function of 1.5 eV due to the Schottky effect. At least three 750 nm

photons, with an energy of 1.65 eV each, are required to excite an electron from the

Fermi level above the effective work function of 3.5 eV. Additionally, gold has a highly

populated d-band, 2.4 eV below the Fermi level. Although more photons are required

to excite these electrons, the large amount of them available could lead to a significant

contribution of higher order multiphoton photoemission [19]. Hence, the measured or-

ders are a reasonable indication for multiphoton photoemission.

The subsequent kink, which marks the transition to a low-order dependency is in the

vicinity of Keldysh 1, so emerging optical field emission is a probable explanation for this

behavior. This resembles data from Bormann et al. [19]. They also observed a transition

from fifth order photoemission to optical field emission at a similar laser intensity.
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Keldysh parameter

0.7

Figure 4.4: Overall image intensity as a function of laser pulse energy on a double-log scale.
The corresponding Keldysh parameters are displayed on the top x-axis. Below
a pulse energy of ≈ 1 nJ, the image intensity follows a power law with n = 3.1.
Then it kinks and follows n = 0.7. The transition to Keldysh < 1 indicates optical
field emission (Settings: −200 V tip voltage, 500 kHz repetition rate, optical setup
’one’ – manual).

Keldysh parameter

Figure 4.5: Measurement similar to the one in Figure 4.4. The nonlinearity is 5.3 at low
pulse energies and 0.4 at high pulse energies(Settings: −200 V tip voltage, 1 MHz
repetition rate, optical setup ’two’ – automated).
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The emission process is strongly dependent on tip alignment. When the data shown

in Figure 4.6 was taken, the nanotip was probably out of laser focus. In contrast to

the figures described above, it does not show any transition to another emission regime.

Multiphoton photoemission with an effective nonlinearity of 3.3 is dominant until the

intensity suddenly drops off at highest pulse energies. At the same measured laser power

the peak intensity at the apex was not high enough to enter the optical field emission

regime. The sudden drop can be explained by a drift of the laser focus due to the

automation of optical setup ’one’ as explained in section 3.4.
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Figure 4.6: Measurement similar to the ones shown above. Photoemission with an effective
nonlinearity of n = 3.3 is the dominating process, no transition to optical field
emission is visible. Probably the tip was differently aligned than in the measure-
ments shown before. The sudden drop at highest pulse energies originates from
the problems with the automation in optical setup ’one’, as explained in section
3.4. (Settings: −200 V tip voltage, 1 MHz repetition rate, optical setup ’one’ –
automated)

4.3 Laser fluence dependency of image sharpness

This section discusses the influences of high laser fluences on the image sharpness. As

described in Section 4.1, the edge width of an empty copper grid, represented by the

standard deviation sigma of an error function, fitted to the intensity profile across that

edge, is used as an indicator for image sharpness. Figure 4.7 shows sigma as a function

of incident laser pulse energy. Sigma stays constant up to a pulse energy of ≈ 1 nJ, from

where it starts to increase. Most likely, this shows the transition to the emission of more

than one electron per pulse, inducing space charge broadening. The drop-off at highest
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pulse energies again originates from the drifting laser focus, induced by the automated

optical setup ’one’.

Space charge broadening is solely dependent on the number of electrons emitted. The

image intensity directly correlates with the electron intensity and thus with the number of

electrons emitted. A plot against laser pulse energy is very sensitive to tip alignment and

focus drift, as electron emission is a nonlinear process. Plotting against image intensity

instead, overcomes these influences. In Figure 4.8, sigma is plotted directly against the

image intensity from Figure 4.6, cancelling the drop-off due to reduced electron emission.

The space charge broadening follows a linear dependency.
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Figure 4.7: Sigma as a function of laser pulse energy. Smaller sigma means sharper image.
Up to a pulse energy of 1 nJ image sharpness is constant. Above, it starts to
decrease. This is caused by space charge broadening, which emerges at electron
pulses containing more than one electron. Hence, the onset of image blurring
shows the transition through the single-electron regime. The drop-off at highest
pulse energies originates from the reduced electron emission, observed in Figure
4.6.
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Figure 4.8: Sigma as a function of image intensity instead of pulse energy. Space charge
broadening is solely dependent on the number of emitted electrons, for which
image intensity is a more direct indicator. It skips the nonlinear photoemission
process, which makes it insensitive to alignment and drifts, canceling the drop-off
due to the reduced electron emission visible in Figure 4.7.
Left: logarithmic x-scale.
Right: linear x-scale.
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4.4 Comparison between repetition rates

As space charge broadening is dependent on the number of emitted electrons per pulse,

a higher laser repetition rate should increase the mean image intensity without affecting

the image sharpness. Figure 4.9 compares image intensity- and image sharpness plots

for 200 kHz, 500 kHz and 1 MHz, normalized to a single pulse. In theory, the graphs

should overlap perfectly, but they slightly mismatch due to drifts in the setup.
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Figure 4.9: Image intensity per pulse and image sharpness versus laser pulse energy. The
plots do not overlap perfectly because of drifts in the setup.

Figure 4.10 shows sigma versus the image intensity, which again circumvents the depen-

dency on tip alignment. On the left, sigma is plotted against the image intensity per

pulse and all graphs overlap, as expected. On the right it is plotted against the mean

image intensity. At higher repetition rates, image sharpness reduces at a higher image

intensity compared to lower repetition rates.
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Figure 4.10: Plotting sigma against image intensity uncouples the plots from laser focus
drifts.
Left: sigma versus image intensity per pulse. Because sigma is solely dependent
on electrons emitted per pulse, the graphs overlap.
Right: sigma versus mean image intensity. Higher repetition rates lead to
sharper images at the same intensity.

4.5 Image intensity versus tip current

To know the absolute number of electrons emitted per laser pulse, a Keysight B2987A

Electrometer was used to directly measure the current flowing through the tip. The

number of electrons per pulse can be derived by dividing the current by the repetition

rate and the electron charge.

Figure 4.11 shows the number of emitted electrons per pulse as a function of incident

laser pulse energy. The pink curve shows data from the electrometer, representing the

total number of electrons emitted by the tip. The green curve is the mean image inten-

sity (as in section 4.2), representing the fraction of the electrons that reach the detector.

It is normalized to match the electrometer data at the lowest pulse energy, which does

not mean that all emitted electron reach the detector. The two curves diverge with in-

creasing pulse energy. This indicates a change in the emission profile, as proportionally

more electrons are emitted outside the field of view of the detector.

Figure 4.12 shows sigma, as indicator for image sharpness and thus space charge broad-

ening, and the ratio between total emitted electrons and the electrons that reach the

detector. Clearly, both quantities are directly correlated, implying that the same effect
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that causes blurring of the image is also responsible for the change of the emission pro-

file. This can be explained by two possible scenarios:

Either, the sharpness reduction is caused by space charge broadening of electrons emit-

ted close to the center of the apex, i.e., from electrons that reach the detector. In this

case, their repulsion must be so strong, that the emission cone is significantly widened,

causing a change of the emission profile that correlates with the image blurring. This is

less likely to be the case, as very large changes of the emission angle would be required.

Bormann et al. [19] did not observe any widening of the emission cone at similar electron

counts per pulse.

Alternatively, increasing the laser pulse energy might lead to enhanced emission of elec-

trons from outer areas of the apex, i.e. electrons that do not reach the detector. They,

however, deflect the electrons emitted from the apex center that do reach the detector,

inducing the observed space charge blurring. This is more likely to be the case, as it

would explain the preferred direction of image blurring, shown in Figure 4.3. As ob-

served by Müller [3], intense emission of electrons can occur from the shadow side of the

apex which do not reach the detector without focusing of the electron beam. While this

could explain the blurring-character in some images, it is still unclear if this can also

explain the different patterns observed during the experiments.
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Figure 4.11: Number of electrons emitted per pulse versus the incident laser pulse energy.
Pink shows data obtained by a electrometer directly measuring the tip current.
Green was derived from the image intensity and normalized to match pink at
the lowest pulse energy. The increasing deviation between both curves shows a
change of the emission profile, as relatively more electrons are emitted, that do
not reach the detector.

1 2 3 4 5 6 7

laser pulse energy [nJ]

1.5

2

2.5

3

3.5

4

4.5

si
gm

a 
[p

x]

1

2

3

4

5

6

7

el
ec

tr
on

s 
to

ta
l /

 e
le

ct
ro

ns
 d

et
ec

to
r

Figure 4.12: Sigma, as an indicator for image sharpness (left y-axis) and the ratio between
the total number of electrons emitted and the electrons reaching the detector
(right y-axis). They show a strong correlation.

30



5 Summary and outlook

In this thesis, photoemission from a nanotip electron source is investigated, focusing

on optimal performance inside a femtosecond point-projection microscope. The usage

of a 0.2 to 2 MHz laser system allows for exceeding the single electron regime, which

makes space charge broadening of the electron pulses a considerable effect. To charac-

terize the regime of highest usable current while operating in the single electron limit,

the image intensity and image sharpness of the point-projection images are analyzed.

Changes in the power dependence show a transition from multiphoton photoemission

to optical field emission and the image sharpness decreases as the multi-electron pulse

regime is entered. Increasing the repetition rate allows for higher currents without space

charge induced blurring. The additional direct measurement of the tip current shows

an increasing deviation between the total number of electrons emitted and the number

of electrons reaching the detector. Increasing electron emission from the side of the

apex is suspected to cause both, this deviation and the space charge blurring visible in

the fsPPM images. This could be confirmed by experiments with a shorter tip-detector

distance, to achieve a larger field of view.

The tips used in this work are equipped with a grating coupler, 20 µm from the tip apex

(Figure 3.3), for the excitation of surface plasmon polaritons [14]. It can be used to re-

motely trigger electron emission without direct apex illumination. It is of high interest if

this could suppress the supposed emission of electrons from the edge of the apex. If so,

the fraction of electrons reaching the detector would be larger, leading to much higher

image intensities before entering the space charge regime.

While this work showed how space charge affects the spatial resolution of a fsPPM,

the effects on temporal resolution were not investigated. In a follow-up experiment,

our group performed pump-probe measurements of ultrafast photoemission from silver

nanowires at different tip currents. As tip electron emission entered the multi-electron

regime, the measured duration of the ultrafast process increased, indicating a reduction

of the temporal resolution due to space charge broadening.
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