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a b s t r a c t

The hMRI toolbox is an open-source toolbox for the calculation of
quantitative MRI parameter maps from a series of weighted im-
aging data, and optionally additional calibration data. The multi-
parameter mapping (MPM) protocol, incorporating calibration
data to correct for spatial variation in the scanner's transmit and
receive fields, is the most complete protocol that can be handled
by the toolbox. Here we present a dataset acquired with such a full
MPM protocol, which is made freely available to be used as a
tutorial by following instructions provided on the associated
toolbox wiki pages, which can be found at http://hMRI.info, and
j.neuroimage.2019.01.029.

llaghan).
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Specifications Table

Subject area Neuroimaging
More specific subject area Quantitative MRI, Mu
Type of data In vivo MRI data (Figs
How data was acquired 3T MRI, Siemens Pris
Data format NIfTI image volumes
Experimental factors A deliberate motion w

approximately the or
Experimental features No special treatment
Data source location Wellcome Centre for
Data accessibility Data is available at ht
Related research article Tabelow K, Balteau E,

A, Phillips C, Reimer E
toolbox for quantitati

Value of the data
� These data can be used as an educational tool
� These data can be used to develop and test no

human brain.
following the theory described in: hMRI e A toolbox for quanti-
tative MRI in neuroscience and clinical research [1].

© 2019 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
lti-Parameter Mapping (MPM)
. 1 and 2, Table 1)
ma
after defacing for anonymization (only)
as performed during the experiment after acquisition 9 and returned to

iginal position after acquisition 12.
was performed except to anonymise via SPMyUtilyDe-face Images.
Human Neuroimaging, London, UK
tp://hMRI.info
Ashburner J, Callaghan MF, Draganski B, Helms G, Kherif F, Leutritz T, Lutti
, Ruthotto L, Seif M, Weiskopf N, Ziegler G, Mohammadi S (2019). hMRI - A
ve MRI in neuroscience and clinical research. NeuroImage, in press [1].

for use in conjunction with the hMRI toolbox [1].
vel algorithms for estimating quantitative MRI (qMRI) parameters in the
1. Data

This dataset is comprised of imaging volumes (full list in Table 1) acquiredwith themulti-parameter
mapping quantitative MRI protocol. It consists of calibration data to map the transmit field (series 4),
main B0 field (series 5 and 6) and the net receive field (series 7, 8, 10, 11, 13 and 14). It also consists of
multi-echo volumes with variable flip angle (series 9 and 15) and additional magnetisation transfer
(MT) weighting (series 12).

A tutorial describing how to process the dataset with the hMRI toolbox is available at https://github.
com/hMRI-toolbox/wiki/MapCreation#example. From these data maps of the effective transverse
relaxation rate (R2*), the longitudinal relaxation rate (R1), proton density (PD) and magnetisation
transfer saturation (MT) can be generated.

The acquisition of these data was approved by the local ethics committee and informed written
consent was obtained from the participant prior to scanning. All data were acquired on a whole body
3T Prisma system (Siemens Healthineers, Erlangen, Germany). The data were acquired using the body
coil for signal transmission and a 64 channel coil for signal reception.

2. Experimental design, materials, and methods

A summary of the data acquisition and experimental design is given in Table 1. The participant was
centred within the head coil at the outset of the exam.

2.1. B1
þ mapping data (image series No.4)

The scanning session began by acquiring calibration data (Fig. 1a, mfc_seste_b1map_v1e_004) to
measure B1þ following a previously published method [2,3]. Eleven spin-echo and stimulated-echo

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/hMRI-toolbox/wiki/MapCreation#example
https://github.com/hMRI-toolbox/wiki/MapCreation#example
http://hMRI.info


Table 1
Image series number, showing the chronology of the acquisition, together with the sequence name and the data description.

Image Series No. Sequence Name Description

4 mfc_seste_b1map_v1e B1
þ Mapping Data

5 gre_field_mapping_1acq_rl B0 Mapping Magnitude
6 gre_field_mapping_1acq_rl B0 Mapping Phase Difference
7 mfc_smaps_v1a_Array Net Receive Sensitivity Mapping of Array
8 mfc_smaps_v1a_QBC Net Receive Sensitivity Mapping of Body Coil
9 pdw_mfc_3dflash_v1i_R4 Lower flip angle multi-echo FLASH
Participant moved to new position via primary rotation about z
10 mfc_smaps_v1a_Array Net Receive Sensitivity Mapping of Array
11 mfc_smaps_v1a_QBC Net Receive Sensitivity Mapping of Body Coil
12 mtw_mfc_3dflash_v1i_R4 FLASH acquisition with MT pre-pulse
Participant returned to approximate alignment with the original position
13 mfc_smaps_v1a_Array Net Receive Sensitivity Mapping of Array
14 mfc_smaps_v1a_QBC Net Receive Sensitivity Mapping of Body Coil
15 t1w_mfc_3dflash_v1i_R4 Higher flip angle multi-echo FLASH
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pairs were acquired with the nominal flip angle (i.e. a in an a-2a-a sequence) varying from 115� to 65�

in 5� decrements (Fig. 1a). These data were acquired with 4mm isotropic resolution using a 3D-EPI
readout with a 0.5 ms echo spacing. The sequence had an echo time of 39.06 ms, a mixing time of
33.8 ms and a repetition time (TR) of 500 ms. The field of view (FoV) was 256 (anterior-posterior, AP) x
192 (right-left, RL) x 192 (head-foot, HF) mm3. Partially parallel imaging with a speed up factor of 2 was
used in each phase-encoded direction. A fully sampled volume was acquired at the outset to serve as
the auto-calibrating lines for subsequent reconstruction of the aliased data using the GRAPPA algo-
rithm [4] as implemented in the vendor's software. The primary phase-encoded direction of the EPI
readout was right-left. The total acquisition time was 3 minutes.

2.2. B0 mapping (image series No.5e6)

To correct for geometric distortions in the B1
þ mapping data caused by the low bandwidth in the

phase-encoded direction of the EPI readout (RL), additional data were acquired to map the
Fig. 1. Calibration data to map the transmit field, B1
þ. Eleven spin echo and stimulated echo pairs were acquired (for robustness to

low SNR regions) with different nominal flip angle (a). These data were acquired with an EPI readout. To correct for resulting
geometric image distortions, additional calibration data mapping spatial inhomogeneity in the main magnetic field were also ac-
quired (b).
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inhomogeneity of the B0 field (gre_field_mapping_1acq_rl) and subsequently used to apply distortion
correction on the B1þ calibration data. These datawere acquiredwith 3mm effective isotropic resolution
using a multi-echo gradient echo sequence with an excitation flip angle of 90�, a TR of 1.02s and a
bandwidth of 260 Hz/pixel. Magnitude images with echo times of 10.00 and 12.46 ms respectively
(gre_field_mapping_1acq_rl_0005) were reconstructed together with their phase difference (gre_-
field_mapping_1acq_rl_0006) by the vendor's software (Fig.1b). The acquisition timewas 2minutes 14
seconds.
2.3. FLASH acquisitions (image series No 9, 12 and 15)

These were followed by the acquisition of spoiled multi-echo 3D fast low angle shot (FLASH) ac-
quisitions with predominantly PD, MT or T1 weighting (Fig. 2, pdw_mfc_3dflash_v1i_R4_0009,
mtw_mfc_3dflash_v1i_R4_0012 and t1w_mfc_3dflash_v1i_R4_0015 respectively). Each multi-echo
FLASH volume had a TR of 25 ms.

The PD-weighting was achieved with an excitation flip angle of 6�. The flip angle was increased to
21� to achieve T1-weighting. MT-weighting was achieved by applying a Gaussian RF pulse 2 kHz off
resonance prior to excitationwith a flip angle of 6�. The off-resonance MT saturation pulse was 4 ms in
duration and had a nominal flip angle of 220�.

Each of these volumes were acquired with whole-brain coverage using a FoV of 256 (HF) x 224 (AP)
x 179 (RL) mm3. Gradient echoes were acquired with alternating readout gradient polarity at eight
equidistant echo times ranging from 2.30 to 18.40 ms in steps of 2.30 ms using a readout bandwidth of
488Hz/pixel. Only six echoes were acquired for the MT-weighted acquisition in order to maintain a TR
of 25 ms for all FLASH volumes. To maximise spoiling of the transverse magnetisation, each FLASH
volume was acquired with RF spoiling using a linear phase increment of 137�. In addition, a spoiling
gradient moment, which imposed a 6p dephasing moment across a voxel dimension, was applied
along the readout direction after the last echo had been acquired. To accelerate the data acquisition,
partially parallel imaging was employed in each phase-encoded direction (AP and RL) with a speed up
factor of 2 and forty integrated auto-calibrating lines in each direction for subsequent reconstruction
Fig. 2. The main MPM protocol consists of three high resolution, multi-echo, 3D FLASH volumes with proton density (PD), mag-
netisation transfer (MT) and T1 weighting. Prior to each high resolution acquisition shorter, low resolution, single echo acquisitions
were acquired to map the net receive field sensitivity of the array coil, which will vary if inter-scan motion occurs (c.f. PD-weighted
v's MT-weighted).



Fig. 3. Orthogonal views of the quantitative multi-parameter maps magnetisation transfer saturation (a), proton density (b),
effective transverse relaxation rate (c) and longitudinal relaxation rate (d), derived from this dataset using the hMRI toolbox.
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with GRAPPA [4]. The acquisition time for each FLASH volume was 7 minutes 8 seconds. Each dataset
was acquired with a 30� rotation of the sagittal plane so that any eye-related motion artefact propa-
gated to the neck/inferior cerebellum rather than the cortex.

2.4. Net receive sensitivity mapping of array (image series no. 7, 10 and 13) and body coil (image series no. 8,
11 and 14)

Prior to the acquisition of each FLASH volume described above, two additional unaccelerated, low
resolution (8 mm isotropic) volumes were acquired with the same FoV (Fig. 2). A single echo, with a TE
of 2.20 ms, was acquired in each case using a 6� flip angle and a TR of 6.00 ms. The acquisition time for
each of these calibration volumes was 5.90 seconds. The first was obtained using the 64 channel coil for
signal reception (mfc_smaps_v1a_Array*), while the second was acquired using the body coil for signal
reception (mfc_smaps_v1a_QBC*). These data were acquired to correct for the relative receive field
sensitivity of the array coil, which will be position-specific [5].

2.5. Deliberate inter-scan motion

After the PD-weighted acquisition had been acquired, the participant performed a yaw rotation (i.e.
about the z-axis) while the scanner was not running (see Table 1). The amplitude of the motion aimed
to be as large as possible within the confines of the 64 channel coil.

This was done to be able to test the performance of the inter-scan motion correction scheme that
accounts for position-specific modulation by the receiving coil. After the participant had moved
sensitivity mapping data (image series 10e11) were acquired followed by acquisition of the MT-
weighted dataset (image series 12).

The participant then returned to approximately the original position (i.e. that of the PD-weighted
acquisition, centred within the head coil), again while the scanner was not running. Then, sensitivity
mapping data (image series 13e14) were acquired followed by acquisition of the T1-weighted dataset
(image series 15).

2.6. Processing

Prior to sharing, the DICOM images produced by the scanner were converted to NIfTI format using
the DICOMImport utility as implemented in the hMRI toolbox ([1], http://hMRI.info). The NIfTI data
were subsequently anonymised using the defacing utility as implemented in SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/) in order to comply with General Data Protection Regulation (GDPR) regulations.

Following anonymization, the data were processed using the “Create hMRI maps” module of the
hMRI toolbox. This module is accessed via the SPM batch menu via: SPM-Tools-hMRI Tools-Create
hMRI maps. The processing included correction for receive field modulation as described in Papp et al.

http://hMRI.info
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
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[5], transmit field inhomogeneity [2,3] and imperfect RF spoiling correction [6]. The batch module,
together with the toolbox configuration file are also supplied. Orthogonal views of the resulting maps
are shown in Fig. 3. All outputs from this module, including the supplementary results (B1

þ and B1�

maps, and signal intensities for each contrast extrapolated to TE ¼ 0 ms) and all meta-data (processing
log, json files, and quality assurance (QA) metrics), are provided.
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