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KURZFASSUNG

Gerüstproteine, beispielweise Proteine der Bin/Amphiphysin/Rvs (BAR) Domänen Fam-
ilie, vermitteln und regulieren durch ihre Membranbindung und Selbstorganisation die
Verformungen von Zellmembranen. Die quantitative Charakterisierung der Interaktionen
von synthetischen Gerüst-Molekülen mit Lipidmembranen unter kontrollierten Bedingun-
gen kann fundamental zu unserem Verständnis der physikalischen Prinzipien beitragen,
die diesen Membranverformungsphänomenen zugrunde liegen. In dieser Arbeit wurde da-
her die DNA-Origami-Technologie verwendet, um Funktionselemente zu schaffen, die die
physikalischen Eigenschaften von Gerüstproteinen aufweisen und Lipidmembranen kon-
trolliert deformieren können.

Zunächst wurden die Vorrausetzungen bestimmt, unter denen stark negativ geladene DNA
Nanostrukturen effizient an Membranen binden. Ich zeige, dass Cholesterin-Anker, die
nahe an den sperrigen DNA Nanostrukturen positioniert sind, lokal an der Membran-
bindung gehindert sind, und dass das Vorhandensein mehrere Cholesterin-Anker oder
das Einführen von DNA-„Abstandshaltern“ die Membranbindung verstärkt. Fluoreszenz-
Korrelations-Spektroskopie (FCS) Daten zeigen, dass sowohl die Anzahl als auch die Art
der DNA-„Abstandshalter“ die Interaktionen der DNA-Nanostrukturen mit Lipiddoppel-
membranen bestimmen. Zusätzlich zu Experimenten mit Doppelmembranen haben wir
auch die experimentellen Bedingungen für FCS Experimente etabliert, die die Interaktio-
nen von Makromolekülen und Lipidfilmen untersuchen.

Untersuchungen der Selbstorganisation von DNA-Origami-Nanostrukturen auf Lipidmem-
branen mittels Hochgeschwindigkeits-Atomkraftmikroskopie (HSAFM) haben aufgedeckt,
dass per se rein repulsive DNA Nanostrukturen auf Lipidmembranen sowohl Spitze-an-
Spitze als auch Seite-an-Seite Kontakte ausbilden, und sich damit anisotropische Domänen
bilden. Die bevorzugte Art der Interaktion hängt von der Oberflächendichte der Teilchen
und damit der Membranspannung ab. Ich zeige auch, dass man DNA-Nanostrukturen
nutzen kann, um 2D Phasenübergänge (iso- zu anisotrop) von Teilchen verschiedener As-
pektverhältnisse zu untersuchen.

Zuletzt verwenden wir DNA-Nanostrukturen, um Lipidmembrane zu verformen und dabei
die Funktionen von Gerüstproteinen nachzuempfinden. Wir zeigen, dass Lipidmembra-
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nen von gekrümmte DNA-Gerüsten Tubus-förmig geformt werden, die damit nicht nur die
Form, sondern auch die Wirkung von BAR Proteinen nachstellen können. Die Verformung
der Lipidmembran korrelierte mit der Krümmung der DNA-Gerüste und deren Dichte auf
der Membran. Um Membranen dynamisch und kontrolliert verformen zu können, habe
ich eine DNA-Origamistruktur entworfen, die drei Zustände hat, und die von ihrer pas-
siven in ihre Membran-verformende Konformation geschaltet werden kann. Um das Design
zu optimieren wurde ein komplementärer Ansatz in Form von oxDNA Molekül-Dynamik-
Simulationen (MD Simulationen) und Transmissionselektronen-mikroskopie (TEM) ver-
wendet.
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ABSTRACT

Membrane-binding and self-organization of scaffolding proteins, e.g. Bin/Amphiphysin/Rvs
(BAR) domain family, mediates and regulates the shape transformations of cell membranes.
The quantitative characterization of the interaction of synthetic scaffolds with lipid mem-
branes in defined conditions will greatly add to our understanding of the fundamental
physical principles driving membrane-shaping phenomena. In this work, DNA origami
technology was used to create elements that bear physical features of scaffolding proteins
and controllably shape lipid membranes.

First, I determined the requirements for efficient membrane-binding of highly negatively
charged DNA nanostructures. I show that cholesteryl-anchors positioned close to the bulky
DNA nanostructures are locally hindered, and that multiple cholesteryl-anchors or DNA
spacers can enhance membrane binding. Fluorescence correlation spectroscopy (FCS) data
demonstrates that both the number and type of DNA spacer determine the interaction of
DNA nanostructures with lipid bilayers. In addition to bilayers, we established conditions
for FCS experiments investigating macromolecule-lipid monolayer interactions.

Studies of the self-organization of DNA origami nanostructures on lipid membranes using
high speed atomic force microscopy (HSAFM) revealed that both tip-to-tip and side-by-
side interactions, and the resulting anisotropic domains, are observed on lipid membranes
for per se purely repulsive DNA nanostructures. The preferred type of interaction depends
on the particle surface density and thus membrane tension. I also demonstrate the use of
DNA nanostructures for the study of isotropic-anisotropic phase transition of particles of
different aspect-ratios in 2D.

Last, we employ DNA nanostructures to shape lipid membranes, mimicking the function of
scaffolding proteins. We show that curved DNA scaffolds tubulate lipid membranes, resem-
bling not only the shape but also the action of BAR proteins. Lipid membrane deformation
was correlated to the DNA scaffolds’ curvature and membrane density. To dynamically
control membrane shaping, I present the design of a three-state DNA origami structure
that can be switched from its passive to its active membrane-shaping conformation. A
complementary approach of oxDNA molecular dynamic simulations (MD simulations) and
transmission electron microscopy (TEM) imaging was used to optimize the design.
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I

INTRODUCTION AND OUTLINE

Biological membranes are fundamental cellular entities whose curvature varies from pre-
dominantly flat in the plasma membrane to highly curved in the endoplasmic reticulum
or the Golgi apparatus. Shaping of membranes into structures with different curvatures
takes place in the most fundamental processes in living cells, e.g. cell division, organelle
formation, endocytosis. Previously, several force sources that act on biological membranes
inducing curvature have been identified [Baumgart et al., 2011, McMahon and Gallop,
2005,Prinz and Hinshaw, 2009] (see section II.1.3). Although scaffolding elements are one
common feature to most curvature-generating processes, the fundamental physical princi-
ples underlying membrane bending phenomena are not yet fully understood.

A classic example of such scaffolds that imprint their shape on lipid membranes are the
banana-shaped dimers of proteins from the Bin/Amphiphysin/Rvs (BAR) domain super-
family [Qualmann et al., 2011]. Recent studies that used the BAR family as a model protein
system, emphasized the relevance of physical-chemical foundations for membrane bend-
ing [Simunovic et al., 2015,Traub, 2015]. Taking this into account, it is tempting to take
a synthetic biology approach [Schwille and Diez, 2009, Schwille, 2011] to engineer a min-
imal nanotechnological element that bears the physical features of membrane-scaffolding
proteins. Through such an approach, one can identify the minimal set of requirements
necessary to shape lipid membranes and extend the current knowledge of highly complex
biological processes.

The aim of this thesis was to design a DNA-based synthetic scaffold that can
mimic the unique and inherent properties displayed by natural membrane-
shaping scaffolds, and thus can induce local membrane curvature. The DNA
origami technique (see section II.2.3) appeared to be the perfect tool for such task. Based
on the arrangement of thousands of nucleotides with subnanometer-precision, DNA origami
was used to produce structures of defined shapes [Rothemund, 2006,Douglas et al., 2009a,
Dietz et al., 2009]. DNA nanostructures were further modified in order to regulate their
hydrophobicity as well as their conformational changes [Czogalla et al., 2016]. Focusing on
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I. Introduction and outline

understanding the physical basis of scaffold action in membrane-shaping, these constructs
were quantitatively characterized in lipid membrane model systems (see section II.1.4) to
address the following key questions:

1. Can one control the membrane binding and diffusion of DNA origami
nanostructures? (Chapter III)

In recent years, DNA origami has been used to design amphipathic nanostructures
with rather complex functions (see section II.2.4) [Czogalla et al., 2016, Göpfrich
et al., 2018]. Nonetheless, the specific requirements for membrane binding have not
been previously systematically assessed. In this thesis, I extensively studied the
effects of the number, positioning and type of anchors based on cholesterol modified
with a tetra-ethylene glycol linker (chol-TEG), one of the most popular hydrophobic
modifications, on membrane binding and diffusion of DNA origami nanostructures.

2. How do DNA origami nanostructures organize on lipid membranes? (Chap-
ter IV)

It has been proposed that scaffold-dependent shaping of lipid membranes is initiated
by membrane-assited self-organization of membrane-bound proteins into anisotropic
phases [Ramakrishnan et al., 2013,Simunovic et al., 2013a,Cui et al., 2013,Lipowsky,
2013]. The resulting protein "domains" enhance the effect of individual proteins
in generating local curvature. However, no direct evidence for this initial self-
organization has been found so far. In this thesis, I proposed to study in real-time
the organization of purely repulsive rodlike DNA nanostructure on lipid bilayers us-
ing high speed atomic force microscopy (HSAFM), as a first approximation to this
problem.

3. Can DNA-based scaffolds mimic BAR proteins’ function and shape lipid
membranes? (Chapter V)

Here, we designed DNA origami nanostructures with shapes mimicking those of scaf-
folding proteins. First, we studied the effect of curved shapes, resembling those of
proteins of the BAR domain family [Qualmann et al., 2011], on lipid membranes (Sub-
chapter V.1). Second, we designed a DNA nanostructure that can actively change its
conformation, similarly to what is described for dynamin [Doherty and McMahon,
2009,Schmid and Frolov, 2011], in order to dynamically control and manipulate lipid
membrane shaping (Subchapter V.2).
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II

BASIC CONCEPTS

II.1 Lipid membranes

II.1.1 Cellular membranes

Lipids are a class of molecules essential for life, whose function is nowadays recognized
to exceed the simple formation of membranes, as physical barriers that enclose cellular
compartments [Gennis, 2013]. More specifically, cellular membranes are rather sophisti-
cated organelles themselves, which directly or indirectly participate in a variety of cellular
processes, such as protein and lipid synthesis, metabolite transport and signal transduc-
tion [Mouritsen and Bagatolli, 2015].

Since the acknowledgement of the complexity of biological membranes and their interplay
with proteins by Singer and Nicolson, with the proposal of the fluid mosaic model [Singer
and Nicolson, 1972], several models have been brought forward to describe at least frac-
tions of membrane function [Nicolson, 2014, Kusumi et al., 2012, Lingwood and Simons,
2010]. Such models take into account the structural diversity, asymmetric lipid distribution
between leaflets and lateral heterogeneity of lipid bilayers [de Almeida and Loura, 2004].

Generally, it is widely accepted that the cell membrane is composed of a lipid bilayer (two
antiparallel lipid leaflets) [Gorter and Grendel, 1925] that contains almost 50 % w/w of
proteins in its lipid core [Singer and Nicolson, 1972]. Furthermore, lipids and proteins
show transient structural and functional heterogeneity at the nanometer scale, as firstly
proposed by the so called ‘lipid-raft model’ [Simons and Ikonen, 1997].

3



II. Basic concepts

II.1.2 Principle of membrane formation and organization

The naturally occurring fats, waxes, sterols, vitamins, mono-, di- and triglycerides and
phospholipids are all part of the group of amphipathic molecules that we call lipids. The
composition of lipid membranes is highly variable, not only between species but also be-
tween tissues in the same organism. Furthermore, even within the same lipid bilayer, lipids
are asymmetrically distributed across both leaflets. Nonetheless, generally the major com-
ponents of lipid membranes are phospholipids and sterols (Figure II.1A). [Harayama and
Riezman, 2018]

Membranes are the result of the spontaneous self-organization of lipid molecules. Amphi-
pathic in their nature, lipids have one polar group, which coordinates preferentially with
the water (hydrophilic) and one non-polar group, which is buried in the hydrophobic core
of the bilayer. Additionally, the shape of the lipid molecules plays an important role in
membrane assembly. The shape of lipids is theoretically characterized by the "shape factor"
S [de Almeida and Loura, 2004]:

S = V

A0LC
(II.1)

where V is the volume of the molecule, A0 is the "optimal" area of the lipid headgroup
taking into account its dimensions and protonation state, while LC is the length of the
straight acyl chain. Depending on S, lipids will spontaneously form different structures
(Figure II.1B): inverted micelles (also called HII phase) for S > 1 (conical shape); for S =
1 (cylindrical shape), lamellar structures; and micelles for S < 1 (inverted conical shape).
In nature, however, membranes are formed by a wide variety of lipid species of different S
and thus it is possible to form lamellar structures.

Temperature influences the properties of the lamellar phase formed by lipids. In result,
different lipid phases can be distinguished (Figure II.2): fluid or liquid disordered (ld), gel
phase or ordered solid (gel) and liquid ordered phase (lo). Under physiological conditions,
the lipid bilayer is in the ld phase and lipid molecules show high lateral mobility. As lipid
chains are mostly in the gauche conformation or have cis-double bonds, lipids in the bilayer
are loosly packed [de Almeida and Loura, 2004]. Below the phase transition temperature
(Tm), lipids become tightly packed and their lateral diffusion is almost completely arrested,
marking the gel phase. Due to the difference in lipid packing, the gel phase appears to

4



II.1 Lipid membranes

Figure II.1: Structural characteristics of lipid molecules. A) Structure of represen-
tative molecules of common lipid groups: top - general structure of phosphatidylcholines
and bottom - cholesterol. The amphipathic nature of lipids is highlighted: in red, hy-
drophobic regions and in blue, polar areas. B) Schematic representation of lipids with
different shape factor S: cone shape, cylindrical shape and inverted cone shape for S >
1(left), S = 1 (center) and S < 1(right), respectively.

be thicker in comparison to the ld phase. Importantly, this phase transition is accompa-
nied by changes in other physical properties of the lipid bilayer, such as the membrane
Young’s modulus [Jadidi et al., 2014] and bending rigidity κ [Dimova et al., 2000,Mecke
et al., 2003,Dimova, 2014]. Notably, in lipid mixtures different phases can coexist due to
the distinct thermotropic properties of individual lipid species. The special case of the
intermediate lo phase is characterized by a high lipid order in which lipid diffusion is re-
tained [Chiantia et al., 2006]. While gel and ld phases are found for all pure lipids, the lo
phase is characteristic of mixed bilayers containing sterols.

II.1.3 Membrane shaping

Cellular membranes are dynamic and heterogeneous in their shape [McMahon and Gallop,
2005]. For example, many important cellular processes such as cell division and organelle
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Figure II.2: Lamellar phases of lipid bilayers. Schematic representation of different
lipid bilayer phases: A) gel phase or ordered solid (gel), B) liquid-disordered (ld) and C)
liquid-ordered phase (lo). Green ovals represent cholesterol molecules.

formation, viral budding, cellular trafficking and specific types of signalling are dependent
on the capacity of lipid membranes to be sculped. The induction and stabilization of
membrane curvature depends on the interplay between lipids and proteins and may involve:
changes in lipid composition, structural rearrangements of integral membrane proteins,
activity of cytoskeletal and motor proteins, scaffolding by peripheral membrane proteins
and/or active helix insertion into membranes. Generally, the deformation of membranes
starts with the anchoring or insertion of specific proteins into the lipid bilayer. Locally,
defects and curvature are generated, due to the resulting destabilization of the preformed
membrane tension. Subsequently, organization of proteins near the perturbed membrane
region will promote the formation of special shapes, such as buds or tubes [Prinz and
Hinshaw, 2009,Baumgart et al., 2011].

II.1.3.1 Scaffolding proteins

A common feature involved in most membrane curvature generating proteins are scaffolding
elements [Prinz and Hinshaw, 2009,Baumgart et al., 2011]. One such example of scaffold-
ing are the proteins from the Bin/Amphiphysin/Rvs (BAR) domain family [Qualmann
et al., 2011,Zimmerberg and McLaughlin, 2004,Frost et al., 2008]. BAR proteins dymerize
to form characteristic banana-shaped scaffolds that presumably sense and stabilize local
membrane curvature [Frost et al., 2008,Qualmann et al., 2011,Bhatia et al., 2010,Madsen
et al., 2010]. BAR proteins bind lipid membranes through electrostatic or hydrophobic in-
teractions [Qualmann et al., 2011]. Furthermore, they were shown to tubulate membranes
in vitro [Baumgart et al., 2011,Drin and Antonny, 2010]. Importantly, different families of
BAR modules adopt shapes with different degrees of curvature (C ≈ 10−100µm−1) [Qual-
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mann et al., 2011, Frost et al., 2008]. Thus, BAR proteins are believed to rely on their
curved shape for their function.

Another classical example of membrane-scaffolding is the clathrin-dependent endocytosis.
Through interaction with several adaptor proteins, clathrin forms an exoskeleton able to
bend and invaginate membranes from the inside of cells [Doherty and McMahon, 2009].
This process is also dependent on several other scaffolding proteins, such as BAR domain
proteins and the guanosine triphosphate (GTP)ase dynamin. This protein binds to phos-
phatidylinositol phospholipids through plekstrin-homology (PH) domains, polymerizes into
a helical coat and constricts the neck of growing endocytic pits, leading to membrane fis-
sion [Pawlowski, 2010, Schmid and Frolov, 2011,Ferguson and De Camilli, 2012]. Several
models were suggested in which concerted GTP hydrolysis and conformational changes in
the dynamin oligomer, including constriction, extension, torsion, twisting or other move-
ments, will lead to the physical cleavage of the enclosed lipid tube and to its final vesicula-
tion [Roux et al., 2010,Pawlowski, 2010,Schmid and Frolov, 2011,Ferguson and De Camilli,
2012].

II.1.3.2 Energetics of membrane shaping

Shaping of lipid membranes has been theoretically described by the Helfrich-Canham-Evans
elastic membrane model (or spontaneous-curvature model (SC model)) [Helfrich, 1973]:

E = κ

2

∫
dA(C1 + C2 − C0)2. (II.2)

Here, E is the energy necessary to bend a membrane segment of area A, such that the
principal curvatures of the membrane surface are C1 and C2. For a membrane tube,
C1 = 1/R and C2 = 0, where R is the radius of the tubule, while for a spherical surface
C1 = C2 = 1/R, where R is the radius of the sphere. E further depends on the spontaneous
curvature C0, which reflects the asymmetry of the lipid bilayer (for homogeneous symmetric
bilayers C0 = 0), and the membrane bending rigidity κ. For 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) membranes, as the ones used in this thesis, κ at room temperature
was assumed to be 23.1kBT [Fa et al., 2007].

Notably, in the SC model the membrane is considered to be infinitely thin in comparison to
the overall membrane surface (in our case, correlated to the vesicle size). Practically, the
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lipid bilayer has a finite thickness, which results in the compression of the negatively curved
leaflet, while the positively curved leaflet is expanded. Consequently, an energetic penalty
arrises from the area difference between leaflets. Thus, the Area-difference elasticity model
(ADE model) [Miao et al., 1994] was introduced to refine the SC model by a respective
term for the area mismatch of both leaflets:

E = κ
(1

2

∫
dA(C1 + C2 − C0)2 + α

2
π

AD2 (∆A−∆A0)
)
. (II.3)

Here, in the second term ∆A is the differential monolayer area, determined by the difference
in the number of molecules between the leaflets, and ∆A0 its value at equilibrium. D is the
membrane thickness and α = κ̄/κ, with κ̄ being the non-local bending rigidity modulus.
Generally, α is estimated to be in the order of unity and the approximation α = 3/π [Seifert
and Lipowsky, 1995] was used in this thesis.

II.1.4 Lipid systems for in vitro studies

Protein-lipid interactions are the result of a highly complex interplay of a manifold of
parameters. For example, electrostatics, membrane curvature and steric hindrances, to
name only a few, can affect the binding of a protein to a membrane. Studies of proteins
themselves, protein-protein and protein-membrane interactions in the cellular environment
are thus rather difficult to perform and interpret. Moreover, in vivo systems are intrinsically
highly variable.

In the last few decades, a number of in vitro methods have been developed, aiming to
reduce the complexity of the studied systems to their essentials. The study of membrane-
associated processes under defined and controlled conditions is enabled by several mem-
brane model systems [Lagny and Bassereau, 2015]. The choice of the used membrane model
system is dependent on the biological question of interest, as each of them bare advantages
and disadvantages related to their structure (lipid mono- or bilayer, uni- or multilamellar),
curvature or used membrane support.

In this thesis, three different model systems have been used: supported lipid bilayers (SLBs)
(section II.1.4.1), lipid monolayers (section II.1.4.2) and giant unilamellar vesicles (GUVs)
(section II.1.4.3).
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II.1.4.1 Supported lipid bilayers

SLBs are planar membranes with an ideal thickness of a single bilayer. In this thesis,
SLBs are formed by fusion and rupture of small unilamellar vesicles (SUVs) on a flat
surface (such as mica or glass), typically in the presence of divalent cations. Alternatively,
SLBs can be deposited by Langmuir-Blodgett transfer [Castellana and Cremer, 2006] or
spin coating [Thormann et al., 2007] on a hydrophilic surface. Although SLBs are a
perfect membrane model system for surface or contact methods, such as quartz crystal
microbalance with dissipation monitoring (QCMD), surface plasmon ressonance (SPR)
or atomic force microscopy (AFM) (II.4.3), additional interactions with the support may
influence the studies [Dertinger et al., 2006,Macháň and Hof, 2010].

II.1.4.2 Lipid monolayers

Langmuir lipid monolayers are formed by deposition of lipids on the air-water interface or
over an available surface. Due to their amphipathic nature, the lipid molecules re-organize
themselves into a single lipid layer such that, on an air-water interface, the more hydrophilic
part of the molecule coordinates with the water subphase whereas the hydrophobic part
sticks out towards the air. Although the system lacks essential features of a biological
membrane, it enables the fine tuning of lipid packing, a parameter of great relevance for
lipid-protein interactions that is hardly accessible in bilayer assays.

In classical Langmuir lipid monolayers, the lipid packing is controlled by mechanical com-
pression of the lipid monolayer. The change in lipid packing can be monitored by the
change in surface pressure π, measured through a Wilhelmy plate (thin plate of platinum
or ash-free filter paper) or a dyne probe attached to a micro-balance and immersed in the
acqueous subphase.

Typically, the Langmuir-Blodgett troughs used in lipid monolayer experiments require large
sample volumes (of order of tens of mL per sample). Since the introduction of miniaturized
chambers [Chwastek and Schwille, 2013], lipid monolayers are of easy handling and require
considerably smaller volumes (hundreds of µL), making monolayers compatible with pro-
tein systems purified on lab scale. In this setup, the lipid packing is no longer controlled
by mechanical compression, but rather by controlling the amount of lipids deposited on
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the air-water interface.

Importantly, complex biological networks have been successfully reconstituted using this
model system [Vogel et al., 2013, Zieske et al., 2016]. For example, in this thesis (see
Appendix A [Vogel et al., 2017]) lipid monolayers have been used to study the action of a
minimal actin-myosin network on the organization of lipid domains. We showed that the
addition of myosin to the system induces shape change, fusion and fission of lipid domains.

II.1.4.3 Giant unilamellar vesicles

GUVs are one of the most popular models of free-standing lipid bilayers. This class of
liposomes has sizes ranging from 5 to 100 µm. Thus, in the opposition of smaller liposomes
(SUVs and large unilamellar vesicles (LUVs)), GUVs are quasi-planar at the length scale
of a number of biological molecules and processes. Generally, GUVs can be produced by
electroformation [Angelova and Dimitrov, 1986] at high yields under several salt conditions
and are stable over long periods of time [Jørgensen et al., 2017].

II.2 Deoxyribonucleic acid (DNA)

II.2.1 DNA in a biological context

In living organisms, deoxyribonucleic acid (DNA) has a critical function as the informa-
tion storage and the functional code that enables cells to generate all other necessary
macromolecules and replicate themselves [Lehninger et al., 2005]. DNA molecules are long
polymers of four repeating nucleotides: adenine (A), thymine (T), guanine (G) and cy-
tosine (C) (Figure II.3). In these long molecules, genes encode for proteins, with each
combination of three nucleotides coding for one of the 20 amino acids that constitute pro-
teins. Due to its length, in cells DNA is usually packed in higher order structures, called
chromosomes.

DNA exists mainly as a right-handed double helix of antiparallel long polynucleotides, held
together by hydrogen bonds between base pairs(Figure II.3). This base pairing is specific,
such that A pairs with T, while G pairs with C. Base-stacking interactions among aromatic
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Figure II.3: DNA double helix. A) Schematic representation of the antiparallel DNA
double helix. B) The chemical structure of all four nucleotides (A, T, C and G) is shown.
Doted lines represent the hydrogen bonds established in base-pairing and stabilizing the
DNA double helix. Adapted from [Szabat et al., 2015] (a reprint permission has been
granted by the publisher).

bases and consequent minimization of the solvation shell contributes for the molecules sta-
bilization. Although usually present in its double-stranded form, the two DNA strands can
come apart to form two single-stranded DNA molecules. This DNA melting is temperature
dependent and strongly depends on the GC/AT content of the specific DNA duplex.

II.2.2 DNA in a physics context

DNA in its single- and double-stranded form can be treated as any other polymer [Phillips
et al., 2012]. The worm-like chain model (WLC model) describes polymers in function of
their persistence length (lp), which quantifies the stiffness of a polymer, i.e. it’s the measure
of the length scale over which a polymer is roughly straight. For single- and double-stranded
DNA the lp is 2.2 nm and 50 nm respectively [Smith et al., 1996,Bloomfield et al., 2000,Chi
et al., 2013,Tinland et al., 1997,Murphy et al., 2004]. The mean-square end-to-end distance
of a polymer 〈R2〉 is defined by:

〈
R2
〉

= 2l2p
(
L

lp
− 1 + eL/lp

)
. (II.4)
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In the limiting case of a stiff rod (L� lp) 〈R2〉 = L2, while for a flexible polymer (L� lp)
〈R2〉 = 2Llp.

Other models have further been developed to describe the properties of polymers [Phillips
et al., 2012]. In the freely-jointed chain model (FJC model), a flexible polymer can be
described as a chain of Kuhn segments with length b, connected by flexible links that
permit the adjacent segments to point in various directions. Taking this into account, the
countour length (L) of a polymer is given by L = Nb and the mean-square end-to-end
distance of a polymer can be calculated through 〈R2〉 = Nb2, where N is the number of
segments. From the comparison with the WLC model, comes that b = 2lp.

In this thesis, for short single- and double-stranded DNA (when L/lp is small), the WLC
model is considered to estimate 〈R2〉 (chapter III.2). However, for the thermodynamic
description of long single stranded DNA (L� lp), the modified freely-jointed chain model
(mFJC model) is used. In this model, the force F necessary to stretch the DNA molecule
to an end-to-end distance x can be calculated from:

x = L

(
coth( Fb

kBT
)− kBT

Fb

)(
1 + F

S

)
(II.5)

where b = 1.5 nm and S is the stretch modulus of single stranded DNA (800 pN) [Smith
et al., 1996]. This approximation was used to determine the force released by toehold-
mediated strand displacement mechanism in the chapter V.2.

II.2.3 DNA origami nanotechnology

In the early 1980s, Nadrian Seeman laid the conceptual foundations for DNA nanotech-
nology [Seeman, 1982]. The exceptional properties of DNA, including high specificity of
molecular recognition, defined secondary structure and high stability, led to its natural
choice as a building material for the construction of synthetic nanostructures.

The DNA origami methodology led to a major breakthrough in the field of nanotech-
nology. This technique is based on the arrangement of long single-stranded nucleic acid
molecules into 2D and 3D nanostructures with sub-nanometer precision by hybridization
with hundreds of short oligonucleotides, called "staples" [Rothemund, 2006,Douglas et al.,
2009a, Dietz et al., 2009]. Importantly, DNA origami structures can be modified with
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functional moieties, e.g. small biomolecules, fluorescent dyes, metallic nanoparticles, pep-
tides, proteins or hydrophobic moieties [Czogalla et al., 2016, Simmel, 2012, Hong et al.,
2017,Nummelin et al., 2018].

Notably, other DNA nanostructure design methodologies have been developed, such as the
tile-design [Jiang et al., 2017] and the wireframe design [Orponen, 2018]. However, the
comparison of these methodologies overcomes the scope of this thesis.

II.2.4 DNA nanostructures on lipid membranes

DNA nanostructure modification with hydrophobic moieties enables the investigation of
biophysical processes in biologically relevant environments, such as lipid membranes, re-
sorting to minimal lipid model systems or directly addressing cells [Czogalla et al., 2016,
Göpfrich et al., 2018]. Even though the first targetting of DNA nanostructures to lipid
membranes was implemented only five years ago [Czogalla et al., 2013], the field has been
rapidly expanding in several directions.

Studies have shown that cholesterol modified with a tetra-ethylene glycol linker (chol-TEG)
modified DNA nanostructures can be designed to achieve switching behaviors in terms of:
binding to lipid membranes by exposure of the cholesteryl-moieties [List et al., 2014];
Mg2+ dependent preferential partitioning in phase-separated lipid bilayers [Czogalla et al.,
2013, Sato et al., 2018,Dohno et al., 2017,Avakyan et al., 2017]; light-mediated reversible
assembly and disassembly of dimers [Suzuki et al., 2014].

Due to the sequence specificity, DNA nanostructures can be used as platforms to orga-
nize different functional moities on lipid membranes, such as dyes, membrane anchors or
oligomerizing strands that allow the formation of larger scale assemblies [Johnson-Buck
et al., 2014]. Indeed, DNA nanostructures can organize themselves in 2D arrays [Suzuki
et al., 2015,Sato et al., 2018,Dohno et al., 2017,Avakyan et al., 2017]. Moreover, membrane-
assisted oligomerization of DNA origami nanostructures has been shown to deform and
even disrupt lipid vesicles, in similarity to scaffolding proteins (see section II.1.3) [Kocabey
et al., 2015,Czogalla et al., 2015a]. Interestingly, curved DNA origami nanostructures can
shape lipid membranes even without further polimerization [Franquelim et al., 2018,Grome
et al., 2018] (see chapter V.1).
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Other complex biological functions have also been reproduced using DNA origami nanos-
tructures. For example, a four-helix DNA bundle has been shown to insert into the
lipid bilayer and act as a scramblase, enhancing the mixing of lipids between the two
lipid leaflets [Ohmann et al., 2018]. Furthermore, DNA-based channels that not only
insert into the lipid bilyer, but also conduct ion current, even in a voltage dependent
manner, have been successfully produced in different sizes and with different anchoring
moieties [Langecker et al., 2012, Burns et al., 2013a, Burns et al., 2013b, Seifert et al.,
2015, Göpfrich et al., 2015, Göpfrich et al., 2016a, Göpfrich et al., 2016b]. Additionally,
such structures have been shown to have a cytotoxic effect in vivo [Burns et al., 2014]. The
future possibility of selectively targeting such pore-forming structures to specific cell types
opens exciting possibilities for biomedical applications.

Hybrid DNA nanostructures have also been explored as a delivery vehicle for biomedical
processes [Perrault and Shih, 2014]. Moreover, amphipathic DNA nanostructures have
been shown to be useful tools to form vesicles of narrow size distribution [Yang et al.,
2016] or programmed shape [Zhang et al., 2017], to characterize isotropic-anisotropic phase
transition by monitoring their rotational and translational diffusion [Czogalla et al., 2015b],
to study different protein complexes in vitro as well as in vivo [Xu et al., 2016,Fisher et al.,
2018,Henning-Knechtel et al., 2017,Kurokawa et al., 2018], and even to program cellular
function [Akbari et al., 2017]. Notably, although the binding of DNA nanostructures to
lipid membranes can be easily accomplished using divalent cations such as Mg2+, which
establish an electrostatic interaction between the negatively charged DNA backbone and
the phosphate group of lipid phospholipid (e.g. [Gromelski and Brezesinski, 2006,Czogalla
et al., 2013,Suzuki et al., 2015]), only the site-specific modification of DNA nanostructures
with amphipathic molecules allows one to control their binding orientation. In this thesis,
Mg2+-mediated membrane binding is explored in chapter IV, while chol-TEG anchors are
used in chapters III and V.
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II.3 Diffusion and Binding

II.3.1 Diffusion models

II.3.1.1 Brownian motion

The thermally driven random motion of microscopic particles in a solvent is termed Brow-
nian motion [Brown, 1828]. This movement is caused by the collision of particles with
the surrounding solvent molecules, which at a temperature T > 0 are constantly moving.
Notably, this motion is random and memoryless, when observed at sufficiently long time
scales.

Quantitatively, the process of Brownian motion is described by Fick’s second law (or dif-
fusion equation) [Fick, 1855,Sutherland, 1905,Einstein, 1905,von Smoluchowski, 1906]:

∂

∂t
ρ(~r, t) = D∇2ρ(~r, t) (II.6)

where D is the diffusion coefficient, considered to be an isotropic quantity in the context
of this work. The solution of equation II.6 is the probability ρ to find a diffusing particle
at time t at the location ~r, provided it was located at ~r0 at t0 = 0. Taking into account
the normalization

∫
ρ(~r, t) d3~r = 1, the solution for 3D diffusion reads:

ρ(~r, t) = (4πDt)−
3
2 e−

~r 2
4Dt . (II.7)

This is the description of a Gaussian distribution centred in ~r0 = 0, with standard deviation√
6Dt that widens with time. Consequently, the mean displacement is 〈~r〉 = 0. On the

other hand, the mean squared displacement (MSD) reads:

〈
~r 2
〉

=
∫
~r 2ρ(~r, t) d3~r = 6Dt. (II.8)

This linear relation between MSD and time implies that the measurement of the displace-
ment of particles at different time points gives access to their diffusion coefficient.

Furthermore, as Brownian motion is a quasi-ergodic process, the ensemble average is equiv-
alent to the time average over a single particle trajectory. This becomes specially relevant
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when considering the calculation of the autocorrelation function in fluorescence correlation
spectroscopy (FCS) (see section II.4.2).

The diffusion coefficient D depends on the temperature T and the friction constant ζ of
the considered particles [Sutherland, 1905,Einstein, 1905,von Smoluchowski, 1906]:

D = kBT

ζ
. (II.9)

For simplicity, diffusing particles are often approximated to be spherical, with a charac-
teristic hydrodynamic radius a. The friction constant is then given by the Stokes relation
ζ = 6πηa, where η is the bulk viscosity of the medium. The combination of the Stokes
relation with equation II.9 is typically termed Stokes-Einstein-Smoluchowski or Stokes-
Einstein relation and is often used to estimate the physical size of the diffusing particles.

II.3.1.2 Diffusion of membrane inclusions

In this thesis, mainly the diffusion of lipids and macromolecules in lipid membranes is
considered (chapters III.2 and III.3). The most commonly used model to describe the
Brownian motion of particles embedded in quasi two-dimensional systems is the Saffman-
Delbrück model (SD model) [Saffman and Delbrück, 1975, Saffman, 1976]. In the SD
model, a cylindrical inclusion with radius a diffuses in a flat layer of thickness h and
surface viscosity ηs. Here, ηs = ηh, where η is the membrane viscosity. The membrane is
surrounded above and bellow by media with bulk viscosities η1 and η2, which both influence
the diffusion of membrane inclusions. This is translated into the characteristic length scale
of the system, so-called Saffmann-Delbrück length: lSD = ηs/(η1 + η2). Moreover, similar
to many other diffusion models, the SD model assumes that the inclusion is much larger
than the surrounding lipid molecules. Thus, the SD model derives the diffusion coefficient
D of a membrane inclusion as:

D = kBT

4πηs
∆SD (II.10)

where ∆SD is referred to as the reduced mobility and is defined as ∆SD = ln (2lSD/a)− γ.
Here, γ is the Euler constant.

The SD model assumes at all times that the membrane inclusion a is much larger than

16



II.3 Diffusion and Binding

the lipids and a� lSD. In the regime a� lSD the diffusion coefficient is predicted to have
only a weak dependence on the inclusion size. Indeed, several experimental and simulation
studies [Peters and Cherry, 1982,Ramadurai et al., 2009,Weiß et al., 2013,Guigas andWeiss,
2006] confirmed the applicability of the SD model to a number of proteins. However, the SD
model fails to describe the diffusion of large membrane domains [Cicuta et al., 2007,Petrov
et al., 2012], where the inclusion size a is in the order of lSD.

Hughes, Pailthorpe, and White derived a more general model that covers arbitrary cylin-
drical inclusion sizes, assuming that the lipids are much smaller [Hughes et al., 1981]. To
circumvent the difficult numerical calculations of D according to the original publication
of the Hughes-Pailthorpe-White model (HPW model), Petrov and Schwille derived a high-
accuracy analytical approximation for the reduced mobility ∆HPW [Petrov and Schwille,
2008b]:

∆HPW =
(

ln
(

2lSD
a

)
− γ + 4a

πlSD
− a2

2l2SD
ln
(

2lSD
a

))

×

1− a3

πl3SD
ln
(

2lSD
a

)
+

c1
ab1

l
b1
SD

1 + c2
ab2

l
b2
SD


−1

. (II.11)

With c1 = 0.73761, b1 = 2.74819, a2 = 0.52119, and b2 = 0.51465, equation II.11 was found
to accurately describe the numerical results of the HPW model and match the asymptotic
expressions from the analytical theory. In the regime a/lSD � 1, ∆HPW has only a weak
dependence on the inclusion size and reproduces the SD model. For very large membrane
inclusions, a much stronger inverse proportionality of ∆HPW with the ratio a/lSD is observed
and, at the limit a � lSD the diffusion coefficient becomes independent of the membrane
viscosity [Hughes et al., 1981].

In this thesis, the HPW model is used to estimate the effective insertion size of macro-
molecules in lipid monolayers and bilayers, as well as estimate the viscosity of lipid mono-
layers at different lipid densities (chapters III.2 and III.3).
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II.3.2 Binding kinetics

Protein-lipid interactions are essential for a number of cellular processes, such as membrane
shaping (section II.1.3). Although membrane shaping involves the interplay of a number
of protein and lipid molecules, let us first focus in the simplest case of a bimolecular
interaction. In such scenario, two binding partners A and B transiently form the product
AB with association rate ka (in M−1 s−1) and dissociation rate kd (in s−1).

A + B ka


kd

AB (II.12)

In equilibrium, the rate of production and decay of AB become equivalent and thus:

d
dt [AB] = ka[A][B]− kd[AB] = 0 (II.13)

Considering the law of mass action, the corresponding dissociation constant KD is given
by:

KD = [A][B]
[AB] = kd

ka
(II.14)

In this thesis, the KD of several origami nanostructures to lipid membranes is determined
through titration experiments (chapter V.1). Generally, in such experiments the total con-
centration of one of the binding partners is kept constant (for A, one gets [A] + [AB] =
const) and the concentration of the complex (AB) is measured depending on the concen-
tration of the second binding partner (B).

[AB] = [A] + [AB]
KD + [B] . (II.15)

Practically, for macromolecules binding GUVs, the membrane surface area is kept constant
and the concentration of the macromolecule of interest is titrated. To determine the
concentration of bound macromolecules, the fluorescence intensity at the membrane surface
is monitored. The obtained titration curve is then fitted with a Langmuir isotherm model,
an adapted form of equation II.15. Alternatively, direct measurement of ka and kd, which
also apply out of equilibrium, can be used to determine KD. From the determined KD,
it is further possible to determine the apparent free energy of membrane binding ∆G =
RT lnKD, where R is the ideal gas constant.
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II.4 Methods

II.4.1 Fluorescence microscopy

II.4.1.1 Fluorescence as a biophysical tool

Luminescence is the process of photon emission by previously excited substrates. In fluo-
rescence, a type of luminescence, the emission of a photon occurs in the nanosecond regime
and is the result of the relaxation from a singlet excited state back to the ground state
S0 (reviewed in [Valeur and Berberan-Santos, 2012,Lakowicz, 2006]). The process of flu-
orescence is accompanied by energy dissipation, resulting in a red-shift of the emission
fluorescence spectrum with respect to the excitation spectrum, known as Stokes’ shift.

Over the past century, the phenomenon of fluorescence has been vastly explored and applied
to the study of biological systems by means of fluorescence microscopy and spectroscopy.
Due to the inherent Stokes’ shift, the excitation and the fluorescence emission light can
be easily separated by appropriate dichroic mirrors. Importantly, fluorescence experiments
can be performed in the visible wavelength range, compatible with biological samples and
high-performance optical components, while avoiding the absorption by water molecules. A
variety of fluorescent probes (chemical or naturally occurring) can be specifically attached
to biological molecules, both in vitro and in vivo. As excitation typically takes femtosec-
onds, and the fluorescence lifetime is on the order of nanoseconds, with high excitation
rates sufficiently high signals are generated for detection. Indeed, with the current state-
of-the-art equipment it is possible to routinely perform measurements on a single-molecule
scale.

However, fluorescent labels have a few disadvantages. Non-native fluorescent labels can
alter the system under study and controls should be performed to ensure that the observed
effects are independent of the fluorescent tag (e.g. [Swulius and Jensen, 2012,Margolin,
2012]). Typical examples, are the possibility of occuring nonspecific interactions with the
substrate or dimerization of fluorophores (e.g. [Costantini et al., 2012]). On the other side,
photo-induced damage can arise due to energy deposition in the system or the generation
of reactive (and thus, toxic) singlet oxygen, associated to the triplet state of fluorophores
[Davidson, 1979,Wilkinson et al., 1994,Eggeling et al., 1999].
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II.4.1.2 Confocal microscopy

In chapters III and V a confocal microscope [Minsky, 1957] is used, both for imaging and
FCS [Rigler et al., 1993,Eigen and Rigler, 1994]. The main advantage over widefield mi-
croscopy comes from the elimination of out-of-focus light by the introduction of a pinhole
in the image plane of the detection pathway. Moreover, the focal volume is reduced by
coinciding narrowly focused excitation and detection profiles. Using a high-numerical aper-
ture (NA) objective (typically NA ' 1.2), the observation volume is typically on the order
of femtoliters.

II.4.2 Fluorescence Correlation Spectroscopy (FCS)

II.4.2.1 Principle of FCS

In the 1970’s, Magde, Elson and Webb introduced the principle of FCS [Magde et al.,
1972,Elson and Magde, 1974,Magde et al., 1974]. In FCS, the fluorescence signal collected
from an observation volume is analyzed with respect to its fluctuations, which appear
from stochastic deviations from thermal equilibrium. To be sensitive to fluctuations of
the fluorescence signal, the number of particles that contribute to it should be low. Two
decades later, FCS was demonstrated in combination with confocal microscopy [Rigler
et al., 1993,Eigen and Rigler, 1994], which enabled single-molecule sensitivity at biologically
relevant concentrations by reducing the size of the detection volume.

Typically, fluorescence fluctuations arise from brightness fluctuations of the fluorescent par-
ticles or from their diffusion in and out of the detection volume [Petrov and Schwille, 2008a].
The timescale of these fluctuations is related to the underlying process, thus properties of
the sample can be recovered from the analysis of the time scale of the fluctuations. For
this purpose, the signal is autocorrelated in time and the resulting autocorrelation curves
are typically fitted by an appropriate model. FCS can be thus used to investigate e.g. dif-
fusion [Elson and Magde, 1974,Magde et al., 1974], active transport [Magde et al., 1978],
reversible binding [Michelman-Ribeiro et al., 2009], or blinking dynamics of the fluorophore
(e.g. [Widengren et al., 1995,Haupts et al., 1998,Widengren et al., 1999,Widengren and
Schwille, 2000,Torres and Levitus, 2007]).
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II.4.2.2 Confocal single-point FCS

Generally, the fluorescence signal trace F (t) can be described by the fluctuation δF (t)
around its temporal mean 〈F 〉:

F (t) = 〈F 〉+ δF (t). (II.16)

The autocorrelation of the later over time translates the temporal similarity of the signal
into its characteristic decay.

G(τ) = 〈δF (t)δF (t+ τ)〉
〈F 〉2

(II.17)

In the case of fluorophores undergoing Brownian motion, the characteristic decay of the
temporal autocorrelation function is determined by the diffusion coefficient of the particles
and the size of the detection volume. In its simplest form, in confocal FCS the detection
volume (or effective volume, Veff ) is approximated by a 3D Gaussian, with the lateral
1/e2-width wxy and axial length wz = Swxy. Here, the structure parameter S is a measure
of the elongation of the detection volume.

Veff = π
3
2w2

xywz (II.18)

Thus, the autocorrelation function for 3D diffusion in a confocal volume takes the form:

G(τ) = N−1
(

1 + τ

τD

)−1 (
1 + τ

S2τD

)−1/2
(II.19)

where N is the average number of particles in the confocal volume and τD is the char-
acteristic diffusion time of the fluorescent species. The amplitude of the autocorrelation
function at τ → 0 corresponds to the inverse mean number of particles N−1 in the effec-
tive volume and can be translated into the respective concentration once the size of the
detection volume is known. To determine wxy, a calibration measurement using a freely
diffusing fluorophores of known diffusion coefficient D is performed taking into account:

τD =
w2
xy

4D (II.20)
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The diffusion coefficients of the calibration fluorophores used in this study are: DAlexa488 =
414±10 µm2/s [Petrov et al., 2006] and DATTO655 = 426±8 µm2/s [Dertinger et al., 2007],
at 25 ◦C. Once wxy is known, the diffusion coefficient of the biomolecules of interest can
be determined from subsequent FCS experimets.

In many confocal FCS measurements, the autocorrelation curve is not exclusively gov-
erned by diffusion processes and additional terms are added to the model [Krichevsky
and Bonnet, 2002]. In this thesis, when Alexa488 or ATTO488 dyes are used, the in-
herent fluorophore blinking due to triplet state is considered by introducing the factor
gT = 1 + (T/(1− T )) e−τ/τT , where T is the triplet fraction and tauT is the triplet decay
time. Importantly, when the triplet contribution to the autocorrelation function is not
taken into account, the particle number N and diffusion time τD can be underestimated.

II.4.2.3 Confocal FCS on lipid membranes and membrane-bound DNA nanos-
tructures

In this thesis, FCS has been used to study the diffusion of lipid and membrane bound DNA
origami nanostructures (chapters III and V). Such measurements are typically performed
on planar membranes by positioning the confocal volume such that the counts per particle
(cpp) are maximized [Schwille et al., 1999]. The diffusion in the membrane is restricted to
two dimensions and thus the autocorrelation function takes the form:

G2D(τ) = N−1
(

1 + τ

τD

)−1
. (II.21)

Additionally, the contribution of avalanche photodiode (APD) afterpulsing in confocal FCS
is eliminated by a pseudo-crosscorrelation approach [Burstyn and Sengers, 1983]. In brief,
the fluorescence signal is split by a 50:50 beamsplitter and directed onto two independent
APDs.

The autocorrelation function II.21 decays slower than for 3D diffusion, due to its lower di-
mensionality and due to the higher membrane viscosity, when compared to aqueous media.
Importantly, the positioning of the confocal volume is crucial when measuring confocal
FCS on planar membranes, as defocusing results in larger membrane cross-sections, larger
τD and N , as well as lower cpp [Przybylo et al., 2006].
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When studying the diffusion of elongated DNA origami nanostructures on lipid membranes,
one needs to take into account the individual contributions of translational and rotational
diffusion. In order to eliminate potential complications in data interpretation, in this
study the contribution from rotational diffusion was eliminated by placing the fluorophores
close to the centre of the DNA structures [Czogalla et al., 2013, Czogalla et al., 2015b].
Additionally, the diffusion coefficient is expected to reduce upon crowding. Thus, all
measurement in this thesis have been performed in the regime ρ < 0.5 in which the effect
of crowding on the translational diffusion is expected to be below 10% [Czogalla et al.,
2015b]. Here, the reduced surface density ρ is defined by ρ = σL2, where σ is the surface
density of membrane-bound DNA nanostructures per µm2 and L is the DNA nanostructure
length.

II.4.3 Atomic Force Microscopy (AFM)

Atomic force microscopy AFM is a type of scanning probe microscopy (SPM) [Bhushan,
2017]. In SPMs, images describing the topography and/or mechanical, electrostatic, mag-
netic or optical properties of the sample are obtained by scanning the sample with a probe
that interacts with the surface [Eaton and West, 2010]. The resolution of such methods is
thus not limited by diffraction, like in conventional optical microscopy.

In AFM, the attractive and repulsive forces between the tip at the edge of a flexible
cantilever and the sample surface are measured [Braga and Ricci, 2004,Eaton and West,
2010]. A small laser is focused on the back of the cantilever and is reflected onto a split
photodiode detector (Figure II.4A). The position of the laser on the photodiode detector
encodes the deflection of the cantilever when the tip interacts with the sample. This
mechanism detects forces in the range between 10−7 to 10−12 N (e.g. [Müller and Anderson,
2002]).

AFM imaging can be performed under contact or tapping modes (Figure II.4B) [Bhushan,
2017, Braga and Ricci, 2004, Eaton and West, 2010]. In contact mode the interaction
force is fixed to a certain set-point and maintained by a feedback loop. As a result, the
tip-sample distance is constant. In tapping (or AC) mode, the cantilever oscillates and,
instead of the deflection, the oscillation of the cantilever is measured. This oscillation is
acoustically-driven close to the resonance frequency and the scanning forces can be much
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Figure II.4: Principles of AFM. A) A tip at the edge of a flexible cantilever scans the
surface of the sample. A laser beam focused on the back of the cantilever, is reflected on a
split photodiode. As a result, the deflection of the cantilever due to interactions with the
surface is amplified and detected. B) Commonly used AFM operating modes: contact and
tapping modes.

lower than in contact mode, since the proportion of the time where the tip and the sample
are in contact is low [Santos and Castanho, 2004,Eaton and West, 2010].

In the last two decades, the temporal resolution of AFM has been greatly improved by
several technological developments, such as improvement of the feedback loop, higher fre-
quency of the z-scanner and significantly shorter and smaller cantilevers, with high resonant
frequency and small force constant (κc) [Ando et al., 2001,Bozec et al., 2007,Viani et al.,
2000]. Additionally, short cantilevers contributed to an increased detection sensitivity and
reduced sample invasiveness [Ando et al., 2014, Stamov et al., 2015]. Indeed, with high
speed atomic force microscopy (HSAFM), a range of dynamic processes in the second and
even millisecond scale, previously inaccessible with traditional systems, can now be stud-
ied. In this thesis, HSAFM is used in tapping mode to study the self-organization of DNA
origami nanostructures on SLBs (chapter IV).

Additionally to imaging, AFM also has a force spectroscopy mode, in which force curves
between the tip and the sample can be acquired [Noy, 2007, Hinterdorfer and Dufrene,
2006,Puchner and Gaub, 2009]. Force curves are recorded by approaching and retracting
the tip in a chosen location up to a full field of view, yielding in the latest case spatially-
resolved maps of physical properties or molecular interactions.
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II.4.4 Transmission electron microscopy (TEM)

Transmission electron microscopy (TEM) was developed in the 1930’s with the intuit
to overcome the diffraction limited resolution of light microscopy [Williams and Carter,
1996,Gauvin, 1997]. In this method, a high energy electron beam is transmitted through a
thin specimen slice to form an image. From the interaction of the electrons with the speci-
men, one can extract structural, phase, crystallographic and compositional information of
materials, up to atomic scale. In this thesis, TEM has been used mainly as a characteriza-
tion method to confirm the design and folding quality of the target DNA nanostructures,
specially in the context of chapter V.2.
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III

BINDING AND DIFFUSION OF
MEMBRANE-BOUND DNA NANOSTRUCTURES

Binding of scaffolding proteins to cellular membranes is essential to their function of shap-
ing lipid membranes. Particularly, proteins from the Bin/Amphiphysin/Rvs (BAR) domain
family (see section II.1.3) bind to lipid membranes through hydrophobic and electrostatic
interactions [Bhatia et al., 2010, Madsen et al., 2010, Qualmann et al., 2011]. In order
to design a BAR-mimiking DNA-based scaffold for shaping lipid membranes, firstly we
studied how to effectively bind bulky DNA origami nanostructures to lipid membranes.
Targeting of DNA nanostructures to lipid membranes using anchors based on cholesterol
modified with a tetra-ethylene glycol linker (chol-TEG) has been particularly popular as
such modified oligonucleotides are commercially available and have been extensively char-
acterized [Banchelli et al., 2008,Bunge et al., 2009,Banchelli et al., 2010]. Thus, in recent
years amphipathic DNA origami nanostructures have been used to study several biophys-
ical processes on lipid membranes, such as oligomerization or pore formation (see section
II.2.4). However, to date a systematic approach to membrane binding of DNA origami
nanostructures has been lacking, in terms of number and length of the chol-TEG anchors.

I approached this question with a series of two studies aiming to understand how the
total hydrophobicity, steric hindrance and charge influence the binding and diffusion of
cholesteryl-modified DNA nanostructures. For this purpose, I designed an elongated DNA
origami structure with 15 addressable locations for modification with chol-TEG anchors.
Their membrane binding and dynamics on giant unilamellar vesicles (GUVs) were stud-
ied by fluorescence microscopy and fluorescence correlation spectroscopy (FCS). Firstly,
I unraveled the minimal steric requirements for binding of DNA nanostructures to lipid
membranes (chapter III.1). I produced DNA nanostructures with directly incorporated
single or multiple cholesteryl-modified oligonucleotides. My results show that the acces-
sibility of the anchoring moieties within the bulky DNA origami plays a crucial role for
its binding behaviour to membranes. Additionally, I confirmed that the use of multiple
cholesteryl-anchors improves the membrane binding of the elongated DNA nanostructure
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and slows down membrane diffusion. In the following study (chapter III.2), I demonstrated
how the rational choice of the strategy for attachment of chol-TEG anchors can be used
to control the binding and mobility of DNA nanostructures on membranes. Here, I ex-
plored single- and double-stranded DNA spacers between the chol-TEG anchors and the
bulk DNA nanostructure to overcome local steric hindrances and thus, improve membrane
binding. Moreover, my results show that the type of used DNA spacers has a pronounced
effect on the diffusion of elongated DNA nanostructures on membranes and their response
to charges in the environment.

Lastly, in the chapter III.3 we extended the study of membrane-bound macromolecules
with FCS to lipid monolayers (II.1.4.2), a lipid model system with unique access to the
quantitative variation of lipid packing. Although the application of FCS to study lipid
diffusion on monolayers has been previously accomplished by others [Gudmand et al.,
2009, Chwastek and Schwille, 2013], the extension to studying membrane proteins has
so far been lacking. Here, we provided an attractive and useful solution for technical
challenges of applying FCS to lipid monolayers, and demonstrated how this method can
be used to quantitatively study various peripheral macromolecules on monolayers. We
further determined the monolayer viscosity at different lipid densities and found that the
monolayer assay is more distinctive with regard to differentiating the size of the diffusing
particles than free-standing lipid membranes as GUV.
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nanostructures on lipid membranes

III.1 Effect of anchor positioning on binding and dif-
fusion of elongated 3D DNA nanostructures on
lipid membranes

The results discussed in this section have been published as:

Khmelinskaia, A., Franquelim§, H. G., Petrov, E. P., Schwille, P§. (2016) Effect of an-
chor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid
membranes. J. Phys. D Appl. Phys., 49: 194001. doi:10.1088/0022-3727/49/19/194001.
§ denotes co-corresponding authors. A reprint permission has been granted by the publisher.
The supplementary information can be found in Appendix B.
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1. Introduction

The invention of the DNA origami methodology [1], which 
consists in the arrangement of long single-stranded nucleic 
acid molecules into nanometre-scale objects, led to a major 
breakthrough in the field of nanotechnology [2]. The estab-
lishment of DNA as building material for the construction of 
synthetic nanostructures with specific shape and function was 
a natural result of its exceptional properties: on the one hand, 
DNA helix hybridization is not only highly specific but also 

directional, resulting in a well-defined and relatively stable 
secondary structure; on the other hand, the AGTC code is sim-
pler when compared to the protein code, resulting in facilitated 
rational design procedures. In the DNA origami approach, a 
large number of short oligonucleotides (the so-called ‘staples’) 
bind to defined segments of a long single-stranded DNA ‘scaf-
fold’ molecule in a sequence-specific manner [3]. Individual 
staple strands can hybridize with several scaffold-strand seg-
ments, constraining the latter to double-helical structures in 2D 
or 3D arrays [1, 2]. Importantly, individual staple strands with 
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DNA origami is a state-of-the-art technology that enables the fabrication of nano-objects with 
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Taken together, our approach provides the first evidence of the importance of the location 
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unique sequence and position in the DNA origami structure can 
be further chemically functionalized, allowing for positioning 
of a wide variety of functional moieties with a nanometre-scale 
precision within the DNA array [4]. DNA origami structures 
have been successfully functionalized to be used as an orga-
nizing material for metallic nanoparticles [5], as a template for 
protein assembly [6], as a calibration tool for super-resolution 
fluorescence microscopy [7], or as a platform for studies of 
chemical reactions at the single molecule level [8], to mention 
only a few. In principle, by modifying DNA nanostructures 
with site-specific functions, it is even conceivable to mimic 
complex bio-functionalities so far attributed to proteins [9].

DNA-based nanomaterials can be further used in biolog-
ically-relevant environments like lipid membranes [10] and 
such studies can be performed under controlled conditions 
using minimal lipid model systems [11, 12]. For this purpose, 
lipophilic moieties, such as alkyl chains [13], cholesterol 
[14–16], tocopherol [17], and porphyrins [18] have been pre-
viously covalently attached through a flexible linker to DNA 
molecules. Oligonucleotides bearing cholesteryl anchors with 
a tetra-ethylene glycol linker (chol-TEG) have been part-
icularly well characterized in terms of incorporation and influ-
ence on lipid membranes [15, 16, 19]; as a result, this moiety 
became the most popular anchor when coming to the specific 
targeting of DNA origami nanostructures to lipid membranes.

The first DNA origami nanostructures described to deco-
rate membranes of various lipid compositions were simple 
stiff 3D nanorods in the form of six-helix bundles (6HB), 
functionalized with chol-TEG anchors on one facet and flu-
orescent labels on the opposite side [20]. These nanostruc-
tures showed a switchable liquid-ordered/liquid-disordered 
partitioning on phase-separated membranes, controlled by 
the presence of divalent ions. Furthermore, selective fluores-
cent labelling allowed one to study membrane dynamics of 
6HB on freestanding lipid membranes by means of fluores-
cence correlation spectroscopy (FCS) and even to distinguish 
between translational and rotational diffusion. An extension 
of this study not only demonstrated a decrease in the mobility 
of membrane-bound 6HB with increasing the number of 
chol-TEG anchors, but also clearly indicated the onset of the 
isotropic-nematic transition upon an increase in the surface 
density of nanoneedles on the membrane, which results in the 
progressive 2D ordering of initially randomly oriented nano-
particles [21].

Alternative strategies have been developed recently to 
ensure controllable binding of cholesteryl-modified DNA 
nanostructures to lipid membranes [22, 23], as well as to 
induce different degrees of membrane-assisted oligomeri-
zation of amphipathic DNA origami structures of different 
shapes [22, 24, 25]. For instance, it has been shown that the 
oligomerization of DNA origami nanostructures on the mem-
brane can mimic the behaviour of membrane-sculpting pro-
teins, inducing shape deformation and disruption of small 
vesicles [25] and even large-scale deformation of giant uni-
lamellar vesicles (GUVs) [26]. DNA origami has also been 
used to extend the design of synthetic membrane nanochan-
nels capable of conducting ion currents through lipid bilayers. 
In this context, the use of different numbers of chol-TEG 

anchors has been shown to promote efficient membrane inser-
tion of several types of DNA-based nanochannels, ranging 
from large hemolysin-inspired channels consisting of 54 par-
allel DNA helices [27] to small subnanometre-sized channels 
made of DNA tiles [28].

Although in all previously mentioned studies efficient 
membrane anchoring of DNA nanostructures has been 
achieved and important physical properties unravelled, to 
our knowledge, an extensive and systematic characterization 
of the membrane binding properties of cholesteryl-anchored 
DNA nanostructures has not been carried out. By examining 
the binding of different origami structures with similar mem-
brane contact area as described in the literature, we find that 
membrane attachment has been accomplished through various 
numbers of chol-TEG anchors, such as 4, 9 or even 47 (see ref-
erences [22, 25, 26]). Such a simple comparison between ori-
gami structures highlights the lack of precise understanding of 
the minimal steric requirements for membrane attachment for 
such DNA-based nanostructures. To close this gap in under-
standing, we aimed to elucidate the effects of the number 
and positioning of cholesteryl anchors in the attachment of 
a rectangular-shaped 3D DNA origami object to freestanding 
membranes. More precisely, we designed a 20-helix bundle 
DNA origami with three Atto488 dyes at the centre of the 
upper facet for fluorescence labelling and 15 distinct positions 
at the opposite facet for the attachment of chol-TEG anchors, 
which allowed us to vary the precise positions and numbers 
of membrane anchors (figures 1 and S1) (stacks.iop.org/
JPhysD/49/194001/mmedia). Thus, single- and multiple-cho-
lesteryl-modified origami nanostructures have been produced, 
and their localization, membrane density and dynamics have 
been studied by fluorescence microscopy and FCS on GUVs. 
Our results show that the accessibility of the anchoring moie-
ties within the bulky DNA origami plays a crucial role for its 
binding behaviour to membranes. Additionally, the influence 
of the number of cholesteryl anchors on effective membrane 
binding of the elongated DNA nanostructure and its mem-
brane diffusion is confirmed. We hereby propose a minimal 
set of factors to take into account when rationally designing 
membrane binding DNA origami nanostructures, more specif-
ically in terms of the total DNA nanostructure hydrophobicity, 
as well as local steric hindrances and membrane accessibility 
of lipophilic moieties used for membrane anchoring.

2. Materials and methods

2.1. Design, folding and purification of the elongated DNA 
origami structures

The elongated DNA origami structure, consisting of a 
20-helix bundle (figure 1) with hexagonal lattice based on the 
M13mp18 7429-nucleotide long scaffold plasmid (p7429), has 
been designed using CaDNAno [29] (figure S1). High purity 
salt free (HPSF) purified staple oligonucleotides needed for 
origami folding were purchased from Eurofins MWG Operon 
(Ebersberg, Germany), and single-stranded M13mp18 scaf-
fold DNA was supplied by Bayou Biolabs (Metairie, LA, 
USA). The 5′-Atto488-functionalized oligonucleotides were 
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acquired from Eurofins, while the 3′-chol-TEG functionalized 
and dual 5′-Cy5/3′-chol-TEG functionalized oligonucleotides 
(all HPLC-purified) were purchased from Sigma-Aldrich 
(Taufkirchen, Germany). All oligonucleotide staples were 
diluted in Milli-Q ultra pure water at concentration of 100 µM.  
The assembly of the origami structure was performed in a 
one-pot reaction mix. To this end, the components were mixed 
to the final concentrations of 20 nM p7429 scaffold plasmid 
and 200 nM staple oligonucleotides in a 5 mM Tris-HCl, 
1 mM EDTA, 20 mM MgCl2, pH 8.0 buffer (folding buffer). 
Thermal annealing was performed over a 41 h cooling scheme 
on an Eppendorf Mastercycler Pro thermal cycler (Hamburg, 
Germany), from 65 to 40 °C [3]. The folded nanostructures 
were then purified from the excess of staple strands by cen-
trifugation with Amicon Ultra 100 kDa MWCO filters (Merck 
Millipore, Darmstadt, Germany) using the buffer consisting of 
5 mM Tris-HCl, 1 mM EDTA, 5 mM MgCl2, 300 mM NaCl, 
pH 8.0 (imaging buffer). The assembled origami structures 
were collected at the end of the fourth cycle of centrifuga-
tion (three cycles at a rate of 14 000 g for 3 min, followed by 
one cycle at the same rate for 5 min) and stored at 4 °C. All 
produced DNA origami structures have three Atto488-labeled 
oligonucleotides attached to extended staples (16 nucleotide 
long) at positions close to the centre of the upper facet and 
contain none, single or multiple chol-TEG anchors at defined 
positions on the opposite facet (figures 1 and S1). The bulk 
concentration of the origami structures was estimated by flu-
orescence intensity using a one-drop measurement unit of a 
Jasco FP-8500 spectrofluorometer (Tokyo, Japan). To this end, 
undiluted samples of purified Atto488-labelled DNA origami 
were excited at 500 nm, and the respective emission intensities 
measured in the range of 510–620 nm. This value (corrected 
for the triple fluorescent labelling of the DNA origami struc-
tures) was compared to an intensity calibration curve obtained 

for known Atto488 concentrations in the same imaging buffer 
using the same settings.

2.2. Atomic force microscopy (AFM) of the folded DNA 
 origami

AFM was utilized in order to determine the structural proper-
ties and verify the correct assembly of the folded DNA ori-
gami nanostructures (figure 1(D)). To simplify the procedure 
and interpretation of results, here the topographical aspect 
of bare origami lacking cholesterol anchors (structure N ) 
was assessed. To this end, 5 µl of the purified origami solu-
tion was mixed with 50 µl folding buffer (5 mM Tris-HCl, 
1 mM EDTA, 20 mM MgCl2, pH 8.0), and deposited on top 
of a freshly cleaved mica sheet previously glued on top of a 
glass coverslip. Magnesium in the buffer solution is required 
to mediate adsorption of DNA origami to the mica surface. 
After 10 min incubation, most of DNA origami settled down 
and adsorbed on the surface, so that high-speed AFM imaging 
could be performed.

Measurements were performed on a JPK Nanowizard 
Ultra (Berlin, Germany) mounted on top of a Zeiss LSM 510 
Meta microscope. High-speed imaging was done in the AC 
mode (also known as intermittent contact mode) using USC-
F0.3-k0.3 ultra-short cantilevers (Nanoworld, Neuchâtel, 
Switzerland) with a typical stiffness of 0.3 N m− 1. The canti-
lever oscillation was turned to a frequency of 100–150 kHz 
and the amplitude kept below 10 nm. Scan rate was set to 5–10 
Hz for imaging areas larger than 2 µm  ×   2 µm, while scan-
ning rates of 10–25 Hz were used for smaller areas. The force 
applied on the sample was maintained at the lowest possible 
value by continuously adjusting the setpoint and gain during 
the imaging. Typically, setpoints close to 7–8 nm were utilized. 
Height, error, deflection and phase-shift signals were recorded 

Figure 1. Structural characteristics of the elongated amphipathic 20-helix bundles. (A) 3D representation and predicted dimensions 
(8 nm  ×   16 nm  ×   110 nm) of the designed DNA origami nanostructures. The structures under investigation have three Atto488-modified 
oligonucleotides at the top facet for fluorescence detection and a maximum of five cholesteryl anchors at the bottom facet for membrane-
anchoring. (B) Localization of the 15 possible sites (marked with pale circles) for chol-TEG anchors insertion at the bottom facet of 
the elongated DNA origami. Five positions (numbered 0–4) were spaced along three different helices of the origami (named A–C). (C) 
Representative examples of some of the amphipathic DNA origami structures produced. Naming of the structures will correspond to the 
location of the chol-TEG anchors, except for LB5 (anchors at positions B0  +  B1  +  B2  +  B3  +  B4) and X5 (A0  +  A4  +  B2  +  C0  +  C4) 
(D) AFM image of the folded bare 20-helix bundle (structure N ) deposited on mica. Experimentally measured dimensions of the 
nanostructures are in good agreement with predicted dimensions—see text.
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and images were line-fitted as required. Analysis of the AFM 
images was performed using JPK SPM Data Processing (ver-
sion 5.1.4) and Gwyddion (version 2.30). Average length of 
the DNA origami structures was estimated from topographical 
cross-sections along the long axis of individual structures.

2.3. Agarose gel electrophoresis analysis of DNA origami 
structures

The quality of folding of the DNA origami objects containing 
zero, one or multiple chol-TEG anchors was investigated 
through agarose gel electrophoresis (figure S2), as described 
elsewhere [3]. Briefly, the assembled DNA origami structures 
were loaded into 2% agarose gels containing 0.5  ×   TBE buffer 
(40 mM Tris-Cl, 45 mM boric acid, 1 mM EDTA, pH 8.3)  
and 11 mM MgCl2. The GeneRuler Express DNA ladder from 
ThermoFischer Scientifics was utilized. Electrophoresis was 
performed at 70 V for approximately 4 h, in an ice water bath. 
SYBR Safe for DNA staining (10 µl of stock solution) was 
directly added to the gels prior electrophoresis. At the end of 
electrophoresis, gels were scanned using a Peqlab E-BOX 
VX2 Gel Documentation System (VWR International GmbH, 
Erlangen, Germany).

Fluorescence analysis of agarose gels was further used 
to verify the correct incorporation status of the chol-TEG 
anchors. For this specific experiment, instead of using DNA 
origami folded with simple 3′-chol-TEG modified staples, we 
folded DNA origami in which the chol-TEG staples had an 
extra Cy5-functionalization at their 5′-end. The newly assem-
bled DNA origami objects with Cy5/chol-TEG anchors were 
loaded into a 2% agarose gel without SYBR Safe. The same 
electrophoresis procedure as above was then performed. Next, 
the gels were scanned with epi-illumination using Amersham 
600 CCD Imager (GE Healthcare, Little Chalfont, UK) using 
a 460 nm or 630 nm LED light source for excitation of Atto488 
or Cy5 fluorescence, respectively. After performing a back-
ground correction of the gel images, Atto488 and Cy5 fluores-
cence intensities within the bands of interest were integrated, 
and the normalized Cy5/Atto488 ratios were calculated 
(figure 2(C)). As all structures possess three Atto488 labels, 
this signal could be used as internal standard for fluorescence 
intensity normalization. In the end, the gel was incubated with 
SYBR Safe for two hours for DNA staining and imaged as 
described above.

2.4. Vesicle preparation and fluorescence imaging

GUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine  
(DOPC) (Avanti Polar Lipids, Alabaster, AL, USA), containing 
additional 0.005 mol% Atto655-DOPE (AttoTEC GmbH, 
Siegen, Germany) were produced by electroformation [30] in 
polytetrafluoroethylene chambers with Pt electrodes 4 nm apart 
as described previously [31]. Briefly, 6 µl of the lipid mixture 
(2 mg ml− 1 in chloroform) was spread onto two Pt wires and 
dried in a desiccator for 30 min. The chamber was then filled 
with 350 µl of a 610 mOsm kg− 1 aqueous solution of sucrose. 
An AC electric field of 2 V (RMS) was applied at a frequency 
of 10 Hz for 1.5 h, followed by 2 Hz for 0.75 h. Experiments 

were carried out in 40 µl MatriCal 384-multiwell plates with 
#1.5 glass bottom thickness (Brooks Life Science Systems, 
Spokane, WA, USA). Freshly plasma cleaned wells (10 min) 
were passivated with PLL(20)-g[3.5]-PEG(2) (SuSoS AG, 
Dü bendorf, Switzerland) by incubation with a 0.5 mg  ml− 1 
solution in PBS buffer for at least half an hour and conse-
quently thoroughly washed with water and imaging buffer. 3 µl  
of the GUV suspension (diluted 1:50 in 610 mOsm  kg− 1 
sucrose solution from the original suspension in the electrofor-
mation chamber) were mixed with a 18 µl DNA origami solu-
tion (0.1–5 nM total concentration) diluted in imaging buffer 
(iso-osmolar), and samples were incubated at 4 °C overnight. 
Before measurement, the samples were equilibrated at the 
microscope objective (T  =  27.5  ±  1.0 °C) for at least 30 min.

Confocal imaging was performed on a commercial laser 
scanning microscope LSM 780 with a ConfoCor3 unit 
(Zeiss, Jena, Germany) using a water immersion objec-
tive (C-Apochromat, 40  ×   /1.2 W UV–VIS–IR, Zeiss, Jena, 
Germany). Samples were excited with the 488 nm line of an 
Ar-ion-laser or with the 633 nm line of a He–Ne laser (for 
Atto488 and Atto655 excitation, respectively). To avoid the 
effect of polarization selection in excitation of the GUVs, 
an achromatic λ/4 plate (Edmund Optics, Barrington, NJ, 
USA) was installed in the excitation beam path. Images were 
recorded at the equatorial planes of GUVs, utilizing a 1 Airy 
unit pinhole, 512  ×   512 pixel resolution and a scan rate of 
3.15 µs per pixel. In order to compare membrane affinities 
of different nanostructures, fluorescence intensities of mem-
brane-bound DNA origami at a bulk concentration of 1 nM 
were determined using a semi-automated Matlab-based soft-
ware [32]. Further image analysis was performed using the 
ImageJ software (http://rsb.info.nih.gov/ij/).

2.5. FCS

For FCS, the previously described confocal imaging setup 
was used. The laser lines with wavelength of 488 nm and 
633 nm (for Atto488 and Atto655-DOPE excitation, corresp-
ondingly) were used at low laser power (1.2 µW) to avoid 
photobleaching and fluorescence saturation effects [33]. The 
normalized pinhole size was kept at 1 Airy unit, which corre-
sponds to the pinhole settings of 34 µm for 488 and 45 µm for 
633 nm. The pinhole position and the correction collar were 
adjusted to maximize the detected fluorescence signal and the 
photon count rate per molecule, respectively. The lateral size 
of the FCS detection volume r0 (207  ±  7 and 264  ±  6 nm for 
the green and red detection channels, respectively) was deter-
mined using fluorescent dyes with known diffusion coeffi-
cients in water: D (Alexa488)  =  414 µm2 s− 1 at 25.0  ±  0.5 °C  
[34] and D (Atto655)  =  426 µm2 s− 1 at 25 °C [35], as previ-
ously described [20]. The diffusion coefficients of the calibra-
tion dyes have been corrected for the working temper ature at 
the objective (27.5  ±  1.0 °C) [33, 36, 37]. In order to eliminate 
the distorting effect of detector afterpulsing, in all experiments 
the fluorescent signal was split in two equivalent channels 
and the output of the two detectors was cross- correlated [33]. 
For data analysis, the average of the two resulting correlation 
functions (ACF) was considered.
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FCS on membranes was performed at the upper pole of 
a GUV with a diameter of at least 20 µm (which is large 
enough to neglect membrane curvature within the FCS detec-
tion spot size). During acquisition of FCS data (minimum 15 
runs, 15 s each for the green channel and minimum 3 runs, 
30–60 s each for the red channel), the fluorescence count rate 
was monitored online, ensuring that no fluorescence fluctua-
tions originated from the movements of the whole membrane 
or the presence of large aggregates on the membrane. In case 
such events were observed, the corresponding datasets were 
disregarded. Additionally, correct positioning of the con-
focal detection volume was checked after each set of three 
measurements.

Particle numbers (and consequently, surface densities) and 
translational diffusion coefficient (D) of the elongated 3D 
DNA nanostructures, as well as the diffusion coefficient of 
Atto655-DOPE on freestanding membranes were obtained 
from the analysis of the ACF using the freely available data 
analysis software PyCorrFit version 0.9.7 [38]. As virtually 
no unbound DNA origami was detected in solution, and its 
potential contribution to FCS curves was negligible (data not 
shown), a one-component 2D diffusion model [31, 33] was 
used to analyse the experimental results, as it was done in pre-
vious experiments with membrane-bound DNA origami par-
ticles [20, 21]:

( ) /τ
τ τ

=
+

G
N
1 1

1 D
 (1)

Here N is the number of particles in the 2D detection volume, 
and τD is the FCS diffusion time, which is determined by the 
translational diffusion coefficient D and the size of the 2D 
Gaussian detection volume r0 as follows: τ = r D/ 4D 0

2 ( ). The 
relatively slow diffusion of membrane-bound DNA origami 
(τD ~ 3 ms) allowed us to use equation(1) directly in the data 
analysis without including a triplet blinking component for the 
correlation times longer than 50 µs. To ensure proper determi-
nation of the concentration of membrane-bound DNA origami 
particles, amplitudes of autocorrelation functions were cor-
rected for the presence of a noncorrelated background signal. 
As the origami length is known, L  =  110 nm, the surface 
density of membrane-bound origami particles, /( )σ π= N r0

2 , 
expressed in particles per µm2, could be easily converted to 
the reduced surface density ρ σ= L2 [21].

The Atto655 fluorophore is characterized by a negligible 
triplet state contribution [39]. We indeed found this to be the 
case for the fluorescently labelled lipid Atto655-DOPE in 
GUVs, and the same model (equation (1)) was used to analyse 
FCS results for translational diffusion of this fluorescently 
labelled lipid.

3. Results

3.1. Design and production of amphipathic elongated  
3D DNA origami objects

The dimensions of the 20-helix bundle DNA origami structure 
here produced are approximately 110 nm (length)  ×   16 nm 
(width)  ×   8 nm (height) (figure 1(A)). 15 distinct positions, 

equally oriented in the direction of the membrane, were imple-
mented on the bottom facet for placing chol-TEG anchors 
(figure 1(B)). More specifically, five cholesteryl anchoring 
sites (numbered 0–4) were spaced 21.4 nm apart along three 
defined bottom helices (named A–C). This strategy allowed 
us to produce nanostructures differing only in the number 
and membrane accessibility of the hydrophobic moieties, by 
simply substituting the respective staple sequences at defined 
position with their chol-TEG modified counterparts. To illus-
trate the naming convention, a chol-TEG anchor at position 
B2 is localized at the centre of the bottom facet of the origami 
structure, while position C4 refers to the location in the vicinity 
of one of the corners (for more examples, see figure 1(C)). 
Agarose gel analysis of the folded DNA origami after puri-
fication (figure S2) showed that all studied structures are able 
to assemble at high yield (fast running band corresponds to 
monomeric and correctly folded form of the object), although 
several structures with single (C3 and C4) or double chol-TEG 
(e.g. B2  +  B4) anchors may form additional high-order aggre-
gates (visible bands retained in wells). Note that no purification 
attempt to get rid of those aggregates was performed. Correct 
assembly of the structure was further confirmed by AFM 
imaging of the bare 20-helix bundle (structure N) deposited 
on mica (figure 1(D)). Experimentally measured dimensions 
of individual 43 structures (L  =  114  ±  7 nm; h: 7–8 nm) are in 
good agreement with the 20-helix bundle design prediction.

Correct incorporation of the chol-TEG modified oligonu-
cleotides was also assessed for some of the assembled struc-
tures using fluorescence analysis in agarose gels (figure 2). 
For this special purpose, chol-TEG oligonucleotides labelled 
with an additional Cy5 dye were utilized during DNA origami 
assembly. Structures with double chol-TEG at the corner loca-
tions, with multiple chol-TEG at the helix B or positioned in an 
X-shape, as well as their counterparts bearing single chol-TEG 
anchors, were loaded into agarose gels for electrophoresis (fig-
ures 2(A) and (B), respectively). Quantitative analysis of the 
DNA origami gel bands (in terms of the normalized Cy5 fluo-
rescence intensity) shows that the incorporation of individual 
chol-TEG modified oligonucleotides does not dependent on 
the position of the staple within the structure (figure 2(C)). 
Note that all sequences in question are 21 nucleotide-long 
(figure S1), with Tm values between 48.1 °C and 66.4 °C, which 
ensures a stable hybridization with the scaffold strand. Further 
analysis of the Cy5 fluorescence signals also confirms the pre-
dicted number of anchors for each object, as the intensities 
show a linear increase with the number of chol-TEG anchors.

3.2. Influence of number and positioning of chol-TEG  
anchors on the binding of an elongated 3D DNA  
origami to free standing lipid bilayers

In order to determine the minimal anchor number and acces-
sibility requirements for efficient membrane attachment, 
binding to DOPC GUVs of the elongated DNA origami struc-
tures with various combinations of number and position of 
chol-TEG anchors was investigated by confocal fluorescence 
microscopy and the average fluorescence intensities of each 
nanostructure evaluated at the membrane surface.
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The bare elongated DNA origami structure lacking chol-
TEG anchors (denoted as N) was by itself not capable of 
attaching to membranes (figure S6). Having performed this 
control, we assessed the membrane interaction capability of 
the DNA origami nanostructures with one chol-TEG anchor 
(figure S3). Considering our origami design, an optimized 
coverage of the most significant chol-TEG localizations was 
achieved by choosing 9 positions (figure 1), i.e. three dif-
ferent localizations (pos. 2–4) on each functionalisable helix 
A–C starting from the centre (pos. 2) to the most acces-
sible end (pos. 4). No clear co-localization of these single-
anchored DNA origami structures with the membrane was 
detected on the fluorescence images, suggesting that gener-
ally incorporation of a single chol-TEG modification does 
not drive binding of a large DNA-origami object into lipid 
bilayers (figures 3 and S3). Note that for the origami with a 
chol-TEG anchor at position C4 (the most accessible corner), 
an apparent weak increase of its mean fluorescence inten-
sity at the membrane surface was retrieved (figure 3(B)), 
which could be explained by the increased accessibility of 
the anchor.

Next, the number of anchors in the structures was increased 
to a total of two. Using once again positions 2–4 at the helices 

A–C, we produced a set of flat DNA origami structures con-
taining two chol-TEG modifications, with one of the anchors 
always fixed at the central B2 position (figure S4). Previous 
studies have shown that two cholesteryl anchors are sufficient 
for the attachment of different DNA origami structures to 
lipid membranes [21, 27]. We, however, observe that double-
anchor positioning with a fixed central chol-TEG anchor on 
the lower facet of the object did not improve significantly 
the attachment of the rectangular-shaped DNA origami, as 
seen in figure 3(B). Note that the structures with a variable 
chol-TEG anchor on helix C (especially structures B2  +  C2 
and B2  +  C4) seem to have increased fluorescence intensity 
at the membrane surface (figures 3(B) and S4). Helix C, due 
to its location at the end of the origami (figure S1), is intrin-
sically more flexible than helix A, which may explain this 
behaviour.

In order to further explore other possible double-anchor 
localizations, we produced a set of DNA origami structures 
bearing two chol-TEG anchors positioned near the corners of 
the lower facet (i.e. positions A0, A4, C0 and C4) (figure S5), 
as those would be the positions within our design with highest 
membrane accessibility. Interestingly, all the structures con-
taining these anchoring combinations (with the exception of 

Figure 2. Incorporation of chol-TEG anchors within the 20-helix bundle DNA origami assessed via dual-colour fluorescence agarose gel 
analysis. Here, 2 nM of DNA origami with single or multiple chol-TEG anchor staples modified with a Cy5 dye at 5′ end were analysed. 
This allowed not only to assess fluorescence from the three Atto488 dyes present on each origami, but also to follow the presence and 
number of chol-TEG anchors via the Cy5 signal. Gels were exposed to 460 nm and 630 nm LEDs, and Atto488 and Cy5 fluorescence 
was recovered. Different lanes in gels ((A)–(B)) correspond to the origami structures with chol-TEG anchors at defined positions. Lanes 
containing marker DNA ladder (Ladder) and DNA origami with no chol-TEG anchors (N) were also included. Overall, while Atto488 
signal was constant along the different lanes, Cy5 fluorescence varied as a function of the number of chol-TEG anchors present in the 
structures. Gels were stained a posteriori with SYBR Safe for identification of the marker DNA bands and confirmation of the proper DNA 
origami folding. Special nomenclature: N (no anchors); LB5 (B0  +  B1  +  B2  +  B3  +  B4); X5 (A0  +  A4  +  B2  +  C0  +  C4). Numbers in 
brackets correspond to repeated samples. (C) Normalized Cy5/Atto488 recovered fluorescence intensities were plotted as a function of the 
chol-TEG anchor number. Linear increase of the fluorescence intensity as a function of anchor number is emphasized by adding the  
line y  =  x.
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the one having the anchors positioned at A4  +  C0) showed 
strong membrane binding (figure S5), resulting in a signifi-
cantly higher mean surface fluorescence intensity of DNA 
origami on top of the membrane when compared to the back-
ground signal (figure 3(B)). These results confirm that the 
incorporation of two cholesteryl anchors is generally enough 
for membrane attachment of large DNA origami structures; 
the binding efficiency, however, depends on the positioning 
and accessibility of the chol-TEG anchors within the mem-
brane-facing side of the nanostructures.

Next, as two cholesteryl anchors near the ends of helix 
A (A0  +  A4) and helix C (C0  +  C4) enabled attachment 
of the nanostructures to lipid membranes, we investigated 

if similar binding could be accomplished by incorporating 
cholesteryl anchors in the less accessible central helix B 
instead. For that reason, structures with two (B0  +  B4), 
three (B0  +  B2  +  B4) and five (B1  +  B2  +  B3  +  B4  +  B5, 
referred to as LB5) chol-TEG anchors were chosen (figure 
S6). Surprisingly, significant membrane attachment was only 
possible when five anchors were positioned at helix B, yet 
the resulting fluorescence intensity at the membrane (figure 
3(B)) was at least twofold lower when compared to the values 
obtained for the structures having two anchors near the ends 
of helix A or C (figures 3(B) and S5). Moreover, by analysing 
the membrane attachment behaviour of a structure designed 
to have five chol-TEG anchors positioned in an X-shape 

Figure 3. Membrane binding of the 20-helix bundle DNA origami as a function of the position and number of chol-TEG anchors. (A) 
Fluorescence confocal images of DOPC GUVs at the equatorial plane incubated with 1 nM DNA origami containing: (upper panel) one 
chol-TEG anchor at the central position B2 and (bottom panel) five chol-TEG anchors in a crossed orientation (A0, A4, B2, C0, C4, 
denoted as X5). GUVs contained 0.005 mol% Atto655-DOPE (violet colour) for fluorescence detection; while each origami structure 
had 3  ×   Atto488 dyes (green colour). Merged images are further presented. Scale bar: 20 µm. (B) Quantitative analysis of the mean 
fluorescence intensities at the membrane surface for all chol-TEG combinations utilized on the 20-helix bundle DNA origami. Structures 
with significantly increased membrane binding were A0  +  C4, A4  +  C4, A0  +  C0, C0  +  C4, A0  +  A4, LB5 and X5. Note that the 
intensity axis in the plot is in logarithmic scale and that the mean intensities were normalized in relation to X5. Illustrative confocal images 
of GUVs incubated with DNA origami at all chol-TEG anchor combinations can be found in figures S3–S6. Special nomenclature: BG 
(background fluorescence); N (no anchors); LB5 (B0  +  B1  +  B2  +  B3  +  B4); X5 (A0  +  A4  +  B2  +  C0  +  C4).
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fashion (A0  +  A4  +  B2  +  C0  +  C4 referred to as X5)  
(figures 3(A) and S6) in comparison to the structures with two 
anchors near the corners (figure S5), we obtained a fourfold 
increase in origami fluorescence intensity at the membrane; 
in comparison to the LB5 structure, this increase is 17-fold 
(figure 3(B)). Importantly, note that the reported differences 
in membrane binding as a function of the chol-TEG posi-
tions are not caused by variations in the incorporation levels 
of individual cholesteryl-modified oligonucleotides during 
folding (figure 2).

To summarize, the comparison of all the studied 20-helix 
bundles with different combinations of chol-TEG anchors 
reveals that not only the number but also importantly the posi-
tioning (and hence accessibility) of the hydrophobic moieties 
to the membrane strongly influences the binding behaviour of 
large 3D DNA origami structures to lipid membranes.

3.3. Influence of number and positioning of chol-TEG  
anchors on the diffusion of an elongated 3D DNA  
origami on freestanding lipid bilayers

After determining that accessibility of the hydrophobic modi-
fications influences the attachment of a DNA origami object 
to freestanding lipid bilayers (figure 3), we chose a set of 
structures with known numbers and positioning of cholesteryl 
anchors to assess the influence of these parameters on the 
dynamic behaviour of membrane-bound origami. The use of 
Atto488-modified staples around the centre of our elongated 
objects allows us to follow translational diffusion by FCS and 
eliminates potential complications in interpretation of the 
results due to rotational diffusion [20, 21]. The translational 
diffusion coefficients at the membrane surface were deter-
mined for four elongated DNA origami structures with dif-
ferent combinations of two (A0  +  C4, A4  +  C4 and C0  +  C4) 
anchors and with five (X5) anchors, at a broad range of total 
concentrations (0.1 to 5 nM).

At low surface densities of membrane-bound DNA ori-
gami (ρ  <  0.2, dilute regime), FCS autocorrelation functions 
could be very well described by the 2D diffusion model (equa-
tion (1)) describing the translational Brownian motion of the 
Atto488-labeled DNA origami particles bound to the lipid 
membrane, which is exemplified by figure 4. At higher sur-
face densities of membrane-bound origami particles, where 
crowding effects become important, an increase in the par-
ticle density lead to progressively stronger deviations from the 
simple diffusion model (data not shown). In this concentra-
tion regime, if all particles are fluorescently labelled (which is 
the case with our experiments), FCS autocorrelation functions 
reflect the collective (mutual) diffusion or membrane-bound 
particles, rather than their self-diffusion [21].

The diffusion coefficients of membrane-bound DNA ori-
gami structures in the dilute regime (ρ  <  0.2) estimated from 
FCS measurements (~4 µm2 s− 1) are in good agreement with 
those reported previously for DNA nanoneedles [20, 21]  
and monoliths [26] on freestanding membranes. In our 
experiments GUVs were filled with 610 mOsm kg− 1 solu-
tion of sucrose, whose refractive index is higher than that of 
water. As a result, we expect that the diffusion coefficients 

of membrane-bound origami structures obtained under these 
conditions are all underestimated by the same factor [33]. 
Therefore, we prefer to report the diffusion times directly 
measured in the FCS experiments (table 1) and present rela-
tive diffusion coefficients with respect to that of the A4  +  C4 
structure (figure 5). We find that, while DNA origami struc-
tures with two chol-TEG anchors positioned at the corners 
are characterized by very close diffusion coefficients, the X5 
structure with five anchors making an X-cross pattern exhibits 
a 10% lower lateral mobility.

The membrane-bound origami structures do not perturb 
membrane properties even at high surface densities, as can be 
judged by the diffusion coefficient of the fluorescently labelled 
lipid (Atto655-DOPE) in the GUVs in presence of DNA ori-
gami. Indeed, the lipid diffusion coefficient in presence of the 
origami structures is within the experimental errors the same 
as the one measured on naked vesicles (table S1), which con-
firms previous experimental observations [20]

In summary, we confirmed that the number of hydrophobic 
anchors influences the translational diffusion of DNA origami 
objects on membranes, but no strong influence of anchor posi-
tioning is so far observed. Further comparative studies will be 
needed to clearly assess this effect.

Figure 4. Diffusion of membrane-bound elongated DNA 
origami 20-helix bundle as detected by FCS. Representative FCS 
autocorrelation curve (symbols) for the membrane-bound X5 DNA 
origami structure, respective fit and residuals using the model 
described in the text are presented. Reduced surface density of DNA 
origami was ρ  =  0.09, which corresponds to a dilute density regime 
at the membrane surface.

Table 1. Diffusion times of DNA origami with two or five  
chol-TEG anchors on freestanding DOPC membranes  
determined using FCS.

Membrane-bound  
origami

Diffusion time  
(ms)

Number 
of GUVs

A0  +  C4 2.84  ±  0.08 15
A4  +  C4 2.80  ±  0.11 11
C0  +  C4 2.74  ±  0.08 17
X5 3.09  ±  0.08 22

Note: Values correspond to the average diffusion times determined for n 
number of GUVs at reduced surface densities ρ  <  0.2 of membrane-bound 
DNA origami. Error values represent the standard error of the mean.
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4. Discussion

In this work we proposed to elucidate the effect of the 
number and positioning of cholesteryl anchors on binding 
of an elongated DNA origami construct to freestanding 
lipid bilayers. By investigating nanostructures bearing one 
and different combinations of two, three or five chol-TEG 
anchors, we show that in general two anchors are neces-
sary for efficiently binding DNA origami objects to lipid 
bilayers (figures 3 and S3–S6), as it had been suggested by 
previous studies [21, 27]. Moreover, incorporation of five 
chol-TEG moieties across the membrane-facing surface of 
the DNA origami object (i.e. X5 structure) leads to a four-
fold increase in its binding ability to the GUV surface, when 
compared to structures containing only two anchors near 
the corners (figures 3(B) and S5–S6). A similar dependency 
on the number of hydrophobic moieties was previously 
suggested to explain the incorporation of a DNA origami 
nanochannel into small unilamellar vesicles (SUVs) [27]. 
There, an increase from 20% to 40% of the number of SUVs 
with at least one incorporated nanochannel was achieved 
by increasing the number of chol-TEG modifications from 
2 to 11, and an almost 80% incorporation efficiency was 
achieved with 26 anchors.

Remarkably, our results further reveal that the number of 
anchors alone is not enough to ensure efficient membrane 
binding. For example, structures containing combinations of 
two chol-TEG anchors, with one anchor fixed in the middle 
B2 position and the position of the second one varies (figure 
S4), do not significantly bind to the membrane surface. In con-
trast, all structures with two anchors near the corners (figure 
S5) display enhanced membrane attachment. Surprisingly, 
the exception is the A4  +  C0 structure that presents a lack of 
membrane binding worth of future investigation. Furthermore, 
note that the corresponding chol-TEG positioning near the 
ends of the least accessible central helix B (i.e. B0  +  B4) 

was not enough for binding of the DNA origami to the GUV 
membrane (figure S6). Even more striking is the difference 
between two DNA objects bearing five anchors positioned in 
a line (LB5) or making a cross (X5) (figures 3(B) and S6), 
where an almost 17-fold increase in membrane localization is 
accomplished by just changing the positioning of the anchors 
from LB5 to X5.

Altogether, these results strongly suggest that the anchor 
positioning within the bulky DNA origami object plays an 
important role in membrane binding, as the accessibility of 
the anchors to the membrane is conditioned by steric hin-
drances arising from the origami bulkiness and not just from 
the distance between the anchors. More specifically, the 
choice of corner positions with higher membrane accessibility 
is favourable for the DNA object attachment to lipid bilayers, 
which can then be further improved by increasing the number 
of membrane anchors. Note that in the previously described 
DNA nanoneedle design with two chol-TEG anchors [21] the 
locations chosen for anchor positioning were close to the ends 
of the structure. For the nanochannel with two cholesteryl 
anchors [27], although the anchors are located in the centre 
of the membrane-facing surface, their distance to the edges 
of the structure is below 10 nm, in close agreement with the 
distances described for the corner positions of our structure 
(figure 1).

In order to determine if the number and positioning of 
anchors play a role in the membrane dynamics of the rec-
tangular-shaped DNA origami structure, translational diffu-
sion for three nanostructures with double anchor positioning 
at the corners (A0  +  C4, A4  +  C4 and C0  +  C4) and the 
X5 nanostructure with five anchors was studied by FCS. 
Previous FCS studies on DNA nanoneedles [21] and particle 
tracking experiments on DNA origami blocks [25] showed 
that increasing the number of hydrophobic moieties (by a 
factor of four and two, respectively) slows down diffusion 
of the membrane-bound DNA objects. Our data confirm 
this trend, as the X5 structure, origami with best membrane 
binding efficiency, shows the slowest translation diffusion 
coefficient (reduction of approximately 10% when compared 
with the double anchored structures) (figure 5). No signifi-
cant differences in diffusion coefficients were observed for 
the double-anchored structures—similar to what was found 
for their binding efficiencies. Regarding the structures with 
five anchors, on the other hand, as LB5 and X5 showed a 
strikingly different behaviour in terms of membrane binding 
(figures 3(B) and S6), it would be of great interest to further 
compare their membrane dynamics. Nevertheless, in order to 
do so, a tighter control of the experimental conditions would 
be needed.

Taken together, our findings provide a rational basis for 
interpretation of previously described membrane-attaching 
origami structures and for the prediction of membrane binding 
efficiencies in future designs. Further investigation of struc-
tures with different aspect ratios and protruding chol-TEG 
anchors may help corroborate the effect of steric hindrance 
described here and, in this way, contribute to the understanding 
of the minimal requirements necessary for the attachment of 
DNA origami objects to lipid membranes.

Figure 5. Relative translational diffusion coefficients of chol-TEG 
modified DNA origami structures on freestanding lipid bilayers. 
Diffusion coefficients were obtained from experimental FCS 
curves measured in the dilute regime (reduced surface densities of 
membrane-bound origami ρ  <  0.2) and normalized with respect to 
that of the A4  +  C4 structure.
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5. Conclusions

In summary, the study of simple elongated DNA origami 
structures differing only in the number and positioning of 
chol-TEG anchors enabled us to decipher the role of hydro-
phobicity (number of anchors) and, for the first time, mem-
brane accessibility (position of anchors) on the attachment 
and diffusive behaviour of a DNA origami structure to lipid 
membranes. Taken together, our results show that a strong 
and efficient binding of DNA origami objects to lipid bilayers 
requires at least two chol-TEG anchors positioned near the 
structure corners. Furthermore, increasing the number of 
highly accessible anchors enhances the DNA structure local-
ization at the membrane. This work evidences the importance 
of the position-dependent steric hindrances within a 3D DNA 
object. Ultimately, this provides a rational basis for the design 
of efficient amphipathic DNA origami nanostructures, more 
specifically in terms of number and localization of the hydro-
phobic moieties. As the interaction of cholesteryl moiety with 
membranes relies on nonspecific hydrophobic interactions, it 
is reasonable to speculate that the results obtained for chol-
TEG anchors can be extended to other types of anchoring 
moiety employing the same binding mechanism.
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ABSTRACT 

DNA origami nanotechnology is increasingly used to mimic membrane-associated biophysical 

phenomena. Although a variety of DNA origami nanostructures has already been produced to 

target lipid membranes, the requirements for membrane binding have so far not been 

systematically assessed. Here, we used a set of elongated DNA origami structures with varying 

placement and number of cholesteryl-based membrane anchors to compare different strategies 

for their incorporation. Single and multiple cholesteryl anchors were attached to DNA 

nanostructures using single- and double-stranded DNA spacers of varying length. The produced 

DNA nanostructures were studied in terms of their membrane binding and diffusion. Our results 
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show that the location and number of anchoring moieties play a crucial role for membrane 

binding of DNA nanostructures mainly if the cholesteryl anchors are in close proximity to the 

bulky DNA nanostructures. Moreover, the use of DNA spacers largely overcomes local steric 

hindrances and thus enhances membrane binding. Fluorescence correlation spectroscopy 

measurements demonstrate that the distinct physical properties of single- and double-stranded 

DNA spacers control the interaction of the amphipathic DNA nanostructures with lipid 

membranes. Thus, we provide a rational basis for the design of amphipathic DNA origami 

nanostructures to efficiently bind lipid membranes in various environments. 
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 3

INTRODUCTION 

The last decades’ advances in DNA nanotechnology allowed for the production of customizable 

DNA nanostructures with nanometer-precision addressability, which can be modified with a 

wide variety of functional moieties, e.g. small biomolecules, fluorescent dyes, metallic 

nanoparticles, peptides, proteins or hydrophobic moieties 1-7. The versatility of DNA-based 

nanomaterials led to their use to investigate various biophysical processes in biologically 

relevant environments, such as lipid membranes, directly addressing cellular membranes or 

resorting to minimal lipid model systems 8-9. For this purpose, DNA oligonucleotides have been 

previously covalently modified with lipophilic moieties, such as alkyl chains 10, cholesterol 11-13, 

tocopherol 14 and porphyrins 15. Membrane-targeting of DNA nanostructures by cholesteryl 

anchors with a tetra-ethylene glycol linker (TEG-chol) became particularly popular, since such 

oligonucleotides are commercially available and have been extensively characterized in terms of 

their incorporation into lipid membranes and their effect on the lipid membrane reorganization 12-

13, 16. Ranging from the study of the differential partitioning of a simple six-helix bundle in 

phase-separated membranes 17 and its 2D organization upon crowding on homogeneous 

membranes 18, to the achievement of controllable binding of DNA nanostructures to lipid 

membranes 19-20, cholesteryl-modified nanostructures have been used to mimic rather complex 

biological phenomena. For example, membrane-assisted oligomerization of amphipathic DNA 

nanostructures of various flat shapes has been previously shown 19, 21-22. More recently, this 

phenomenon has been demonstrated to induce shape deformation and bursting of small vesicles 

23 as well as large scale deformation of giant unilamellar vesicles (GUVs) 24. Other membrane-

shaping phenomena usually associated with protein scaffolds have been recently mimicked using 

curved DNA origami nanostructures, capable of tubulating lipid membranes 25-26. DNA-based 
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membrane nanochannels, ranging from large hemolysin-inspired structures to tile-based 

constructs 27-29, can insert into lipid bilayers and conduct ion currents. A small 4-helix DNA tile 

has been shown to facilitate the flip-flop of lipids between lipid leaflets outperforming natural 

enzymes 30. Furthermore, DNA origami nanostructures have been used to modify the cell surface 

function to promote cell-cell adhesion 31. 

Interestingly, despite the complexity of the phenomena described and the physical properties 

unraveled in the above mentioned studies, a thorough analysis of the strategies chosen to 

membrane-target DNA nanostructure in each of these studies reveals a lack of a systematic 

approach towards this goal. For instance, DNA origami nanostructures of similar membrane-

facing areas have been targeted to lipid membranes using various numbers and types of 

attachment of TEG-chol moieties: from a single cholesteryl-modified oligonucleotide to a total 

of 47, directly incorporated in the DNA nanostructures or hybridized with a DNA extension of 

18, 20 or 60 nucleotides 19, 23-25, 31. Previously, we have addressed a part of this problem by 

studying the minimal steric requirements for the membrane-attachment of such DNA-based 

nanostructures by the direct incorporation in an elongated 3D DNA origami nanostructure of 

various configurations of cholesteryl-modified nucleotides 32. 

Here, we use the previously designed 20-helix bundle with 15 addressable locations to explore 

the effect of single- and double-stranded DNA linkers between the TEG-chol anchors and the 

bulky DNA nanostructures on membrane binding (Figure 1). Single- and multiple-cholesteryl-

modified DNA origami nanostructures were produced varying the length and flexibility of the 

cholesteryl-anchors (Figure 1C). We study the binding, membrane density and dynamics of each 

of these DNA nanostructures by fluorescence microscopy and fluorescence correlation 

spectroscopy (FCS) on GUVs. Our results convincingly demonstrate that the accessibility and 
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 5

number of the anchoring moieties within the bulky DNA nanostructures play a crucial role for 

their binding to lipid membranes. We further show that the DNA spacer type has a pronounced 

effect on the diffusion of the elongated DNA nanostructures on lipid membranes and response to 

cationic lipids.  

 

Figure 1. Structural characteristics of the elongated 20-helix bundle DNA origami nanostructure. 

(A) Nomenclature and location of the 15 possible sites (yellow circles) for modification with 

TEG-chol anchors on the bottom facet of the elongated DNA origami (16 nm × 110 nm). Five 

locations along and three across the elongated DNA origami nanostructure were denoted by 

numbers (0-4) and letters (A–C), respectively. (B) Bottom view of some of the combinations of 

TEG-chol anchors used. Naming of the structures explicitly codes for the location of the TEG-
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chol anchors, except for R4 (anchor locations A0 + A4 + C0 + C4), LB5 (anchors locations B0 + 

B1 + B2 + B3 + B4) and X5 (anchor locations A0 + A4 + B2 + C0 + C4). (C) Schematic 

representation of the side view of the different types of TEG-chol anchors used. Two different 

linkage strategies were employed: direct insertion into the DNA nanostructure of 

oligonucleotides with no, 9 or 18 nucleotide extensions TEG-chol modified at the free end 

(denoted no spacer, 9ss and 18ss, respectively); hybridization of TEG-chol oligonucleotides in a 

proximal position to the DNA nanostructure with 18 nucleotide extensions (denoted proximal) or 

in a distal position to the DNA nanostructure with 9 or 18 nucleotide extensions (denoted 9ds 

and 18ds, respectively). The list of strands used for assembly of each TEG-chol anchor can be 

found in the Supporting Table 1. 
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MATERIALS AND METHODS 

DNA origami folding and purification – The previously described elongated DNA origami 

structure was used 32. Some of the oligonucleotides in the bottom locations A0-4, B0-4, C0-4 

(Figure 1) were substituted by the respective extended and/or TEG-modified oligonucleotides 

(Sigma-Aldrich, Taufkirchen, Germany) (Supporting Table 1) to assemble the required 

membrane anchors. For detection by fluorescence microscopy and spectroscopy, the 

nanostructures were functionalized respectively with three 5' ATTO488 or 5' Alexa488-modified 

GGGTTTGGTGTTTTTT oligonucleotides (Eurofins, Planegg, Germany), that would attach to 

complementary extensions located on the top facet close to the center of the structure. DNA 

origami nanostructure folding, purification in imaging buffer (5 mM Tris-HCl, 1 mM EDTA, 5 

mM MgCl2, 300 mM NaCl, pH 8.0) and concentration determination were performed as 

previously described 32. 

Vesicle preparation and DNA origami nanostructure binding – Giant unilamellar vesicles 

(GUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 9:1 mixtures of 

DOPC with 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) or 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) (all purchased from Avanti Polar Lipids, Alabaster, AL, 

USA), and additionally containing 0.005 mol% Atto655-DOPE (ATTO-TEC GmbH, Siegen, 

Germany) were produced by electroformation 33 in polytetrafluoroethylene chambers with Pt 

electrodes spaced 4 mm apart, as described previously 34. Briefly, 6 µL of the lipid mixture (2 

mg·mL-1 in chloroform Uvasol) was spread onto two Pt wires and dried in a desiccator for 30 

min. The chamber was then filled with 350 µL of a 605 mOsm·kg-1 aqueous solution of sucrose. 

A sinusoidal AC electric field of 2 V (RMS) was applied at a frequency of 10 Hz for 1.5 h, 

followed by 2 Hz for 45 min. Experiments were carried out in 40 µL 384-multiwell plates with 
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#1.5 glass coverslip bottom (MatriCal, Brooks Life Science Systems, Spokane, WA, USA and 

Sensoplate, Greiner Bio-One GmbH, Frickenhausen, Germany). Freshly plasma-cleaned wells 

(0.3 mbar, 10 min) (MiniFlecto-PC-MFC, Plasma Technology, Herrenberg-Gültstein, Germany) 

were passivated with PLL(20)-g[3.5]-PEG(2) (SuSoS AG, Dübendorf, Switzerland) by 

incubation with a 0.5 mg·mL-1 solution in Milli-Q water (Merck Millipore, Darmstadt, Germany) 

for at least half an hour and subsequently thoroughly washed with Milli-Q water and imaging 

buffer. 3 µL of the GUV suspension (original suspension in the electroformation chamber diluted 

1:50 in 605 mOsm·kg-1 sucrose solution) were mixed with 18 µL of DNA origami solution (3 

nM total concentration) diluted in imaging buffer (iso-osmolar). To reach a higher MgCl2 

concentration, 1 µL of buffer containing 5 mM Tris-HCl, 1 mM EDTA, 195 mM MgCl2, pH 8.0 

(iso-osmolar) was added to the chambers. Samples were incubated at 4 ºC overnight and, before 

measurement, equilibrated at the microscope objective (27.5 ± 1.0 ºC) for at least 30 min. GUVs 

were not disrupted by DNA origami. After overnight incubation, no penetration of DNA origami 

nanostructures to the interior volume of the GUVs was found (Supporting Figure 1). 

Fluorescence imaging – Confocal imaging was performed on a LSM 780 commercial laser 

scanning microscope with a ConfoCor3 unit (Carl Zeiss AG, Oberkochen, Germany) using a 

water immersion objective (C-Apochromat, 40×/1.2 W UV–VIS–IR, Zeiss, Jena, Germany). 

Fluorophores were excited with the 488 nm line of an Ar-ion-laser or with the 633 nm line of a 

He–Ne laser (for Atto488 and Atto655 excitation, respectively). To avoid the effect of 

polarization selection in excitation of the GUVs, an achromatic λ/4 plate (Edmund Optics, 

Barrington, NJ, USA) was installed in the excitation beam path to achieve circularly polarized 

excitation in the sample. Images were recorded at the equatorial planes of GUVs, using a 1 Airy 

unit pinhole, 512 × 512 pixel, pixel dwell time of 3.15 µs and GaAsP detectors. In order to 
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 9

compare membrane affinities of different nanostructures, fluorescence intensities of membrane-

bound DNA origami at a bulk concentration of 3 nM were determined using an in-house 

software based on Matlab (MathWorks, Natricks, USA)35. The background signal was subtracted 

from the obtained fluorescence intensity and independent measurements were normalized taking 

into account the particle brightness of Alexa488 in solution as obtained by fluorescence 

correlation spectroscopy. Further data normalization is specified for the respective figures. Image 

brightness and contract adjustment for better visualization was performed using ImageJ (http:// 

rsb.info.nih.gov/ij/) 36. In Figures 2 and 3 the brightness and contrast levels were adjusted 

individually for illustrative purposes. 

Fluorescence correlation spectroscopy – For fluorescence correlation spectroscopy (FCS), 

2 mm-thick silicon isolators with 4.5 mm diameter wells (Grace Bio-Labs, Oregon, USA) were 

pressed on plasma cleaned high precision 22 mm × 22 mm #1.5 coverslides (Marienfeld 

Superior, Germany). Samples were prepared as described above at total DNA nanostructure 

concentrations ranging between 0.05 and 1 nM. This allowed us to assure the reduced density of 

membrane-bound DNA nanostructures is in the regime ρ < 0.5 in which the effect of crowding 

on the translational diffusion is expected to be below 10% 18. Here ρ =σL
2
 is the reduced density 

of particles on the membrane, σ is the surface density of membrane-bound DNA nanostructures 

per µm2 and L is the DNA nanostructure length. The localization of the three Alexa488 modified 

nucleotides around the center of the structures allowed us to follow translational diffusion by 

FCS and eliminated potential complications in interpretation of the results due to rotational 

diffusion 17-18. Samples were sealed with 18 mm × 18 mm plasma-cleaned coverslides to avoid 

evaporation, and incubated overnight, as described above. 
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FCS measurements were performed on the same microscope setup as above, using avalanche 

photodiode detectors (ConfoCor3, Carl Zeiss AG, Oberkochen, Germany). The internal pinholes 

were set to 35 µm and 45 µm size, corresponding to 1 Airy unit for 488 nm and 633 nm 

excitation wavelength, respectively. To eliminate the unwanted contribution of the detector 

afterpulsing to the autocorrelation curve, we performed pseudo-crosscorrelation, i.e. we split 

50/50 the collected fluorescence, directed it on two independent detectors and cross-correlated 

their signals. For analysis, the average of the two resulting autocorrelation functions (ACFs) was 

considered. The optical system was calibrated on a daily basis using Alexa Fluor 488 (Alexa488, 

Thermo Fischer Scientific, Waltham, MA, EUA) or ATTO 655 carboxylic acid (Atto655, 

ATTO-TEC, Siegen, Germany) freely diffusing in aqueous solution with known diffusion 

coefficients 37-39, corrected for the temperature at the microscope objective through the relation 

)()( T
TTD η∝  40-41. The viscosity of water  at 27.5 ºC was calculated using the previously 

published expression 42. For calibration measurements, the confocal volume was positioned 50 

µm above the bottom coverslip, the lateral pinhole position was optimized for maximum 

fluorescence signal and the objective’s correction collar was positioned for maximal count rate 

per particle. 

FCS on membranes was carried out at the upper poles of GUVs with diameter of at least 20 µm 

(which is large enough to be considered as a flat surface in comparison with our DNA 

nanostructures). The optimal axial focus position was determined by scanning the detection 

volume in the axial direction to locate the intensity maximum. This procedure was repeated for 

each FCS measurement, to compensate for potential sample drift. During acquisition of FCS data 

(minimum 15 runs, 15 s each), the fluorescence count rate was monitored online, ensuring that 

no fluorescence fluctuations originated from the movements of the whole membrane or the 
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presence of large aggregates of fluorescent particles. In case such events were observed, the 

corresponding datasets were discarded. For both the initial calibration measurement and the FCS 

measurements on GUVs, the sufficiently low excitation power density was chosen to minimize 

photobleaching and fluorescence saturation 43-45. 

The recorded ACFs were analyzed using a home-written Matlab-based code (MathWorks, 

Natick, USA) to obtain particle number (and consequently, membrane density) and the 

translational diffusion coefficient (D) of membrane-bound DNA nanoparticles, as well as of the 

lipid probe. As virtually no unbound DNA origami was detected in solution, and its potential 

contribution to FCS curves was negligible (data not shown), a single-component two-

dimensional diffusion model was used as a fitting function. 

In general, the model function for 3D diffusion reads 45: 

( ) ( ) 2
1

211 )(11
1

1)(
−−−− ++









−
+= DD Se

T

T
NG T τττττ τ

τ
 (Eq. 1) 

Here, D
w

D 4

2
0=τ  is the diffusion time, which depends on the diffusion coefficient D and the 

lateral waist w0 of the confocal detection volume, which assumed to be a 3D Gaussian. The 

structure parameter S represents the ratio of axial to lateral extent of the detection volume, T is 

the triplet fraction, and τT is the triplet blinking time. Under the experimental conditions, Atto655 

does not show any triplet blinking, and experimental curves are therefore fitted with T=0. When 

measuring on membranes the axial extent of the confocal volume is irrelevant (S=∞). To ensure 

proper determination of the concentration of membrane-bound DNA origami particles, 
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amplitudes of autocorrelation functions were corrected for the presence of a non-correlated 

background 46. 

 

Based on the FCS measurements, the diffusion coefficient of DNA origami nanostructures bound 

to the lipid membrane (DDNA) was calculated as follows: 

���� = �����	
��
���

���������
 (Eq. 2). 

The relative variations for ������	
�� within one measurement day were of about 1%. The 

relative error in �����	
�� is about 2%. At the same time, ����� showed ≈10% variability 

between measurements on individual GUVs. Thus, the error in ���� is dominated by the error in 

�����. 

Statistical analysis – The data presented has been statistically analyzed using one or two way 

ANOVA with subsequent Bonferroni’s test for the mean diffusion coefficients using Prism 7 

(GraphPad, La Jolla, CA, USA). The summary tables can be found in the SA Tables. 
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RESULTS AND DISCUSSION 

We used the elongated DNA nanostructure that has been previously described 32 to study the 

effect of different TEG-chol anchors on the binding efficiency to lipid membranes (Figure 2 and 

Supporting Figure 2). The 20-helix bundle, with a membrane-facing surface of dimensions 110 

nm × 16 nm, has 15 distinct locations for TEG-chol anchor placement (Figure 1A). More 

specifically, five sites (numbered 0–4) were spaced 21.4 nm apart along three helices (named A–

C). The distances from the left (location 0) and right (location 4) locations to the structure edges 

are 26.3 and 16.9 nm, respectively. Structures containing combinations of one, two, three or five 

TEG-chol anchors in different locations have been produced (for particular examples, see Figure 

1B), and their binding efficiency to DOPC GUVs was assessed by fluorescence confocal 

microscopy. 

Number and location of TEG-chol moieties in the proximal position strongly influence the 

membrane binding of elongated DNA nanostructures – First, we assessed DNA 

nanostructures displaying cholesteryl-modified oligonucleotides in a proximal position 

hybridized with 18 nucleotide-long overhangs at the modification sites (Figure 1C). The 

fluorescence intensity of GUVs incubated with 3 nM solution of DNA nanostructures featuring 

various numbers and locations of proximal TEG-chol anchors was analyzed (Figure 2A,C, 

Supporting Figure S2B). Our results show that under these conditions, one proximal TEG-chol 

anchor was not enough to achieve significant membrane binding. Furthermore, although higher 

numbers of proximal TEG-chol anchors increased the affinity of the DNA nanostructures to the 

membrane surface, anchor location also played a crucial role. More specifically, nanostructures 

with proximal TEG-chol anchors at locations near the edges (such as A0 + C4) were more 

efficient in membrane attachment then those with TEG-chol anchors closer to the center of the 
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structure (B2 + C4, where B2 is the central location). Among the configurations tested, the 

highest membrane binding was achieved by the configuration X5 (A0 + A4 + B2 + C0 + C4). 

Taken together, there is a strong dependence of membrane binding on the number and location of 

the TEG-chol anchors, with binding efficiencies differing up to a factor of 100 compared to a 

single TEG-chol at B2. Previously we studied the effect of TEG-chol moieties directly attached 

to the DNA nanostructure, with strikingly similar findings 32 (Figure 2E, Supporting Figure 

S2A,B). Notably, in the proximal localization, the distance between the TEG-chol anchors and 

the DNA nanostructures should be comparable with the distance upon direct modification of the 

structure as in our previous study (“proximal” and “no spacer” anchors in Figure 1C, 

respectively). Variations in the binding efficiency of anchor combinations with less accessible 

locations, such as B0 + B2 + B4, may come from an incomplete hybridization of the 18 

nucleotide-long strands due to steric hindrance and electrostatic repulsion in the proximal 

orientation.  

DNA spacers increase membrane binding efficiency of elongated DNA origami 

nanostructures – Although proximal localization of TEG-chol moieties has been used in the 

special instance of electrically stable insertion of DNA-based nanopores in lipid vesicles 27, 

usually a distal localization of TEG-chol moieties has been chosen to efficiently bind DNA 

nanostructures to lipid membranes 19, 23, 25-26, 31. Switching the attachment of the cholesteryl-

modified nucleotide from a proximal to a distal position (denoted 18ds, Figure 1C) drastically 

changed the membrane-binding behavior of the elongated DNA nanostructures (Figure 2B,D, 

Supporting Figure S2F). Here, a single TEG-chol anchor yielded significant membrane binding, 

irrespectively of its location. Additionally, the membrane binding efficiency of structures bearing 

two, three or five TEG-chol anchors was only one order of magnitude higher in comparison to a 
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single TEG-chol anchor at location B2, showing a very low effect of the total number or location 

of the anchors (Figure 2E). The comparison of these results with those obtained for the proximal 

positioning of TEG-chol moieties, suggests that the distance between the TEG-chol anchor and 

the bulky DNA nanostructure may play a role for the membrane binding efficiency. 

To study the effect of the distance between the TEG-chol moieties and the DNA nanostructure, 

we systematically varied the DNA spacer length. Three different types of TEG-chol anchors 

were tested (Figure 1C, 2E and Supporting Figure 2C-E): 9ss and 18ss anchors, produced 

through direct insertion into the DNA nanostructures of oligonucleotides with 9 or 18 nucleotide 

extensions, respectively, cholesteryl-modified at the free end; and 9ds anchors, produced through 

the extension of the neighboring oligonucleotide for hybridization with the directly inserted 9 

nucleotide extended cholesteryl-modified oligonucleotide in the DNA nanostructure (Supporting 

Figure 3). Just as observed for the 18ds DNA spacer, attachment of a single TEG-chol anchor 

through the 9ds DNA spacer resulted in efficient membrane binding of DNA nanostructures, 

although the spacer was shorter by a factor of two. The shorter DNA spacer also resulted in 

lower membrane binding efficiencies, although in the same order of magnitude as for 18ds DNA 

spacer. Importantly, the effect of the number of anchors and their location was more pronounced 

for 9ds than for 18ds DNA spacers. This difference may be additionally due to the distinct 

rigidity of the TEG-chol anchors at their attachment points to the DNA nanostructure. 

Interestingly, the higher flexibility of 9ss and 18ss DNA spacers, in comparison to their double-

stranded counterparts, did not further enhance membrane binding. For both 9ss and 18ss DNA 

spacers, a minimum of two TEG-chol anchors were necessary for an efficient membrane binding 

(nearly two orders of magnitude increase in membrane binding efficiency upon addition of the 

second TEG-chol anchor), irrespectively of their localization. Further increasing the number of 
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anchors had a small effect on the membrane binding efficiency, as observed for 18ds DNA 

spacers. Indeed, it appeared that DNA spacers providing better binding to the lipid membrane 

showed a smaller dependence on the number and positioning of cholesteryl anchors (Figure 1E 

and Supporting Figure 2). Notably, the use of 9ss and 18ss DNA spacers resulted in very similar 

membrane-binding behaviors, even though the contour length of the spacers differed by a factor 

of two. The membrane binding efficiency of multiple TEG-chol anchors attached via 9ss or 18ss 

DNA spacers was higher than with no DNA spacer or in proximal position, especially when 

comparing configurations involving less accessible locations, such as B0 + B2 + B4 or LB5. 

Nonetheless, the flexibility of the single-stranded DNA spacers and consequent lower 

accessibility to the membrane of the TEG-chol anchors resulted in a less efficient membrane 

binding in comparison to the double-stranded counterparts. We thus suggest that the flexibility of 

short TEG-chol modified DNA spacers can be used to control the binding efficiency of DNA 

nanostructures to lipid membranes. So far, single-stranded DNA spacers consisting of a single 

nucleotide (A) or short sequences (AAA) have only been used in small DNA tile designs, to 

ensure a higher flexibility of the anchors 29-30.  

Our results can be used to rationalize the previous choices of TEG-chol attachment to DNA 

nanostructures. Direct incorporation of one or two cholesteryl anchors (no DNA spacer) have 

been used in rather small or quasi-one-dimensional structures, such as DNA tile nanoparticles22 

and DNA nanoneedles 18, where steric hindrance does not play a major role. Other bulkier 

structures, like DNA hexagons 21 and monolith 24, were also attached to lipid membranes using 

this strategy, but with a larger number of anchors (6 and 9, respectively). In all other studies, the 

extension of oligonucleotides for hybridization with TEG-chol-modified oligonucleotides was 

preferred, most probably to reduce the costs for structure functionalization and increase the 

Page 16 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III. Binding and Diffusion of membrane-bound DNA nanostructures

58



 17

modularity of the structures. On the one hand, proximal positioning of cholesteryl anchors has 

been used to achieve stable insertion of DNA-based nanopores, most probably due to the tighter 

interaction between the nanostructure and the lipid bilayer 27-28. However, it has been shown that 

the incorporation of large numbers of cholesteryl moieties in a proximal position reduced the 

folding efficiency of DNA nanostructures 20. On the other hand, distal positioning of cholesterol 

on DNA spacers of 18 to 21 nucleotides has been used to achieve membrane binding 19, self-

assembly 23 and even shaping of model lipid membranes 25-26, although the number of anchors 

varied from 1 to a total of 47. To achieve attachment to cell membranes, 60ds DNA spacers have 

been used, to avoid any steric hindrance in the crowded environment of the cell surface 31.  

 

Figure 2. Control of membrane binding efficiency of elongated DNA origami nanostructures by 

cholesteryl-modified DNA spacers. (A,B) Confocal fluorescence microscopy images of DOPC 

GUVs at the equatorial plane incubated with 3 nM solution of DNA nanostructures modified 
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with: one TEG-chol anchor at the central location B2 and five TEG-chol anchors in a crossed 

shape configuration (A0 + A4 + B2 + C0 + C4, named X5). Two conditions are shown for 

comparison: proximal (A) and distal (18ds DNA spacer, B) location of the TEG-chol anchor 

upon hybridization of the modified DNA strand with the complementary 18 nucleotide-long 

extension. GUVs contained 0.005 mol% Atto655-DOPE for fluorescence imaging (magenta), 

while each DNA origami structure carried three Atto488 dyes (green). Scale bar: 10 µm. (C,D) 

Mean fluorescence intensity of DOPC GUVs for several TEG-chol combinations with proximal 

(C) and distal (18ds, D) location. Note the logarithmic scale of the intensity axis. Error bars 

correspond to the standard deviation of measurements on typically 15-30 GUVs. (E) Changes in 

binding upon an increase in the number of anchors for each type of spacer. The measured 

fluorescence intensities on the GUV are normalized to that of the respective DNA nanostructure 

with one TEG-chol anchor at the central location B2. For each spacer studied (Figure 1C, 

Supporting Figure 2) the following TEG-chol anchor configurations are compared: B2 + C4 

(shaded grey), A0 + C4 (grey), B0+B2+B4 (blue) and X5 (magenta). Note the logarithmic scale 

of the relative change axis. The significance analysis of the data is summarized in SA Tables 1-3. 
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Short DNA spacers affect the sensitivity of TEG-chol modified DNA nanostructures to 

charges in the environment – Membrane-associated processes in living cells frequently involve 

protein interaction with negatively charged lipids 47-48 and/or require the presence of divalent 

cations in the vicinity of the interaction site 49. To test the compatibility of cholesteryl-modified 

DNA nanostructures with such biologically-inspired settings, we assessed the binding of DNA 

nanostructures with TEG-chol anchors attached at locations A0 + C4 with no spacer, as well as 

with 18ss and 18ds DNA spacers to DOPC GUVs at low MgCl2 concentration (imaging buffer, 5 

mM), DOPC GUVs at higher MgCl2 concentration (MgCl2 enriched imaging buffer, 14 mM) and 

DOPC GUVs containing 10 mol% of the negatively charged lipid DOPS (imaging buffer, 5 mM 

MgCl2) (Figure 3). 

Generally, under all the above three conditions, membrane binding efficiency followed the trend 

outlined above: the use of DNA spacers (either 18ds or 18ss) increased the binding efficiency of 

the DNA nanostructures compared to no spacers, with 18ds DNA spacers being most efficient 

(Figure 3A,B). An increase in Mg2+ concentration enhanced the binding to DOPC GUVs of A0 + 

C4 DNA nanostructures. It is know that divalent cations can mediate the interaction between 

DNA and zwitterionic lipid molecules 50, which explains the effect of Mg2+. The presence of 

negatively charged DOPS lipids in the membrane reduced the binding efficiency of DNA 

nanostructures, as previously reported 17, 51, which can be explained by electrostatic repulsion 

between negatively charged membrane and negatively charged DNA origami. Interestingly, the 

charge effect on the membrane binding of A0 + C4 nanostructure was much stronger in the 

absence of a DNA spacer than in the presence of 18ss and 18ds DNA spacers (Figure 3C). 

Indeed, in absence of DNA spacers the length of TEG-chol anchor is in the order of the Debye 
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length (≈ 0.5 nm). Notably, under all three conditions tested, bare structure N without TEG-chol 

anchors, did not show any binding to the lipid membrane (Figure 3B). 

 

Figure 3. Response of TEG-chol modified DNA nanostructures to charge in the environment. 

(A) Confocal fluorescence microscopy images of DOPC GUVs in buffer containing 5 mM 

MgCl2 (upper panel), or 14 mM MgCl2 (middle panel) or containing 10 mol% of the negatively 

charged lipid DOPS (DOPC/DOPS 9:1) in buffer containing 5 mM MgCl (lower panel). Images 

were taken at the equatorial plane of GUVs incubated with 3 nM solution of DNA nanostructures 

modified with two TEG-chol anchors at locations A0 + C4. Two conditions are shown for 

comparison: DNA nanostructure modification using no spacer (left panel) and 18ds DNA spacer 

(right panel). GUVs contained 0.005 mol% Atto655-DOPE (magenta) for fluorescence imaging, 

while each origami structure carried three Atto488 dyes (green). Scale bar: 10 µm. (B) Mean 

fluorescence intensities of A0 + C4 nanostructures bound to DOPC GUVs in buffer containing 5 

mM (grey) or 14 mM (magenta) MgCl2 or containing 10mol% of negatively charged lipid DOPS 

(DOPC/DOPS 9:1) in imaging buffer containing 5 mM MgCl2 (blue). A0+C4 structure with no 
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spacer, as well as with 18ss and 18ds DNA spacer are compared. Bare DNA nanostructure N is 

shown under all conditions for reference. Error bars correspond to the standard deviation of 

measurements on typically 20 GUVs. (C) Effect of charges in the environment on the membrane 

binding of cholesteryl-modified DNA nanostructures, relative to the binding efficiency of DNA 

nanostructures to DOPC GUVs in buffer containing 5 mM MgCl2. Color coding is the same as in 

B. Dashed lines for ratio 1 and 2 are present for guidance. The significance analysis of the data is 

summarized in SA Tables 4,5. 
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Single- and double-stranded DNA spacers differently influence diffusion of TEG-chol 

modified DNA nanostructures on lipid membranes – Membrane-related processes are 

dependent on the diffusion of biomolecules. We used fluorescence correlation spectroscopy 

(FCS) to study the effect of DNA spacers on the translational diffusion of a chosen set of 

membrane-bound DNA nanostructures. All measurements were performed in a dilute regime, 

with reduced surface density of DNA nanostructures ρ < 0.5 (see Materials and Methods for 

more details), in which the effect of crowding on the translational diffusion is expected to be 

below 10% 18. In this regime, FCS autocorrelation functions for membrane-bound nanostructures 

could be well described by the 2D diffusion model (Equation 1 with S=∞). This allowed us to 

obtain the translational diffusion coefficients of Alexa488-labeled DNA origami particles bound 

to lipid membranes (Figure 4A). 

In order to assess the effects of the number and locations of the anchors on the translational 

diffusion of membrane-bound nanostructures, we analyzed the diffusion of DNA nanostructures 

bearing two and five TEG-chol anchors attached with 9ss and 18ds DNA spacers: B2 + C4 vs A0 

+ C4 combinations and LB5 (five anchors attached along the center helix B: B0 + B1 + B2 + B3 

+ B4) vs X5 combinations (Figure 4B). For cholesteryl-modified DNA nanostructures with 18ds 

DNA spacers, the diffusion coefficient of membrane-bound DNA nanostructure was generally 

lower with five TEG-chol anchors (specifically structure X5) than with two, in good agreement 

with previous studies 18, 23, 32. Interestingly, when the TEG-chol anchors were attached using 9ss 

DNA spacers, the diffusion of membrane-bound DNA nanostructures was independent of the 

number of anchors, within the error bounds (see SA Table 7 for details). The diffusion 

coefficients of structures with the same number of TEG-chol anchors but different locations 

showed no clear trend, although some differences were evident, as for the cases of B2 + C4 and 
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A0 + C4 with 9ss DNA spacers or LB5 and X5 with 18ds DNA spacers. Additionally, we 

observed that cholesteryl-modified X5 DNA nanostructures with single-stranded DNA spacers 

(9ss and 18ss) showed 10-20% faster diffusion in comparison to structures lacking additional 

DNA spacer (no spacer), while in the case of 18ds DNA spacers the diffusion was slower (Figure 

4C). 

We attribute the differences observed between nanostructures carrying single- and double-

stranded DNA spacers to their distinct physical properties. On the one hand, we attribute the 

differences observed between nanostructures carrying single- and double-stranded DNA spacers 

to their distinct physical properties. On the one hand, the diameter of single-stranded DNA is ≈ 

1.3 nm 52, while the diameter of double-stranded DNA is ≈ 2.5 nm 53. Thus, when pulled into the 

lipid bilayer by the TEG-chol anchor, single-stranded DNA spacers being comparable by 

diameter with the dimensions of a lipid headgroup will move more readily through the lipid 

leaflet in comparison to thicker double-stranded DNA spacers, resulting in a smaller diffusion 

coefficient for the structures with double-stranded DNA spacers. On the other hand, single-

stranded DNA spacers are more flexible than the 18ds DNA spacer, which may result in a loss of 

orientation of the TEG-chol anchors towards the membrane. Although the contour lengths of the 

9ss and 18ds DNA spacers are similar (5.4 nm for 9ss DNA spacers, taking into account the 

length per base of 0.6 nm 54; 6.1 nm for 18ds DNA spacers, taking into account the length per 

base pair of 0.34 nm 53), the persistence length of single- and double-stranded DNA is strikingly 

different (2.2 nm and 50 nm, respectively) 53-57. Indeed, 9ss DNA spacers can be described using 

the worm-like chain model58, which gives the root mean square end-to-end distance of ≈3.9 nm, 

only 1.6 times smaller than the length of the stiff-rod 18ds DNA spacer. For 18ss DNA spacers 
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with a contour length of 10.8 nm, the root mean square end-to-end distance (≈6.2 nm) is 

essentially the same as the length of the 18ds DNA spacer.  

Measuring diffusion coefficients of membrane-bound DNA origami nanostructures allows one to 

semi-quantitatively characterize their binding to the lipid bilayer. Indeed, it is well known that 

the diffusion coefficient of a membrane inclusion depends on the surface membrane viscosity, 

the viscosities of the surrounding bulk media, as well on the membrane inclusion size 59-60. If the 

membrane surface viscosity and bulk viscosities of the surrounding media are known, knowledge 

of the diffusion coefficient allows one to determine the effective inclusion size of the membrane-

bound nanostructure. This effective inclusion size, i.e. the size of a cylindrical inclusion that 

would have the same diffusion coefficient under the same conditions, depends not only on the 

size of the nanostructure, but also on how tightly it is bound to the lipid bilayer. To do this, we 

use the analytical approximation 61-62 of the exact model 60 for the diffusion coefficient of a 

circular membrane inclusion for all combinations of the viscosities and inclusion sizes. In doing 

this, we assume the surface viscosity of the DOPC membranes to be ηm = 5.9 × 10-10 Pa s m 63 

and the viscosity of the surrounding bulk medium (aqueous solution) η = 8.42 × 10-4 Pa s (at 27.5 

ºC) 42. From the experimentally determined diffusion coefficients, the estimated effective radii of 

membrane inclusions are a = 3.5 ± 1.5 nm in case of the 18ds DNA spacers (D = 2.7 ± 0.2 

µm2/s) and a = 0.8 ± 0.4 nm in case of the 18ss DNA spacers (D = 3.4 ± 0.3 µm2/s). Thus, by 

simply changing the DNA spacer, we can vary the effective inclusion size of the membrane-

bound DNA nanostructures by a factor of three.  
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Figure 4. Effects of TEG-chol number and DNA spacer type on the translational diffusion of 

membrane-bound DNA nanostructures on DOPC GUVs. (A) Representative autocorrelation 

curve (circles), single-component 2D diffusion fit (line) and the respective residuals for 

membrane-bound DNA nanostructure X5 (A0 + A4 + B2 + C0 + C4) with 18ds DNA spacer. 

Reduced surface density ρ = 0.3. Each origami structure was labeled with three Alexa488 dyes. 

(B) Relative diffusion coefficient of membrane-bound DNA nanostructures bearing two TEG-

chol anchors at locations B2 + C4 (shaded grey) and A0 + C4 (grey) or five TEG-chol anchors 

located along helix B (B0 + B1 + B2 + B3 + B4, denoted LB5) (shaded magenta) or in a cross-

shape (X5) (magenta). Each data set is normalized to the diffusion coefficient of the respective 

A0 + C4 DNA nanostructure. (C) Relative diffusion coefficient of membrane-bound TEG-chol-

modified DNA nanostructures X5 using no, 9ss, 18ss and 18ds DNA spacers. Data sets were 

normalized to the diffusion coefficient of the nanostructure modified carrying no DNA spacers. 

Error bars in B and C typically correspond to the standard deviation of measurements on 6 

GUVs. The significance analysis of the data is summarized in SA Tables 6-9. 
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Finally, we studied diffusion coefficients of X5 DNA nanostructures on DOPC GUVs containing 

10 mol% of negatively charged lipid DOPS or positively charged lipid DOTAP. Previously, it 

has been shown that the membrane surface viscosity of DOPC/DOTAP mixtures is the same as 

that of pure DOPC at least up to 10 mol% of cationic lipid 63. It is reasonable to assume that the 

same situation holds also for DOPC/DOPS mixtures. The presence of the negatively charged 

lipid DOPS did not influence the diffusion of membrane-bound DNA nanostructures, 

irrespectively of the DNA spacer used (Supporting Figure 4, see also SA Tables 11). On the 

contrary, the presence of the positively charged lipid DOTAP had a strikingly different effect on 

TEG-chol modified DNA nanostructures (Figure 5A): while DOTAP slowed down the diffusion 

of the X5 nanostructure with 9ss DNA spacers, the X5 nanostructure with 18ds DNA spacers 

diffused faster on DOPC/DOTAP 9:1 GUVs than on pure zwitterionic DOPC GUVs. Notably, 

the presence of 10 mol% of negatively or positively charged lipid did not influence the lipid 

diffusion (Supporting Figure 5, see also SA Table 12). Interestingly, efficient membrane binding 

of DNA nanostructures to DOPC/DOTAP 9:1 GUVs can be achieved even without TEG-chol 

anchors. Indeed, binding of bare DNA nanostructure N to cationic membranes was almost as 

strong as for DNA nanostructures with five cholesteryl modifications, independently of the DNA 

spacer used (Supporting Figure 6, see also SA Table 14). Taking this into account, we suggest 

that the mode of interaction of DNA nanostructures with DOPC/DOTAP GUVs is fundamentally 

different compared to DOPC or DOPC/DOPS membranes, where binding of DNA 

nanostructures occurred only upon modification with TEG-chol anchors. If one considers that the 

binding to DOPC/DOTAP 9:1 GUVs is achieved via the bottom facet where the TEG-chol 

anchors are attached 64, in addition to the TEG-chol insertion, tight attraction between the lipids 

and the membrane-facing side of the DNA nanostructure can be established as a result of strong 
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electrostatic forces between DNA and the oppositely charged membrane 63, 65-69. This results in a 

slower diffusion of membrane-bound DNA nanostructures on DOPC/DOTAP GUVs in 

comparison to pure DOPC. In the case of 18ds DNA spacers in DNA nanostructures binding to 

DOPC/DOTAP 9:1 GUVs, a stiff double stranded DNA is present at location B2. This center 

spacer is subject to electrostatic repulsion away from the bulky DNA nanostructure. 

Consequently, the effective cross-section of interaction with the lipid bilayer is reduced, resulting 

in a faster DNA nanostructure diffusion compared to the bare DNA nanostructure N on the same 

cationic membrane (Figure 5B). Note that the lower charge density and higher flexibility of 9ss 

DNA spacers will result in a smaller influence of the modification at location B2 on the surface 

area interacting with the lipid membrane, and consequently on the translational diffusion 

coefficient, than in absence of this modification. Strikingly, the removal of the TEG-chol anchor 

in location B2 (structure R4, combination of locations A0 + A4 + C0 + C4) resulted in a slower 

diffusion of membrane-bound DNA nanostructures than with combination X5, displaying a 

TEG-chol anchor at location B2 (Figure 5B). Moreover, the diffusion coefficient of SQ 

nanostructures with 9ss DNA spacers resembled that of the bare DNA origami nanostructure N. 

Indeed, for nanostructure R4 TEG-chol with 9ss DNA spacers, the estimated effective radius of 

membrane inclusion (a = 6 ± 3 nm for D = 2.4 ± 0.3 µm2/s) matches that of the bare structure N 

(a = 6 ± 5 nm for D = 2.3 ± 0.4 µm2/s) (Figure 5C). In comparison, for nanostructure X5 with 

TEG-chol anchors attached using 18ds DNA spacers, the effective radius is considerably smaller 

a = 1.3 ± 0.6 nm (D = 3.2 ± 0.2 µm2/s). Notably the effective inclusion radii of nanostructure N 

and R4 with 9ss DNA spacers on such cationic membranes are larger than for the DNA 

nanostructures and DOPC membranes discussed above, suggesting a tighter interaction with the 

lipid bilayer dominated by electrostatic interactions. 
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Theoretical and experimental results show that for a rod-like particle with large enough aspect 

ratio (in our case ≈ 7) fully inserted into a lipid bilayer, the effective radius is expected to be ≈ 

(0.3-0.5)L, provided that L/��� ≲ 1, where lSD is the Saffman-Delbrück length ��� = 	��	/	(�� +

�!), where ��,! are the viscosities of the surrounding media (in our case L/���  ≈ 0.4, and the latter 

condition is satisfied reasonably well) 70-74. The effective inclusion radii in all cases discussed 

above are much smaller than the expected effective inclusion size for our DNA nanostructures in 

case they are fully inserted into the lipid bilayer, which means that the DNA nanostructures are 

gliding over the membrane surface, as previously suggested 18. Note that, since the distance 

between individual anchors is considerably smaller than the Saffman-Delbrück length ���, the 

drag on the membrane bound DNA origami nanostructure cannot be represented as a sum of the 

drags on the individual cholesteryl anchors. 

It would be instructive to compare these results of diffusion of DNA nanostructures on lipid 

bilayers with their diffusion on lipid monolayers. Recently, we found the effective inclusion size 

of X5 with 18ds DNA spacers in low density DMPC monolayers to be of ≈ 28 nm 75, which 

suggests that in this case the DNA nanostructure is almost fully inserted into the lipid monolayer. 

This manifests the crucial difference in the molecular organization of lipid monolayers, featuring 

a relatively loose arrangement of lipids, and bilayers, where lipid molecules are tightly packed 

together. 
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Figure 5. Influence of single- and double-stranded DNA spacers on the dynamics of cholesteryl-

modified DNA nanostructures bound to DOPC/DOTAP 9:1 GUVs. (A) Relative diffusion 

coefficient of membrane-bound X5 DNA nanostructures on pure DOPC GUVs (grey) and 

DOPC/DOTAP 9:1 GUVs (shaded magenta). Each data set is normalized to the respective 

diffusion coefficient in pure DOPC. (B) Relative diffusion coefficient of membrane-bound X5 

(magenta) and R4 (combination of locations A0 + A4 + C0 + C4, blue) DNA nanostructures on 

DOPC/DOTAP 9:1 GUVs. The data are normalized to the diffusion coefficient of bare structure 

N under the same conditions. (C) The dependence of the diffusion coefficient of a membrane 

inclusion on its size (grey line) allows one to estimate the effective inclusion size of membrane-

bound DNA nanostructures. The estimates of the effective radii of bare DNA nanostructure N 

(black line), X5 using 18ds DNA spacers (magenta line) and R4 using 9ss DNA spacers (blue 

line) bound to DOPC/DOTAP 9:1 GUVs are superimposed with the respective standard 

deviations (dashed lines). The significance analysis of the data is summarized in SA Tables 

15,16. 
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CONCLUSIONS 

Here, we presented an extensive study of the effect of anchor placement and spacer length on the 

binding and diffusion of cholesteryl-modified DNA origami nanostructures on lipid membranes. 

Our results show that attaching cholesteryl anchors via DNA spacers overcomes local steric 

hindrances, i.e. limited accessibility of the anchors positioned closer to the bulky DNA 

nanostructure. Indeed, the use of DNA spacers increases the membrane binding efficiency of 

cholesteryl-modified DNA nanostructures, even when only a single anchor in the center of the 

structure is present. Importantly, we show that double-stranded DNA spacers in TEG-chol 

modified nanostructures are more efficient for membrane binding and less sensitive to charge 

variations in the environment, in comparison with single-stranded spacers. Furthermore, our 

results on membrane binding efficiencies and diffusion of cholesteryl-modified DNA 

nanostructures allowed us to unravel details of the mechanism of their interaction with lipid 

membranes. Ultimately, we hereby provide a modular approach to control the membrane affinity 

and dynamics of amphipathic DNA nanostructures using DNA spacers. 

ASSOCIATED CONTENT 

The following files are available free of charge. 

Supporting information (PDF) 

Statistical analysis (PDF) 

AUTHOR INFORMATION 

Corresponding Author 

*e-mail: schwille@biochem.mpg.de 

Page 30 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III. Binding and Diffusion of membrane-bound DNA nanostructures

72



 31

Author Contributions 

A K, H G F and P S conceived the study. A K designed and performed all experiments. A K, J M 

and H G F analyzed the data. A K, J M, H G F and E P P interpreted the data. All authors 

contributed to the writing of the manuscript. All authors have given approval to the final version 

of the manuscript. 

ACKNOWLEDGMENTS 

This work has been supported by the collaborative research project SFB 863 of the Deutsche 

Forschungsgemeinschaft. A K acknowledges the support of the Graduate School of Quantitative 

Biosciences Munich; J.M. acknowledges support from the excellence cluster Nanosystems 

Initiative Munich and the International Max Planck Research School for Molecular Life 

Sciences; H G F acknowledges the receipt of a Humboldt Research Fellowship 

(PTG/1152511/STP); E P P acknowledges the financial support by the Deutsche 

Forschungsgemeinschaft within the SFB 1032 TP B01 and A09. Further support was given by 

the Max Planck Society to P S. The authors specially thank Prof. Joachim Rädler and the 

members of the Munich DNA Node for fruitful discussions and expert advice. 

 
  

Page 31 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III.2 Control of membrane binding and diffusion of cholesteryl-modified DNA origami
nanostructures by DNA spacers

73



 32

REFERENCES 

1. Rothemund, P. W. K., Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440 
(7082), 297-302. 

2. Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M., Self-assembly of DNA 
into nanoscale three-dimensional shapes. Nature 2009, 459 (7245), 414-418. 

3. Dietz, H.; Douglas, S. M.; Shih, W. M., Folding DNA into Twisted and Curved Nanoscale 
Shapes. Science 2009, 325 (5941), 725-730. 

4. Czogalla, A.; Franquelim, Henri G.; Schwille, P., DNA Nanostructures on Membranes as Tools 
for Synthetic Biology. Biophys. J. 2016, 110 (8), 1698-1707. 

5. Simmel, F. C., DNA-based assembly lines and nanofactories. Curr. Opin. Biotechnol. 2012, 23 
(4), 516-521. 

6. Hong, F.; Zhang, F.; Liu, Y.; Yan, H., DNA Origami: Scaffolds for Creating Higher Order 
Structures. Chem. Rev. 2017, 117 (20), 12584-12640. 

7. Nummelin, S.; Kommeri, J.; Kostiainen, M. A.; Linko, V., Evolution of Structural DNA 
Nanotechnology. Adv. Mater. 2018, doi: 10.1002/adma.201703721. 

8. Lagny, T. J.; Bassereau, P., Bioinspired membrane-based systems for a physical approach of cell 
organization and dynamics: usefulness and limitations. Interface Focus 2015, 5 (4), 20150038. 

9. Göpfrich, K.; Platzman, I.; Spatz, J. P., Mastering Complexity: Towards Bottom-up Construction 
of Multifunctional Eukaryotic Synthetic Cells. Trends Biotechnol. 2018, doi: 
10.1016/j.tibtech.2018.03.008. 

10. Chan, Y.-H. M.; van Lengerich, B.; Boxer, S. G., Effects of linker sequences on vesicle fusion 
mediated by lipid-anchored DNA oligonucleotides. Proc. Natl. Acad. Sci. 2009, 106 (4), 979-84. 

11. Pfeiffer, I.; Höök, F., Bivalent Cholesterol-Based Coupling of Oligonucletides to Lipid 
Membrane Assemblies. J. Am. Chem. Soc. 2004, 126 (33), 10224-10225. 

12. Banchelli, M.; Gambinossi, F.; Durand, A.; Caminati, G.; Brown, T.; Berti, D.; Baglioni, P., 
Modulation of Density and Orientation of Amphiphilic DNA on Phospholipid Membranes. II. Vesicles. J. 

Phys. Chem. B 2010, 114 (21), 7348-7358. 

13. Bunge, A.; Loew, M.; Pescador, P.; Arbuzova, A.; Brodersen, N.; Kang, J.; Dähne, L.; Liebscher, 
J.; Herrmann, A.; Stengel, G.; Huster, D., Lipid Membranes Carrying Lipophilic Cholesterol-Based 
Oligonucleotides—Characterization and Application on Layer-by-Layer Coated Particles. J. Phys. Chem. 

B 2009, 113 (51), 16425-16434. 

14. Bunge, A.; Kurz, A.; Windeck, A.-K.; Korte, T.; Flasche, W.; Liebscher, J.; Herrmann, A.; 
Huster, D., Lipophilic Oligonucleotides Spontaneously Insert into Lipid Membranes, Bind 
Complementary DNA Strands, and Sequester into Lipid-Disordered Domains. Langmuir 2007, 23 (8), 
4455-4464. 

Page 32 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III. Binding and Diffusion of membrane-bound DNA nanostructures

74



 33

15. Börjesson, K.; Lundberg, E. P.; Woller Jakob, G.; Nordén, B.; Albinsson, B., Soft‐Surface DNA 
Nanotechnology: DNA Constructs Anchored and Aligned to Lipid Membrane. Angew. Chem. Int. Ed. 

2011, 50 (36), 8312-8315. 

16. Banchelli, M.; Betti, F.; Berti, D.; Caminati, G.; Bombelli, F. B.; Brown, T.; Wilhelmsson, L. M.; 
Nordén, B.; Baglioni, P., Phospholipid Membranes Decorated by Cholesterol-Based Oligonucleotides as 
Soft Hybrid Nanostructures. J. Phys. Chem. B 2008, 112 (35), 10942-10952. 

17. Czogalla, A.; Petrov, E. P.; Kauert, D. J.; Uzunova, V.; Zhang, Y.; Seidel, R.; Schwille, P., 
Switchable domain partitioning and diffusion of DNA origami rods on membranes. Faraday Discuss. 

2013, 161, 31-43. 

18. Czogalla, A.; Kauert, D. J.; Seidel, R.; Schwille, P.; Petrov, E. P., DNA Origami Nanoneedles on 
Freestanding Lipid Membranes as a Tool To Observe Isotropic–Nematic Transition in Two Dimensions. 
Nano Lett. 2015, 15 (1), 649-655. 

19. Johnson-Buck, A.; Jiang, S.; Yan, H.; Walter, N. G., DNA–Cholesterol Barges as Programmable 
Membrane-Exploring Agents. ACS Nano 2014, 8 (6), 5641-5649. 

20. List, J.; Weber, M.; Simmel, F. C., Hydrophobic Actuation of a DNA Origami Bilayer Structure. 
Angew. Chem. Int. Ed. 2014, 53 (16), 4236-4239. 

21. Suzuki, Y.; Endo, M.; Yang, Y.; Sugiyama, H., Dynamic Assembly/Disassembly Processes of 
Photoresponsive DNA Origami Nanostructures Directly Visualized on a Lipid Membrane Surface. J. Am. 

Chem. Soc. 2014, 136 (5), 1714-1717. 

22. Avakyan, N.; Conway, J. W.; Sleiman, H. F., Long-Range Ordering of Blunt-Ended DNA Tiles 
on Supported Lipid Bilayers. J. Am. Chem. Soc. 2017, 139 (34), 12027-12034. 

23. Kocabey, S.; Kempter, S.; List, J.; Xing, Y.; Bae, W.; Schiffels, D.; Shih, W. M.; Simmel, F. C.; 
Liedl, T., Membrane-Assisted Growth of DNA Origami Nanostructure Arrays. ACS Nano 2015, 9 (4), 
3530-3539. 

24. Czogalla, A.; Kauert, D. J.; Franquelim, H. G.; Uzunova, V.; Zhang, Y.; Seidel, R.; Schwille, P., 
Amphipathic DNA Origami Nanoparticles to Scaffold and Deform Lipid Membrane Vesicles. Angew. 

Chem. Int. Ed. 2015, 54 (22), 6501-6505. 

25. Franquelim, H. G.; Khmelinskaia, A.; Sobczak, J.-P.; Dietz, H.; Schwille, P., Membrane 
sculpting by curved DNA origami scaffolds. Nat. Commun. 2018, 9 (1), 811. 

26. Grome, M. W.; Zhang, Z.; Pincet, F.; Lin, C., Vesicle Tubulation with Self‐Assembling DNA 
Nanosprings. Angew. Chem. Int. Ed. 2018, 57 (19), 5330-5334. 

27. Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. 
C., Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures. Science 2012, 338 
(6109), 932-936. 

28. Göpfrich, K.; Li, C.-Y.; Ricci, M.; Bhamidimarri, S. P.; Yoo, J.; Gyenes, B.; Ohmann, A.; 
Winterhalter, M.; Aksimentiev, A.; Keyser, U. F., Large-Conductance Transmembrane Porin Made from 
DNA Origami. ACS Nano 2016, 10 (9), 8207-8214. 

Page 33 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III.2 Control of membrane binding and diffusion of cholesteryl-modified DNA origami
nanostructures by DNA spacers

75



 34

29. Göpfrich, K.; Zettl, T.; Meijering, A. E. C.; Hernández-Ainsa, S.; Kocabey, S.; Liedl, T.; Keyser, 
U. F., DNA-Tile Structures Induce Ionic Currents through Lipid Membranes. Nano Lett. 2015, 15 (5), 
3134-3138. 

30. Ohmann, A.; Li, C.-Y.; Maffeo, C.; Al Nahas, K.; Baumann, K. N.; Göpfrich, K.; Yoo, J.; 
Keyser, U. F.; Aksimentiev, A., A synthetic enzyme built from DNA flips 107 lipids per second in 
biological membranes. Nat. Commun. 2018, 9 (1), 2426. 

31. Akbari, E.; Mollica, M. Y.; Lucas, C. R.; Bushman, S. M.; Patton, R. A.; Shahhosseini, M.; Song, 
J. W.; Castro, C. E., Engineering Cell Surface Function with DNA Origami. Adv. Mater. 2017, 29 (46), 
1703632. 

32. Khmelinskaia, A.; Franquelim, H. G.; Petrov, E. P.; Schwille, P., Effect of anchor positioning on 
binding and diffusion of elongated 3D DNA nanostructures on lipid membranes. J. Phys. D: Appl. Phys. 

2016, 49 (19), 194001. 

33. Angelova, M. I.; Dimitrov, D. S., Liposome electroformation. Faraday Discuss. Chem. Soc. 

1986, 81, 303-311. 

34. Garcia-Saez, A. J.; Carrer, D. C.; Schwille, P., Fluorescence correlation spectroscopy for the 
study of membrane dynamics and organization in giant unilamellar vesicles. Methods Mol. Biol. 2010, 
606, 493-508. 

35. Thomas, F. A.; Visco, I.; Petrášek, Z.; Heinemann, F.; Schwille, P., Introducing a fluorescence-
based standard to quantify protein partitioning into membranes. Biochim. Biophys. Acta, Biomembr. 2015, 
1848 (11, Part A), 2932-2941. 

36. Schindelin, J.; Rueden, C. T.; Hiner, M. C.; Eliceiri, K. W., The ImageJ ecosystem: An open 
platform for biomedical image analysis. Mol. Reprod. Dev. 2015, 82 (7-8), 518-529. 

37. Petrov, E. P.; Ohrt, T.; Winkler, R. G.; Schwille, P., Diffusion and Segmental Dynamics of 
Double-Stranded DNA. Phys. Rev. Lett. 2006, 97 (25), 258101. 

38. Petrášek, Z.; Schwille, P., Precise Measurement of Diffusion Coefficients using Scanning 
Fluorescence Correlation Spectroscopy. Biophys. J. 2008, 94 (4), 1437-1448. 

39. Müller, C. B.; Loman, A.; Pacheco, V.; Koberling, F.; Willbold, D.; Richtering, W.; Enderlein, J., 
Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. 
Europhys. Lett. 2008, 83 (4), 46001. 

40. Sutherland, W., LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular 
mass of albumin. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 

1905, 9 (54), 781-785. 

41. Einstein, A., Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung 
von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 1905, 322 (8), 549-560. 

42. Kestin, J.; Sokolov, M.; Wakeham, W. A., Viscosity of liquid water in the range −8 °C to 150 °C. 

J. Phys. Chem. Ref. Data 1978, 7 (3), 941-948. 

Page 34 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III. Binding and Diffusion of membrane-bound DNA nanostructures

76



 35

43. Widengren, J.; Mets, U.; Rigler, R., Fluorescence correlation spectroscopy of triplet states in 
solution: a theoretical and experimental study. J. Phys. Chem. 1995, 99 (36), 13368-13379. 

44. Gregor, I.; Patra, D.; Enderlein, J., Optical Saturation in Fluorescence Correlation Spectroscopy 
under Continuous‐Wave and Pulsed Excitation. ChemPhysChem 2005, 6 (1), 164-170. 

45. Petrov, E. P.; Schwille, P., State of the Art and Novel Trends in Fluorescence Correlation 
Spectroscopy. In Standardization and Quality Assurance in Fluorescence Measurements II: Bioanalytical 

and Biomedical Applications, Resch-Genger, U., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 
2008; pp 145-197. 

46. Thompson, N. L., Fluorescence Correlation Spectroscopy. In Topics in Fluorescence 

Spectroscopy, Lakowicz, J. R., Ed. Plenum Press: New York, 1991; Vol. 1: Techniques, pp 337-378. 

47. Harayama, T.; Riezman, H., Understanding the diversity of membrane lipid composition. Nat. 

Rev. Mol. Cell Biol. 2018, 19 (5), 281-296. 

48. van Meer, G.; Voelker, D. R.; Feigenson, G. W., Membrane lipids: where they are and how they 
behave. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 112-124. 

49. Harries, D.; May, S.; Ben-Shaul, A., Counterion release in membrane-biopolymer interactions. 
Soft Matter 2013, 9 (39), 9268-9284. 

50. Gromelski, S.; Brezesinski, G., DNA Condensation and Interaction with Zwitterionic 
Phospholipids Mediated by Divalent Cations. Langmuir 2006, 22 (14), 6293-6301. 

51. Hirtz, M.; Brglez, J.; Fuchs, H.; Niemeyer, C. M., Selective Binding of DNA Origami on 
Biomimetic Lipid Patches. Small 2015, 11 (43), 5752-5758. 

52. Arnott, S.; Chandrasekaran, R.; Leslie, A. G., Structure of the single-stranded polyribonucleotide 
polycytidylic acid. J. Mol. Biol. 1976, 106 (3), 735-748. 

53. Bloomfield, V. A.; Crothers, D. M.; Hearst, J. E.; Tinoco, I., Nucleic acids : structures, 

properties, and functions. Univ. Science Books: Sausalito, Calif, 2000. 

54. Chi, Q.; Wang, G.; Jiang, J., The persistence length and length per base of single-stranded DNA 
obtained from fluorescence correlation spectroscopy measurements using mean field theory. Physica A 

Stat. Mech. Appl. 2013, 392 (5), 1072-1079. 

55. Smith, S. B.; Cui, Y.; Bustamante, C., Overstretching B-DNA: the elastic response of individual 
double-stranded and single-stranded DNA molecules. Science 1996, 271 (5250), 795-799. 

56. Tinland, B.; Pluen, A.; Sturm, J.; Weill, G., Persistence length of single-stranded DNA. 
Macromolecules 1997, 30 (19), 5763-5765. 

57. Murphy, M.; Rasnik, I.; Cheng, W.; Lohman, T. M.; Ha, T., Probing single-stranded DNA 
conformational flexibility using fluorescence spectroscopy. Biophys. J. 2004, 86 (4), 2530-2537. 

58. van der Maarel, J. R. C., Introduction to Biopolymer Physics. WORLD SCIENTIFIC: 2008; p 
264. 

Page 35 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III.2 Control of membrane binding and diffusion of cholesteryl-modified DNA origami
nanostructures by DNA spacers

77



 36

59. Saffman, P. G.; Delbrück, M., Brownian motion in biological membranes. Proc. Natl. Acad. Sci. 

1975, 72 (8), 3111-3113. 

60. Hughes, B. D.; Pailthorpe, B. A.; White, L. R., The translational and rotational drag on a cylinder 
moving in a membrane. J. Fluid Mech. 1981, 110, 349-372. 

61. Petrov, E. P.; Schwille, P., Translational Diffusion in Lipid Membranes beyond the Saffman-
Delbrück Approximation. Biophys. J. 2008, 94 (5), L41-L43. 

62. Petrov, E. P.; Petrosyan, R.; Schwille, P., Translational and rotational diffusion of micrometer-
sized solid domains in lipid membranes. Soft Matter 2012, 8 (29), 7552-7555. 

63. Herold, C.; Schwille, P.; Petrov, E. P., DNA Condensation at Freestanding Cationic Lipid 
Bilayers. Phys. Rev. Lett. 2010, 104 (14), 148102. 

64. Gopinath, A.; Miyazono, E.; Faraon, A.; Rothemund, P. W. K., Engineering and mapping 
nanocavity emission via precision placement of DNA origami. Nature 2016, 535 (7612), 401-405. 

65. Herold, C.; Schwille, P.; Petrov, E. P., Single DNA molecules on freestanding and supported 
cationic lipid bilayers: diverse conformational dynamics controlled by the local bilayer properties. J. 

Phys. D: Appl. Phys. 2016, 49 (7), 074001. 

66. Kahl, V.; Hennig, M.; Maier, B.; Rädler, J. O., Conformational dynamics of DNA‐electrophoresis 
on cationic membranes. Electrophoresis 2009, 30 (8), 1276-1281. 

67. Maier, B.; Rädler, J. O., DNA on fluid membranes: a model polymer in two dimensions. 
Macromolecules 2000, 33 (19), 7185-7194. 

68. Maier, B.; Rädler, J. O., Conformation and self-diffusion of single DNA molecules confined to 
two dimensions. Phys. Rev. Lett. 1999, 82 (9), 1911. 

69. Chang, C.-M.; Lau, Y.-G.; Tsai, J.-C.; Juan, W.-T., Relaxation of DNA on a supported lipid 
membrane. Europhys. Lett. 2012, 99 (4), 48008. 

70. Levine, A. J.; Liverpool, T.; MacKintosh, F., Mobility of extended bodies in viscous films and 
membranes. Phys. Rev. E 2004, 69 (2), 021503. 

71. Levine, A. J.; Liverpool, T.; MacKintosh, F. C., Dynamics of rigid and flexible extended bodies 
in viscous films and membranes. Phys. Rev. Lett. 2004, 93 (3), 038102. 

72. Fischer, T. M., The drag on needles moving in a Langmuir monolayer. J. Fluid Mech. 2004, 498, 
123-137. 

73. Dhar, P.; Fischer, T. M.; Wang, Y.; Mallouk, T.; Paxton, W.; Sen, A., Autonomously moving 
nanorods at a viscous interface. Nano Lett. 2006, 6 (1), 66-72. 

74. Klopp, C.; Stannarius, R.; Eremin, A., Brownian dynamics of elongated particles in a quasi-two-
dimensional isotropic liquid. Phys. Rev. Fluids 2017, 2 (12), 124202. 

75. Khmelinskaia, A.; Mücksch, J.; Conci, F.; Chwastek, G.; Schwille, P., FCS Analysis of Protein 
Mobility on Lipid Monolayers. Biophys. J. 2018, 114 (10), 2444-2454. 

Page 36 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III. Binding and Diffusion of membrane-bound DNA nanostructures

78



 37

  

Page 37 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III.2 Control of membrane binding and diffusion of cholesteryl-modified DNA origami
nanostructures by DNA spacers

79



 38

For table of contents only 

 

 

Page 38 of 38

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

III. Binding and Diffusion of membrane-bound DNA nanostructures

80



III.3 FCS analysis of protein mobility on lipid monolayers

III.3 FCS analysis of protein mobility on lipid mono-
layers

The results discussed in this section are the outcome of an equal-contribution collaboration
with Jonas Mücksch and have been published as:

Khmelinskaia, A.∗, Mücksch, J.∗, Conci, F., Chwastek, G., Schwille, P. (2018) FCS
analysis of protein mobility on lipid monolayers. Biophys. J., 114: 2444-2454. doi:
10.1016/j.bpj.2018.02.031. ∗indicates equal contributions. A reprint permission has been
granted by the publisher. The supplementary information can be found in Appendix D.
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Article

FCS Analysis of Protein Mobility on Lipid
Monolayers

Alena Khmelinskaia,1 Jonas M€ucksch,1 Franco Conci,1 Grzegorz Chwastek,1 and Petra Schwille1,*
1Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany

ABSTRACT In vitro membrane model systems are used to dissect complex biological phenomena under controlled unadulter-
ated conditions. In this context, lipid monolayers are a powerful tool to particularly study the influence of lipid packing on the
behavior of membrane proteins. Here, monolayers deposited in miniaturized fixed area-chambers, which require only minute
amounts of protein, were used and shown to faithfully reproduce the characteristics of Langmuir monolayers. This assay is
ideally suited to be combined with single-molecule sensitive fluorescence correlation spectroscopy (FCS) to characterize diffu-
sion dynamics. Our results confirm the influence of lipid packing on lipid mobility and validate the use of FCS as an alternative to
conventional surface pressure measurements for characterizing the monolayer. Furthermore, we demonstrate the effect of lipid
density on the diffusional behavior of membrane-bound components. We exploit the sensitivity of FCS to characterize protein
interactions with the lipid monolayer in a regime in which the monolayer physical properties are not altered. To demonstrate the
potential of our approach, we analyzed the diffusion behavior of objects of different nature, ranging from a small peptide to a
large DNA-based nanostructure. Moreover, in this work we quantify the surface viscosity of lipid monolayers. We present a
detailed strategy for the conduction of point FCS experiments on lipid monolayers, which is the first step toward extensive
studies of protein-monolayer interactions.

INTRODUCTION

Biological membranes have been a predominant focus of
biophysical research in the last few decades. Highly com-
plex in their organization, as an interplay between numerous
lipid and protein partners, biological membranes are not
only a physical barrier between cellular compartments but
also directly or indirectly play a fundamental role in several
key cellular mechanisms. To facilitate the study of complex
membrane-associated phenomena under defined and
controlled conditions, a variety of minimal model mem-
brane systems have been developed (1).

From the available in vitro membrane model systems,
support-free model membranes are especially attractive as
additional interactions with the support can strongly influ-
ence the studied behaviors (2,3). Lipid vesicles, black lipid
membranes, suspended lipid bilayers and lipid monolayers
are some of the most common free-standing model mem-
branes, with each of them bearing particular limitations.
Small unilamellar vesicles and large unilamellar vesicles,

with diameters smaller than 1 mm, are mainly used to study
protein-membrane interactions in which curvature plays a
significant role in the binding (e.g., (4,5)). In contrast, giant
unilamellar vesicles (GUVs) with diameters larger than
10 mm are quasi-planar, can be produced at high yields un-
der several salt conditions and are stable over long periods
of time (6). Black lipid membranes also do not have an
intrinsic curvature but often contain an undefined amount
of residual solvent trapped within the lipid leaflets, which
is linked to the preparation protocol (7). Solvent-free sus-
pended lipid bilayers, on the other hand, can be formed
from the rupture of lipid vesicles but have very limited sizes,
up to only a few mm (e.g., (8)).

To study lipid-protein interactions, it is generally desir-
able to vary a plethora of membrane conditions, including
lipid packing density and mobility. In cells, both are
strongly related to the local lipid composition and lateral
organization (9–11). In vitro, lipid mobility can potentially
be controlled through external factors such as membrane
composition, ambient bulk viscosity, temperature, and ionic
strength (12–14). However, all these factors generally also
affect the protein behavior itself, which renders the interpre-
tation of experiments challenging. More importantly, the
effect of lipid packing is not accessible by typical model
membranes. An elegant system to study its effect is the
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Langmuir lipid monolayer, in which a single layer of lipids,
deposited on an air-water interface, is mechanically com-
pressed to tune both lipid packing and lipid mobility (15).
Typically, experiments on lipid monolayers are performed
in Langmuir-Blodgett troughs that require large quantities
of precious sample volume (of order of tens of milliliters
per sample), which usually precludes them from studies
on proteins and peptides. With the recent introduction of
miniaturized chambers (16), lipid monolayers are of easy
handling and preparation, and require considerably smaller
amounts of protein, making them compatible with recombi-
nant proteins, which are typically produced on small lab
scales. Notably, although lipid monolayers lack essential
features of biological membranes, complex biological
networks (such as a minimal actin cortex (17,18), the dy-
namic behavior of pattern-forming Min proteins, and the
assembly of FtsZ filaments (19)) have been successfully re-
constituted using this model system.

Changes in lipid packing were proposed to influence the
diffusion behavior of protein components in the membrane
(15). However, measuring the lateral diffusion of molecules
in lipid monolayers has been to date restricted to lipids,
which were studied to a minor degree only (15,16,20,21).
Here, to quantify mobilities in lipid monolayers, we used
fluorescence correlation spectroscopy (FCS) (22). In this
method, a fluorescence time trace is recorded from a small
detection volume, typically a confocal volume (23,24).
Signal fluctuations originating from, e.g., diffusion of fluo-
rescent species through the detection volume are analyzed
by means of autocorrelation. The characteristic decay time
of the autocorrelation curve is directly linked to the hydro-
dynamic properties of the fluorescent molecules, whereas
the fluorescence intensity is proportional to the average
number of molecules in the detection volume. Thus,
knowing the size and shape of the confocal volume, esti-
mated through a calibration procedure, and applying an
appropriate model function, one gains direct access to the
diffusion coefficient D of a given fluorescent species. The
amplitude G0 of the autocorrelation curve scales with the
inverse number N of particles in the confocal volume.

In this study, we demonstrate the use of confocal point
FCS to study protein mobilities in lipid monolayers. We
used miniaturized chambers to measure hitherto unknown
diffusion coefficients of proteins on lipid monolayers and
correlated the results with the lipid packing and mobility.
Furthermore, we characterized the compatibility of several
membrane-binding molecules with the lipid monolayer
system.

MATERIALS AND METHODS

Chemicals

The lipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dio-

leoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)suc-

cinyl] (DOGS-NTA(Ni)), ovine brain ganglioside GM1, Escherichia coli

polar lipid extract, were purchased from Avanti Polar Lipids (Alabaster,

AL). ATTO655 and ATTO488 head labeled 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE) were purchased from ATTO-TEC (Siegen,

Germany). Lipid mixtures were prepared in high purity chloroform (Merck

KGaA, Darmstadt, Germany) and their concentration was determined by

gravimetry.

Bovine serum albumin was purchased from Sigma-Aldrich (Tauf-

kirchen, Germany). Labeled cholera toxin b (Alexa Fluor 488) was pur-

chased from Invitrogen (Carlsbad, CA). The membrane proximal

external region (MPER) of the envelope glycoprotein gp41 of HIV-1,

namely the peptide Atto488CELDKWASLWNWF (underscored

sequence corresponds to aa 662–673 by HXBc2 numbering), which pre-

sumably dimerizes through a disulfide bond, was purified by the

Biochemistry Core Facility of the Max Planck Institute of Biochemistry

with degree of purity >90%. The Biochemistry Core Facility of the Max

Planck Institute of Biochemistry also purified the MinD, MinE (25), and

eGFP-MinD (26) proteins according to the reported protocols. Ramm

et al. developed the construct and purification protocol for the chimeric

fluorescent protein mCherry carrying the membrane targeting sequence

(Mts) of the protein MinD from Bacillus subtilis (mCherry-Mts) (B.

Ramm, P. Glock, J.M., P. Blumhardt, M. Heymann, and P.S., unpub-

lished data). Purified mNeonGreen was kindly provided by Magnus-

Carsten Huppertz, Max Planck Institute of Biochemistry (Martinsried,

Germany).

Q buffer (10 mM HEPES, 150 mM NaCl, pH 7.4) was used for most

described measurements. M buffer (25 mM Tris-HCl, 150 KCl, 5 mM

MgCl2, pH 7.5) was used when working with Min proteins or mCherry-

Mts constructs (Table S1). For DNA origami, D buffer (5 mM Tris-HCl,

1 mM EDTA, 5 mM MgCl2, 300 mM NaCl, pH 8.0) was used.

DNA origami folding and purification

The elongated DNA origami structure described in (27) was used. Two var-

iations were produced: unmodified (N) and cholesterol (Chol)-modified

(X5) DNA nanostructure. For X5, the oligonucleotides in the bottom posi-

tions A0, A4, B2, C0, and C4 (Fig. S1) were extended with an 18 nucleotide

sequence complementary to the 50 TEG-Chol modified oligonucleotide

AACCAGACCACCCATAGC (Sigma-Aldrich). For detection by fluores-

cence microscopy and spectroscopy, both N and X5 were functionalized

by 3 � 50 ATTO488-modified oligonucleotides GGGTTTGGTGTTTTTT

(Eurofins, Planegg, Germany), positioned on the top facet close to the

center of the structure. Folding, purification, and quantification of DNA

nanostructures was performed as previously reported (27).

Monolayer preparation in miniaturized chambers

Customized miniaturized chambers inspired by (16) were manufactured

by laser cutting a 15 mm diameter hole into a 5 mm-high polytetrafluoro-

ethylene (PTFE) sheet (Fig. S2). Before every use, the PTFE spacers were

cleaned in a series of sonication steps (30 min each) in acetone, chloro-

form, isopropanol, and ethanol. A chamber was completed by gluing a

#1.5 cover glass (Menzel Gl€aser, Braunschweig, Germany) to the bottom

of the PTFE spacer using picodent twinsil 22 two component glue (pico-

dent, Wipperfuerth, Germany). Directly before use, the miniaturized

chamber was thoroughly rinsed with distilled milliQ water and 99%

ethanol, dried under airflow and plasma cleaned (MiniFlecto-PC-MFC;

plasma technology, Herrenberg-G€ultstein, Germany) for 10 min to make

the glass hydrophilic. The cleaned chambers were filled with 200 mL of

aqueous buffer. The lipid mixture (0.1 mg/mL, containing 0.01 mol% of

ATTO655-DOPE or ATTO488-DOPE) was deposited drop-by-drop on

the air-buffer interface (Fig. 1 A; see also (16)) to reach the desired lipid

density. If required, 20–40 mL of the aqueous phase were pipetted out after

complete evaporation of chloroform to adjust the interface position. The
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miniaturized chamber was covered with a cover slip and sealed with

grease. For addition of biomolecules to the system, biomolecule solution

was pipetted into the aqueous phase of known volume to reach the desired

concentration.

FCS and confocal imaging

Confocal imaging was performed on a laser-scanning microscope

(LSM780; Zeiss AG, Oberkochen, Germany), equipped with gallium arse-

nide phosphide detectors and a water immersion objective with a long

working distance of 620 mm (LD C-Apochromat 40X, NA 1.1; Zeiss

AG). The monolayer interface was located by imaging the back-reflection

of the excitation laser. For presentation purposes, the brightness and

contrast of images was adjusted by using ImageJ software (28).

FCS measurements were performed on the same microscope stand using

avalanche photodiode detectors (ConfoCor3; Zeiss AG). The internal

pinholes were set to 35 and 45 mm for 488 and 633 nm excitation wave-

length, respectively. To circumvent detector afterpulsing, we performed

pseudo-cross correlation, i.e., we split the collected fluorescence, projected

it on two independent avalanche photodiode detectors, and cross correlated

their signals. The optical system was calibrated on a daily basis by using

Alexa Fluor 488 (Alexa488; Thermo Fischer, Waltham, MA) or ATTO

655 carboxylic acid (Atto655; ATTO-TEC), freely diffusing with known

diffusion coefficients (29–31) in aqueous solution, corrected for the respec-

tive temperature through the relation DðTÞfT=hðTÞ (32,33). The viscosity
of water hðTÞ at any temperature was calculated (34). In brief, the confocal

volume was positioned 50 mm above the bottom cover slip, the lateral

pinhole position was optimized for maximal fluorescence signal and the

objective’s correction collar was positioned for maximal count rate per

particle, and finally the FCS measurement was taken.

For FCS measurements on lipid monolayers, the optimal axial focus

position was determined by scanning the volume in the axial direction to

locate the intensity maximum. This procedure was repeated in between

FCS measurements because of sample drift. For both the initial calibration

measurement and the FCS measurements on lipid monolayers, the irradi-

ance was chosen sufficiently low to minimize photobleaching and fluores-

cence saturation (35–37).

To control the temperature, the miniaturized chambers were placed in a

heating system (Ibidi, Martinsried, Germany) compatible with the commer-

cial microscopy stage.

The recorded correlation curves were analyzed by using PyCorrFit 0.9.7

(38). The used fitting function reads as follows:

GðtÞ ¼N�1

 
1þ T

1� T
e
�t=tT

!

� ð1þ t=tDÞ�1
�
1þ t

��
S2tD

���1 =

2
:

(1)

Here, tD ¼ w2
0=4D is the diffusion time, which depends on the lateral

e�2-value of the confocal detection volume. Moreover, we introduced the

structure parameter S, which represents the ratio of axial/lateral extent

of the detection volume, the triplet fraction T, and the triplet decay

time tT. Atto655 does not show triplet blinking and experimental curves

were therefore fitted with T¼0. Moreover, when measuring on membranes,

the axial extent of the confocal volume is irrelevant (S¼N).

Langmuir compression isotherms

Compression isotherms were measured using a Kibron Micro-Trough

XL Langmuir-Blodgett trough equipped with a dyne probe and the analyt-

ical software FilmWareX 4.0 (Kibron, Helsinki, Finland). Before every

measurement, the trough was thoroughly cleaned by three washing steps

with Kimtech paper tissues soaked with chloroform and ethanol. Powder-

free gloves were used to avoid any contaminations. The dyne probe was

cleaned by flaming it with a butane torch. The instrument was calibrated

daily and the surface pressure (P) zeroed in the aqueous subphase before

every measurement. To verify the subphase purity, an isotherm was

recorded in absence of lipids with a compression rate of 5 cm2/min. Lipids

A

B

D E

C

FIGURE 1 Stabilization of the lipid monolayer positioning by using an

active temperature control. (A) Schematic representation of lipid monolayer

deposition on an air-water interface is shown. A known amount of lipids

dissolved in chloroform was deposited drop-by-drop on the air-water inter-

face. If necessary, a small volume (20–40 mL) of the aqueous subphase was

pipetted out to bring the monolayer within the working distance of the used

objective. (B and C) Representative intensity traces (upper panels) and

corresponding autocorrelation curves (lower panels) of 0.01 mol%

Atto655-DOPE in DMPC obtained by point FCS without and with active

temperature (T) control, respectively, are shown. The effect of the axial drift

on the autocorrelation curves is highlighted in (B), whereas the autocorre-

lation curves obtained with T control (C) are indistinguishable. (D)

Monolayer positions over time without and with active T control are shown.

Circles and crosses correspond to independent time series. (E) Surface

pressure (P) measured for DMPC monolayers deposited in miniaturized

chambers (MC) with a fixed area at 21�C (circles) and 30�C (squares) is

shown. The average of typically four independent samples and respective

standard deviations are shown. As a reference, the DMPC Langmuir

isotherm (LB) at 21�C is shown (black line). To see this figure in color,

go online.
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were deposited on the air-water interface from a 1 mg/mL stock solution in

high purity chloroform. After complete evaporation of chloroform, the

isotherm was recorded with a compression rate of 5 cm2/min until the

monolayer collapsed. Isotherms were measured at least in duplicate at

room temperature (21�C).

Surface pressure measurements in miniaturized
chambers

For P measurement in the miniaturized chambers, we used the dyne probe

and detection system described above. After system calibration (see above),

P was zeroed in a miniaturized chamber filled with 200 mL of Q buffer

before every measurement. Lipids were deposited on the interface as

described above. After full solvent evaporation (�5 min), the resulting P

value was recorded. We measured P at room temperature (21�C) and at

30�C. For measurements at 30�C, the miniaturized chamber was placed

on a hot plate together with tissue soaked in water and was covered by a

petri dish to achieve a humidity-saturated environment (Fig. S3). A small

hole in the petri dish ensured accessibility for the dyne probe. Under these

settings, evaporation was negligible.

Determination of the interface area inminiaturized
chambers

A monolayer of defined packing was deposited in a miniaturized chamber

and imaged with a Zeiss Plan Apo 10X/0.45 objective (Zeiss AG). We

acquired several adjacent tile images of the interface to image the entire

cross section of the miniaturized chamber (R ¼ 7.5 mm). This procedure

was repeated in 19 different z-planes, each of them 100 mm apart. A circle

was imaged in each z-plane, corresponding to the section of the meniscus

with the confocal plane (Fig. S4 B). The center of mass of each circle

was determined and the intensity values were plotted versus their distance

to this center. To reduce the noise, the radial distance was binned (bin width

five pixels). The resulting radial intensity distribution was baseline cor-

rected and fitted by a Gaussian, which is centered around the radius of

the circle. Based on the known nominal focus position and the determined

radii, we determined the radial meniscus profile h(r) (Fig. S4 C), which was

extrapolated to the physical size of the chamber R ¼ 7.5 mm. This function

is well behaved and the corresponding meniscus area A was calculated

numerically: A ¼ 2p

ZR
0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jvhðrÞ=vr j 2

q
dr.

RESULTS AND DISCUSSION

Temperature control improves FCS performance
on lipid monolayers

Here, we used a miniaturized chamber with a fixed area (16)
to study biomolecule mobility on lipid monolayers by FCS.
The use of such miniaturized chambers has the major advan-
tage that considerably smaller amounts of lipids and
proteins are required compared to conventional Langmuir-
Blodgett troughs. Because of the fixed-area of the chamber,
we controlled the lipid density by the amount of lipid
deposited on the air-water interface (Fig. 1 A). To avoid lipid
oxidation by carbon-chain exposure at the air-water inter-
face, we chose to use the fully saturated lipid DMPC.

When performing FCS on two-dimensional systems such
as lipid membranes, the z position of the confocal volume

needs to be accurately adjusted to the membrane position
because axial mismatches between both bias the obtained
number of particles N and diffusion coefficient D (39).
For monolayers, it is particularly challenging to keep the
confocal volume centered on the monolayer. Upon evapora-
tion of the subphase, the air-water interface is lowered,
leading to a reduction of the autocorrelation amplitude G0

and thus an increase in N detected (Eq. 1; Fig. 1 B). Thus,
when working with lipid monolayers, the evaporation of
the subphase, because of the high surface area/volume ratio
is a major concern. Moreover, almost all confocal setups
feature a temperature above the ambient temperature,
mainly because of active elements hosted in the microscope
body. Consequently, the monolayer chamber is exposed to a
temperature gradient in which the bottom cover slip is
warmer than the top lid of the chamber. Therefore, water
condensation occurs on the top lid of the chamber, prevent-
ing the gas phase above the monolayer from reaching a
humidity-saturated state. The resulting permanent axial drift
of the monolayer with respect to the confocal volume
renders long high-quality FCS measurements almost impos-
sible and wastes valuable measurement time because the
operator constantly needs to refocus on the lipid monolayer.

We avoided this major bottleneck by actively heating the
sample and its surroundings to a constant temperature (T ¼
30�C) above room temperature. By this strategy, we stabi-
lized the lipid monolayer position and eliminated the
artifacts arising from axial drift (Fig. 1, C andD). The stable
positioning of the focus allowed us to measure for consider-
ably longer periods of time and thus to access long correla-
tion times, e.g., due to low diffusion coefficients (40,41).
Gudmand et al. had previously taken advantage of the natu-
ral subphase evaporation to apply a modification of z-scan
FCS (39) to determine lipid mobility in monolayers (15).
In their approach, each series of intensity trace measure-
ments started with the lipid monolayer above and finished
below the fixed focus position such that the maximal
autocorrelation amplitude and counts per particle could be
found. Although this approach is simple and elegantly
makes use of the inherent evaporation, it comes at the cost
of very long measurement times (30 min). In contrast, our
approach of focus stabilization and point FCS analysis
maximizes the counts per particle because the lipid mono-
layer is constantly in focus and thus reduces the total
measurement time per sample considerably. Nonetheless,
both approaches are expected to yield identical results (42).

Lipid diffusion coefficient is an effective tool to
characterize the monolayer state

To confirm the quality of the obtained lipid monolayers, we
measured the surface pressure (P) of monolayers deposited
at different mean molecular areas per molecule (MMA,
in Å2) in the miniaturized chambers (see Materials and
Methods; Fig. S2). Because the area of the chamber is
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constant, the MMA is controlled by the amount of lipids
deposited on the air-water interface. We compared the
P-A dependence from the miniaturized chambers with the
corresponding Langmuir P-A isotherm (Fig. 1 E). Since
the air-water interface forms a meniscus, its area is larger
than the cross section of the chamber, in particular in the
miniaturized chambers. As a result, the actual MMA is
larger than predicted from the amount of lipid deposited,
which directly reflects in an overall lower P. It would be
desirable to apply a correction factor taking into account
the real interface area of the meniscus in the miniaturized
chambers. However, whereas the meniscus shape in capil-
laries (i.e., cavity radius much smaller than the height of
the liquid) has been subject to theoretical studies (43,44),
no analytical expression is known for a cylindrical well
structure as used in this study. Additionally, the contact
angle of aqueous buffer and plasma cleaned PTFE is un-
known. In this study, we estimated the actual interface
area by imaging the entire monolayer at different lipid pack-
ings (Fig. S4). Interestingly, the lipid packing of the mono-
layer had only a very minor impact on the meniscus shape.
Relative to the miniaturized chamber cross section pR2, the
monolayer area was (45 1)% larger at 90 Å2/molecule. As
at 50 Å2/molecule, the meniscus shape was similar, we
corrected all MMAs by a factor of 1.05.

The compression isotherm of DMPC behaved as previ-
ously described (15). The monolayers deposited in the
fixed-area chambers follow the general trend of the Lang-
muir isotherm and confirm the reproducibility of the
deposition protocol of the lipid monolayers in fixed-area
chambers. We attribute the small discrepancies at low
MMA to the difference between the two assays in the
physical process of increasing lipid packing. In a Langmuir
monolayer, the lipids rearrange upon slow physical
compression, whereas in the fixed-area chambers, lipid mol-
ecules need to incorporate and find their arrangement during
the much faster process of lipid spreading on the interface
upon organic solvent evaporation. Consequently, when
depositing low MMA lipid monolayers, a fraction of the
lipid molecules may not insert into the monolayer, resulting
in an effective increase of the MMA.

The measurement of P in our miniaturized chambers
although conceptually simple (Fig. S3), is rather impractical
when combined with confocal microscopy at temperature-
controlled conditions. Instead, we used confocal micro-
scopy and FCS to monitor the lipid monolayer quality.
DMPC lipid monolayers deposited at 30�C were homoge-
neous between 50 and 100 Å2/molecule (Fig. S5). The
FCS curves obtained for DMPC monolayers with different
MMAs showed an increased N with higher lipid packing
(Fig. 2, A and B). Moreover, the measured N is inversely
proportional to the estimated MMA, as highlighted in
Fig. 2 B by a fit of the inverse proportionality. However,
the determined number of particles is consistently lower
than the theoretically predicted number of particles.

Another observed feature was the shift of the correlation
curves toward larger diffusion times with increasing lipid
packing, resulting in slower lipid mobility, as previously
shown (15,16) (Fig. 2, C and D). As described by the
free-area model, D varied linearly with the lipid density
(15,16,45). As surface pressure P is a monotonic function
of the MMA, there is a monotonic relationship between D
and P (15). Consequently, the cumbersome measurement
of P in fixed-area chambers can be replaced by an FCS
measurement of lipid diffusion to characterize the current
state of the monolayer.

C D

A B

FIGURE 2 Characterization of DMPC lipid monolayers deposited in

fixed-area chambers at 30�C by point FCS. (A) Representative autocorrela-

tion curves, single-component diffusion fit, and the respective residuals ob-

tained by point FCS for DMPC lipid monolayers deposited at different

MMAs in fixed area-chambers are shown. The monolayers were doped

with 0.01 mol% Atto655-DOPE. The increase of autocorrelation amplitude

(G0) with increasing MMA is highlighted and corresponds to the decrease

in the number of particles N in the confocal volume. (B) Number of

particles N obtained for lipid monolayers at different MMA by fitting a

single-component diffusion model (Eq. 1) is shown. Measurements were

performed on pure DMPC, and 2 mol% and 6 mol% content of GM1. Over-

all N follows the trend of an expected 1/MMA-dependence (black line). The

theoretically predictedN is shown by the gray line. (C) Normalized autocor-

relation curves for DMPC monolayers deposited at different MMA are

shown. The shift of the autocorrelation curves to smaller diffusion times

(tD) and correspondingly larger diffusion coefficient (D) with increasing

MMA is highlighted. (D) Lipid diffusion coefficient varies linearly

with lipid monolayer MMA. Measurements were performed on pure

DMPC, 2 and 6 mol% content of GM1. The lines are linear fits (Table S2)

for each data set. The obtained critical areas (ac) can be found in

Table S2. The average of typically four independent samples and respective

standard deviations are shown in (B) and (D). To see this figure in color, go

online.
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When analyzing the linear dependence of D on the MMA
(Table S2), we obtained the intersection of the linear
extrapolation to D ¼ 0 mm2/s, which yields an estimate
for the critical area ac, below which the translational diffu-
sion of lipids in a fluid monolayer can theoretically no
longer occur. The obtained ac of (33.0 5 8.0) Å2/molecule
for DMPC is in good agreement with previously reported
values (15,16,20).

Protein mobility is modulated by lipid monolayer
packing

Lipid Langmuir monolayer studies generally suggest that
protein/peptide adsorption and potential insertion into lipid
membranes changes lateral pressure and lipid packing (e.g.,
(21,46,47)). Therefore, when studying the effect of lipid
packing, careful controls need to be performed to ensure
that the addition of biomolecules at a certain concentration
does not change the macroscopic properties of the mono-
layer. Moreover, it has been proposed that the mobility of
protein components in membranes is influenced by lipid
packing (15). To further investigate this hypothesis, we stud-
ied the influence of lipid packing, and consequently of lipid
mobility, on the mobility of monolayer-bound biomolecules
using point FCS.

First, the binding of molecules to lipid monolayers
through head-group specific interaction or the insertion of
a hydrophobic moiety was tested (Table S1). Independently
of the nature of the interaction with the lipid monolayer, the
studied molecules can be divided into two groups: homoge-
neously distributed or aggregated at the lipid interface.
Importantly, the presence of protein clusters precludes
quantitative FCS measurements. The aggregates have statis-
tically ill-defined size and brightness distributions, distort-
ing both amplitude and shape of the autocorrelation curve

(Eq. 1; Fig. S6). Under special circumstances, the effect
of aggregates can be corrected by postprocessing of the
photon-arrival times (48,49). However, even these ap-
proaches may only deal with the effect of very bright
particles passing through the center of the confocal volume.
Although passivation strategies to reduce unspecific interac-
tions with the interface and consequent protein aggregation
could be conceived, these are of low relevance as the
effective MMA of the monolayer is modified. Generally, it
is thus advisable to spend considerable efforts to prevent
the formation of or to remove aggregates.

We found that the model protein CtxB falls into the cate-
gory of proteins that do not aggregate at the lipid monolayer
interface and is thus suitable for analysis by point FCS.
Previously, binding of CtxB to lipid monolayers has been
qualitatively assessed in phase-separated lipid mixtures
(16). However, to date, the diffusion behavior of CtxB at
the lipid monolayer has not been studied. Here, we varied
the density of the lipids at the interface and studied its effect
on the mobility of CtxB (Fig. 3). To eliminate the influence
of protein binding on lipid diffusion, low protein concentra-
tions (%10 nM) were used. Indeed, the lipid diffusion in the
monolayer does not change upon addition of CtxB, as high-
lighted by the perfectly superimposed autocorrelation
curves (Fig. 3 A; Fig. S7). Consequently, protein binding
in these conditions did not change the surface pressure P.
Furthermore, the use of a low protein concentration allowed
us to use a simple single-component diffusion model (with a
triplet component, in accordance with the used dye mole-
cule) (Eq. 1) to fit the obtained autocorrelation curves for
the protein channel because there was virtually no contribu-
tion from protein in solution to the autocorrelation curve.

As expected, the autocorrelation curve obtained for CtxB
was shifted to larger decay times compared to the lipid
monolayer curves, indicating a slower protein diffusion

A B DC

FIGURE 3 Cholera toxin b (CtxB) interaction with DMPC lipid monolayers in absence or presence of the specific ligand GM1 analyzed by point FCS. (A)

Autocorrelation curves obtained by point FCS for a DMPCmonolayer at 70 Å2/molecule with 0.01 mol% Atto655-DOPE, before and after addition of 10 nM

CtxB-Alexa488, and for the protein CtxB-Alexa488 are shown. Fits with single diffusion component and respective residuals are shown. (B) Autocorrelation

curves obtained for CtxB (10 nM) bound to DMPC monolayers at 90 and 50 Å2/molecule. Fits with single diffusion component and respective residuals are

shown. (C) Shown is the relationship between lipid diffusion and CtxB diffusion on a pure DMPC monolayer (magenta) and in the presence of 2 mol% or 6

mol% of the specific ligand GM1. The diffusion coefficients of CtxB and lipids show a linear relation (Table S3) as highlighted by the linear fit for a pure

DMPC monolayer. (D) Shown is the relationship between the detected CtxB number of particles N bound to the lipid monolayer and the lipid MMA in

presence and absence of the ligand GM1. The average of typically three independent samples and respective standard deviations are shown. To see this figure

in color, go online.
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(Fig. 3 A). The decrease in lipid MMA, and consequent
reduction of lipid mobility, again resulted in a shift of the
autocorrelation curves of CtxB to larger diffusion times
(Fig. 3 B). The CtxB diffusion coefficient (DCtxB) scaled lin-
early with the lipid diffusion in the monolayer; less dense
lipid monolayers allowed for a faster diffusion of the protein
(Fig. 3 C). A similar linear dependence on DDOPE

was observed for another membrane-targeted molecule,
the MPER of the envelope glycoprotein gp41 of HIV-1
(Fig. S8). Relative to DDOPE, DCtxB was approximately
60% lower, whereas DMPER was only 40% lower (Fig. 4).

Next, we analyzed the influence of a specific ligand, the
ganglioside GM1, on the diffusion behavior of CtxB. Sup-
posedly, the pentameric CtxB binds up to five GM1 as
each monomer exhibits a binding site with a reported disso-
ciation constant KD ¼ 0.1–1 nM (50–52). As all experi-
ments were conducted above KD, CtxB should prevalently
bind to its ligand when GM1 is present in the membrane.
Interestingly, the addition of GM1 does not significantly in-
fluence the diffusion coefficient DCtxB. In theory, the two-
dimensional diffusion of a molecule correlates with the
size of the molecule’s inclusion in the membrane (12).
One can thus hypothesize that the similar diffusion coeffi-
cients obtained in presence and absence of the ligand GM1

indicate that the insertion size of the pentameric CxtB
nonspecifically bound to the lipid monolayer is similar to
the effective insertion size of the lipid group codiffusing
upon binding of the pentameric CtxB to five GM1 molecules.

Although the diffusion coefficients are similar, the analysis
of the amplitude of CtxB correlation curves unravels a
significant difference in CtxB binding to the lipid monolayer
in presence and absence of GM1 (Fig. 3 D). In absence of

GM1, CtxB binding to DMPC monolayers is dependent on
the lipid packing, with higher binding observed at low lipid
density. This can be explained by the affinity of CtxB to
the air-water interface that is shielded at higher lipid densities
(Fig. S9). In presence of GM1, on the other hand, CtxB binds
stronger to the lipid monolayer at low MMA, as the total
amount of GM1 present in the lipid monolayer is inversely
proportional to the lipid packing. For 100 Å2/molecule, a
larger scatter of N was obtained in both conditions, as G0

is particularly sensitive to small density variations and occa-
sional protein clusters were encountered at the monolayer.

Although these are the first steps toward the analysis of
protein-lipid interactions on monolayers, the role of specific
ligands in the modulation of protein behavior should be
subject to future studies. Additionally, as the lipid density
has a strong impact on the diffusion of membrane interact-
ing proteins/peptides, the rate of chemical reactions in the
membrane may also be sensitive to lipid packing. Further-
more, the single molecule sensitivity of FCS enables the
detection and quantification of protein/peptide interaction
with lipid monolayers in a regime in which no diffusion
coefficient variation and, consequently, no surface pressure
variation is detected.

Hydrodynamic length scale is different in lipid
monolayers and bilayers

When inspecting the diffusion coefficients discussed above,
it becomes clear that the surface viscosity hs of the lipid
monolayer is considerably lower than the surface viscosity
of a bilayer, in good agreement with previous studies
(53–55). Specifically, the diffusion coefficients of lipids

A B C

FIGURE 4 Comparison of the mobility of biomolecules of different dimensions on lipid monolayers at 70 Å2/molecule by point FCS. (A) Shown are

autocorrelation curves obtained by point FCS for 0.01 mol% Atto655-DOPE, 10 nM of the membrane proximal external region (MPER) of the envelope

glycoprotein gp41 of HIV-1 and GM1-bound CtxB, both labeled with Alexa488, and 40 pM DNA structure X5 three-fold labeled with Atto488 in a DMPC

monolayer at 70 Å2/molecule. Fits with single diffusional component and respective residuals are shown. (B) Diffusion coefficients obtained for each

analyzed biomolecule in a DMPC monolayer at 70 Å2/molecule (filled bars). The studied biomolecules cover a range of sizes and number of membrane

insertion points. The average of typically three independent samples and respective standard deviations are shown. Diffusion coefficients determined by

others for Atto655- DOPE (23.5�C) (42), GM1-bound CtxB (23.5�C) (77), and DNA structure X5 (27.5�C; A.K., J.M., Henri G. Franquelim, and P.S.,

unpublished data) in 1,2-dioleoyl-sn-glycero-3-phosphocholine free-standing lipid bilayers are shown for comparison (shadowed bars). (C) Surface

viscosity hs of DMPC monolayers based on FCS experiments on CtxB (open symbols, Fig. 3 C) and ATTO655-DOPE (gray line with 95% confidence

intervals, Fig. 2 D; Table S2) are shown. hs was obtained numerically by finding the zero between predicted and measured diffusion coefficients

using Newton’s method. As expected, hs increases with increasing lipid packing. Empirically, the hs roughly follows a bi-exponential:

hS ¼ a1 expð�a2,MMAÞ þ a3 expð�a4,MMAÞ with a1 ¼ 1:2,10�8 Pa s m, a2 ¼ 0:104 �A�2, a3 ¼ 1:7,10�10 Pa s m, a4 ¼ 0:025 �A�2. All values

correspond to 30�C. To see this figure in color, go online.
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and CtxB are at least threefold larger in the lipid monolayer
(Fig. 4) depending on the MMA. Accordingly, the character-
istic hydrodynamic length of the system l ¼ hs=ðm1 þ m2Þ
(56,57) is shorter in lipid monolayers than bilayers. Here,
we introduced the bulk viscosities m1 and m2 below and
above the membrane, respectively. Assuming that the mono-
layer has half the thickness of a bilayer and that the viscosity
of air is negligible compared to the viscosity of water, a
lower viscosity of the lipid monolayer compared to the lipid
bilayer is reasonable. Moreover, in lipid monolayers, no in-
terleaflet coupling occurs and the packing density is lower,
especially at high MMA.

For a more quantitative approach, we estimated the sur-
face viscosity hs of DMPC lipid monolayers at different
MMAs based on the measured diffusion coefficients.
Notably, the major models used to describe diffusion in lipid
membranes, more specifically the Saffman-Delbr€uck model
(12) and the Hughes-Pailthorpe-White model (HPW model)
(56), are weakly dependent on the size of the membrane
insertion. Thus, having in hand a reasonable estimation of
the membrane inclusion radius r should yield a good
approximation of hs. As the Saffman-Delbr€uck model
becomes inapplicable at high MMA, the values have been
estimated numerically by using an empirical expression
for the HPW model (57). The estimation was based on the
determined DCtxB assuming the previously reported radius
r ¼ 3.1 nm of pentameric CtxB (58). Overall, the hs of
DMPC lipid monolayers decreases with increasing MMA
as expected (Fig. 4 C). In detail, the hs of DMPC ranges
from 1 � 10�10 Pa s m at 50 Å2/molecule to 2 � 10�11

Pa s m at 100 Å2/molecule. The estimated values are
relatively low compared to previously reported data
(53,54,59–61). However, these reported values scatter
considerably and it has been previously discussed that the
surface viscosity was frequently overestimated (53). Inter-
estingly, the surface viscosity at 62 Å2/molecule, which is
around the expected MMA for DMPC bilayers (62),
compared to 70 Å2/molecule changes only by around
31%. Consequently, all larger differences in diffusion
coefficients between lipid monolayers and bilayers can be
mainly attributed to interleaflet coupling and the surround-
ing environments. Gudmand et al. made a similar observa-
tion when they found that a DMPC monolayer needs to
have an MMA as small as 50 Å2 to yield the same diffusion
coefficients in bilayers and monolayer (15). Moreover, the
estimation of hs based on DCtxB is surprisingly in good
agreement with the estimation based on DDOPE (Fig. 2 D).
With an assumed r ¼ 0.36 nm (15,20,63–66), the size of
the lipid probe is not much larger than the lipids themselves
and thus violates a key assumption of the HPW model. The
corresponding hydrodynamic length scale l of DMPC
lipid monolayers will range from 120 nm at 50 Å2/molecule
to 24 nm at 100 Å2/molecule, in comparison to
estimated 250 nm for lipid bilayers assuming hs ¼ 5 �
10�10 Pa s m (67–69). The smaller hydrodynamic length

scale of the lipid monolayer implies a slightly larger sensi-
tivity of the lipid monolayer system to size variations on
relevant length scales (12,57).

To test this hypothesis, we studied the interaction of a
relatively large synthetic DNA origami-based nanoparticle
(70). For simplicity, we chose a flat three-dimensional
DNA origami structure (Fig. S1), which was previously
studied on free-standing lipid bilayers (27). The bare nano-
structure (denoted N), which has no affinity to GUVs in the
used buffer conditions, showed no enrichment at the lipid
monolayer interface and therefore did not alter the lipid
diffusion (Fig. S10, A and B). The highly charged nature
of such DNA nanostructures is likely to be the cause of
this low affinity to the air-water interface. Interestingly,
we also did not observe significant structure clustering.

Next, we functionalized the DNA origami structure with
five cholesterol (Chol)-modified oligonucleotides (structure
X5) to directly compare its diffusion behavior to that of
pentameric CtxB. As a result, the DNA nanostructure did
bind to the lipid monolayer (Fig. S10 C), which is in line
with the previously shown binding to GUVs (27). As in
the case of CtxB and MPER, although of considerably
larger dimensions, structure X5 did not influence the lipid
mobility upon binding to the lipid monolayer (Fig. S10
D). The autocorrelation curve obtained for the structure
X5 decayed at larger diffusion times than CtxB, corre-
sponding to a smaller diffusion coefficient (Fig. 4). As no
significant binding has been observed with structure N,
we did not expect a full insertion of X5 into the lipid mono-
layer. X5 is rather likely binding to the lipid monolayer by
the insertion of the five Chol-modified oligonucleotides into
the lipid monolayer, gliding on the interface as proposed for
lipid bilayers (71).

Both the X5 structure and pentameric CtxB bound to GM1

have five membrane anchors of comparable insertion sizes.
In free-standing bilayers of similar nature, their diffusion
coefficients differ by a factor of 2.2. Interestingly, their
diffusion coefficients measured in DMPC monolayers of
70 Å2/molecule differ by a factor of 3. This small but signif-
icant difference between lipid bilayers and monolayers is
consistent with the discussed difference in hydrodynamic
length scale. Moreover, having determined the hs of the lipid
monolayer (3.8 � 10�11 Pa s m at 70 Å2/molecule), we can
now estimate the inclusion size for both MPER and X5. For
MPER, r ¼ 0.8 nm, in good agreement with estimations
based on the alignment of MPER in lipid bilayers (72).
For X5, r ¼ 28.3 nm, which is larger than the combined
inclusion of five cholesterol anchors. For a more quantita-
tive understanding, the compatibility of current membrane
diffusion models with lipid monolayers needs to be ad-
dressed in future studies.

We note that the fit to the autocorrelation curve of the
structure X5 shows systematic residuals up to 4% of the
amplitude, which is considerably larger than for the other
studied biomolecules. However, we do not expect any
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contribution from rotational diffusion to the autocorrelation
curve, as the fluorescent labels are located close to the center
of the rod (71,73). On the other hand, when recording
autocorrelation curves at different concentrations of nano-
structure X5, the autocorrelation function shifted toward
larger diffusion times at higher X5 concentration
(Fig. S10 E). A similar behavior was previously described
on GUVs for long DNA nanoneedles and has been attributed
to crowding effects on particle diffusion at high surface
densities (73). Thus, lipid monolayers appear to also support
the study of more complex diffusional behaviors by
point FCS.

CONCLUSIONS

In this work, we have established conditions under which
reproducible, long, high-quality point FCS measurements
can be performed on lipid monolayer systems. Most impor-
tantly, we discussed the necessity to reach an equilibrated
system in which the lipid monolayer stays at a constant
height to minimize focus drift. To reach this state, it is
necessary to heat the closed monolayer chamber to the
working temperature or above, in our case 30�C. Provided
the biomolecule of interest is exclusively located at the lipid
monolayer, the throughput of protein-monolayer studies
could even be increased by camera detection schemes
similar to, e.g., refs (74–76), coupled with wide-field illumi-
nation. In a set of proof-of-principle experiments, we
applied FCS to study the lateral diffusion of selected
biomolecules at the lipid monolayer. The use of FCS can
not only complement canonical P measurements to charac-
terize the monolayer state but also allows the quantitative
characterization of protein-lipid monolayer interactions in
a regime in which the physical properties of the monolayer
are not modified. To cover a wide range of sizes and mem-
brane insertion points of diffusing particles, we studied not
only the diffusion of the rather small peptide MPER but also
the model protein CtxB and a large DNA origami construct.
We showed that the viscosity and consequently the hydrody-
namic length scale in lipid monolayers are smaller than in
lipid bilayers. Furthermore, we investigated the effect of
lipid packing on protein diffusion in the lipid monolayer
and found a linear dependence between the diffusion coeffi-
cient of bound protein and the diffusion coefficients of the
lipids themselves. The direct impact of lipid packing on
the mobility of monolayer-associated biomolecules may
have implications on intermolecular reaction rates. We
believe that this study forms a basis for novel research on
the effects of lipid packing on protein-monolayer
interactions.

SUPPORTING MATERIAL

10 figures and three tables are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(18)30259-5.
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IV

SELF-ORGANIZATION OF MEMBRANE-BOUND
DNA NANOSTRUCTURES

The results discussed in this section are a result of a collaborative work with Renukka
Yaadav (intern under supervision of the author of this thesis), Henri G. Franquelim and
Eugene P. Petrov. The project was designed by AK, HGF and EPP. AK designed all
DNA origami nanostructures, AK and RY performed high speed atomic force microscopy
(HSAFM) imaging assisted by HGF. AK and EPP contributed for data interpretation. The
information about materials and methods can be found in Appendix E.

IV.1 Introduction

In recent years, there has been an increased interest in the mechanisms of nanoscale or-
ganization of the cell membrane and especially in the role played in it by membrane pro-
teins [McMahon and Gallop, 2005,Graham and Kozlov, 2010,Antonny, 2011]. It has been
established that the shape of highly curved lipid membrane structures in living cells are
controlled and modulated by several types of scaffolding proteins [Prinz and Hinshaw,
2009,Baumgart et al., 2011], such as the BAR domain superfamily (II.1.3). These proteins
are generally strongly elongated and banana shaped. As a result, in the membrane plane
these proteins possess a strongly elongated rod shape.

Recent theoretical, simulation-based, and experimental studies [Ramakrishnan et al., 2013,
Simunovic et al., 2013a, Cui et al., 2013, Lipowsky, 2013] suggest that protein-controlled
membrane shape transformation starts with membrane-mediated self-organization of mem-
brane-bound protein molecules into a nematic domain. This self-organization on the
nanoscale enhances the effect of individual molecules and generates an anisotropic sponta-
neous curvature of the protein-decorated membrane. Thus, in spite of the different chemical
structure of scaffolding proteins, their membrane-bending effect largely relies on one and
the same physical mechanism, which is governed by their shape-controlled collective be-
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haviour. Therefore, the basic properties of the phenomenon can be understood using a
model synthetic biology-inspired approach [Schwille and Diez, 2009,Schwille, 2011].

Interestingly, although several theoretical studies have predicted membrane-driven self-
organization of rigid rodlike particles [Dommersnes and Fournier, 1999,Wen et al., 2012,
Ramakrishnan et al., 2013,Yue et al., 2013, Simunovic et al., 2013b, Simunovic and Voth,
2015,Zhang et al., 2015,Olinger et al., 2016,Ghosh et al., 2016], only recently Petrova et
al. showed the fist experimental evidences for such processes [Petrova et al., 2017]. In
this work, rodlike fd-virus particles electrostatically bound to a freestanding cationic lipid
membrane have been observed to form tip-to-tip linear chain aggregates.

Here, we address the organization of rigid rodlike DNA origami nanoparticles on supported
lipid bilayers (SLBs). To cover a range of shapes, DNA nanoparticles of aspect ratios 1, 7
and 22 were studied (Figure IV.1). DNA nanoparticles were adsorbed through electrostatic
interactions to mica or SLBs, let diffuse and their organization at different surface densities
was observed using high speed atomic force microscopy (HSAFM). Our results show that
although on a rigid and passive surface, i.e. mica, the DNA nanoparticles have purely
repulsive interactions and distribute homogeneously, on an elastic lipid membrane tip-to-
tip and side-by-side attraction takes place creating organized aggregates. Moreover, we
confirm the anisotropic phase type dependency on particle aspect ratio at high surface
densities [Bates and Frenkel, 2000].

IV.2 Results and Discussion

To cover a range of shapes, three DNA origami nanostructures of aspect ratios 1, 7 and 22
(AR1, AR7 and AR22, respectively) were designed (Figure IV.1, Suppelementary Figures
E.1-E.3). To avoid staking interactions between monomers of each structure [Woo and
Rothemund, 2011,Gerling et al., 2015], the oligonucleotides at the tips of each structure
have been extended with two adenines (As). Additionally, AR1 has been designed with
irregular helix length to reduce the number of possible staking interactions due to shape
complementarity. Agarose gel electrophoresis and transmission electron microscopy (TEM)
confirmed the correct structure folding in predominantly monomeric form. It is important
to note that no further efforts were done to eliminate the small percentage of dimeric AR1
and of higher order AR22 aggregates.
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IV.2 Results and Discussion

Figure IV.1: DNA nanostructures of different aspect ratios. A) Confirmation of
DNA origami folding into a preferential monomeric form. Lanes were loaded with DNA
nanostructures with aspec ratio 1, 7 and 22 (respectively AR1, AR7 and AR22). Lanes
containing marker DNA ladder (Ladder) and the unfolded plasmid M13 (M13) are shown
for comparison. B) Schematic representation and TEM images of each DNA nanostructure.
Estimated dimensions are shown in the schematic representation. Scale bars correspond
to 50 nm.

IV.2.1 Density-dependent organization of rodlike DNA nanos-
tructures on mica

In order to confirm the absence of attractive interactions between the designed DNA nanos-
tructures, AR7 nanostructures were imaged at different surface densities on mica using
HSAFM (Figure IV.2). Notably, the organization of purely-repulsive rodlike structures
on a rigid substrate is dictated by their aspect ratio and their surface density [Bates and
Frenkel, 2000]. Typically, DNA origami nanostructures are strongly adsorbed to negatively
charged mica through electrostatic interactions mediated by Mg2+ ions, enabling for stable
imaging. Here, the FOB buffer is doped with NaCl reaching approximately 10:1 ratio with
MgCl2 (150 mM NaCl 16 mM MgCl2). The addition of monovalent ions, i.e. Na+, weak-
ens the interactions between the DNA origami nanostructures and the support through
replacement of Mg2+ ions [Pastré et al., 2003]. In result, DNA origami nanostructures
become mobile on the mica surface and can reorganize themselves [Aghebat Rafat et al.,
2014,Woo and Rothemund, 2014].

AR7 nanostructures distribute themselves homogeneously on the mica surface, indepen-
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dently of their surface density (Figure IV.2). At higher surface densities, although the
translational diffusion appears to be limited, no higher order structures are formed. This
observation supports that the interactions between AR7 nanostructures are purely repul-
sive. Indeed, the Debye length at the imaging buffer condition is ≈ 0.7 nm.

It has been theoretically predicted [Frenkel and Eppenga, 1985,Bates and Frenkel, 2000,
Khandkar and Barma, 2005, Vink, 2009] and experimentally confirmed [Czogalla et al.,
2015b] that the isotropic-nematic transition (IN transition) for rodlike particles occurs at
a reduced surface density ρ = σL2 ≈ 7, where σ is the surface density in particles/µm2

and L is the rod length (for AR7, 110 nm). In agreement, at the highest surface densities
(ρ ≈ 2.4), although a certain degree of orientation is gained, the system is still far from
the IN transition (Figure IV.2C).

IV.2.2 Self-organization of rodlike DNA nanostructures on SLBs

Next, we studied the organization of rodlike DNA nanostructures on SLBs at different
surface densities using HSAFM (Figure IV.3). As described above for mica, AR7 was ad-
sorbed to SLBs through electrostatic interactions mediated by MgCl2, in this case between
the negatively charged backbone of DNA and the zwitterionic headgroup of the phospho-
lipids [Gromelski and Brezesinski, 2006, Suzuki et al., 2015]. Such an approach has been
previously used to observe the organization of square, triangle, hexagonal and cross-shaped
DNA structures into large lattices when deposited at high densities on SLBs [Suzuki et al.,
2015,Dohno et al., 2017,Avakyan et al., 2017,Sato et al., 2018]. Here, FOB buffer containing
20 mM MgCl2 and no NaCl was used. Additionally, SLBs composed of DSPC were used.
Such gel SLBs (phase transition temperature (Tm)DSPC = 55 0C and working temperature
T = 20 0C) not only increase the interaction of DNA nanostructures with the membrane,
as gel phase has a higher charge density when compared to less ordered phases [Pisani
et al., 2006,Kato et al., 2010,Dohno et al., 2017,Avakyan et al., 2017, Sato et al., 2018],
but also allowed us to track the diffusion and organization of individual nanoparticles.

At low surface densities (Figure IV.3A), no clear attractive interactions were observed and
the overall organization was identical to the described for mica at similar surface densities
(Figure IV.2A). Notably, stable tip-to-tip attraction could be observed, although they may
originate from local entrapment in defects on the membrane, i.e. grain boundaries formed
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Figure IV.2: DNA nanostructure show purely repulsive interactions on a rigid
surface. HSAFM images of DNA nanostructure AR7 diffusing on a mica surface at dif-
ferent surface densities: A) low (2-3 particles/µm2), B) medium (30-50 particles/µm2) and
C) high (100-200 particles/µm2) surface area coverage. Snapshots in time are shown for
each condition. White dashed boxes correspond to the area chosen for illustration. All
experiments are performed at 16 mM MgCl2 and 150 mM NaCl.

upon membrane deposition.

At higher surface densities, the organization of AR7 nanostructures on SLBs (Figure
IV.3B,C) is strikingly different from what was observed on mica (Figure IV.2B,C). On
SLBs, AR7 nanostructures are no longer homogeneously distributed and higher order ag-
gregates are formed at surface densities in the regime > 30 particles/µm2. While at medium
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surface densities (30-50 particles/µm2) no clear preference between tip-to-tip and side-by-
side attraction is observed, at high surface densities (100-200 particles/µm2) side-by-side
attraction seems to prevail. As a result, AR7 domains of anisotropic organization are
formed. Notably, the formation of such domains has been suggested to play an important
role in the early steps of membrane shaping by scaffolding proteins [Ramakrishnan et al.,
2013,Simunovic et al., 2013a,Cui et al., 2013,Lipowsky, 2013].

Theoretical works predict that the local deformation of elastic surfaces upon adhesion of
rodlike particles results in attractive interactions between those particles and that the char-
acter of such interactions will depend on the membrane tension γ [Cherstvy and Petrov,
2014,Simunovic and Voth, 2015,Ghosh et al., 2016]. At low γ, tip-to-tip attraction should
dominate while at higher γ side-by-side attraction is more probable. Recently, tip-to-tip
attraction between rodlike fd-viruses has been observed on low tension free-standing lipid
bilayers [Petrova et al., 2017]. Considering an elastic membrane that, upon nanoparti-
cle adhesion, cannot be stretched, the resulting deformation will increase the membrane
tension. Thus, with the number of bound nanoparticles, γ increases and consequently side-
by-side attraction may become more probable. Our observation of prevalent side-by-side
attraction at high membrane densities is in very good agreement with this line of reasoning.

The characteristic length-scale l at which membrane-mediated attraction of membrane-
bound nanoparticles takes place scales as l ∼

√
κ/γ, where κ is the bending rigidity of

the elastic membrane [Cherstvy and Petrov, 2014]. From our observations, we estimate
that l ≈ 100nm, at least two orders of magnitude larger then the Debye length in the used
buffer (1.2 nm). For a lipid well below its Tm, such as DSPC at 20 0C, the bending rigidity
κ is estimated to be ≈ 103kBT [Dimova et al., 2000,Mecke et al., 2003,Dimova, 2014]. As
a result, the membrane tension is estimated to be in the order of 10−4–10−3 N/m, at least
one order of magnitude below the typical membrane rupture tension (10−2N/m [Evans
et al., 2003]). Notably, mica is rigid and does not respond to particle adhesion, thus no
attractive interactions are expected. Thus, overall our results are in good agreement with
the current interaction models.

Interestingly, self-organization phenomena of rigid rodlike nanostructures, to the best of
our knowledge, have never been previously observed on SLBs [Herold et al., 2016] and
even on free-standing lipid bilayers, only tip-to-tip attraction was observed [Petrova et al.,
2017]. Importantly, although SLBs do not allow for large scale deformations due to the
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Figure IV.3: DNA nanostructure show tip-to-tip and side-by-side attraction on
SLBs. HSAFM images of DNA nanostructure AR7 diffusing on 1,2-distearoyl-sn-glycero-
3-phosphocholine (DSPC) SLBs at different surface densities: A) low (2-3 particles/µm2),
B) medium (30-50 particles/µm2) and C) high (100-200 particles/µm2) surface area cover-
age. Snapshots in time are shown for each condition. Two different regions are chosen as
examples and delimited by dashed boxes. All experiments are performed at 20 mM MgCl2.

presence of a solid support, small range deformations are possible due to the presence of an
hydration layer of 1–3 nm thickness between the support and the phospholipid headgroups
[Johnson et al., 1991,Koenig et al., 1996,Kiessling and Tamm, 2003, Zwang et al., 2010].
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At fixed membrane rigidity and tension, the strength of the interaction between the elastic
membrane and the adsorbed nanoparticle plays a crucial role on the type of interactions
observed [Cherstvy and Petrov, 2014, Ghosh et al., 2016, Petrova et al., 2017]. Using
the approach described by [Bellot et al., 2013], the linear charge density of our DNA
nanostructure AR7 is estimated to be 16 e−/nm and is higher than that of fd-bacteriophage
particles (10 e−/nm [Zimmermann et al., 1986]). Furthermore, while in the previous studies
the membrane binding was mediated through electrostatic interactions with positively
charged lipids, the amount of which never exceeded a few %, in this study the membrane is
covered with Mg2+ cations that coordinate with the phosphate group of the phospholipids
[McLaughlin et al., 1978,Lis et al., 1981]. In other words, each lipid bares a net positive
charge. Thus, the possibly higher positive charge density in the SLBs used in this study
will result in stronger interaction with the DNA nanoparticles, and thus higher surface
tension and different regimes of self-organization.

IV.2.3 Dependence of the anisotropic phase formation on the
aspect ratio of DNA nanostructures

Our experimental system can also be used to study the influence of the aspect ratio of
the particle on the formed anisotropic phase at high surface densities, where diffusion is
mainly eliminated. The 2D isotorpic-anisotropic phase transition of rodlike particles has
been theoretically predicted to take place at different surface densities depending on the
particle’s aspect ratio [Frenkel and Eppenga, 1985,Bates and Frenkel, 2000,Khandkar and
Barma, 2005,Vink, 2009,Avendaño and Escobedo, 2012,Xu et al., 2013]. In all previous
experiments [Kwan et al., 2001,Kim et al., 2001,Tao et al., 2003,Yoo et al., 2006,Hore and
Composto, 2010, Zhao et al., 2011,Czogalla et al., 2016] such isotropic-anisotropic phase
transitions have been observed by varying the surface density of particles of a fixed aspect
ratio (1 to 70). To the best of our knowledge, to date no experimental study has been
carried out where isotropic-anisotropic phase transitions of particles of different aspect
ratio were observed for particles with the same properties under identical conditions.

DNA origami nanotechnology is the perfect tool for a comprehensive study covering a
range of aspect ratios, as structures of virtually any shape can be produced at high yields
[Rothemund, 2006, Douglas et al., 2009a, Dietz et al., 2009]. In this chapter, we study
the organization of three particles of aspect ratios 1, 7 and 22 (AR1, AR7 and AR22
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IV.2 Results and Discussion

- Figure IV.1) on SLBs using HSAFM. Phase separated lipid bilayers (1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPC)/DSPC/cholesterol (Chol) 2:2:1) were used in order to
limit the total surface area and assure the possibility of nanoparticle reorganization at
high local surface densities. Although DNA origami nanostructures preferentially bind to
the liquid ordered phase (lo) where the charge density is higher [Pisani et al., 2006,Kato
et al., 2010,Dohno et al., 2017,Avakyan et al., 2017,Sato et al., 2018], DNA nanostructures
can cross the border back and forth to the liquid disordered (ld) phase [Dohno et al.,
2017,Avakyan et al., 2017,Sato et al., 2018].

For all three DNA nanoparticles, anisotropic phases were observed at high surface densities.
Generally, for elongated particles three different phases (isotropic, nematic and smectic),
which transform into one another upon increase of surface density and variation of aspect
ratio, can be observed. From the theoretically predicted phase diagram, for rodlike particles
an IN transition is expected to occurr at high surface densities of particles of aspect ratio
bigger then 7, before the formation of a smectic phase [Bates and Frenkel, 2000]. Indeed,
for AR22 we observed a nematic phase (Figure IV.1C), while for AR7 we observed a smectic
phase (Figure IV.1B).

Figure IV.4: Anisotropic phases formed by DNA nanostructures at high surface
densities. HSAFM images of a square crytalline phase formed by DNA nanostructures
AR1 (A), smectic phase formed by DNA nanostructure AR7 (B), and nematic phase formed
by DNA nanostructure AR22 (C) on DOPC:DSPC:Chol (2:2:1) SLBs.

In contrast, the seemingly simple case of Brownian squares (particle aspect ratio 1) shows
an unexpectedly rich succession of phases depending on their packing density [Zhao et al.,
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IV. Self-organization of membrane-bound DNA nanostructures

2011,Avendaño and Escobedo, 2012,Walsh and Menon, 2016]. At high densities square-
shaped particles have been shown to freeze into the translationally and orientationally
ordered square crystalline phase with suppressed translational diffusion [Walsh and Menon,
2016]. Indeed, this is what we observed in our experiments with DNA nanoparticles AR1
(Figure IV.1A).

Taken together, these results are the first step towards the study of isotropic-anisotropic
phase transition of particles with the same properties and varying aspect ratios in 2D.

IV.3 Conclusions

Here, we have used HSAFM to study the organization of rodlike DNA nanoparticles on
rigid (mica) and elastic (SLB) supports. We have shown that DNA nanoparticle interaction
depends on the responsiveness of the underlying support. While on mica DNA nanoparti-
cles showed purely repulsive interactions, on DSPC SLBs stable tip-to-tip and side-by-side
contacts were established. Moreover, the type of preferred interaction is dependent on the
particle surface density and thus membrane tension γ, supporting that the γ influences
the self-organization of rodlike particles adhering to elastic membranes [Simunovic and
Voth, 2015,Ghosh et al., 2016]. To our knowledge, this is the first time that anisotropic
domains of rodlike particles, suggested to play a role in the early steps of membrane
curvature-induction mechanisms [Ramakrishnan et al., 2013, Simunovic et al., 2013a,Cui
et al., 2013, Lipowsky, 2013], are observed on 2D elastic surfaces. Ultimately, we show
the possibility of using DNA nanoparticles in combination with SLBs to study membrane-
driven self-organization of particles of different aspect-ratio and their isotropic-anisotropic
phase transition.
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V

DNA-BASED SCAFFOLDS FOR SHAPING LIPID
MEMBRANES

The greatest promise of creating arbitrary structures with biological molecules is held by
the recognition that structure encodes function. One of the most intriguing questions
in DNA nanotechnology is wether it can be used to mimic complex biological functions
based on structural motifs. Thus, we set out to design DNA origami nanostructures that
mimic structure-based protein functionality: the shaping of biological membranes by pro-
tein scaffolds (chapter V.1). We developed curved DNA origami nanostructures in various
shapes that imitated the banana-shaped Bin/Amphiphysin/Rvs (BAR) proteins (see sec-
tion II.1.3) and studied their ability to induce membrane transformations. We showed that
dependent on the curvature, membrane affinity and surface densitty, coats of DNA nanos-
tructures controllably tubulate membranes reproducing the activity of BAR proteins. Our
results provided direct proof that the curvature of membrane binding macromolecules can
alone induce macroscopic transformations.

In chapter V.2, I aimed to advance the design of DNA-based scaffolds by integrating a
conformational switch to trigger membrane shaping. Notably, the final step of clathrin-
mediated endocytosis, e.g., is performed by dynamin, whose concerted GTPase activity
and conformational change results in the fission of the enclosed membrane [Pawlowski,
2010,Schmid and Frolov, 2011,Ferguson and De Camilli, 2012]. I thus set out to implement
a conformational switch into DNA origami nanostructures, to control the shaping of lipid
membranes. In this chapter, DNA nanostructures that can be switched between an "open"
and a "closed" conformation were designed. The conformational switch is driven by the
removal of strategically positioned single-stranded DNA. The design of individual modules
was tuned based on its step-by-step characterization using transmission electron microscopy
(TEM) and oxDNA molecular dynamic simulations (MD simulations). The effect of each
module on the shape of lipid membranes was studied using confocal microscopy. Taken
together, these are the first steps towards a DNA origami machine that can shape flat lipid
membranes in a precise and temporally controlled manner.

103



V. DNA-based scaffolds for shaping lipid membranes

V.1 Membrane sculpting by curved DNA origami scaf-
folds

The results discussed in this section are the result of a close collaboration with the leading
author Henri G. Franquelim and have been published as:

Franquelim, H. G., Khmelinskaia, A., Sobczak, J.-P., Dietz, H., Schwille, P. (2018)
Membrane sculpting by curved DNA origami scaffolds. Nat. Commun., 9: 811. doi:
10.1038/s41467-018-03198-9. A reprint permission has been granted by the publisher. The
supplementary information can be found in Appendix F. The author of this thesis con-
tributed to the experimental design of the project, performed and analyzed the fluorescence
imaging and FCS-based experiments for determining surface densities, binding and tubula-
tion efficiencies of different DNA origami scaffolds.
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Membrane sculpting by curved DNA origami
scaffolds
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Petra Schwille 1

Membrane sculpting and transformation is essential for many cellular functions, thus being

largely regulated by self-assembling and self-organizing protein coats. Their functionality is

often encoded by particular spatial structures. Prominent examples are BAR domain proteins,

the ‘banana-like’ shapes of which are thought to aid scaffolding and membrane tubulation. To

elucidate whether 3D structure can be uncoupled from other functional features of complex

scaffolding proteins, we hereby develop curved DNA origami in various shapes and stacking

features, following the presumable design features of BAR proteins, and characterize their

ability for membrane binding and transformation. We show that dependent on curvature,

membrane affinity and surface density, DNA origami coats can indeed reproduce the activity

of membrane-sculpting proteins such as BAR, suggesting exciting perspectives for using

them in bottom-up approaches towards minimal biomimetic cellular machineries.
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The curvatures of biological membranes vary strongly, from
predominantly flat in the plasma membrane to highly
curved in the endoplasmatic reticulum or in the Golgi

apparatus. The transformation of membranes from one shape to
another, for example during cell division, belongs to the most
fundamental processes in living cells. Numerous factors that
regulate membrane curvature have been identified, with scaf-
folding proteins being the most obvious ones1–3. An important
class of scaffolding proteins which presumably imprint their
shape on lipid membranes is the BAR (Bin/Amphiphysin/Rvs)
domain superfamily4, 5. When dimerized, BAR proteins form
characteristic banana-shaped scaffolds that induce and stabilize
membrane curvature through electrostatic and hydrophobic
interactions4–6. Several BAR proteins were shown to tubulate
membranes in vitro7–10. BAR proteins presumably rely on their
curved shape for their activity: different types of BAR modules
adopt folds with different degrees of curvature4, 5. By using BAR
domains as model proteins11, 12, recent studies emphasized the
relevance of physical-chemical foundations for membrane bend-
ing. From the minimalistic perspective of bottom-up synthetic
biology13, 14, it is tempting to speculate about the simplest way to
induce specific membrane curvatures, and thus engineer a
minimal membrane sculpting machinery de novo. The goal of
this work is to mimic structural and functional features of BAR
domain proteins by rationally designed DNA origami objects
(Supplementary Fig. 1), in order to decipher the essential prop-
erties of artificial scaffolds for curving lipid membranes.

Programmable self-assembly with DNA origami may be
employed to produce a variety of two-dimensional and three-
dimensional structures on the nanometer-scale, including objects
with custom curvature15–19. This molecular toolkit now serves as
the starting point for our goal of constructing membrane-
sculpting machinery from the bottom-up. DNA origami has been
previously employed to create nanoscale channels in lipid
membranes20, 21 and to guide the assembly of nanoscale lipid
compartments22–25. In contrast to DNA origami nanocages24, 25

that template small liposomes via detergent removal, our
designed origami structures act on preexisting cell-sized vesicles,
imitating the mechanism of action of protein coats. Subsequently,
in this work, we achieve the transformation of membrane shape
on much larger scales, reminiscent of deformations observed in
cells2, 3.

Taking inspiration from the different degrees of curvature
covered by BAR domain proteins, three DNA origami designs
(20-helix bundles with hexagonal lattice; Supplementary Figs. 2–4
and Supplementary Tables 1–3) were here developed (Fig. 1): (i) a
‘semi-circle’ named HALF (origami H) with curvature (C) ≈ 21.7
μm−1; (ii) a ‘quarter-circle’ named QUARTER (origami Q) with
C ≈ 11.6 μm−1 and (iii) a ‘stick’ named LINEAR (origami L) with
C ≈ 0 (Fig. 1a–c and Supplementary Fig. 5). Despite their fivefold
increased length when compared to BAR proteins (∼110 nm vs. ∼
20 nm, respectively), these origami structures (H, Q and L) mimic
the typical shapes of highly-curved BAR/N-BAR dimers, mod-
erately curved F-BAR dimers and flat PinkBAR/I-BAR dimers,
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Fig. 1 BAR-mimicking DNA origami nanoscaffolds. a Structures of origami L (linear), Q (quarter) and H (half), which mimic the shape of I-BAR, F-BAR and
BAR/N-BAR domains, respectively. b Corresponding negative-stain TEM images of the folded curved nanostructures. c The angle of curvature and
respective radius of origami structures Q and H (84 and 46 nm, respectively) were experimentally determined from TEM images (n= 110–130). d
Schematic representation of marked positions on the top convex (T0–T7), bottom concave (B0–B7), lateral sides (L0–L13, R0–R13) and tips used on the
nanoscaffolds (here origami Q) for attaching fluorophores, membrane-anchoring moieties or oligomerizing staples. Scale bars: 100 nm
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respectively (Fig. 1a and Supplementary Fig. 1). Each design
further includes positions at the different curved facets for
attaching fluorophores, membrane-anchoring moieties or for
oligomerizing the objects laterally (Fig. 1d and Supplementary
Notes). Thereupon, we studied the interaction of the DNA
origami-based scaffolds with lipid model systems and demon-
strate the ability for membrane bending in vitro. We determined
quantitatively the requirements in terms of shape, membrane-
attachment and oligomerization needed for a synthetic scaffold to
induce specific membrane curvature. As we explore reconstitu-
tion assays with model membranes similar to the ones employed
for studying scaffolding proteins in vitro8–10, direct comparison
with the mechanism of action of BAR domain proteins can be
drawn.

Our results demonstrate that DNA nanotechnology has
reached the degree of sophistication to reproduce complex bio-
logical functionality, which has so far been thought to be reserved
for proteins. We show that structure- and function-specific DNA
origami devices, biomimetic of proteins targeting and remodeling
biological membranes, can be rationally designed and recon-
stituted into cell-sized model membrane environments. This
opens up exciting perspectives for bottom-up synthetic biology
approaches, as even more complex fundamental biomimetic
nanosystems, such as protein-less membrane trafficking and
protocell division machineries, may be within reach.

Results
Efficient binding of curved DNA origami to membranes. We
assessed the interaction of curved DNA nanostructures with lipid
membranes, mainly giant unilamellar vesicles (GUVs) composed
of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), via fluor-
escence confocal microscopy (Fig. 2). Incorporation of 7 ×
Atto488-modified staples on positions T0-6 enabled fluorescence
detection of the origami structures (Fig. 1d). Similarly to what
was described elsewhere26, bare DNA origami structures lacking
membrane anchors were adsorbing to lipid bilayers in the pre-
sence of 20 mM MgCl2 (Supplementary Fig. 6). We avoided such
unspecific membrane attachment (Supplementary Fig. 7) and
ensured long-term stability of the nanostructures27 with an
imaging buffer containing 5 mM MgCl2 and 300 mM NaCl in

which the Na+ outcompetes membrane-adsorbed divalent
cations via a counterion release mechanism to break up Mg2+

promoted interactions between DNA and the phospholipids28, 29.
To achieve side-specific binding of the curved DNA origami
structures to lipid membranes, we tested various methods
including neutravidin-mediated attachment21, 30 of biotinylated
origami H to biotinylated lipids (Supplementary Fig. 8a) and
covalent attachment24, 31 of thiolated origami H to maleimide-
modified lipids (Supplementary Fig. 8b). However, preferred
membrane anchors were oligonucleotides linked to a cholesteryl
moiety via a tetraethylene glycol spacer (TEG-chol), as they have
been already extensively characterized32 and allowed for a steady
binding of nanostructure H to lipid bilayers (Supplementary
Fig. 9) in comparison to the other approaches.

In order to enhance attachment of curved DNA origami
scaffolds to model membranes and avoid steric hindrance
(Supplementary Figs. 10–12), we placed TEG-chol moieties at
the distant 5′-end of 18 bps-long linker sequences extending from
the origami backbone (anchor orientation called TC5). Placing
the anchors closer to the origami backbone, i.e., at the proximal
3′-end of the linker sequences (Supplementary Fig. 10a and
Supplementary Fig. 11d–f), or shortening the linker length from
18 to 9 bps (Supplementary Fig. 12b, d), severely reduced binding
of nanostructures H and Q to membranes. This effect was
particularly prevalent for membrane binding through the concave
origami surface.

Since anchor accessibility plays a decisive role for attaching
DNA origami structures to lipid membranes33, we further
evaluated how number and positioning of TC5 anchors along
the concave origami facet may influence binding of nanostruc-
tures H and Q to GUVs. When single TC5 anchors were
introduced (Supplementary Fig. 13b–d and h–j), no significant
attachment of our curved nanoscaffolds to membranes was
observed (Supplementary Fig. 14). In contrast, when three TC5
anchors were incorporated (Supplementary Fig. 13e–f and k–l),
membrane affinity was significantly increased, especially if the
anchors were placed at positions B0, B3 and B6 (combination
from here on called X3) (Fig. 2c and Supplementary Fig. 13f, l).
Using negative-stain TEM imaging, we further corroborated the
attachment of construct Q3 to lipid vesicles (Fig. 2e).

a c d ~ 18%
GUVs

DOPC + 0.05% DOPE-Atto655
Origami + Atto488

Lipid
vesicles

+ Origami 
Q0

+ Origami
Q3

e

Coverglass / EM grid

b

10 μm 100 nm 10 μm 10 μm 100 nm

Fig. 2 Binding of curved origami structures to lipid model membranes. Interaction of the BAR-mimicking curved origami structures (labeled with Atto488;
green) with DOPC model membranes (labeled with DOPE-Atto655; red) assessed using confocal microscopy and TEM. Bare DNA origami nanostructures
(Q0) did not interact with GUVs, as observed on GUVs imaged at the equatorial plane by confocal microscopy (a) and on MLVs by negative-stain
TEM (b). Incorporation of three TEG-chol moieties at the distal 5′-end of 18 bps-long linker sequences extending from the origami backbone (structure
Q3), rendered optimal binding of the DNA origami structures to lipid bilayers (c, e). After incubation for at least 1 h with origami structure Q3 (d), circa 18
% of the GUVs presented outwards lipidic tubules (marked by arrows). Scale bars: (b, e) 100 nm; (a, c, d) 10 µm
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Taken together, we identified some of the major requirements
for efficiently attaching curved origami structures to lipid bilayers
and we observed indications of curvature-mediated deformations
of membranes induced by the F-BAR mimicking structure Q3
(Fig. 2d and Supplementary Fig. 13m). Notably, incubation of
GUVs with Q3 for at least 1 h led to the appearance of outwards
tubular deformations within a significant fraction of vesicles
(~18%; 22 out of 121 GUVs); deformations similar to the
positively curved tubules reported for several F-BAR
proteins7, 8, 10, 34.

Membrane deformations as a function of DNA origami cur-
vature. As different classes of BAR domains curve membranes in
distinct manners4, we further investigated whether the appear-
ance of membrane deformations, as reported in Fig. 2d, can be
correlated with the direction and degree of curvature of our BAR-
mimicking DNA origami structures. Membrane tension has been
previously implicated in influencing the assembly of BAR domain
proteins35, 36. To provide a controllable trigger for assessing
vesicle deformations, we lowered the membrane tension by

increasing osmolarity of the outer buffer in 10%. Subsequently,
shape variations of the deflated GUVs were monitored.

After the hyperosmotic stress, lipid vesicles without
membrane-bound DNA origami (no origami in solution or
incubated with nanostructures lacking cholesteryl anchors)
rapidly regained their spherical shape, suffering only minor
shrinkage or blebbing (Supplementary Fig. 16h–j and Supple-
mentary Movie 1). Bursting events were seldom (~13%; 5 out of
40 GUVs). For vesicles incubated with a structure lacking
curvature (L3), a comparable effect was observed (Fig. 3a and
Supplementary Fig. 15i, j), independently of the total DNA
origami concentration.

Remarkably, moderately curved origami quarter-circles (Q)
displaying a concave membrane-binding surface were able to
trigger tubulation of GUVs upon hyperosmotic shock (Fig. 3b
and Supplementary Movie 2). As seen for structure Q3, this
process depended on the total origami concentration. At Q3
concentrations ≤3 nM, most vesicles presented no significant
deformations, with only a minor fraction (~18%) displaying
outwards tubules (43 out of 244 GUVs). By contrast, at Q3

H3
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b

C ≈ 11.6 μm–1C ≈ 0 μm–1 C ≈ 21.7 μm–1
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fd e
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DOPC + 0.05% DOPE-Atto655
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Fig. 3 Triggering of membrane deformations depends on the degree of curvature of the BAR-mimicking DNA nanoscaffolds. DNA origami structures
(labeled with Atto488; green) of varying curvature (L3, Q3 and H3; here at 5 nM bulk concentration) were incubated with DOPC GUVs (labeled with
DOPE-Atto655; red) for at least 1 h. After membrane binding was achieved, the surface tension of the GUVs was lowered by applying a hyperosmotic
stress (10% increase in buffer osmolarity) and consequent changes in vesicle shape were monitored. No significant changes in vesicle shape were
observed with membrane-bound origami L3 (a) and H3 (c). Vesicles covered with the moderately curved structure Q3 presented long tubular outward
structures upon hyperosmotic stress (b; marked by arrows). Similarly, membrane interaction of origami Q variants displaying three cholesteryl anchors on
different curved facets was further investigated. Strong binding to GUVs was achieved for all nanostructures, independently of the facet where anchors are
localized (d–f). Upon vesicle deflation, the concave structure (Q3) triggered outwards membrane tubules (d; marked by arrows); the convex structure
(QI3) triggered evagination/invagination-type of deformation (e; marked by arrows); and the structure with null curvature (QR3) led to no significant
changes in vesicle shape (f). Scale bars: 5 µm
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concentrations ≥5 nM, ~70% of all GUVs (128 out of 189)
displayed outwards tubules (Supplementary Fig. 19a–d and
Supplementary Fig. 15k–m). If additional cholesteryl moieties
were used on the concave surface (as observed for Q7 with 7 ×
TC5), due to the increase in hydrophobicity and consequently
enhanced membrane binding, lower total concentrations of DNA
origami were able to induce membrane tubulation (Supplemen-
tary Fig. 19i–l and Supplementary Fig. 17g–i). Indeed, most
vesicles incubated with Q7 (97 out of 191 GUVs) displayed
tubular deformations at concentrations ≥2 nM.

In the same way, we investigated origami Q constructs
displaying either a convex membrane-binding interface (QI3;
anchors at top positions T0, T3, and T6), or a flat membrane-
binding interface perpendicular to the curvature (QR3; anchors at
lateral positions R0, R6, and R12). For the latter (QR3), no
significant membrane deformations were observed upon osmotic
trigger (Fig. 3f; Supplementary Fig. 16m, n and Supplementary
Movie 3), consistent with the results reported for the non-curved
structure L3 (Fig. 3a and Supplementary Fig. 15i, j). For structure
QI3 with convex membrane-binding interface, on the other hand,
~60% of the vesicles (55 out of 92 GUVs; at 5 nM QI3) presented
evagination/invagination-type shallow deformations upon hyper-
osmotic stress (Fig. 3e; Supplementary Fig. 16k–l and Supple-
mentary Movie 4). Such deformations effectively contrasted with
the outward tubules observed for structure Q3 (Fig. 3b, d) and
were somewhat reminiscent of the negatively curved membrane
deformations reported for inverted I-BAR domains37, 38.

Contrary to the origami Q structures, the more curved origami
half-circle (H) structures with concave membrane-binding inter-
face were not capable of inducing the formation of tubular
deformation on GUVs (Fig. 3c): neither at high H3 total
concentrations (Supplementary Fig. 15n–p), nor for H7 display-
ing enhanced membrane binding (Supplementary Fig. 17j–l). For
instance, with the exception of seldom vesicle bursting (~15%; 20
out of 134 GUVs) and minor flaccid deformations (~10%; 14 out
of 134 GUVs), vesicles incubated with H3 (~75%; 100 out of 134
GUVs) remained spherical upon osmotic change and did not
display any tubular deformations. Adsorption of these highly
curved origami structures to DOPC vesicles seemed therefore
insufficient to overcome the energetic barrier required for
bending a flat membrane into a positively curved tube. Indeed,
assuming a typical bending modulus for lipid bilayers of ~10−19 J,
the estimated energy cost for bending a flat membrane segment of
surface area (A) ~1800 nm2 (corresponding to the surface area of
our DNA origami scaffolds) into a membrane tube with R ≈ 46
nm (radius of curvature fitting origami H) is ~38 kBT, based on
the area-difference elasticity (ADE) model of membrane
bending39, 40 (equation 3). For origami Q (R ≈ 84 nm), however,
the estimated membrane bending cost is ∼11 kBT, ~3.5-fold lower
than structure H and comparable with the membrane bending
costs expected for a BAR domain protein (amphiphysin: 9 kBT,
for R ≈ 11 nm and A ≈ 23 nm2)41.

Taken together, our data show a clear connection between the
curvature of the membrane-binding interface of our BAR-
mimicking DNA-based scaffolds and the resulting membrane
deformations (e.g. tubulation, invagination, etc.).

Hierarchical oligomerization of curved DNA origami scaffolds.
Self-assembly of membrane scaffolding proteins into higher-order
structures was suggested to play an important role in the
mechanism of action of BAR domains7, 10. Both lateral and tip-
to-tip linear intermolecular interactions were described to stabi-
lize their assembly into protein lattices7, 10. To test the influence
of such higher-order linkages, we designed variants of curved
DNA origami Q that could oligomerize, similar to BAR proteins,

tip-to-tip (Supplementary Fig. 18b–d) and laterally (Supplemen-
tary Fig. 18e). Overall, four constructs capable of multimerizing in
solution were created: origami Q-E5 (Supplementary Fig. 18b),
Q-E7 (Supplementary Fig. 18c) and Q-E13 (Supplementary
Fig. 18d) able to linearly multimerize from the tips forming arc-
like oligomers of tunable size; plus origami Q-S14 (Supplemen-
tary Fig. 18e) able to multimerize laterally forming sheet-like
oligomers. Constructs Q-E5/7/13 possess 2 × 5, 7 and 13 blunt
ends at defined helices, enabling intermolecular stacking at the
origami tips. Construct Q-S14, on the other hand, displays 2 × 14
TATATA overhangs, enabling complementary lateral interactions
along the origami sides.

Subsequently, we tested whether the inclusion of those
polymerizing staples would enhance the ability of origami Q3
with concave membrane-binding interface to produce tubular
membrane deformations on GUVs upon deflation. Altogether, no
significant differences in terms of total bulk concentration
required to induce tubulation of vesicles were observed for
constructs with or without tip-to-tip oligomerizing staples (i.e.,
structures Q3-E5/7/13 vs. Q3, respectively; Supplementary
Fig. 18g–i and Supplementary Fig. 20). In contrast, for the
construct with lateral oligomerizing staples (Q3-S14), lower bulk
concentrations were required for inducing membrane tubulation
upon osmotic stress (Supplementary Fig. 19e–h and Supplemen-
tary Fig 18j). Indeed, ~70% of the vesicles incubated with Q3-S14
presented tubular deformations at concentrations ≥3 nM (135 out
of 193 GUVs). Likewise, inclusion of lateral polymerizing
overhangs on origami QI3 with convex membrane-binding
interface (i.e., QI3-S14) also affected the generation of membrane
deformations (Supplementary Fig. 21). Here while most vesicles
displayed evagination-type membrane deformations upon hyper-
osmotic stress (Supplementary Fig. 21e, f), ~15% of vesicles (36
out of 244 GUVs; at 5 nM QI3-S14) additionally presented
inward tubules (Supplementary Fig. 21d, g) resembling protrud-
ing nanotubes described for convex I-BAR proteins42, 43; which
could not be observed for the structure QI3 lacking lateral
overhangs. Incubation with lower bulk concentrations of QI3-S14
(i.e., 2 nM), on the other hand, did not promote significant
membrane deformations, similar to what was observed for convex
structure Q-I3 lacking polymerizing overhangs (Supplementary
Fig. 16k).

In summary, our data indicate that in particular the presence of
lateral interactions influences the ability of curved membrane-
bound DNA origami to deform membranes. However, this effect
seems to be of minor significance, as structures having additional
membrane anchors but lacking polymerization strands (i.e., Q7;
Supplementary Fig. 19i–l), were able to deform lipid vesicles as
efficiently (in terms of total origami concentrations required) as
the structures with polymerization strands (i.e., Q3-S14).

Membrane density and binding affinity of curved DNA ori-
gami. Our results so far strongly suggest that a critical membrane
density of curved nanostructures is required for triggering
membrane bending. To test this hypothesis, variable surface
densities of our BAR-mimicking DNA-based scaffolds to DOPC
GUVs were quantitatively investigated at equilibrium (after
overnight incubation), by fluorescence imaging and single
molecule detection.

Apparent membrane dissociation constants at equilibrium (Kd

± s.d.) were obtained for L3, Q3, and H3 structures by fitting the
fluorescence intensity values on the surface of GUVs44 as a
function of bulk concentration to a Langmuir isotherm
(equation 1): Kd (L3)= 0.39 ± 0.07 nM (ntotal= 288 GUVs; n=
131–157 GUVs per fit, 2 repeats), Kd (Q3)= 0.68 ± 0.18 nM
(ntotal= 277 GUVs; n= 83–100 GUVs per fit, 3 repeats) and Kd
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(H3)= 2.0 ± 0.6 nM (ntotal= 106 GUVs; n= 48–58 GUVs per fit,
2 repeats). Thus, for the same combination of cholesteryl anchors,
increasing curvature of the DNA nanoscaffolds from flat (C ≈ 0)
to highly curved (C ≈ 21.7 μm−1) prompted a fivefold weaker
binding to flat freestanding membranes (Fig. 4b and Supplemen-
tary Fig. 24).

By image analysis, we further quantified the efficiencies of
vesicle tubulation by the curved DNA origami Q3 nanostructures
(Fig. 4d; ntotal= 445 GUVs, n= 78–108 GUVs per origami
concentration). When compared to the results obtained at a
shorter incubation period (Fig. 2c, d and Fig. 3), after overnight
incubation lower origami bulk concentrations and no additional
osmotic perturbation were required to achieve high yields of
membrane tubulation. At equilibrium, >80% of vesicles (154 out
of 185 GUVs) presented tubular deformation for Q3 bulk
concentrations ≥0.5 nM (value close to Kd). Despite slightly
increased membrane affinities (lower Kd values; Supplementary
Fig. 24) when compared to structure Q3, structures with
increased numbers of anchors (Q7) or with polymerizing
overhangs (Q3–S14) yielded similar membrane tubulation
efficiencies (Supplementary Fig. 25).

As the number of fluorescent particles is proportional to the
fluorescence intensity, we performed additional FCS measure-
ments in order to calibrate the measured fluorescence values and
recover the corresponding densities of membrane-bound DNA
origami at the surface of GUVs44 (see calibration curve in
Supplementary Fig. 22). Considering the average fluorescence
intensities of single DNA origami structures, for Q3 with

moderate curvature, we estimated 50 ± 20 particles per μm2

bound to GUVs (n= 51) to be sufficient for initiating tubulation,
and 90 ± 20 particles per μm2 (n= 50 GUVs) for almost all
vesicles (>80%) to present tubules (representative curve depicted
in Fig. 4a and confocal images in Fig. 4c). At these surface
densities, our curved nanoscaffolds cover 9–16 % of the total
membrane surface area. Interestingly, this surface fraction
matches the previously reported coverage required for BAR
domains to induce membrane deformations on model mem-
branes (2–4× higher than for amphiphysin9). Flat structure L and
highly curved structure H, on the contrary, were not capable of
inducing membrane tubulation on GUVs even at surface
coverages ≥100 particles per µm2 (Supplementary Fig. 23),
promoting at best flaccid membrane deformations analogous to
the non-spherical shapes previously reported for flat PinkBAR
domains45. For structure L3, due to its ‘zero’ curvature, no
tubulation was to be expected. For highly curved structures H3
and H7, a simple energetic cost-benefit analysis estimates the
apparent free energies of membrane adhesion (ΔG= RTlnKd, –20
kBT and –21.5 kBT, respectively) to be clearly insufficient to allow
for membrane bending (38 kBT). For the moderately curved
origami structure Q3, to the contrary, membrane adhesion (–21.1
kBT) is strong enough to compensate for the energetic cost of
membrane bending (11 kBT), hence enabling tubular deforma-
tions to be generated.

Finally, we investigated the ultrastructure of membrane tubules
decorated with origami Q3 at high surface densities (i.e., after
overnight incubation of GUVs with 5 nM Q3), using cryo-
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Fig. 4 Tubulation of flat membranes depends on surface density of membrane-bound curved origami Q. Fluorescence intensities of membrane-bound DNA
origami (labeled with 3 × Atto-488 dyes) at equilibrium (incubated overnight) were extracted using image analysis and represented as a function of total
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membrane-bound Q3 nanostructures are depicted in c. Membrane binding of the DNA nanostructures was quantitatively investigated by fitting the data to
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electron microscopy (cryo-EM). From the confocal images
(Fig. 5a), the grown tubules appeared homogenously covered
with membrane-bound fluorescently labeled Q3. Further cryo-
EM imaging (Fig. 5b) confirmed that the surface of the membrane
tubules was densely covered with DNA nanostructures, prefer-
entially aligning perpendicularly to the long axis of the tubular
structures. Additionally, the recovered tubular diameter (220 ± 70
nm; ntotal= 35 parallel cross-sections, 4 membrane tubules) was
in good agreement with the predictions based on the objects
curvature (~170 nm; Fig. 1a–c).

Discussion
This work demonstrates that curvature generation and topolo-
gical transformation of biological membranes, as required for
many cellular functions, can be achieved in a well-controlled
fashion by curved synthetic scaffolds made of DNA. The action of
these scaffolds may be tuned by varying shape, density, mem-
brane affinity, and the propensity for self-assembly of the scaf-
folds on membrane surfaces. In contrast to earlier work exploring
the deformation of membranes by flat nanostructures46, 47, con-
certed lateral oligomerization by self-assembly plays only a minor
role for the specific membrane transforming activity by curved
DNA-based scaffolds. Moreover, in spite of producing larger
tubular deformations than BAR domains, our curved structures
operate at similar membrane bending energy levels. We have
established three main requirements for the induction of tubular
membrane deformations (Fig. 5c) by scaffolding elements: cur-
vature, membrane affinity and surface density. Remarkably, we
provide direct proof that the curvature of membrane associating
macromolecular objects plays a decisive role, helping us under-
stand the minimal physical–chemical laws underlying membrane
deformations.

In this manuscript, we validate the usage of custom-designed
DNA origami as a tool to overcome the limited predictability of
engineered proteins. The ability of our developed structures to
precisely control local membrane curvature will have great impact
in the investigation of all kinds of biological membrane shaping
phenomena. For example, sequential binding of proteins involved

in deformation cascades (e.g., clathrin-mediated endocytosis48,
FtsZ-mediated bacterial division49) depends on the degree of
curvature locally displayed by membranes. In this regard, BAR-
mimicking DNA origami scaffoldings could allow detailed
investigation of such proteins on model membranes or even
cells50, as a function of local curvature.

Altogether, our work has great significance for the growing
field of bionanoengineering, opening up an avenue of research in
synthetic biology. Our present achievements add exciting per-
spectives towards minimal biomimetic cellular machineries,
involved in membrane shaping and beyond; pushing the limits of
nanotechnology into cellular biology. As we laid down new
foundations on manipulating DNA origami in lipid environ-
ments, design of even more elaborate DNA origami supramole-
cular assemblies targeting lipid membranes (e.g., artificial clathrin
coated pits, enzymatic membrane complexes), and novel
approaches for developing hybrid DNA-lipid-based drug delivery
vehicles directed towards biological membrane barriers, will
hence likely emerge in the near-future.

Methods
Materials. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-distearoyl-sn-
glycero-3-phosphocholine (DSPC), cholesterol from ovine wool, 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide] (MPB-
DOPE) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl)
(Biotin-DOPE) were purchased from Avanti Polar Lipids (Alabaster, AL, USA).
Atto655-DOPE was acquired from AttoTEC GmbH (Siegen, Germany) and
DiIC18(5) (DiD) from Thermo Fischer Scientifics (Waltham, MA, USA). Single-
stranded M13mp18 scaffold plasmid (p7249) was supplied from Bayou Biolabs
(Metairie, LA, USA), as well prepared by Florian Praetorius using high-cell-density
fermentation of Escherichia coli in stirred-tank bioreactors according to refer-
ence51. High purity salt free (HPSF) purified staple oligonucleotides for origami
preparation, as well as 5′-Atto488, 5′-Alexa488 and 3′Biotin-TEG-functionalized
oligonucleotides (all HLPC-purified) were purchased from Eurofins Genomics
(Ebersberg, Germany). 5′/3′-Chol-TEG and 3′-Thiol-Modifier-C3 S-S-
functionalized oligonucleotides (all HPLC purified) were acquired from Sigma-
Aldrich (Taufkirchen, Germany).

Design and production of the DNA origami nanoscaffolds. The DNA origami
structures employed throughout this work consisted in a 20-helix bundle with
hexagonal lattice. As described in the main text, three curved designs were here

100 nm100 nm

DOPC + 0.05% DOPE-Atto655
Origami + Atto488

5 μm 5 μm

a b

c

Fig. 5 Ultrastructure of lipid nanotubes decorated with DNA origami Q. a From confocal images, the membrane tubules obtained from GUVs (labeled with
DOPE-Atto655; red) upon overnight incubation with structure Q3 (labeled with Atto488) appeared homogeneously covered with membrane-bound DNA
origami. b Further cryo-EM imaging confirmed that the surface of the membrane tubules (black arrows) is densely covered with curved DNA
nanostructures perpendicularly aligned along the long axis. c Based on the cryo-EM electron microscopy observations and radius of curvature of
nanostructure Q3, a schematic representation of a lipid nanotube decorated with DNA origami Q is here depicted. Scale bars: (a) 5 µm; (b)100 nm
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developed: origami H (curvature C ≈ 21.7 μm−1; curvature angle θ ≈ 131°; radius of
curvature R ≈ 46 nm; Supplementary Fig. 4; Supplementary Table 3), origami Q
(C ≈ 11.6 μm−1; θ ≈ 73°; R ≈ 84 nm; Supplementary Fig. 3; Supplementary Table 3)
and origami L (C ≈ 0; Supplementary Fig. 2; Supplementary Table 1). Those
structures were based on the M13 p7249 plasmid and designed using CaDNAno52

(Supplementary Figs. 2–4). Initial 3D models (Supplementary Fig. 1) were pre-
dicted using CanDo17, 19. Each design further included marked positions for
attaching fluorophores, membrane-anchoring moieties or oligomerizing staples
(Fig. 1d). More precisely, 7 sites on the bottom (concave) and top (convex) facets of
the DNA origami (B0-B6 and T0-T6, respectively), plus 14 sites on the left and
right facets (L0-L13 and R0-R13, respectively) were defined. This strategy allowed
us to manipulate the functionality of the origami structures by exchanging the
staple sequences at those defined external positions with functionalized counter-
parts (Supplementary Notes), without compromising the shape of the nanos-
tructures stabilized by the core staples. The edges of each of the 20 helical bundles,
usually kept as single-stranded segments to avoid blunt end interactions, could be
similarly hybridized with functionalized staples. Folding of all the DNA origami
structures was performed in a one-pot reaction mix33. Briefly, 20 nM p7249
plasmid and 200 nM staple oligonucleotides were mixed in a 5 mM Tris-HCl, 1
mM EDTA, 20 mM MgCl2, pH 8.0 buffer (folding buffer). Thermal annealing was
performed over a cooling cycle scheme from 65 to 60 °C in 1 h and from 59 to 40 °
C in 40 h, on a Eppendorf Mastercycle Pro (Hamburg, Germany) or Bio-Rad
Tetrad 2 (München, Germany) thermal cycler. Purification of the folded structures
from the excess of staple strands was performed using size-exclusion centrifugal
filtration with Amicon Ultra 100 kDa MWCO filters (Merck Millipore, Darmstadt,
Germany) or PEG precipitation53 using a buffer consisting of 5 mM Tris-HCl, 1
mM EDTA, 5 mM MgCl2, 300 mM NaCl, pH 8.0 (imaging buffer). Bulk con-
centrations of DNA origami were determined via fluorescence spectroscopy using a
Jasco FP-8500 spectrofluorometer (Tokyo, Japan)33. Correct assembly of the folded
nanostructures was evaluated by agarose gel electrophoresis17, 33 (Supplementary
Fig. 5), negative-stain transmission electron microscopy (TEM)17, 54 (Fig. 1b and
Supplementary Fig. 5) and atomic force microscopy (AFM)33 (Supplementary
Fig. 5).

Preparation of lipid membranes for fluorescence microscopy. Supported lipid
bilayers (SLBs) were obtained via fusion of small unilamellar vesicles deposited on
top of freshly cleaved mica, as described elsewhere55. Giant unilamellar vesicles
(GUVs), the preferred membrane model system utilized throughout this work,
were produced by electroformation in PTFE chambers with Pt electrodes33, 56. Six
microliter of lipid mixture (2 mgmL−1 in chloroform) was spread onto two Pt
wires and dried in a desiccator for 30 min. The chamber was filled with 350 μL of
an aqueous solution of sucrose. An AC electric field of 2 V (RMS) was applied at a
frequency of 10 Hz for 1.5 h, followed by 2 Hz for 0.75 h. Unless otherwise stated,
vesicles composed of DOPC, containing additional 0.005 mol% (for FCS experi-
ments) or 0.05 mol% (for confocal imaging) Atto655-DOPE, were electroformed in
an aqueous solution of sucrose iso-osmolar compared to imaging buffer (~ 575
mOsm kg−1). Experiments were carried out in 40 µL MatriCal 384-multiwell plates
with # 1.5 glass bottom thickness (Brooks Life Science Systems, Spokane, WA,
USA). Prior usage, wells were freshly plasma cleaned, then passivated with bovine
serum albumin (Sigma-Aldrich) or PLL(20)-g[3.5]-PEG(2) (SuSoS AG, Dübendorf,
Switzerland). Typically, 3 µL of the GUV suspension (pre-diluted at least 1:10 in
iso-osmolar sucrose solution) were mixed with 18 µL DNA origami solution at a
final 0.5–10 nM concentration diluted in imaging buffer. Unless otherwise stated,
samples were incubated for at least 1 h at room temperature. Hyperosmotic stress
of GUVs incubated with DNA origami structures was achieved by gently adding 3
µL of a glucose solution diluted in imaging buffer (1000 mOsm kg−1) into the
imaging chambers.

Typically, at least two independent sets of measurements were performed for
evaluating a specific experimental condition under confocal microscopy (see
following section). Overall, for the characterization of the type of membrane
anchor (Supplementary Figs. 8–10), an average n ≈ 15 vesicles was analyzed per
each sample (ntotal= 277 GUVs). For the characterization of the number, position
and linker length required for cholesteryl-functionalized DNA origami structures
(Fig. 2a, c, d and Supplementary Figs. 11–14), an average n ≈ 26 vesicles was
analyzed per each sample (ntotal= 1023 GUVs). For the membrane deformation
assays triggered upon hyperosmotic stress (Fig. 3 and Supplementary Figs 15–21),
an average n ≈ 42 vesicles was analyzed per each sample concentration (ntotal=
2352 GUVs). For the determination of the binding coefficients (Fig. 4a, b and
Supplementary Figs. 23, 24), an average n ≈ 13 vesicles was analyzed per each
sample concentration (ntotal= 975 GUVs). Finally, for the determination of the
tubulation efficiencies after overnight incubation (Fig. 4c, d and Supplementary
Fig. 25), an average n ≈ 22 vesicles was analyzed per each sample concentration
(ntotal= 860 GUVs).

Laser scanning confocal fluorescence microscopy. Confocal imaging was per-
formed on a commercial laser scanning microscope LSM 780 with a ConfoCor3
unit (Zeiss, Jena, Germany) using a water immersion objective (C-Apochromat,
40 × /1.2W UV–VIS–IR, Zeiss, Jena, Germany). Samples were excited with the 488
nm line of an Ar-ion-laser (for Atto488 and Alexa488 excitation) or with the 633
nm line of a He–Ne laser (for Atto655 and DiD excitation). To avoid the effect of

polarization selection in excitation of the GUVs, an achromatic λ/4 plate (Edmund
Optics, Barrington, NJ, USA) was installed in the excitation beam path. Images
were typically recorded at the equatorial planes of GUVs, utilizing a 1 Airy unit
pinhole, 512 × 512 pixel resolution and a scan rate of 3.15 μs per pixel. Further image
analysis was performed using the ImageJ software (http:// rsb.info.nih.gov/ij/).

As fluorescence signal measured using confocal microscopy is proportional to
the number of fluorescent molecules in the confocal volume, fluorescence intensity
of membrane-bound DNA origami was determined in order to infer membrane
affinities of different nanostructures and assess particle densities on membranes
(see FCS section). For this purpose, GUVs incubated overnight (4 °C) with
different bulk concentrations of DNA origami, ranging from 0.01 to 50 nM, were
imaged at the equatorial plane and the corresponding fluorescence intensities
extracted from the confocal images using a semi-automated Matlab-based
software44. As illustrated in Fig. 4a and Supplementary Fig. 23, apparent membrane
dissociation constants at equilibrium (Kd; Fig. 4b and Supplementary Fig. 24) for
the different DNA origami nanostructures were then determined by fitting the
fluorescence intensities of membrane-bound origami (I) as a function of total DNA
origami concentrations in bulk (Cbulk) to a Langmuir isotherm9:

I ¼ Imax= 1þ Kd=Cbulkð Þ; ð1Þ

Fluorescence correlation spectroscopy. Fluorescence correlation spectroscopy
(FCS) measurements were carried out as described in our recent publication33,
using the LSM 780/ConfoCor 3 system mentioned above. Briefly, the laser line with
wavelength of 488 nm for Atto488 excitation was used at low laser power (<1.2
μW) to avoid photobleaching and fluorescence saturation effect57. The radius of the
waist of the FCS detection volume, r0 (207 ± 7 nm), was calibrated using a fluor-
escent dye (Alexa488) with known diffusion coefficient (D) in water (D (Alexa488)
= 414 μm2 s−1 at 25.0 ± 0.5 °C)58 and corrected for the working temperature at the
objective (27.5 ± 1.0 °C)57,59,60. FCS on membranes was performed at the upper
pole of a GUV with a diameter of at least 20 μm (which is large enough to neglect
membrane curvature within the detection spot size). Particle numbers, N, (and
consequently, surface densities, σ) of the BAR-mimicking DNA nanostructures
were obtained from the analysis of the autocorrelation functions, using the freely
available data analysis software PyCorrFit version 0.8.261. In order to eliminate the
contribution of rotational diffusion to the correlation curves, DNA origami
structures labeled at positions T2-4 were used33. Furthermore, as virtually no
unbound DNA origami was detected in solution, and its potential contribution to
FCS curves was negligible, a one-component two-dimensional diffusion model56, 57

was used (equation 2) to analyze the obtained correlation curves, as it was done in
previous studies of membrane-bound DNA origami particles33, 62, 63.

GðτÞ ¼ 1
N

1
1þ τ

τD

; ð2Þ

Here N is the number of particles in the 2D detection volume, and τD is the FCS
diffusion time, which is determined by the translational diffusion coefficient D and
the size of the 2D Gaussian detection volume r0 as follows: τD ¼ r20=ð4DÞ.

Knowing the origami length, L= 110 nm, surface densities of membrane-bound
particles σ (σ ¼ N=ðπr20Þ; expressed in particles per µm2) could be easily converted
to the reduced surface densities ρ= σL2 62. At higher surface densities (ρ > 0.2),
crowding effects resulted in progressively stronger deviations from the one-
component 2D diffusion model used to describe the translational Brownian motion
of the Atto488-labeled DNA origami particles62. As particle density is proportional
to the fluorescence intensity, average surface densities of membrane-bound DNA
origami could be estimated at a high-density regime (ρ > 0.2) from the fluorescence
intensity data obtained via confocal microscopy. Shortly, a calibration curve was
obtained (Supplementary Fig. 22b) from the linear fit of the fluorescence intensity
of membrane-bound DNA origami determined by confocal microscopy for single
GUVs (n= 45) and the respective surface densities of membrane-bound DNA
origami determined by FCS in the valid density regime (ρ < 0.2—Supplementary
Fig. 22a).

Atomic force and transmission electron microscopies. Atomic force microscopy
(AFM) imaging of structures L0, Q0, and H0, deposited on top of freshly cleaved
mica, was performed on a Nanowizard Ultra (JPK, Berlin, Germany) using the
high-speed AC mode with USC-F0.3-k0.3 cantilevers (Nanoworld, Neuchâtel,
Switzerland)33. The cantilever oscillation was turned to a frequency of 100–150
kHz, the amplitude kept below 10 nm. Scan rate was set to 5–25 Hz and setpoints
close to 7-8 nm were utilized. Analysis of the AFM images was performed using
JPK SPM Data Processing (version 5.1.4) and Gwyddion (version 2.30).

Negative-stain transmission electron microcopy (TEM) imaging was performed
on a Philips CM100 transmission electron microscope operated at 100 kV17, 54.
Images were recorded with an AMT 4 × 4 Megapixel CCD camera. Typically, 3 µL
of folded DNA origami nanostructures were adsorbed on glow-discharged
formvar-supported carbon coated Cu400 TEM grids (Science Services, Munich,
Germany) and stained using a 2% aqueous uranyl formate solution containing 25
mM sodium hydroxide. For the experiments involving multimellar vesicles (MLV),
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4 nM of origami Q0 or Q3 were pre-incubated for 30 min with DOPC MLV (at 0.5
mM lipid concentration) before deposition on the EM grids and negative staining.

For cryo-electron microscopy (cryo-EM), 5 nM Q3 was pre-incubated overnight
in a tube with DOPC GUVs. Samples were then adsorbed for 4 min on glow-
discharged lacey carbon grids (Plano, Wetzlar, Germany) and vitrified by plunge
freezing the grid in liquid ethane. Imaging was performed on a Titan Halo electron
microscope (FEI, Eindhoven, Netherlands), equipped with a Falcon II camera and
a Gatan 626 cryo holder (Pleasanton, CA, USA). The microscope was operated at
300 kV, with a magnification of ×45,000, giving a pixel size of 0.237 nm at the
specimen level. Data were collected using SerialEM, at nominal −3 µm target
defocus with an electron dose of 20 e−Å−2. Tubular diameter (average ± s.d.) was
obtained analyzing ntotal= 35 parallel cross-sections along four Q3-decorated
membrane tubules.

Estimation of the energetic costs for membrane bending. The energy required
for membrane bending by curved DNA origami scaffolds Q and H and a BAR
domain protein were calculated using the Area-difference Elasticity (ADE)
model39, 40. This model, based on the classical Helfrich-Canham-Evans elastic
membrane model (spontaneous curvature model)64, takes into consideration the
finite thickness of the lipid bilayer and consequent additional penalty arising from
the area difference between its two leaflets upon bending (i.e., negatively curved
leaflet being compressed, while positively curved leaflet being expanded). The ADE
model describes bending energy (εbe) as:

εbe ¼ κ
1
2

Z
dA C1 þ C2 � C0ð Þ2 þ α

2
π

AD2
ΔA� ΔA0ð Þ2

� �
; ð3Þ

where κ is the bending modulus of DOPC bilayers (23.1 kBT)65, A is the area of
the membrane segment, C1 and C2 are the principal curvatures (for a membrane
tube, C1 ¼ 1=R and C2 ¼ 0). C0 is spontaneous curvature of the membrane, which
relates to the intrinsic curvature of the lipid molecules. For a homogenous non-
asymmetric bilayer, C0= 0. In the second term, ΔA is the differential monolayer
area (determined by the difference in number of molecules of the outer and the
inner monolayers) and ΔA0 its value at equilibrium. D corresponds to the
membrane thickness. α ¼ κ=κ, with κ being the non-local bending rigidity
modulus. α is estimated to be in the order of unity and the approximation
α ¼ 3=π66 was used.

Data availability. Data supporting the findings of this manuscript are available
from the corresponding author upon reasonable request.
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V.2 Integration of a conformational switch into DNA
origami scaffolds

The results discussed in this section are the result of a close collaboration with Megan C.
Engel and Garima Mishra, from the group of Jonathan P.K. Doye, in the University of
Oxford, England. DNA origami nanostructure design and all in vitro experimental work
has been performed by AK. All in silico experiments have been performed by MCE and GM.
All contributed to the project design and data interpretation. Assistance on transmission
electron microscopy (TEM) was given by Mike Strauss, head of the TEM facility in the
Max Planck Institute for Biochemistry.

V.2.1 Introduction

Bin/Amphiphysin/Rvs (BAR) proteins are passive scaffolds that transmit their shape to
the lipid membrane by binding to it (see section II.1.3). Another classical example of
scaffolding proteins is the fission protein dynamin. In opposition to proteins from the
BAR domain family, dynamin is an active scaffold which changes conformation upon GTP
hydrolysis [Pawlowski, 2010, Schmid and Frolov, 2011, Ferguson and De Camilli, 2012].
Several models suggest that the helical dynamin coat can constrict, extend, turn, twist or
perform other movements, resulting in the physical cleavage of the enclosed lipid tube and
its final vesiculation.

Previously, DNA origami has been used to design scaffolds to shape free-standing lipid
membranes [Kocabey et al., 2015, Czogalla et al., 2015a, Franquelim et al., 2018, Grome
et al., 2018]. In these studies, the designed scaffolds passively shaped the lipid membranes
either by imprinting their curved shape and thus inducing tubulation [Franquelim et al.,
2018,Grome et al., 2018], or by polymerizing on lipid membranes thus resulting in planar
deformations and even vesicle rupture [Kocabey et al., 2015,Czogalla et al., 2015a]. How-
ever, to our knowledge, no reconfigurable DNA-based membrane scaffolding system has
been designed so far.

The first DNA nanomachine was based on the convertion from B to Z-DNA [Mao et al.,
1999] and, shortly after, the first DNA tweezer driven by a strand displacement mechanism
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was demonstrated [Yurke et al., 2000]. However, only a decade later the first reconfigurable
DNA origami nanostructures emerged [Liedl et al., 2010,Marini et al., 2011]. Since then,
a number of DNA origami machines have been designed, such as tweezers to study protein
complexes (e.g. nucleosomes) [Funke et al., 2016b,Funke et al., 2016a,Le et al., 2016] or
control enzymatic activity [Liu et al., 2013], cages for molecular delivery [Douglas et al.,
2012,Andersen et al., 2009] or enzymatic control [Grossi et al., 2017], or even molecular
sensors [Kuzuya et al., 2011,Kuzyk et al., 2014], to name only a few (for a recent review
on dynamic DNA nanostrutures, see [Ijäs et al., 2018]). Nonethelss, to date, only two
reconfigurable structures have been designed to interact with lipid membranes. DNA
origami bilayer structures have been developed to unfold in the presence of lipid bilayers
thus triggerring DNA nanostructure binding [List et al., 2014]. On the other hand, cages
that capture small unilamellar vesicles (SUVs) have been programmed to further change
their configuration promoting fusion and reshaping of liposome [Zhang et al., 2017].

Several mechanisms have been proposed to manipulate the conformation of DNA based
structures, such as Z-B DNA transition [Mao et al., 1999], toehold-mediated strand dis-
placement mechanism [Yurke et al., 2000], pH [Liedl and Simmel, 2005, Elbaz et al.,
2009, Kuzuya et al., 2014b], temperature [Turek et al., 2018], DNA polymerase assisted
gap-filling [Agarwal et al., 2018], DNA intercalators [Chen et al., 2016, Zadegan et al.,
2017], light regulation [Kohman and Han, 2015,Kuzyk et al., 2016,Willner et al., 2017],
and UV light damage [Chen et al., 2017]. From those, mainly the strand displacement
mechanism has been used for a vast range of applications [Castro et al., 2015].

Here, we propose to develop a three-state structure that can change its configuration from
a passive state, where it binds but does not affect the shape of the lipid membrane, to a set
of active states that can deform the lipid membrane. Three modules were designed based
on the strand displacement mechanism (Figure V.1) and fine-tuned through structural
characterization, combining TEM and oxDNA modelling. Furthermore, the effect of each
module on lipid bilayers was assessed using confocal fluorescence microscopy.
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V.2.2 Results and Discussion

V.2.2.1 Modular design and characterization of a DNA origami nanostructure
with an integrated conformational switch

Here, I designed a modular DNA origami nanostructure based on a 22-helix bundle nunchuck,
constituted by two rigid halves with a connecting flexible hinge (Figure V.1A, Supplemen-
tary figure G.1). This flexible basic module with a 5 nucleotide (nt) gap (module N)
can be further stabilized in several conformations by other modules (Figure V.1B). Lat-
eral double-helices are added to stabilize a flat "rigid" conformation that can be further
switched to a single-stranded "flexible" conformation (short module S). On the other side,
the introduction of helices below the structure can stabilize a specific angle in an "open"
conformation, which can be switched to a "closed" conformation through programmed hair-
pin folding (long module L) (Supplementary figure G.2). For both modules, the toehold-
mediated strand displacement mechanism is used to trigger the conformational change
(Figure V.1C). The strands to be removed were designed to bear 7/8 nucleotide overhangs
on the 3′-end that act as a toehold for docking and consequent hybridization of the re-
moval strand (R). As a result, the strands exposing toeholds are displaced, thus leaving
single-stranded portions in the DNA nanostructure (Supplementary tables G.1 and G.2).
Notably, single-stranded DNA has previously been demonstrated to keep the structural
arrangement of rigid DNA rods in 3D [Liedl et al., 2010] and to generate force for bending
DNA nanostructures [Liedl et al., 2010,Zhou et al., 2014].

To validate the design strategy, we pursued a combined simulation and experimental ap-
proach, in order to characterize the bending angle of each structural module. We used
oxDNA [Ouldridge et al., 2011,Sulc et al., 2012], a nucleotide-level coarse-grained model.
oxDNA has previously been successfully used to model DNA nanostructures and their
bending angles [Seifert et al., 2015, Schreck et al., 2016, Sharma et al., 2017], to capture
DNA mechanical response to tension [Romano et al., 2013,Mosayebi et al., 2015] and to
describe DNA twisting [Matek et al., 2012,Matek et al., 2015]. The in silico results of
angle distribution (Supplementary figure G.3) were confirmed using TEM imaging (Figure
V.2). For this, each configuration was individually folded and imaged.

In agreement with the simulated data (oxDNA), TEM analysis of module N revealed a
bending angle of ≈ 150o (Figure V.2A). Interestingly, the structural flexibility of module

117



V. DNA-based scaffolds for shaping lipid membranes

Figure V.1: Design principles for a DNA origami nanostructure with an inte-
grated conformational switch. A) Schematic representation of the basic module (N)
consisting of a core DNA nunchuck of 18 nm width and 110 nm length. B) Side view of each
of the designed modules: basic module (N); short module (S) where lateral double-helices
are added to stabilize a flat "rigid" conformation that can be switched to a single-stranded
"flexible" form; long module (L) where a specific "open" bending angle is stabilized by
additional double-helices that can be switched to a smaller "closed" angle through hair-
pin folding. In A) and B) blue cylinders correspond to core double-helices, yellow is used
to highlight single-stranded regions and red cylinders depict stabilizing double-helices.C)
Schematic representation of the general mechanism of toehold-mediated strand displace-
ment, employed to achieve the confirmation changes depicted in B).

N was limited, with bending angles varying between 120o and 180o. Indeed, oxDNA sim-
ulations suggest that nt-stacking across the short 5nt gap may limit the bending angle of
module N. Indeed, stacking interactions have been described to stabilize the conformation
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of single-stranded DNA [McIntosh et al., 2014, Plumridge et al., 2017], to determine the
configuration of mismatched bases in a DNA double-helix [Zacharias and Sklenar, 1997,Jiao
et al., 2002] and even to drive the assembly of DNA nanostructure arrays [Woo and Rothe-
mund, 2011,Gerling et al., 2015]. Moreover, due to DNA helix splaying from the connector
helices, module N has a preferential bending direction downwards.

In its "rigid" conformation, module S presents an almost flat conformation of ≈ 180o in
oxDNA simulations, corroborated by TEM images (Figure V.2B, left panel). Interestingly,
the removal of the stabilizing strand (highlighted in magenta in the snapshot from the
oxDNA simulation) only marginally increases the structural flexibility of module S (Figure
V.2B, right panel). Indeed, in the "flexible" conformation of S, the lateral single-strands
appear to counteract the helix splaying.

According to oxDNA simulations, the DNA helices introduced under the basic module
stabilized a bending angle of ≈ 130o in the "open" configuration of module L, as expected
from the design (Figure V.2C, left panel). However, TEM imaging suggests a broader
angle distribution, most probably due to differences in the yield of strand incorporation
[Wagenbauer et al., 2014, Strauss et al., 2018]. In the "closed" configuration of module L,
the bending angle is stabilized at ≈ 50o according to oxDNA simulations and at ≈ 40o

from TEM imaging. Notably, in this simulation the sequence, and thus hairpin folding,
has not been taken into account.

To confirm the strand displacement upon addition of the corresponding removal strands
(R), we used dual-colour agarose gel electrophoresis. For this purpose, DNA nanostruc-
tures have been labelled with Cy3-modified oligonucleotides. Additionally, Cy5-modified
protecting strands (that will be removed upon addition of R) were used (Figure V.3A).
Through analysis of the fluorescence signal, we determined a removal efficiency of 97% and
75% in module S and L, respectively. Notably, the lower strand displacement efficiency for
module L can be explained by the staple routing (Figure G.1, Supplementary table G.1).
For module S, each removed strand is short (Ps∗) and only introduces one crossover be-
tween adjacent helices. On the other hand, each protecting strand (Pl1 and Pl2) in module
L establishes two crossovers, which may result in the thermodynamic entrapment of the
formed double-stranded product upon addition of R.

TEM imaging further confirmed the conformational switch upon addition of R (Figure
V.3B). The initial configuration of each module ("rigid" for module S and "open" for module
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Figure V.2: Structure characterization of individual DNA origami modules.
Snapshots of oxDNA simulations (top), TEM images (middle) and relative angle frequen-
cies (bottom) observed for module N (A), "rigid" and "flexible" conformations of module S
(B) as well as "open" and "closed" conformations of module L (C). The arrow in A points
to the 5nt-long single-stranded gap between the two halves of the structure. Scale bars
in the TEM images correspond to 50 nm. Relative angle frequencies were obtained from
TEM image analysis (bars - experimental) and from oxDNA simulations (lines - in silico).

L) has been incubated overnight with 100× excess of corresponding removal strands. The
obtained angle distribution for the "rigid" module S incubated with R reproduced the one
obtained for the "flexible" module S (Figure V.5B, right panel). Incubation of the "open"
module L with R resulted in a broad angle distribution, between the angles obtained for
the folded "open" and "closed" conformations (Figure V.5C). These results corroborate the
75% displacement efficiency determined by gel electrophoresis.

Taken together, our results validate our design strategy of a dynamic DNA nanostructure
and the use of oxDNA to structurally characterize designs in silico.
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Figure V.3: DNA origami nanostructures switch their conformation upon
toehold-mediated strand displacement. A) Confirmation of strand displacement by
agarose gel dual-colour imaging. Module S (top) and L (bottom) are permanently labelled
with Cy3 while Cy5-labelled strands are expected to be removed upon addition of the
removal strand R. In lane 3, we loaded the "flexible" or "closed" (single labelled) confor-
mation of module S or L, respectively. "Rigid" or "open" (double labelled) conformation of
module S or L, respectively, were loaded on lane 4. In lane 5, "rigid" or "open" conforma-
tions of module S or L, respectively, incubated with the corresponding removal strands (R)
were loaded. The unfolded plasmid M13 (2) and the ladder (1 and 6) are shown for refer-
ence. B) TEM images and respective observed relative angle frequencies for "rigid"/"open"
conformation of module S/L (top/bottom, respectively) incubated with R strands.

V.2.2.2 DNA nanostructure fine-tuning towards a three-state structure

To generate a three-state structure, we proposed to combine the three individual modules.
While the lateral helices of module S would assure a starting flat conformation ("open"), the
central gap of the module N will allow the switch to different bending angles ("flexible") and
the helices below the structure of module L will enable the stabilization of small bending
angles ("closed"). However, the combination of the three modules resulted in an equal
angle distribution ≈ 165o before and after strand displacement (data not shown). Our
hypothesis is that, while the insertion of the helices below the structure causes strain on
the "open" conformation closing the structure by 10o, the lateral helices and nt-stacking
across the gap strongly restrain the flexibility of the "closed" conformation.

In order to improve the structural flexibility, we varied the size of the gap in module
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N from 0 to 42 nt and simulated the angle distribution using oxDNA (Figure V.4A). We
observed that, while increasing the gap length from 5 to 21 nt, the range of accessible angles
(and thus the flexibility) of module N increased from 60o to 120o. Further increasing the
gap length to 42 nt did not significantly impact the flexibility of the DNA nanostructure.
Interestingly, total closing of the gap did not result in a fully flat conformation but rather
in an angle of ≈ 150o, due to splaying of DNA helices. Thus, we hypothesize that lateral
double-helices are indispensable to keep a straight conformation.

Figure V.4: oxDNA modelling reveals that small modifications in design result
in major structural changes. A) Changes in relative angle frequencies upon changes
in the single-stranded gap length (marked by ∗) in module N. Gap length is varied from
0 to 42 nt. B) Changes in relative angle frequencies of each module L conformation upon
insertion of none, 4 or 8 thymine (T) nucleotides at the insertion point (marked by ∗) of
the stabilizing helices under the structure. The size of the gap is specified in the legend.

To relax the tension in the insertion point of the helices under the module L, we modified
the strand sequence to include extra T nts on each side. The conformations of structures
with a 42 nts gap and additional 4 or 8 Ts in the insertion points (marked as ∗) were
simulated using oxDNA (Figure V.4B). The introduction of additional Ts shifted the angle
distribution of the "rigid" conformation closer to a flat structure, confirming the tension
in the original structure (no Ts). Indeed, the angle distribution obtained by introduction
of additional 8 Ts is similar to the one of "rigid" (closed gap) module N (Figure V.4A).
Notably, the introduction of Ts in the insertion points shifted the angle distribution of the
"flexible" configuration by only ≈ 10o, although accompanied by a slight broadening of
the angle distribution. Furthermore, the angle stabilized by hairpin folding in the "closed"
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V.2 Integration of a conformational switch into DNA origami scaffolds

configuration was not influences by the introduction of Ts.

Figure V.5: Three-state DNA origami nanostructure achieved by combination
of modules N, S and L. A) Snapshots of oxDNA simulations of "open", "flexible" and
"closed" conformations of the three-state DNA origami nanostructure. B) Angle distribu-
tion obtained from oxDNA simulations for the three conformations of the DNA origami
nanostructure. C) TEM images of the "open" conformation. Scale bars correspond to 50
nm.

By combining together all three modules N, S and L with the respective modifications, a
structure with three defined states was achieved (Figure V.5A,B). Thus, in the basic mod-
ule we incorporate not only side DNA helix braces, but also helices below the structure.
To define an initial "open" configuration, the gap in the structure is fully closed and the
structure is fully double-stranded. The presence of the lateral double-helices counteract
the splaying of the helices. The helices below the structure, necessary for further confor-
mational changes, possess 8 Ts at the insertion point to avoid any strain in the structure.
Indeed, oxDNA simulations confirm a flat conformation of ≈ 180o for this combination of
modules. Upon removal of the oligonucleotides in the central gap region (42 nt gap), the
conformation of the DNA nanostructure will be stabilized ("flexible" conformation) by the
presence of the rigid helices below the structure. According to the oxDNA simulations,
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V. DNA-based scaffolds for shaping lipid membranes

the angle of this conformation is stabilized at ≈ 150o. Interestingly, the displacement
of the protecting oligonucleotides in the lateral helices does not significantly impact the
structure conformation, probably due to the presence of the rigid helices under the struc-
ture (data not shown). The final switch occurs by removal of the protecting strands in
the helices under the structure. The hairpin folding stabilizes the "closed" conformation
angle at ≈ 90o. Preliminary TEM imaging of the folded three-state nanostructure in its
"open" conformation confirms the initial rigid 180o state. Further design and conforma-
tional switch validation using TEM and agarose gel electrophoresis will be necessary prior
to the transition to lipid membranes.

Taken together, we propose a robust design of a dynamic three-state structure with defined
bending angles. Other multi-state DNA origami tweezers have been previously proposed
[Kuzuya et al., 2014a,Kuzyk et al., 2014,Kuzuya et al., 2014b]. However, such structures
could not stabilize different bending angles and have never been studied in combination
with lipid membranes.

V.2.2.3 Bent DNA nanostructures bind and deform lipid membranes

In this section, we studied the effect of the designed DNA nanostructures on the shape of
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs) using
confocal microscopy (Figure V.6). For this purpose, DNA origami nanostructures were
functionalized with eight cholesterol modified with a tetra-ethylene glycol linker (chol-
TEG) anchors. To ensure high membrane affinity, 18 double-stranded DNA spacers were
used (see chapter III.2 for more details). Furthermore, these anchors were distributed
across either the bottom (concave) or the top (convex) surface, as previously done with
curved scaffolds (see chapter V.1). Initial conformations of DNA module S and L ("rigid"
and "open", respectively) were incubated overnight (5 nM) with GUVs.

We observed that binding of "rigid" module S does not affect the shape of GUVs (Figure
V.6B, left). These observations are in good agreement with previously published results for
other flat monomeric structures [Kocabey et al., 2015,Czogalla et al., 2015a,Khmelinskaia
et al., 2016,Franquelim et al., 2018]. Interestingly, the concave surface of the "open" con-
formation of module L did not change the shape of lipid membranes neither (Figure V.6B,
top-right). Previous studies, have shown that curved DNA nanostructures bound through
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Figure V.6: Binding of the "open" conformation of module L by the negatively
curved surface causes large scale deformations on GUVs. Maximum projections of
the upper pole of DOPC GUVs incubated overnight with no DNA origami nanostructures
(A), 5nM of "rigid" module S (B) or "open" module L (C) chol-TEG modified on the concave
(top) and convex (bottom) surface. GUVs are stained with 0.005 %mol ATTO655-1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) while DNA origami nanostructures
are labelled with Cy3. Images were obtained by confocal microscopy and scale bars corre-
sponds to 10 µm.

the concave facet are able to tubulate lipid membranes [Franquelim et al., 2018, Grome
et al., 2018]. In contrast, the helices below the structure in our design may hinder the
binding of the anchors positioned near the centre of module L to the lipid membrane. As
a result, the membrane cannot follow the scaffold shape. On the other hand, the binding
of module L through the convex facet results in large scale deformations on GUVs (Figure
V.6B, bottom-right). Similarly, curved structures with negative curvature deformed lipid
membranes, although the effect was rather described as membrane invagination [Franque-
lim et al., 2018]. The flexibility of our structure and the possible second primary curvature
formed upon bending may explain the observed difference.

In the next step, the effect of each conformation of the designed three-state structure
should be assessed. Additionally, we are currently developing a Förster resonance energy
transfer (FRET)-based assay to correlate the conformational change with the observed
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deformations of GUVs. Importantly, the force generated by single-stranded DNA has been
theoretically described and experimentally validated [Smith et al., 1996] (II.2.2). The dis-
placement of a single strand results in the generation of a free energy of ≈ 1kBT/strand
at room temperature, according to the modified freely-jointed chain model (mFJC model)
(equation II.4, see section II.2.2). Although the generated free energy from the single-
stranded DNA segments is low, according to the Area-difference elasticity model (ADE
model) (equation II.3, see section II.1.3), it should be enough to bend a piece of mem-
brane into a shallow curvature. Indeed, the expected bending penalty to curve a piece
of membrane into a segment with C1 = 5.6µm−1 is E ≈ 4kBT ). Indeed, the binding of
DNA scaffolds with shallow curvature have been shown to be enough to tubulate lipid
membranes [Franquelim et al., 2018]. On the other hand, hairpin folding generates high
amounts of free-energy (≈ 20kBT/hairpin, Supplementary figure G.2) which is predicted
to be enough to model lipid membranes into highly curved segments (for C1 = 23.0µm−1,
E ≈ 40kBT ). We propose to further complement the in vitro studies described above
with in silico experiments, in which the lipid membrane resistance to deformation (gener-
ally characterized by the bending rigidity κ) will be simulated by force applied in points
distributed across the membrane binding surface and the changes in angle distribution of
the DNA nanostructure conformation are analyzed. These results will be compared with
current models for membrane shaping energy requirements.

V.2.3 Conclusions

In recent years, DNA origami nanostructures have been used to mimic the action of scaf-
folding proteins. However, to date only non-reconfigurable structures have been used. Here,
we used a mixture of in vitro and in silico studies to establish a robust design for a recon-
figurable three-state structure. Three modules were designed and combined to achieve a
DNA origami nanostructure with three conformations of ≈ 180o, 150o and 90o. We further
showed that structures with shallow bending angle (≈ 130o) cause large scale deforma-
tions on free-standing lipid membranes, when bound through the convex surface. Further
experiments will be necessary to correlate the conformational changes of the three-state
structure with effects on the shape of lipid membranes. Taken together, these are the first
steps towards the dynamic control of membrane shape.

126



VI

CONCLUSIONS AND OUTLOOK

In this thesis, we designed DNA origami nanostructures with the intention of mimicking
membrane-shaping protein scaffolds, and thus getting new insights on their mode of action.
Several aspects of such structures were studied, from their binding, diffusion and self-
organization on lipid membranes, to their effect on the shape of lipid bilayers.

First, I established a set of parameters that can be varied to tune the membrane-binding
efficiency and the diffusion of highly negatively charged DNA nanostructures on lipid mem-
branes (chapters III.1 and III.2). I showed that the number, the location within the bulky
DNA nanostructure, the positioning and the DNA spacers used in the attachment of choles-
terol modified with a tetra-ethylene glycol linker (chol-TEG) to the nanostructures play a
crucial role on the binding efficiency of the DNA nanostructures to the lipid bilayers. Addi-
tionally, I showed that positively charged lipids and the type of DNA spacer used to attach
chol-TEG anchors impact the diffusion of membrane-bound DNA origami nanostructures.
These effects result from different levels of interaction of the DNA nanostructures with the
lipid membrane and are reflected in the effective membrane insertion size. It is of interest
to explore the influence of other parameters, such as the structure’s aspect ratio, curva-
ture and function, as well as the distance between chol-TEG anchors, or between anchors
and the edges of the structure, on the membrane-binding efficiency and 2D dynamics of
DNA nanostructures. E.g., our previous results with curved DNA nanostructures showed
that the degree of curvature plays a crucial role for the membrane affinity (chapter V.1
and appendix F). Furthermore, the applicability of the drawn conclusions to the use of
other functional moieties for membrane-binding (e.g. amphipathic helices) and even to the
establishment of other types of interactions should be validated.

DNA origami has been used to control enzymatic reactions [Grossi et al., 2017,Liu et al.,
2013,Linko et al., 2015], to study the function of proteins [Hariadi et al., 2016,Funke et al.,
2016a, Le et al., 2016, Krementsova et al., 2017], their interactions [Funke et al., 2016b]
and organization [Ketterer et al., 2018, Fisher et al., 2018]. So far, on lipid membranes,
DNA origami has been used to organize pore forming proteins [Henning-Knechtel et al.,
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2017,Kurokawa et al., 2018], study SNARE mediated membrane fusion [Xu et al., 2016] and
as a platforms for analysis of 2D dynamics in membrane tethered enzymatic cascades [Sun
et al., 2017]. However, in all these applications DNA origami played the role of a scaffold
to proteins. In the future, one can expect that DNA origami can be incorporated into com-
plex membrane associated phenomena, such as symmetry breaking, pattern formation and
membrane shaping. Indeed, the set of parameters discussed in this thesis can be used to
control the affinity to the lipid membrane and the 2D dynamics of DNA origami nanostruc-
tures. Importantly, both processes are fundamental for the establishment of interactions
and reaction rates at the membrane. Moreover, my results demonstrate the compatibility
of DNA origami binding to lipid membranes in biologically relevant conditions, such as the
presence of negatively charged lipids or divalent cations.

Second, the achieved expansion of fluorescence correlation spectroscopy (FCS) to lipid
monolayer-bound macromolecules (chapter III.3), are the first steps towards the routine
study of protein-monolayer interactions. Importantly, not only lipid monolayers can be
used to investigate several parameters common to other model systems, e.g. pH, tem-
perature, ionic strength and modulation by specific ligands, but also enable the tuning of
the lipid packing density, which is otherwise not accessible. Interestingly, DNA origami
nanostructures seem to be specially suitable to be combined with lipid monolayers as, in
opposition to a number of proteins, they do not aggregate on the air-water interface. Thus,
DNA origami may be used as a tool to study a wide range of hydrophobic interactions,
otherwise difficult to handle at such an interface.

Third, we showed that DNA origami nanostructures, electrostatically-bound to the mem-
brane, self-organize on supported lipid bilayers (SLBs) into anisotropic domains through
tip-to-tip and side-by-side attraction (chapter IV). In this context, gel lipid membranes
were used to slow down the diffusion of DNA nanorods to a range that can be assessed
by high speed atomic force microscopy (HSAFM). The expansion of the study to other
lipid membrane compositions as well as other membrane-anchoring mechanisms (e.g. hy-
drophobic interactions) would allow us to establish the influence of the membrane biophys-
ical properties on the self-organization mode of DNA nanostructure and the robustness of
the observed phenomenon. Furthermore, the use of SLBs reduces the scale of membrane
deformation upon DNA origami nanostructure adhesion. Using other model systems, such
as cushioned bilayers or even free-standing lipid bilayers, as the substrate would allow
one to explore other regimes of deformation and shad new light on the process of self-
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organization. For example, assays on giant unilamellar vesicles (GUVs) of 1-5 µm diameter
could be combined with cryo-electron microscopy (cryo-EM) to visualize the formation of
such domains. Furthermore, such levels of membrane-assited self-organization have been
previously suggested to play an important role in the early steps of membrane shaping
mechanisms [Ramakrishnan et al., 2013,Simunovic et al., 2013a,Cui et al., 2013,Lipowsky,
2013]. Thus, it would be of great interest to combine the assays here described with DNA
based scaffolds mimicking proteins in their membrane shaping function (chapter V).

From a fundamental physics perspective, we further show that our experimental platform
can be used to observe different anisotropic phases formed at high membrane densities
of DNA nanostructures of varying aspect-ratio. This is the first step towards the study
of isotropic-anisotropic phase transition of particles with the same properties and vary-
ing aspect ratios in 2D. Moreover, the same platform can be used to study the effects of
membrane-mediated interactions on conformations of DNA nanostructures with an estab-
lished degree of flexibility or bending angle (see chapter V.2), similarly to what has been
previously done for other membrane adsorbed polymers [Herold et al., 2010,Herold et al.,
2016, Petrova et al., 2017]. Here, the additional control over the particle conformation
offered by DNA origami enables one to explore a range of conditions otherwise difficult to
access while working with particles of identical properties.

Last, we designed DNA origami scaffolds that are capable of shaping lipid membranes,
mimicking the function of protein scaffolds (chapter V). We showed that curved DNA
nanostructures can deform lipid membranes, forming tubules or invagination-like deforma-
tions. We further correlated these shapes with the degree and type of curvature, as well as
membrane-density of the DNA. In this thesis, chol-TEG anchors were used to attach DNA-
based scaffolds to lipid membranes. It would be natural to further use membrane binding
moieties similar to the naturally occurring in protein scaffolds, e.g. amphipathic helices.
From a structural perspective, the current knowledge about the membrane curvature and
specially scaffold arrangement in regions of membrane deformatio is rather sparse. Thus,
it would be of great interest to use, e.g., cryo-EM to observe the architecture of the con-
nection point of the formed membrane tubules with the mother vesicle. Additionally, our
curved scaffolds can be used to dissect the differences between the mechanisms of curvature
induction and curvature sensing.

Moreover, we extended the design of DNA-based scaffolds by integrating a conformational
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switch that enables the triggering of the membrane-sculpting function. Although the action
of the designed three-state structure on the shape of the lipid membrane has not yet been
demonstrated, our approach seems to be promising. Indeed, our first results with bent
DNA nanostructures show that mild bending angles can cause large scale deformations
on lipid membranes. Moreover, the possible transmission of the dynamic conformational
switch onto the lipid membrane shape is supported by the energetic considerations on
the contractile element and the membrane bending penalty. Aiming towards membrane
fission seems to be the most exciting future direction. It would then be interesting to
upscale the action of such a contractile element to > µm regime, e.g. by polimerization
of individual DNA nanostructures. With this approach, one could possibly mimick large
scale machineries, such as the cell division ring. Interestingly, cellular membrane shaping
processes are performed by a number of proteins. Thus, it is tempting to combine the so
far developed nanostructures to obtain a larger variety of membrane shapes.
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The results discussed in this section are the outcomes of a close collaboration with the lead-
ing authors Sven Vogel and Ferdinand Greiss and have been published as:

Vogel, D. K.∗, Greiss, F.∗, Khmelinskaia, A., Schwille, P. (2017) Control of lipid do-
main organization by a biomimetic contractile actomyosin cortex. eLife, 6:e24350. doi:
10.7554/eLife.24350, ∗indicates equal contributions. The author of this thesis made all
experiments on lipid monoalyers in collaboration with S. Vogel. A reprint permission has
been granted by the publisher.
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Abstract The cell membrane is a heterogeneously organized composite with lipid-protein micro-

domains. The contractile actin cortex may govern the lateral organization of these domains in the

cell membrane, yet the underlying mechanisms are not known. We recently reconstituted minimal

actin cortices (MACs) (Vogel et al., 2013b) and here advanced our assay to investigate effects of

rearranging actin filaments on the lateral membrane organization by introducing various phase-

separated lipid mono- and bilayers to the MACs. The addition of actin filaments reorganized

membrane domains. We found that the process reached a steady state where line tension and

lateral crowding balanced. Moreover, the phase boundary allowed myosin driven actin filament

rearrangements to actively move individual lipid domains, often accompanied by their shape

change, fusion or splitting. Our findings illustrate how actin cortex remodeling in cells may control

dynamic rearrangements of lipids and other molecules inside domains without directly binding to

actin filaments.

DOI: 10.7554/eLife.24350.001

Introduction
The spatiotemporal organization of lipids, proteins and other molecules at and within the cell mem-

brane is pivotal for many fundamental cellular processes, such as signal transduction from the extra-

cellular to the intracellular space (Groves and Kuriyan, 2010). Recent findings suggest that the cell

membrane should be considered as a heterogeneous lipid protein layer with coexisting small micro

domains and clusters of lipids and proteins that are assumed to dynamically form and reorganize in

response to external and internal cues (Engelman, 2005; Simons and Gerl, 2010). Whether and

how their spatiotemporal organization is actively regulated and maintained by the cell remains to be

revealed. In vivo and in vitro studies suggest an important role of the eukaryotic actin cytoskeleton

that interacts with the cell membrane via membrane-associated proteins (Heinemann et al., 2013;

Köster et al., 2016; Murase et al., 2004; Sheetz et al., 1980). Actin structures were found to medi-

ate the lateral organization of membrane proteins (Gudheti et al., 2013) and to modulate their dif-

fusive behavior (Heinemann et al., 2013; Honigmann et al., 2014; Murase et al., 2004).

Theoretical considerations have proposed a key role of the actin motor myosin for organizing and

forming distinct protein and lipid micro-domains in cell membranes (Gowrishankar et al., 2012).

However, direct experimental evidence for a control of lipid micro-domains by actomyosin rear-

rangements is still lacking.

In eukaryotic cells, the actin cortex is constantly rearranged by the motor protein myosin II and

dozens of actin-binding proteins. Therefore, reducing the complexity of experimental conditions,

e.g. reducing dimensionality or exploiting a minimal biomimetic system, and utilizing microscopic

techniques with a high temporal resolution is beneficial for studying these processes. Phase-sepa-

rated lipid bilayers with controlled lipid compositions are well-established test beds to mimic lipid
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micro-domains in cell membranes and biological processes, e.g. the lateral organization of proteins

that are otherwise difficult to observe in vivo. Ternary mixtures of lipids below their characteristic

melting temperature (Tm) can phase separate into liquid disordered (Ld) and liquid ordered (Lo)

domains. Liu and Fletcher used phase-separated giant unilamellar vesicles (GUVs) as a model system

to study the influence of branched actin networks on the miscibility transition temperature (Liu and

Fletcher, 2006). They reported that the formation of localized actin networks on PIP2-containing

phase-separated GUVs could act as switch for the orientation of lipid domain growth sites.

However, the effects of an actin meshwork on individual lipid domains are technically difficult to

study, due to the three-dimensional architecture of the GUVs. We therefore made use of a minimal

biomimetic system of planar geometry that we recently developed (Vogel et al., 2013a, 2013b) and

combined the minimal actin cortex (MAC) with supported phase-separated membranes and free-

standing lipid monolayers. We then visualized and studied the effects of actin filament adhesion and

myosin-driven rearrangements on the lateral organization of membrane domains with total internal

reflection microscopy (TIRFM) and confocal spinning disk microscopy.

Results

Actin filament partitioning on phase-separated membranes
The effects of adhesion and myosin-induced contraction of an actin meshwork on the lateral organi-

zation of lipid domains was studied by combining phase-separated lipid membranes with our estab-

lished assay featuring contractile MACs (Vogel, 2016; Vogel et al., 2013a, 2013b) (Figure 1A). For

the adhesion assay, a ternary lipid mixture with DOPC, DPPC and Cholesterol in a 1:2:1 molar ratio

was prepared (see Material and methods). Similar lipid compositions were described to form Lo and

Ld phases in free-standing membranes up to 30˚C (Veatch and Keller, 2003, 2005). The low misci-

bility transition temperature of the mixture avoids thermal degradation of proteins and allowed us

to study the phase transition behavior in the presence of actin filaments. The fluorescent probe DiD

(0.03 mol%) was used to label the Ld phases (Garcı́a-Sáez et al., 2007). The density of biotinylated

actin filaments was controlled by the concentration of biotinylated lipid DSPE-PEG(2000)-Biotin (see

also [Vogel, 2016; Vogel et al., 2013b]). As observed with TIRF microscopy, the membrane sepa-

rated into micrometer-sized Lo and Ld domains (Figure 1B–E) and homogenized at ~37˚C. The

observed shift of 7˚C in Tm compared with studies from Veatch and Keller (2003) agreed with our

expectations considering the interaction of lipid molecules with the mica support (Garcı́a-

Sáez et al., 2007).

The adhesion of actin filaments via neutravidin to biotinylated DSPE provided a stable link

between the MAC and the lipid bilayer over a wide range of temperatures. To validate the partition-

ing preference of all molecular components, the fluorescence signals of labeled neutravidin and actin

filaments were acquired after domain formation when cooled below Tm (Figure 1B–E). We found

that both neutravidin and actin filaments partitioned into the Lo phase (Figure 1B and C). We there-

fore concluded that the biotinylated lipid DSPE partitioned strongly to the Lo phase.

Actin filament crowding effects on supported phase-separated
membranes
We prepared low (0.01 mol % DSPE-PEG(2000)-Biotin) and medium (0.1 mol % DSPE-PEG(2000)-

Biotin, Figure 2B) dense MACs to investigate the effect of actin filament density on phase-separated

membranes. To this end, the ternary lipid mixture was incubated with non-labeled neutravidin and

placed on a temperature-controlled microscope objective. A fluorescence image was acquired as a

reference before actin filaments were added (Figure 2A and B (left column)). A homogeneous mem-

brane was produced by heating the microscope objective to 42˚C (above Tm). Actin filaments were

added to the membrane above Tm (Figure 2A and B (middle column)), and the sample was subse-

quently incubated for ~45 min at 42˚C (Figure 2A). The membrane was completely covered by actin

filaments after approximately 30 min (Figure 2A and B (middle column)). As final step, the mem-

brane was slowly cooled down to 30˚C without active cooling and the fluorescence signal was

recorded after complete phase separation (Figure 2A and B (right column)). While the low-density

MAC did not show any influence on membrane domain properties (data not shown), the medium-

dense MAC caused the formation of smaller domains (Figure 2B, right column). Both, actin filaments
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Figure 1 continued on next page
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and DSPE-PEG(2000)-Biotin partitioned into the Lo phase (Figure 2B and C), confirming our initial

observations (Figure 1B–E). We conclude that actin filaments act as nucleation sites for domain for-

mation and drive their lateral spatial distribution reproducing the observations reported by

Honigmann et al. (2014).

To further investigate the relation between lateral membrane organization and the binding of

actin filaments, we exposed high-density MACs containing a lipid mixture with 1.0 mol% biotinylated

DSPE to different temperatures below Tm (Figure 2C–F). Fluorescently labeled actin filaments were

added to the sample chamber at specified temperatures below Tm and imaged for ~30 min using

TIRF microscopy (Figure 2C). Because of the strong binding affinity of neutravidin and biotin, we

found that the change in fluorescence intensity of labeled actin filaments (which we used as a mea-

sure for actin filament binding) was independent of the applied temperature (Figure 2F). Hence, the

adhesion process of actin filaments to the membrane was constant over the employed temperature

range. The contour length (L) (Figure 2G) of membrane domains was extracted and tracked over

time (Figure 2D). After ~1 min of actin filament addition, first domain deformations could be

observed and the contour length was found to grow until a steady state at ~20 min was reached

(Figure 2D). The final contour length increased with temperature (Figure 2E, final change in contour

length: LFinal = 188 ± 4 mm and t = 9.5 ± 0.5 min at 24˚C, LFinal = 314.0 ± 1.5 mm and t = 5.6 ± 0.1

min at 29˚C, LFinal = 706.3 ± 2.5 mm and t = 4.4 ± 0.1 min at 32˚C). The line tension g between Lo
and Ld domains is known to be a linear function of temperature with g » g0 TC � Tð Þ=TC, where TC is

the critical temperature (Baumgart et al., 2003; Honerkamp-Smith et al., 2008; Veatch et al.,

2008). With the temperature-independent actin filament binding and the boundary energy given by

E ¼ gL (Yang et al., 2016), where E is the boundary energy, the final contour length L should

increase with

L¼
E

g0

TC

TC �T
: (1)

The model describes the experimental data well (Figure 2E) and gives a length change (E=g0) of

86 ± 9 mm at T = 0˚C with TC = 37˚C.

Actomyosin contraction governs lateral membrane domain organization
Aster shaped actomyosin clusters form in vivo (Luo et al., 2013; Munro et al., 2004;

Verkhovsky et al., 1997) and in vitro (Backouche et al., 2006; Köster et al., 2016; Murrell and

Gardel, 2012; Soares e Silva et al., 2011; Vogel et al., 2013b) upon myosin’s contractile activity.

Synthetic myofilaments contract the MAC in the presence of ATP and, hence rearrange actin fila-

ments to form stable actomyosin clusters (Figure 3A,C and G; Videos 1 and 5). For studying the

effects of myofilament-induced actin rearrangements, we prepared two lipid mixtures for lipid

mono- and bilayer experiments, namely DOPC, DPPC and Cholesterol in a 1:2:1 molar ratio and

DOPC, PSM and Cholesterol in a 3:3:1 molar ratio containing 0.1 or 1 mol% DSPE-PEG(2000)-Biotin

DSPE (see Material and methods).

We found that upon contraction, membrane domains deformed at the phase boundaries within

minutes and resulted in various splitting and fusion events (Figure 3A,D,F and G; Videos 2–4 and

6). Domain shape changes, such as inward ingression, were observed and correlated with the move-

ment of actomyosin clusters (Figure 3D; Videos 3 and 4). Actomyosin contraction against smaller Ld
domains resulted in their net movement and occasionally led to splitting events of the domain

(Figure 3D; Video 4), while the contraction for Lo domains led to deformation and fusion with neigh-

boring domains (Figure 3F; Video 6). For both mixtures, the area of the Lo phase remained constant

over the course of actomyosin contraction (Figure 3B and E, left panels). The number of Ld domains

increased with time due to their splitting for the DOPC, DPPC, Cholesterol mixture (Figure 3B, right

panel; Videos 2–4). The number of Lo domains decreased in the DOPC, PSM, Cholesterol mixture

due to their fusion and occasional disappearance during actomyosin contraction (Figure 3E (right

Figure 1 continued

phase. (C) Likewise, Oregon-Green-labeled neutravidin colocalized with the Lo phase. (D and E) Line profiles of the normalized fluorescence signal of

the actin cortex, DiD and neutravidin as was measured along the superimposed arrows in (B) and (C). Scale bar, 10 mm.
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Figure 2. Impact of actin filaments on the lateral organization of phase-separated membranes. (A) Scheme of a phase separation experiment with and

without MAC is shown with circles indicating time points when fluorescent images were acquired. (B) Size distribution of lipid domains changed in the

presence of a MAC while undergoing phase separation. TIRF images of a medium-dense MAC with DiD-labeled Ld phase (1:2:1 DOPC:DPPC:
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panel) and G; Videos 6 and 7). A similar behavior in Lo domain disappearance has been observed

by Köster et al. (2016). In contrast to their work, we did not observe a decrease of the total Lo
phase domain area in neither of the lipid mixtures (Figure 3B and E, left panels). In summary, we

showed active lateral reorganization of lipid domains for two different lipid mixtures, indicating the

general validity of our experimental observations.

In order to mimic free-standing membranes without support-induced friction as in the SLBs but

keeping the technical advantages of a planar geometry, we made use of a recently developed lipid

monolayer system (Chwastek and Schwille, 2013) with an air-liquid interface (Figure 4A–D). Actin

filaments were coupled to ternary phase-separated lipid monolayers similar to the situation in the

supported lipid bilayer (SLB) system via biotinylated lipids (1 mol%) and the use of neutravidin. Con-

trary to the situation in the SLB system, actin filaments preferentially bind to the liquid extended (dis-

ordered) (Le) phase where also the neutravidin anchor protein mainly partitioned to (Figure 4A–D).

We observed this behavior for both lipid mixtures that were also used for the SLBs (see Material and

methods). In low- and medium-dense monolayer MACs the liquid condensed (ordered) Lc domains

acquire circular shapes and the actin filaments close to the phase boundaries align to their circular

shape (Figure 4A). In the case of low and medium densities, we expect that the line tension energy

dominates over the actin filament wetting energy at the phase boundary and hence the Lc can

assume an unrestricted shape with aligned actin filaments. Similar effects have been observed using

bacterial cytoskeleton proteins (Arumugam et al., 2015). The addition of myosin filaments in the

presence of ATP led to the contraction of the actin layer deforming and rearranging the Lc domains

in both lipid mixtures similar to what we observed in the SLB systems (Figure 4B–D; Video 8). The

shape changes included fusion and stretching of the Lc domains (Figure 4B–D; Video 8). Note that

these ‘active’ deformation forces were only exerted in the presence of myosin filaments and ATP.

Interestingly, the obtained lipid domain shapes seemed to be stabilized after the active contraction

period, probably by the remaining actin filaments. Using the monolayer system also tells us that the

frictional force caused by a solid support in SLBs does not play a significant role in the observed

phenomena.

Discussion
As cells may need to quickly adapt the macro-and microscopic organization of lipid and protein

aggregates within the cell membrane due to external or internal cues, we propose that actomyosin-

driven reorganization of actin filaments may aid to quickly govern their lateral distribution. Recent

evidence exists that the presence of an actin meshwork influences the lateral diffusion behavior of

lipids and proteins in membranes in vivo (Murase et al., 2004) and in vitro (Heinemann et al., 2013)

and that it impacts the behavior of phase-separated membranes (Honigmann et al., 2014; Liu and

Fletcher, 2006). The important role of myosin is further supported by recent theoretical and in vitro

studies (Gowrishankar et al., 2012; Köster et al., 2016). It is therefore tempting to speculate that

cortical actomyosin contractility may be a generic model for eukaryotic organisms not only to control

their mechanical stability and shape but also to quickly and actively control the lateral lipid and pro-

tein organization at the cell membrane.

In our MACs that were combined with ternary lipid mixtures, we found that binding of actin fila-

ments to a homogeneous bilayer at temperatures above Tm-induced spatial alignment of Lo
domains to actin-bound locations upon cooling below Tm (Figure 2). Here, actin filaments serve as

Figure 2 continued

column) and below Tm (30˚C) in the presence of bound actin (right column). The final size of Ld domains decreased through the presence of actin

filaments. (C) Change in contour length through the binding of actin filaments to the already phase-separated membrane at various temperatures

below Tm. A high-density MAC with a DiD-labeled Ld phase before (0 min) and after the addition (32 min) of actin filaments at 24˚C is shown. (D)

Contour length of Ld domains upon F-actin adhesion with time and mono-exponential decay fits at 24˚C (blue dots), 29˚C (green dots) and 32˚C (red

dots). (Note that the observed local dip in contour length between 2 and 5 min at 24˚C is because of a focal misalignment and blurring of the images

after the addition of actin filaments). (E) Final change in contour length for the different temperatures. With a constant lateral pressure, the linearly

decreasing line tension with temperature leads to an increase in final contour length according to Equation (1). Dashed vertical line indicates Tm of

37˚C. (F) The binding kinetics of actin filaments was tracked with the normalized fluorescence signal over time at 24˚C (blue dots), 29˚C (green dots) and

32˚C (red dots). (G) Illustrative sketch for the change in contour length before and after F-actin adhesion. Scale bars, 10 mm.

DOI: 10.7554/eLife.24350.003

Vogel et al. eLife 2017;6:e24350. DOI: 10.7554/eLife.24350 6 of 16

Research advance Biochemistry Biophysics and Structural Biology

163



C
o

u
n

ts

0

20

40

60

80

100

0 5 10 15 20 25 30

Distance of Neighbouring Clusters [µm]

B

E

C

D Lipids (DiD)
Actin

Actin

Ld

Merged
0 min

Time [min] Time [min]

Time [min] Time [min]

17 min

F Lipids (DiD)
Actin

Actin

Ld

Merged

0 min 25 min

G

Lipids 

(DiD)

Actin

41 min0 min

Actin

Ld

Merged

A Lipids (DiD)
Actin

Actin

Ld

Merged

0 sec 140 sec 305 sec 940 sec

N
o

rm
a

liz
e

d
 D

o
m

a
in

 N
u

m
b

e
r 

(L
o

)
N

o
rm

a
liz

e
d

 D
o

m
a

in
 N

u
m

b
e

r 
(L

d
)

50 10 1550 10 15

0.0

0.1

0.2

- 0.1

- 0.2

50 10 15

0.0

0.1

0.2

- 0.1

- 0.2
50 10 15

0.7

0.8

0.9

1.0

1.0

1.5

2.0

2.5

3.0

Figure 3. Actomyosin contraction governs lateral membrane organization for various lipid compositions. (A) TIRFM time-lapse images of a contracting

MAC with Alexa-488-phalloidin labeled actin filaments and DiD-labeled Ld domains of a 1:2:1 DOPC:DPPC:Cholesterol mixture. Scale bar, 10 mm. (B)

For the 1:2:1 DOPC:DPPC:Cholesterol mixture the area of the Lo phase was found to remain constant while the number of Ld domains increased with

time through splitting. (C) Distance to neighboring actomyosin clusters for the lipid composition of 1:2:1 DOPC:DPPC:Cholesterol. (D) Representative

Figure 3 continued on next page

Vogel et al. eLife 2017;6:e24350. DOI: 10.7554/eLife.24350 7 of 16

Research advance Biochemistry Biophysics and Structural Biology

A. Appendix to II.1.4.2

164



nucleation sites for domain formation and drive their lateral spatial distribution. Already phase sepa-

rated, we could show that membrane domains reorganized with the adhesion of actin filaments

depending on line tension and actin filament density. We further give direct evidence that the

dynamic reorganization of actin filaments by

myosin motors actively changes the macroscopic

organization of membrane domains in our recon-

stituted phase-separated lipid bilayers and

monolayers. We propose that the transition

energy between the Ld and Lo phase

(Baumgart et al., 2003; Garcı́a-Sáez et al.,

2007; Honerkamp-Smith et al., 2008) enabled

the lipid anchored actin filaments to exert lateral

forces on the phase boundaries leading to a

macroscopic motion of lipid domains that even-

tually resulted in splitting, fusion or deformation

of the lipid domains and in their overall change

in number during and after the actomyosin con-

traction (Figure 3B and E, right panels; Vid-

eos 2–4, 6 and 8). In a model, we would first

consider a biotinylated lipid that is dragged by

an actomyosin filament (Figure 4E). The actomy-

osin filaments are unequally associated with the

lipid phases (Lo and Ld) with different viscosities.

The drag is counteracted by friction and,

through the different viscosities, leads to domain

deformation and rearrangement. Here, the force

propagation would be independent of phase

boundaries. As a second consideration, the

Figure 3 continued

example (1:2:1 DOPC:DPPC:Cholesterol mixture) showing movement (white asterisks) and deformation (inward ingression, yellow arrows) of a phase

boundary upon actomyosin contraction and its splitting into two separated domains (yellow arrowheads). Scale bar, 10 mm. (E) For a lipid composition

of 3:3:1 DOPC:PSM:Cholesterol, the area of the Lo phase remained again constant and the number of Lo domains decreased. (F) Pulling of a Lo domain

(white asterisk) for a lipid composition of 3:3:1 DOPC:PSM:Cholesterol by actomyosin led to fusion (yellow arrowheads) and relaxation into a larger

neighboring domain. Scale bar, 2.5 mm. (G) Time-lapse montage of the actomyosin contraction on a 3:3:1 DOPC:PSM:Cholesterol phase-separated

membrane. Small Lo domains are moved and fused to produce larger domains. Scale bar, 5 mm.

DOI: 10.7554/eLife.24350.004

Video 1. Myosin-induced actin rearrangements in a

minimal actin cortex (MAC) combined with a supported

phase-separated lipid bilayer. MAC with a supported

phase-separated membrane (1:2:1 DOPC:DPPC:

Cholesterol) containing Alexa-488-phalloidin-labeled

actin filaments (green) exhibits dynamic

rearrangements of actin filaments after the addition of

myofilaments in the presence of ATP and eventually

forms actomyosin clusters. The phase-separated

membrane containing DiD-labeled Ld domains (red) is

shown in the upper channel. The middle channel shows

Alexa-488-phalloidin-labeled actin filaments (green)

that bind to the Lo domains. The lower channel shows

the merge of both channels. TIRFM image sequence

was acquired at 5 s. time intervals and contains 200

frames. The video is displayed at 15 frames per second

(fps). Total time: 16.6 min. Scale bar, 10 mm.

(Compressed JPG avi; 10.2 MB).

DOI: 10.7554/eLife.24350.005

Video 2. Shape changes, rearrangements and fusion

events of Ld domains during actomyosin contraction.

The phase-separated membrane (1:2:1 DOPC:DPPC:

Cholesterol) containing DiD labeled Ld domains (red) is

shown in the left channel. The middle channel shows

Alexa-488-phalloidin labeled actin filaments that bind

to the Lo domains. The right channel shows the merge

of both channels. TIRFM image sequence was acquired

at 5 s. time intervals and contains 124 frames. The

video is displayed at 15 frames per second (fps). Total

time: 10.3 min. Scale bar, 10 mm. (Compressed JPG avi;

0.8 MB).

DOI: 10.7554/eLife.24350.006
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biotinylated lipid would need to overcome the transition barrier between phases while being

dragged over a boundary (Figure 4E). Since our contraction experiments primarily showed that the

boundaries deformed locally at actin filament sites and that actomyosin foci formed at the vicinity of

phase boundaries, the high transition energy is favored as the dictating driving force for phase

deformation. Furthermore, domain deformation was commonly found to happen when actin fila-

ments were dragged over the Ld phase that impedes the free contraction process through the

strong partitioning preference of DSPE-PEG(2000)-Biotin to the Lo phase.

With an estimated line tension of 1 pN for a 1:2:1 DOPC:DPPC:Cholesterol membrane

(Baumgart et al., 2003; Garcı́a-Sáez et al., 2007; Kuzmin et al., 2005; Veatch and Keller, 2005)

and a reported value of ~1.5 kBT for the transfer of DPPC between phases (Veatch et al., 2004), the

energy for one DPPC molecule to transition is roughly sixfold higher than the energy that is needed

to elongate the phase boundary by 1 nm. Further experiments should elaborate on the physical

model since actomyosin contraction is clearly a non-equilibrium process and line tension itself was

reported to depend on the applied lateral tension (Akimov et al., 2007). Together with our experi-

mental findings, we can conclude that actively rearranging actin filaments will lead to an extensive

deformation of membrane domains through the physical link with a small subset of membrane con-

stituents. A plausible mechanism is therefore apparent that explains active lateral rearrangements of

membrane components by actomyosin contractions without the need of binding directly to actin

filaments.

Material and methods

Actin labeling and polymerization
F-actin preparation was performed as described in Vogel et al. (2013b). Briefly, a 39.6 mM actin

solution (Actin/Actin-Biotin ratio of 5:1) was prepared by mixing rabbit skeletal actin monomers (32

ml, 2 mg/ml, Molecular Probes) with biotinylated rabbit actin monomers (1.6 ml, 10 mg/ml, tebu-bio/

Cytoskeleton Inc.). F-buffer (1 mM DTT, 1 mM ATP, 10 mM Tris-HCl (pH 7.4), 2 mM MgCl2 and 50

mM KCl) was added to the mixture in order to start polymerization. Actin polymers were labeled

and stabilized with Alexa Fluor 488 Phalloidin according to the manufacturer’s protocol (Molecular

Probes). Finally, the 2 mM Alexa-488-Phalloidin-labeled biotinylated actin filament solution was

stored at 4˚C.

Video 3. Splitting, shape changes and deformations of

Ld domains during actomyosin contraction. The phase-

separated membrane (1:2:1 DOPC:DPPC:Cholesterol)

containing DiD labeled Ld domains (red) is shown in

the left channel. The middle channel shows Alexa-488-

phalloidin-labeled actin filaments that bind to the Lo
domains. The right channel shows the merge of both

channels. TIRFM image sequence was acquired at 5 s.

time intervals and contains 200 frames. The video is

displayed at 15 frames per second (fps). Total time:

16.6 min. Scale bar, 10 mm. (Compressed JPG avi; 0.8

MB).

DOI: 10.7554/eLife.24350.007

Video 4. Ld domain movement, splitting and

ingression during actomyosin contraction. The phase-

separated membrane (1:2:1 DOPC:DPPC:Cholesterol)

containing DiD-labeled Ld domains (red) is shown in

the left channel. The middle channel shows Alexa-488-

phalloidin-labeled actin filaments that bind to the Lo
domains. The right channel shows the merge of both

channels. TIRFM image sequence was acquired at 5 s.

time intervals and contains 200 frames. The video is

displayed at 15 frames per second (fps). Total time:

16.6 min. Scale bar, 5 mm. Corresponds to Figure 3D.

(Compressed JPG avi; 0.4 MB).

DOI: 10.7554/eLife.24350.008
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MAC (minimal actin cortex)
preparation
1,2-Dioleoyl-sn-glycero-3-phosphorcholine

(DOPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-

choline (DPPC), and cholesterol were added in a

molar ratio of 1:2:1 or DOPC, N-palmitoyl-D-

sphingomyelin (PSM), and Cholesterol in a molar

ratio of 3:3:1 to a final lipid concentration of 5

mg/ml (Avanti Polar Lipids, Inc). The lipid bilayer

was further supplemented with 0.03 mol% DiD

(Molecular Probes, Eugene, OR) and 0.01, 0.1 or

1 mol% DSPE-PEG(2000)-Biotin (Avanti Polar

Lipids, Inc.). The solution was dried under con-

tinuous nitrogen flux and then placed under vac-

uum for 1 hr to remove chloroform residuals.

The pellet was rehydrated in SLB buffer (150

mM KCl, 25 mM Tris-HCl, pH 7.5) by vigorous

vortexing and sonication.

20 ml of clear lipid suspension, was then

diluted in 130 ml A-buffer (50 mM KCl, 2 mM

MgCl2, 1 mM DTT and 10 mM Tris-HCl, pH 7.5)

and heated to 55˚C. Meanwhile, freshly cleaved

mica was fixated with immersion oil (Carl Zeiss,

Jena, Germany) on a cover slip (22 � 22 mm,

#1.5, Menzel Gläser, Thermo Fisher) and cov-

ered with the center part of a cut 1.5 mL Eppen-

dorf tube. The Eppendorf tube was glued with

UV-sensitive glue (Norland Optical Adhesive 63,

Cranbury, USA). The chamber was filled with 75 ml of small unilamellar vesicles and incubated at

55˚C for 45 min with 1 mM CaCl2. Non-fused vesicles were removed by washing the suspension with

2 ml warmed A-buffer and gentle pipetting. The chamber’s temperature was slowly cooled. Next, 2

ml of unlabeled or Oregon-Green-labeled neutravidin (1 mg/ml, Molecular Probes) diluted in 200 ml

Video 5. Shape changes, rearrangements and fusion

events of Lo domains during actomyosin contraction.

The phase-separated and DiD labeled (red) membrane

(3:3:1 DOPC:PSM:Cholesterol) containing Lo domains

(dark) is shown in the upper channel. The middle

channel shows Alexa-488-phalloidin-labeled actin

filaments (green) that bind to the Lo domains. The

lower channel shows the merge of both channels.

TIRFM image sequence was acquired at 5 s. time

intervals and contains 500 frames. The video is

displayed at 15 frames per second (fps). Total time:

41.6 min. Scale bar, 10 mm. (Compressed JPG avi; 28

MB).

DOI: 10.7554/eLife.24350.009

Video 6. Fusion event of a Lo domain during

actomyosin contraction. A small Lo domain is stretched

by actin filaments thereby pulling the domain toward a

larger domain leading eventually to fusion of both Lo
domains. The phase-separated and DiD-labeled (red)

membrane (3:3:1 DOPC:PSM:Cholesterol) containing Lo
domains (dark) is shown in the left channel. The middle

channel shows Alexa-488-phalloidin-labeled actin

filaments (green) that bind to the Lo domains. The right

channel shows the merge of both channels. TIRFM

image sequence was acquired at 5 s. time intervals and

contains 337 frames. The video is displayed at 120

frames per second (fps). Total time: 28 min. Scale bar,

2.5 mm. Corresponds to Figure 3F. (Compressed JPG

avi; 0.4 MB).

DOI: 10.7554/eLife.24350.010
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A-buffer were added to the sample and incu-

bated for 10 min. Finally, unbound proteins were

removed by gently washing the solution with 2

ml A-buffer.

Phase separation with MAC
The phase-separated membrane was heated

with an objective heater (Carl Zeiss, Jena, Ger-

many) to the setpoint of 42˚C and cooled down

to 30˚C, both with and without Alexa-488-Phal-

loidin-labeled biotinylated actin filaments. The

area distribution of domains at equilibrium (45

min after 30˚C was reached) was then compared

between the different concentrations of DSPE-

PEG(2000)-Biotin (0.1, 0.01 mol%).

Crowding-effect
The sample was placed on the TIRF microscope

objective with attached objective heater and

slowly warmed to the setpoint of 42˚C. The lipid

bilayer with 1.0% DSPE-PEG(2000)-Biotin was

equilibrated at different temperatures below the

melting point (~37˚C for 1:2:1 DOPC:DPPC:Cholesterol). Of Alexa-488-Phalloidin-labeled biotiny-

lated actin filaments, 20 ml were then carefully added to the chamber. Binding of actin filaments to

the membrane was recorded by acquiring images in interleaved mode (488 nm and 640 nm) every

2.5 s, generating a time-lapse movie with a 5 s delay between subsequent images.

F-actin network contraction by myofilaments
After the addition of 20 ml Alexa-488-Phallodin-labeled biotinylated actin filaments to the supported

lipid bilayer at room temperature (~24˚C), the mixture was incubated for approximately 45 min in

order to ensure full binding of actin filaments to the membrane. Subsequently, residual actin was

removed by gently exchanging the solution with 2 ml A-buffer. Once the properly assembled MAC

was verified with TIRF microscopy, a solution of 20 ml myofilaments and 1 ml ATP (0.1 M) were added

to start the compaction of actin filaments.

Images were acquired every 2.5 s in interleaved mode, which eliminated the cross talk between

color channels of actin filaments and the phase-separated membrane.

TIRF microscopy
Fluorescent imaging of labeled proteins and membrane was carried out on a custom-built TIRF

microscope. The setup was integrated into an Axiovert 200 microscope (Zeiss). The probe was illumi-

nated and imaged through a Plan-Apochromat 100x/NA 1.46 oil immersion objective with a 488 nm

and 630 nm laser. Images were acquired with an Andor Solis EMCCD camera (electron gain = 300,

exposure time = 50 ms, frame interval = 2.5 or 5 s) in interleaved mode.

Data analysis
Image processing, analysis and data visualization were performed with Fiji and the scientific pack-

ages for Python. Multichannel beads were used to align double-color image stacks with the Fiji

plugin Descriptor-based series registration. The contour length between the lipid domains was

extracted by detecting edges (Canny edge detection; [van der Walt et al., 2014]) in single fluores-

cent images acquired from phase-separated membranes. The contour length over time was fitted to

L ¼ LFinal 1� exp �1=t t � t0ð Þð Þð Þ with t0 = 1 min. The actomyosin clusters were detected using the

Laplacian of Gaussian method (scikit-image [van der Walt et al., 2014]) and assigned to neighbors

using the Delaunay triangulation and its method vertex_neighbor_vertices.

To detect the lipid domains, the fluorescence images were firstly corrected for an uneven back-

ground signal. Then, the DiD signal was classified with a local adaptive thresholding algorithm and

Video 7. Disappearance of small Lo domains during

actomyosin contraction. Small Lo domains often vanish

during actomyosin contractions. The phase-separated

and DiD-labeled (red) membrane (3:3:1 DOPC:PSM:

Cholesterol) containing Lo domains (dark) is shown in

the left channel. The middle channel shows Alexa-488-

phalloidin-labeled actin filaments (green) that bind to

the Lo domains. The right channel shows the merge of

both channels. TIRFM image sequence was acquired at

5 s. time intervals and contains 493 frames. The video is

displayed at 120 frames per second (fps). Total time: 41

min. Scale bar, 5 mm. Corresponds to Figure 3G.

(Compressed JPG avi; 4.1 MB).

DOI: 10.7554/eLife.24350.011
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A Lipids (ATTO655-DOPE)
Actin

MergedActinLe

Drag

High Energy Barrier 

for Transfer

Position

LdLo

F-actin

Compaction

B Lipids (ATTO655-DOPE)
Actin

MergedActinLe

2.3 min

0 min

4.6 min

7.0 min

9.3 min

0 min

MergedActinLe

5.3 min

16.0 min
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C

D
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E

Myofilament

Figure 4. Lipid monolayer domain shape changes and fusion events induced by actomyosin contractions. (A) Confocal spinning disk microscope

images of Alexa-488-phalloidin-labeled actin filaments coupled to a ATTO655-DOPE-labeled lipid monolayer (3:3:1 DOPC:PSM:Cholesterol) in the

absence of myofilaments. Actin filaments close to the phase boundaries of lipid monolayer domains align to their circular shape. (B–D) Spinning Disk

microscope time-lapse images of Alexa-488-phalloidin-labeled actin filaments coupled to ATTO655-DOPE-labeled lipid monolayers during myofilament

Figure 4 continued on next page
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the corresponding phase boundaries with the Canny edge detection algorithm. The binary image

stacks were combined with the XOR operator and further refined using the morphological closing

operation. Small holes were removed from the binary images. Small objects were detected with the

Laplacian of Gaussian method and as a final step, combined with the binary images. The script was

implemented in Python with the image processing package scikit-image.

MAC assembly on lipid monolayers
For the lipid monolayer assays, the same lipid mixtures and molar ratios were used as for the sup-

ported bilayers with 1 mol% of DSPE-PEG(2000)-Biotin. The lipids were mixed, dried under nitrogen

flux for 15 min, subsequently put into vacuum for 30 min and dissolved in chloroform (total lipid con-

centration of 1 mg/ml). The mixtures were further diluted to a final lipid concentration of 0.1 mg/ml

and labeled by addition of 0.1 mol% of ATTO655-DOPE (ATTO-TEC GmbH, Siegen, Germany). The

total lipid concentration was confirmed by gravimetry.

To form a chamber (see Scheme 1), chamber spacers were cut from a 5-mm-thick sheet of PTFE

by a laser cutter. The spacers were sonicated step-by-step in acetone, chloroform, isopropanol and

ethanol (15 min each). Glass cover slips of 15 mm (Gerhard Menzel GmbH, Braunschweig, Germany)

were fixed to the spacer by picodent twinsil 22 two component glue (picodent, Wipperfuerth, Ger-

many). The chambers were washed alternately with ethanol and water, air dried and air plasma-

cleaned for 10 min in order to make the glass hydrophilic. The surface was then passivated by cover-

ing the glass surface with PLL-PEG(2000) (SuSos AG, Dübendorf, Switzerland) 0.5 mg/mL solution in

PBS buffer and incubated for minimum half an hour. After through wash with water (5 times 200 ml)

and reaction buffer (3 times 200 ml), the chambers were ready to use.

Lipid monolayers were formed by drop-wise deposition of the lipid mixture on the buffer-air inter-

face (for further details, see also [Chwastek and Schwille, 2013]). A lipid mixture volume corre-

sponding to a lipid surface density of 70 Å2 / molecule was deposited drop-wise on the surface of

the buffer solution.

The samples were imaged using a Yokogawa

scan head CSU10-X1 spinning disk system con-

nected to a Nikon Eclipse Ti inverted microscope

(Nikon, Japan) with an Andor Ixon Ultra 512 �

512 EMCCD camera and a 3i solid state diode

laser stack with 488 nm, 561 nm and 640 nm laser

lines (3il33, Denver, Colorado USA). For simulta-

neous Alexa-488-phalloidin and ATTO655-DOPE

excitation, the 488 nm and the 640 nm laser lines

and an UPLanSApo 60x/1.20 Water UIS2 objec-

tive (Olympus, Japan) were used. The time inter-

val between the recorded images was 20 s.

After confirming the formation of a phase-sep-

arated lipid monolayer by imaging, 100 ml of neu-

travidin solution (0.01 mg/ml) was added to the

sample twice and was incubated for 5 min. Note

that all protein solutions or other solutions are

applied directly to the liquid subphase by dip-

ping the pipette tip through the monolayer.

Next, the subphase was washed five times with

buffer (100 ml steps) to remove unbound neutravi-

din. Subsequently, 20 ml of Alexa-488-phalloidin-

labeled actin filaments (2 mM) was added to the

subphase and incubated for at least 60 min, since

Figure 4 continued

induced contractions of actin filaments. Actomyosin contractions lead to shape changes and fusion events (yellow arrows and arrowheads) of the lipid

monolayer Lc domains. (E) Scheme of a microscopic model. Scale bars, 10 mm.

DOI: 10.7554/eLife.24350.012

Video 8. Shape changes and fusion events during

actomyosin contraction of Lc domains in a MAC

combined with a phase-separated lipid monolayer.

Myofilaments in the presence of ATP led to the

contraction of the actin layers and to shape changes

and fusion events of the Lc domains. The phase-

separated lipid monolayer (3:3:1 DOPC:PSM:

Cholesterol) containing the ATTO655-DOPE-labeled Le
phase (red) is shown in the left channel. The middle

channel shows Alexa-488-phalloidin-labeled actin

filaments that bind to the Le phase. The right channel

shows the merge of both channels. Confocal Spinning

Disk image sequence was acquired at 20 s. time

intervals and contains 64 frames. The video is displayed

at 15 frames per second (fps). Total time: 21 min. Scale

bar, 10 mm. Corresponds to Figure 4C. (Compressed

JPG avi; 1.7 MB).

DOI: 10.7554/eLife.24350.013
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binding of actin filaments to the interface was assumed to occur relatively slowly. When the binding

of the actin filaments was confirmed by imaging, the monolayer was thoroughly washed (7 to 10

steps of 100 ml) with reaction buffer containing 1 mM ATP and 100 ml of myofilaments (0.3 mM) con-

taining 1 mM ATP (enzymatically regenerated see above) was added to the subphase twice. The sam-

ple was sealed by a glass cover slide with grease to avoid subphase evaporation, allowing for long

sample observation. The lipid monolayer MAC system started to contract after a few minutes of

incubation, resulting in the formation of actomyosin clusters and deformation of the lipid domains.
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B

APPENDIX TO III.1

These results have been published as supplementary information to III.1:

Khmelinskaia, A., Franquelim, H. G., Petrov, E. P., Schwille, P. (2016) Effect of an-
chor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid
membranes. J. Phys. D Appl. Phys., 49: 194001. doi:10.1088/0022-3727/49/19/194001.
A reprint permission has been granted by the publisher.
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S1 
 

 
 

Figure S1. Design and oligonucleotide sequences of the elongated amphipathic 20-helix bundle 

DNA origami. The Atto488-modified and connector oligonucleotides needed for fluorescence 

detection are marked in green; the 15 possible positions with cholesteryl anchors for lipid 

membrane binding are marked in orange and labelled (A0-4, B0-4, C0-4); core staples are 

coloured in black; M13 p7249 scaffold is coloured in blue.  
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S2 
 

 
 

 

Figure S2. Agarose gel analysis of the folded and purified elongated 20-helix bundles DNA 

origami containing all the investigated combinations of positions with chol-TEG anchors. 

Different lanes in gels (A) and (B) correspond to the origami structures with chol-TEG anchors 

at defined positions, according to the naming. Special nomenclature was given to the lanes N 

(no anchor), LB5 (B0+B1+B2+B3+B4) and X5 (A0+A4+B2+C0+C4). Numbers in brackets 

correspond to new batches of the same samples. Lanes containing marker DNA ladder and M13 

single-stranded p7249 scaffold were also included. 
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S3 
 

 
 

 

Figure S3. Membrane binding of the 20-helix bundle DNA origami structures with one chol-

TEG anchor. Representative fluorescence e confocal images of DOPC giant unilamellar vesicles 

(GUVs) at the equatorial plane incubated with 1 nM DNA origami containing one chol-TEG 

anchor at positions A2, A3, A4, B3, B4, C2, C3 and C4. GUVs contained 0.005 mol% Atto655-

DOPE (violet colour) for fluorescence detection; while each origami structure had 3× Atto488 

dyes (green colour). Scale bar: 20 μm. 
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Figure S4. Membrane binding of the 20-helix bundle DNA origami structures with two chol-

TEG anchors, one always fixed at the central B2 position. Representative fluorescence confocal 

images of DOPC GUVs at the equatorial plane incubated with 1 nM DNA origami containing 

one chol-TEG anchor at positions B2+A2, B2+A3, B2+A4, B2+B3, B2+B4, B2+C2, B2+C3 

and B2+C4. GUVs contained 0.005 mol% Atto655-DOPE (violet colour) for fluorescence 

detection; while each origami structure had 3× Atto488 dyes (green colour). Scale bar: 20 μm. 
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S5 
 

 
 

 

Figure S5. Membrane binding of the 20-helix bundle DNA origami structures with two chol-

TEG anchors near the corners. Representative fluorescence confocal images of DOPC GUVs at 

the equatorial plane incubated with 1 nM DNA origami containing one chol-TEG anchor at 

positions A4+C0, A4+C4, C0+C4, A0+C4, A0+C0 and A0+A4. GUVs contained 0.005 mol% 

Atto655-DOPE (violet colour) for fluorescence detection; while each origami structure had 3× 

Atto488 dyes (green colour). Scale bar: 20 μm. 
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Figure S6. Membrane binding of the 20-helix bundle DNA origami structures with multiple 

combinations of chol-TEG anchor positioning. Representative fluorescence confocal images of 

DOPC GUVs at the equatorial plane incubated with 1 nM DNA origami containing no chol-

TEG anchor (structure N), one chol-TEG anchor at the central B2 position, two (B0+B4), three 

(B0+B2+B4) or five (LB5: B0+B1+B2+B3+B4) chol-TEG anchors on helix B, and finally five 

chol-TEG anchors in a crossed conformation (X5: A0+A4+B2+C0+C4). GUVs contained 0.005 

mol% Atto655-DOPE (violet colour) for fluorescence detection; while each origami structure 

had 3× Atto488 dyes (green colour). Scale bar: 20 μm. 
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Table S1. Relative diffusion coefficients of Atto655-DOPE in freestanding DOPC GUVs 

determined using FCS. Values correspond to the average diffusion calculated from 

measurements on n GUVs in the presence of membrane-bound DNA origami at ρ > 0.2, and 

were further normalized with respect to the diffusion coefficient of Atto655-DOPE obtained in 

the absence of origami (τD = 1.49 ± 0.04 ms, n = 7). Error values represent the standard error of 

the mean. 

 

Membrane-bound 

origami 

Lipid relative 

diffusion coefficient 

Number of 

GUVs 

A0 + C4 1.00 ± 0.04  7 

A4 + C4 1.01 ± 0.04 5 

C0 + C4 0.99 ± 0.12 5 

X5 0.96 ± 0.05 4 
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C

APPENDIX TO III.2

These results have been published as supplementary information to III.2.

Khmelinskaia, A., Mücksch, J., Petrov, E. P., Franquelim, H. G., Schwille, P. (2018)
Control of membrane binding and diffusion of cholesteryl-modified DNA origami nanos-
tructures by DNA spacers. Langmuir: doi: 10.1021/acs.langmuir.8b01850. A reprint
permission has been granted by the publisher.
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S2 
 

 

Supplementary Figure 1: DOPC GUVs are not permeable to DNA origami nanostructures. 

Atto655-DOPE labeled GUVs were incubated overnight without and with 24nM of B0+B2+B4 

(18ds DNA spacer) DNA nanostructures labeled with three Alexa488 dyes. The DNA origami 

channel is displayed at two different ranges for comparison. A large fluorescence intensity 

difference between the outside and inside of the GUVs was observed, indicative of the GUV 

impermeability to DNA origami nanostructures. Indeed, the average signal measured by FCS inside 

of the GUV was similar to that of the background value in absence of DNA nanostructures (0.6 

kHz and 0.2 kHz, respectively), while the signal in solution was much larger (5.6 kHz). 
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Supporting Figure 2. Mean fluorescence intensities of DNA nanostructures at the surface of 

DOPC GUVs for several combinations of TEG-chol anchors attached to the DNA nanostructures 

using distinct TEG-chol anchors: no spacer (A); 9 and 18 nucleotide-long extension of the directly 

inserted cholesteryl-modified oligonucleotide (9ss, C and 18ss, E, respectively); proximal 

positioning of the TEG-chol moieties upon hybridization of the modified DNA strand with the 

complementary 18 nucleotide-long extension (proximal, B); hybridization of the 9 nucleotide 

extended cholesteryl-modified nucleotides with the neighboring oligonucleotide extended with a 

complementary sequence (9ds, D); distal positioning of the TEG-chol anchor upon hybridization 
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S4 
 

of the modified DNA strand with the complementary 18 nucleotide-long extension (18ds, F). Note 

that the intensity axis in the plots are in logarithmic scale and mean intensities were normalized in 

relation to X5 modified using 18bp dsDNA spacers. The plots with linear scale can be found in SA 

Figure 1. Error bars correspond to the standard deviation of typically 15-30 GUVs. The significance 

analysis of the data is summarized in SA Tables 1-3. 
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Supporting Figure 3. Schematic representation of the assembly-scheme of the 9ds TEG-chol 

anchor. The cholesteryl-modified oligonucleotide (magenta) at the location of interest (0-4 at helix 

A-C, Figure 1) hybridizes with the neighboring oligonucleotide (green), extended with the 

complementary sequence of 9 nucleotides. The blue strand corresponds to the scaffold strand (M13 

nucleotide). The sequences used for the assembly are listed in the Supplementary Table 1. 
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Supporting Figure 4. Relative diffusion coefficient of TEG-chol-modified DNA nanostructures 

X5 using 9ss and 18ds DNA spacers. Two different membranes are compared: pure DOPC GUVs 

(grey) and containing 10 mol% DOPS (blue). Data sets were normalized to the diffusion coefficient 

of the nanostructure on DOPC GUVs. Error bars correspond to the standard deviation of 3-6 GUVs. 

The significance analysis of the data is summarized in SA Tables 10,11. 
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Supporting Figure 5. Relative diffusion coefficients of Atto655-DOPE in freestanding DOPC, 

DOPC/DOTAP 9:1 and DOPC/DOPS 9:1 GUVs determined using FCS. Values correspond to the 

average of 3 GUVs and were normalized with respect to the diffusion coefficient of Atto655-DOPE 

obtained in DOPC GUVs (D = 12.4 ± 0.2 µm2/s). Error values represent the standard error of the 

mean. The significance analysis of the data is summarized in SA Tables 12. 
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Supporting Figure 6. Mean fluorescence intensities at the membrane surface for A0 + C4 DNA 

nanostructures bound to DOPC/DOTAP 9:1 GUVs. DNA nanostructures modified using three 

different linkage strategies (no spacer, 18ss and 18ds DNA spacers) are compared. Bare DNA 

nanostructure N is shown for reference. All values are normalized to the fluorescence intensity of 

DNA nanostructures modified using 18ds spacers. Error bars correspond to the standard deviation 

of typically 30 GUVs. The significance analysis of the data is summarized in SA Tables 13,14. 
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Supporting Table 1. List of oligonucleotide sequences used as extensions or complementary to 

the extensions at locations A0-4, B0-4 and C0-4 in order to assemble each type of TEG-chol anchor 

(Figure 1). 

Denomination 
Extension/oligonucleotide 

sequence 

TEG-chol 

modification  
DNA spacer assembly 

3’chol  3’ no spacer 

9c (neighboring 

oligonucleotide) 
AACCAGACC no 

9ds, when in combination with 3’chol(9) 

at the modification site 

e18 GCTATGGGTGGTCTGGTT no 

18ds, when in combination with 

5’chol(18) 

proximal, when in combination with 

3’chol(18)d 

3’chol(9) GGTCTGGTT 3’ 

9ss 

9ds, in combination with 9c in the 

neighboring oligonucleotide 

3’chol(18)s GCTATGGGTGGTCTGGTT 3’ 18ss 

3’chol(18)d AACCAGACCACCCATAGC 3’ proximal, when in combination with e18 

5’chol(18) AACCAGACCACCCATAGC 5’ 18ds, when in combination with e18 
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APPENDIX TO III.3

These results have been published as supplementary information to III.3:

Khmelinskaia, A.∗, Mücksch, J.∗, Conci, F., Chwastek, G., Schwille, P. (2018) FCS
analysis of protein mobility on lipid monolayers. Biophys. J., 114: 2444-2454. doi:
10.1016/j.bpj.2018.02.031, ∗indicates equal contributions. A reprint permission has been
granted by the publisher.
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FCS Analysis of Protein Mobility on Lipid Monolayers

Alena Khmelinskaia, Jonas Mücksch, Franco Conci, Grzegorz Chwastek, and Petra
Schwille
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Supporting Figure S1: Schematic representation of the used flat 3D DNA nanostructure 
[Khmelinskaia et al. 2016]. A) 3D representation and predicted dimensions (8 nm × 16 nm × 
110 nm) of the DNA origami nanostructures. The structures under investigation have three 
Atto488-modified oligonucleotides at the top facet for fluorescence detection and a maximum of 
five cholesteryl anchors at the bottom facet for membrane anchoring. B) Localization of the 15 
possible sites (marked with pale circles) for the attachment of cholesterol (Chol)-modified 
oligonucleotides at the bottom facet of the DNA origami. Five positions (numbered 0–4) were 
spaced along three different helices of the origami (named A–C). For structure N, none of these 
positions were used. For structure X5, positions A0+A4+B2+C0+C4 were extended for the 
attachment of Chol-modified oligonucleotides (see Materials and Methods). 
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Supporting Figure S2: Miniaturized chamber schematics. 
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Supporting Figure S3: Schematic representation of surface pressure measurements in 
miniaturized chambers. A dyne probe (1) connected to a micro-balance (2) is calibrated in a 
miniaturized chamber (3) filled with aqueous buffer. To grant the probe access to the water 
surface, the miniaturized chamber is not sealed. The monolayers surface pressure is measured 
after chloroform evaporation upon lipid deposition at the air-water interface (see Materials and 
Methods, Figure 1A). When measuring at 30oC, the miniaturized chamber is placed on a heating 
plate (4). Aqueous subphase evaporation is minimized by surrounding the miniaturized chamber 
with paper tissue soaked in water (5). Additionally, the miniaturized chamber is physically 
isolated by an inverted petri dish (6) glued to the metal support (7). The probe can reach the water 
surface through a small hole in the petri dish. A Kybron interface (8) outputs the monolayers 
surface pressure and can be controlled by FilmWare software. 

201



 

Supporting Figure S4: Estimation of the monolayer area. A) Schematic of the air-water 
interface, on which monolayers of defined MMA are deposited and are imaged with different 
nominal focus positions h. B) Confocal sections of the interface yield circles. The corresponding 
radii are determined by image processing. C) Resulting radial dependence of the interface 
position. The effective area is obtained by numerical integration of the determined profile. The 
dashed line corresponds to the physical radius of the miniaturized chamber R=7.5 mm. The 
meniscus area was measured on four independent monolayers of 90 Å2/molecule on different 
days. The interface area was (4±1)% larger than  the area of the chamber, which is given as πR². 
The corresponding contact angle α is estimated as (72±5)°. An MMA of 50 Å2 yields a similar 
meniscus shape.  
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Supporting Figure S5: DMPC monolayers are homogeneous in the range from 50 to 100 
Å2/molecule at 30oC. Confocal microscopy images of DMPC monolayers (0.01 mol% DOPE-
Atto655) deposited in fixed-area miniaturized chambers at MMAs ranging from 50 to 100 
Å2/molecule show homogeneous distributions. The scale bar corresponds to 40 µm. 
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Supporting Figure S6: Homogeneously distributed molecules at the monolayer interface are 

critical for point FCS. A) Representative confocal fluorescence microscopy image of mCherry-

MTS (chimeric fluorescent protein mCherry carrying the membrane targeting sequence (MTS) of 

the protein Min D from Bacillus subtilis) aggregation at the interface of a DMPC monolayer at 70 

Å2/molecule. B) Corresponding fluorescence intensity traces (upper panel) and autocorrelation 

curves (lower panel) obtained by point FCS from the sample shown in A. The intensity traces 

show spikes originating from bright aggregates passing through the confocal volume, which 

manifest themselves in a large variation of autocorrelation curves and much slower decay times 

than expected for monomers. Notably, the sensitivity of FCS to aggregates renders it a suitable 

method to detect even small aggregates of only a few monomers. C) Representative confocal 

fluorescence microscopy image of the homogeneous binding of the model protein cholera toxin β 

(CtxB) labeled with Alexa488 to DMPC lipid monolayers at 70 Å2/molecule. D) The 

fluorescence intensity traces (upper panel) and autocorrelation curves (lower panel) obtained by 

point FCS from the samples shown in C are well reproducible.  
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Supporting Figure S7: The addition of 10 nM CtxB to lipid monolayers does not change the 
monolayer properties. Relative change upon addition of CtxB of the number of particles N (red) 
and diffusion coefficient D (blue) obtained from autocorrelation functions for DMPC monolayers 
deposited at different MMAs in fixed-area chambers 
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Supporting Figure S8: Interaction of the membrane proximal external region (MPER) of 
the envelope glycoprotein gp41 of HIV-1 with DMPC lipid monolayers analyzed by point 
FCS. A) Autocorrelation curves obtained by point FCS for a DMPC monolayer at 70 
Å2/molecule, before (green) and after (blue) addition of 10 nM MPER-Alexa488, and for the 
peptide MPER-Alexa488 (magenta). Fits with single component diffusion model and respective 
residuals are shown. B) Autocorrelation curves obtained for MPER-Alexa488 (10 nM) bound to 
DMPC monolayers at 90 (blue) and 50 (red) Å2/molecule. Fits with single diffusional component 
and respective residuals are shown. C) Lipid diffusion influence on MPER-Alexa488 diffusion in 
pure DMPC. The relation between the diffusion coefficients is linear (black line). D) Relative 
change upon addition of 10 nM MPER-Alexa488 of the number of particles N (red) and diffusion 
coefficient D (blue) obtained from autocorrelation functions for DMPC monolayers deposited at 
different MMAs in fixed-area chambers. 
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Supporting Figure S9: Lipids deposited at air-water interface can passivate the 
hydrophobic interface. A) Confocal microscopy image of CtxB (Alexa488) clusters at a clean 
air-water interface. B) Confocal microscopy image of homogeneously distributed CtxB 
(Alexa488) on a low density DMPC monolayer (70 Å2/molecule). The scale bar corresponds to 
40 µm. 
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Supporting Figure S10: Interaction of a flat 3D DNA nanostructure with DMPC lipid 
monolayers analyzed by point FCS. A,C) Confocal microscopy images of bare nanostructure N 
(500 pM) and nanostructure X5 modified with 5 cholesteryl anchors (200 pM), respectively, 
interacting with DMPC monolayers (0.01 mol% DOPE-ATTO655) at 70 Å2/molecule. B,D) 
Autocorrelation curves obtained by point FCS for a DMPC monolayer at 70 Å2/molecule, before 
(red) and after (blue) addition of nanostructure N (500 pM) and nanostructure X5 (200 pM). Fits 
with single diffusional component and respective residuals are shown. E) Autocorrelation curves 
obtained for nanostructure X5 with different densities σ on a DMPC monolayer at 70 
Å2/molecule. The densities were estimated based on the amplitude of the autocorrelation function 
and the size of the confocal volume. 
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Supporting Table S1: Biomolecules tested on lipid monolayers. The binding of molecules to 
lipid monolayers through head-group specific interaction or the insertion of a hydrophobic 
moiety was tested by confocal microscopy. The protein distribution was considered 
homogeneous when the sample quality allowed for good FCS measurements. Otherwise, proteins 
that formed aggregates at the interface (here marked as X) were discarded. 

Biomolecule Nature 
of membrane binding 

Lipid monolayer/air interface 
distribution 

6xHis-mCherry head-group X 
6xHis-mNeonGreen head-group X 

(HIV) MPER hydrophobic moiety homogeneous 
(E. coli) Mts (MreB)-mCherry hydrophobic moiety X 

(B. Subtilis) mCherry-Mts (MinD) hydrophobic moiety X 
(E. coli) mCherry-Mts (MinD) hydrophobic moiety X 

(E. coli) mCherry-MinD hydrophobic moiety X 
(E. coli) eGFP-MinD hydrophobic moiety X 
(E. coli) MinD LD650 hydrophobic moiety X 

(M. musculus) 6xHis-VCA (NWASP) 
Alexa488 

head-group homogeneous 

(M. musculus) 10xHis-VCA (NWASP) 
Alexa488 

head-group X 

(M. musculus) miniNWASP-GFP head-group X 
CtxB Alexa488 head-group homogeneous 

Origami Alexa488 hydrophobic moiety homogeneous 
Legend: X indicates considerable aggregation of the biomolecule at the lipid monolayers interface, 
hindering the performance of FCS measurements 
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Supporting Table S2: Dependence of the diffusion coefficient of DOPE-ATTO655 on the 
MMA of monolayers of different composition. The diffusion coefficient of DOPE-ATTO655 is 
linearly proportional to the MMA (Figure 2D): D=m×MMA+n. The critical area ac corresponds 
to the tightest packing of lipids in the monolayer and is estimated by extrapolation of the 
dependence of the diffusion coefficient vs. MMA to D=0 µm²/s (Figure 2D). The small content 
of GM1 used does not significantly alter the monolayer properties, as here illustrated by ac. 

Monolayer composition m×10-8 [1/s] n [µm²/s] critical area ac 
[Å2/molecule] 

DMPC 1.5±0.1 -50.1±11.2 33.0±8.0 
DMPC + 2 mol% GM1 1.5±0.1 -45.8±10.0 31.4±7.4 
DMPC + 5 mol% GM1 1.2±0.1 -28.9±5.2 24.3±4.6 
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Supporting Table S3: Linear relation between the diffusion coefficients of lipids and CtxB 
and MPER. The diffusion coefficient of CtxB (Figure 3C) and MPER (Supporting Figure 11C) 
were linearly related to the lipid diffusion of DOPE-ATTO655 by a linear fit through the origin: 
DCtxB/MPER=m× DDOPE. These results can be directly related to the MMA of DMPC through 
Supporting Table S2. 

CtxB m 
DMPC 0.47±0.02 

DMPC + 2 mol% GM1 0.42±0.01 
DMPC + 5 mol% GM1 0.45±0.01 

  
MPER m 
DMPC 0.63±0.01 
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E

APPENDIX TO IV

E Materials and Methods

E.1 DNA origami folding and purification

DNA origami nanostructures AR1, AR7 and AR22, consisting of a 52-, 20- and 12-helix
bundle respectively, with hexagonal lattice based on the M13mp18 7429-nucleotide long
scaffold plasmid (p7429), were designed using CaDNAno [Douglas et al., 2009b] (Figures
IV.1 and E.1-E.3). High purity salt free (HPSF) purified staple oligonucleotides needed
for origami folding were purchased from Eurofins MWG Operon (Ebersberg, Germany),
and single-stranded M13mp18 scaffold DNA was supplied by Bayou Biolabs (Metairie, LA,
USA). DNA origami nanostructures were folded and purified in FOB buffer containing 5
mM Tris-HCl, 1 mM EDTA, 20 mM MgCl2, pH 8.0 as previously described (see III.1 and
V.1).

E.2 Transmission electron microscopy (TEM)

To confirm the folding of the DNA origami nanostructures, negative-stain TEM imaging
was performed on a CM120 BioTWIN (FEI/Philipds, Hillsboro, Oregon, USA) TEM ,
with a LaB6 filament operated at 120 kV. Images were recorded with a MegaView III
camera (Soft Imaging System GmbH, Münster, Germany). Typically, 3 µL of folded,
purified and diluted (1/10 in FOB buffer) DNA origami nanostructures were adsorbed
on glow-discharged formvar-supported carbon coated Cu300 grids (Plano GmbH, Wetzlar,
Germany) and stained using a 2% aqueous uranyl formate solution containing 25 mM
sodium hydroxide. Further image analysis was performed using the ImageJ software (http:
//rsb.info.nih.gov/ij/) [Schindelin et al., 2015].
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E. Appendix to IV

E.3 Agarose gel electrophoresis

The folding quality of the DNA origami nanostructures AR1, AR7 and AR22 was investi-
gated through agarose gel (Figure IV.1), as previously described (see III.1).

E.4 Supported lipid bilayer (SLB) preparation

1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) and cholesterol (Chol) were purchased from Avanti Polar Lipids (Alabaster, AL,
USA). Pure DSPC and phase separated DOPC/DSPC/Chol (2:2:1) [Feigenson, 2006] SLBs
were obtained via fusion of small unilamellar vesicles (SUVs) deposited in FOB buffer on
top of freshly cleaved mica, following the general protocol described elsewhere [Chiantia
et al., 2005].

E.5 High speed atomic force microscopy (HSAFM)

Different volumes of solutions of purified DNA nanostructures were deposited on freshly
cleaved mica or SLBs of defined composition (DSPC or DSPC/DOPC/Chol (2:2:1)). In
FOB buffer, DNA nanostructures are completely immobilized on mica while freely diffusing
on SLBs. To allow the diffusion of DNA nanostructures on mica, FOB buffer was dopped
with NaCl to reach 10:1 proportionality relatively to MgCl2 [Aghebat Rafat et al., 2014,
Woo and Rothemund, 2014], with a final buffer composition 5 mM Tris-HCl, 1 mM EDTA,
16 mM MgCl2, 150 mM NaCl, pH 8.0. HSAFM in tapping mode was perfoemd with
the Nanowizard Ultra head, using USC-F0.3-k0.3 ultra-short cantilevers from Nanoworld
(Neuchâtel, Switzerland) with typical stiffness of 0.3 N/m. The cantilever oscillation was
tuned to a frequency of 100-150 kHz and the amplitude kept below 10 nm. Scan rate
was set to 25-150 Hz. Images were acquired with a typical 256×256 pixel resolution. All
measurements were performed at room temperature (20 0C). The force applied on the
sample was minimized by continuously adjusting the set point and gain during imaging.
Height, error, deflection and phase-shift signals were recorded and images were line-fitted
as required. Data was analyzed using JPK data processing software Version 5.1.4 (JPK
Instruments) and ImageJ (http://rsb.info.nih.gov/ij/) [Schindelin et al., 2015].
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E Materials and Methods

Figure E.1: Cadnano design and oligonucleotide sequences of the DNA origami
structure AR1. The cross-section of the structure is shown above the Cadnano map.
Lateral staples are coloured in green (left) and orange (right) while core staples are coloured
in red; M13 p7249 scaffold is coloured in blue.

215



E. Appendix to IV

F
igure

E
.2:

C
adnano

design
and

oligonucleotide
sequences

of
the

D
N
A

origam
i
structure

A
R
7.

T
he

cross-
section

ofthe
structure

is
show

n
above

the
C
adnano

m
ap.

Lateralstaples
are

coloured
in

green
(left)

and
orange

(right)
w
hile

core
staples

are
coloured

in
red;M

13
p7249

scaffold
is

coloured
in

blue.

216



E Materials and Methods

F
ig
ur
e
E
.3
:
C
ad

na
no

de
si
gn

an
d
ol
ig
on

uc
le
ot
id
e
se
qu

en
ce
s
of

th
e
D
N
A

or
ig
am

is
tr
uc
tu
re

A
R
22
.
T
he

cr
os
s-

se
ct
io
n
of

th
e
st
ru
ct
ur
e
is

sh
ow

n
ab

ov
e
th
e
C
ad

na
no

m
ap

.
La

te
ra
ls

ta
pl
es

ar
e
co
lo
ur
ed

in
gr
ee
n
(le

ft)
an

d
or
an

ge
(r
ig
ht
)

w
hi
le

co
re

st
ap

le
s
ar
e
co
lo
ur
ed

in
re
d;

M
13

p7
24
9
sc
aff

ol
d
is

co
lo
ur
ed

in
bl
ue
.

217



E. Appendix to IV

218



F

APPENDIX TO V.1

These results have been published as supplementary information to V.1:

Franquelim, H. G., Khmelinskaia, A., Sobczak, J.-P., Dietz, H., Schwille, P. (2018)
Membrane sculpting by curved DNA origami scaffolds. Nat. Commun., 9: 811. doi:
10.1038/s41467-018-03198-9. A reprint permission has been granted by the publisher.
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Supplementary Figure 1 

Size comparison between BAR proteins and the designed BAR-mimicking DNA origami 

nanoscaffolds. (a) DNA origami L aims to mimic the shape of flat I-BAR domain proteins, 

such as PinkBAR; (b) origami Q aims to mimic the shape of moderately-curved F-BAR domain 

proteins, such as FBP17; and (c) origami H aims to mimic the shape of highly-curved BAR 

domain proteins, such as Arfaptin. When compared to BAR dimers, our DNA origami 

structures have at least a 5-fold increased length and 20-fold increased concave surface area. 

Scale bar: 10 nm. 

 

F. Appendix to V.1

220



 

 

 
 

Supplementary Figure 2 

Cadnano design and oligonucleotide sequences of the non-curved DNA origami structure L. Top positions T0-T7 are colored in gold, while 

bottom positions B0-B7 are colored in dark orange. Lateral positions L0-L13 and R0-R13 are colored in green and blue, respectively. Edge positions 

E0-E19 and F0-F19 are colored in purple. Core staples are colored in black; M13 p7249 scaffold is colored in grey. List of DNA staples can be found 

in Supplementary Table 1. Additional list of functional staples utilized can be found in appendix (see Supplementary Notes). 
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GTTATACGTGCTCGTCAAAGCAACCATA GTCTAATACTTCTAAATCCTC TCAGGTAATTGAAATGAATAA CGGTATTTCAAACCATTAAAT CGTTCTTGGAATGATAAGGAA TCCCGTCTAATGCGCTTCCCT GTTGAATGTCGCCCTTTTGTC GGCGGCTCTGGTGGTGGTTCT GGTACTAAACCTCCTGAGTAC AGCTGTTTAAGAAATTCACCT CTCGTTCCGGCTAAGTAACAT AGTTGAATGTGGTATTCCTAA TCCTGACCTGTTGGAGTTTGC ATTACAGGGTCATAATGTTTT AAAATTTAATGCGAATTTTAA AGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAA

C C C G C T C T G A T T C T A A C G A G G A A A G C A C A A A T G T A T T A T C T A T T G T A A A T T C G C C T C T G C G C G C T T T T G C T T A G G T C A G A A G A T A C A C G G T A G A C A G C C G A T T A T T A A T A C C G T T T T T A T G T T A T T T T A A T T C T T T G G C G C T G G T A A T C A A T C G G G T G G C G G C T C T G A T G C T G G C G G T G A T A C A C C T A T G G G T G G C C G A A A G C A A G C T G A G G T A T C A G G A G C A G G T C G C G G T C T G C G C A T C T C A A C T G A T G A C T G C A T T T T C C G G T C T G G T T C T C T C T A A T G G T A C A A C C G A T T C A A A A G T C A A A A T A T T A A C G T T T T A A C A A G A A A A A C C A C C C T G G C G C C C A A T A C G C A A A C C G C

GTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCT TTGACGG AGTTGTCGAATTGT ATTTTGT TGTTTCATCATCTT GAAATTA ACGCCTTATTTATC TGATTGG TGCGGTACTTGGTT CTCTCTG TTCAGGGTGTTCAG ACCATAT TTACCTTCCCTCCC GGGTGGT CAACCTCCTGTCAA TCCGGGC GGTGGCGGTTCTGA TAAACCG TCGGCGCAACTATC ATTTCGA CTTATGATTGACCG ATCTTTC TTGGCGTTATGTAT GCTTTGA GCAATTAAAGGTAC TAGCTTT AAAGGCTTCTCCCG TTACAAT AAAAAATGAGCTGA CTCTCCCCGCGCGTTGGCCGATTCATTA

T A T A A A A A C A C T T C T C A G G A T T C T G G C G T A C C G T T C C T C T C T G C A A A G G A T T T A A T A C G A A C T T T T G T T T T C T T G A T G T T A C T A G T G T T T A T T C T T A T T T A T T T C T G C T T G T T C T C G A T G A G T A A A A T T A C C C T C T G A C T T T G G A A T A T A A T T T C C G T C A A T A T G G C T A A T C G T C T G A C C T G C C T T A T A A G G G T G G C G G T T C T G A G A T A C G A T G G T T G T T G T C A T T G C A C A T T G G T C A G T T C G G T T C C T A C C A T G C C T C G T A A T T C C T T A G C T A C C T C T T A T C A A A A G G A A T G C T A T C C T T G C G T T G A A A T T T A A T G G C G T T C C T A T T G G T T A T G C A G C T G G C A C G A C A G G T T T C C C

ATGGACAGACTCTTTTACTCGGTGGCCTCACTGAT AATCTAT TTAATAACGTTCGG TGGTATT TAAATGTAATTAAT AAATATA TAATTATGATTCCG TACATGC AAATAAAAACGGCT GGCTGCT GATATTAGCGCTCA TTTCTAT TTCACCTTTAATGA CTGAGGG TGAATATCAAGGCC CTTATAT GGGTGGTGGCTCTG AATTAAA GGTTATGCGTGGGC ATTTATC GTCCTCTTTCAAAG TGTAATA GTGTTGCTCTTACT CGAATTA CATCCGCAAAAATG TCTGAGG GTTCTAAAAATTTT ATATTTG CGAATTATTTTTGA GACTGGAAAGCGGGCAGTGAGCGCAACG

T C A A A G A A G T A T T G C T A C A A C G G T T A A T T T G C G T G T A G T T G T T C A A A C T T T T A A A A C A A A G C A T C A A A T G A A A T T G T T T T G A A A C A G G C T T T T T C T A G T C G T A A A G A T T C C T A C G A T G A A T T T T C A T G G G T T A T C T C T C T T G A T T G T G G T G A C G G T G A T A A T G G C G G T G A T T T A T T T G T T T G C A A C C C T A T C C C T G A A A A T G A G G C T C C T C G A C C G A A T A T A T C A G G C G A T T A C A C C G T T C A T C T A T G T T G T C G A G G G T T A T G A T A A A A C G C G A T T A A G C T C T A A G C C T T T A T T T A A A A T A T A T G A G G C T T A T A C A G G A A G G C C A G A C G C A A T T A A T G T G A G T T A G C T C A C T C A T T A

TTGAGTTCTTCTACTCAGGCAAGTGATGTTATTACTAA TAGT CAAAATGATAATGTTAC ATCA CCATTAAAAAAGGTAAT AAGT ACGCATATGATACTAAA TTAG CTATTGGGCGCGGTAAT TTTT GCTTAACTCAATTCTTG GACA CCCAAATGGCTCAAGTC TCTG ATTCTGGCTTTAATGAG CTCG TTCCTATTGGGCTTGCT TTTG CTCCCTGCAAGCCTCAG GATA CCTATGCGCCTGGTCTG TCCG TATCGTCGTCTGGTAAA ATAT CAGCATTATATTCAGCA GCTT TACTCAGGCATTGCATT AATC TGATGAAAGCTGGCTAC GGCACCCCAGGCTTTACACTTTATG

A T A T T G T T C T G G A T A T T A C C A G C A A G G C C G A T A G T G C T C C T A G T T T C T T T G T T C C G G G C G A A T T T T A T G T A C T G T T T T T T C T C G T A A G A A T T T G T A T A G A T G G G A A T C T G A T T T G C T T G T G A C G T T G C T C T T A T T A T T G G A A A T A A A T G C T G G C T C T A A T T A G G G T G G A G A C T G C G C T T T C C A C G G C A C T T A C G G T A C A T G G G G A G C C T T A A A G C G G C C T T T A A C A A A T C T T G A A G G T C A G C C A G T T A G T T C G C T A T T T T G G T T T T T T G A A G T A A C A T G T T G A G C T A A A T T T T G C T T T A C C T A C A C A T T T C C T G T C T C A C A T T T A A T G T C T T C C G G C T C G T A T G T T G T G T G G A A T T G

GTTTTTCCTGTTGCAATGGCTGGCGGTA AAGATATTTTAGAT TCTGGTG CCGTTATTGTTTCT ATATTGA CGTTCTTTGTCTTG ATACTGG TATTATTTTTCTTG CTTCTAT AAACAAAAAATCGT GTTTCTT CTTATTCCGTGGTG GTGATTT CGGCTCTGAGGGAG AATTCAG TTATCCGCCTGGTA CTCAGTG TTTTTTGGAGATTT TCCCGCA CCGTTGTACTTTGT CTCTTGA GTTTTATTAACGTA GCCTCTC CTTTCGGGCTTCCT TATTTAA CTAATTCTTTGCCT TTTGAAT TTTTGGGGCTTTTC TTACTCG TGAGCGGATAACAATTTCACACAGGAAACAGCTAT

G C G T C A A A A T G T A G G T A T T T C C A T G A G C A A C C T T C C T C A A T T C G C T C C T C C C G A T G T A A A A G G C T C A C A T C G A T T G G A T T T G C A T G G C T T T T T C A G G A C T T A T C T G A T A A G C T T C T T A T T T G G A T T T T T C A T T T C T T T G C G T T T C T T G C T A C T G G C G G T T C C G G T G G T A A C G G T A C T G A G C A A A A C C C C G A C G A A A T C A A C G T G A A A A A A G T G A C G A T T C G C G C T T G G T A T A A G A T T A G A T T T T T C T T C C C A T G C A A A A C T T A A T C T T T T T G A A G T T G C A T G C C T G T A T G A T T T T C A C C C T T G A T T A T C A A C C G G C G G G T T G G A C C A T G A T T A C G A A T T C G A G C T C G G T A C C C G G G G
TCTGCCAATGTAAATAATCCATTTCAGACGATTGA CCTTTCA TATGATGATAATTC TACTGTT AGCAAGGTTATTCA TCAGCAT CTACTGTTGAGCGT ATTGTTG TTCTTAGAATACCG GGGATAA GATAGCTATTGCTA TTATATG CTAATGGTAATGGT GGCTCTG ATGACGCTTACTGG GCTAATC TAGTTTGTACTGGT TTATTAT TTTCGCTGCTGAGG AATCGCT ATCCGGTTCTTGTC ACGTCCT GGCAAAACTTCTTT TGCAATC AGACACCGTACTTT ATTGGAT GTCTCCGGCCTTTC GGTACAT CACGGAGAATCCGA ATCCTCTAGAGTCGACCTGCAGGCATGC

A G A A T G T C C C T T T T A T T A C T G G T C G T G T G A C T G G T G A A A C T G C A T C T G A T A A T C A G G A A A C T G T A G C G A C G A T T T A C A G A T T A C C G A T T C T C A A T T A A G C C A T A A C G C T A A A A C G C C T C G C G A T A A A A A A A G G G C T T C G G T A A T T G C T G A C G T T T C C G G C C T T G G T T C A T C A T C A A A A G C C A T G T C T A A G A A T G C T A C A G G C G T T G T C G C C T C G T T C C G A T G C T G T C G G G G T G A T T T G G G T A A T G A A T G A C T T T A C T A T T A C C C C C T C T C G C T T A T G G A A T G A A A C T T C C G T T A T T G A T G G T G A T T T G A C T A T G A A A T C C G C C G T T T G T T C C A A G C T T G G C A C T G G C C G T C G T T T T A

GCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCC TTGATTT TGATGAATTGCCAT TATATTC GGAAAATTAATTAA ATATAGT GTTGTTAAATATGG ACAGGCG CAAGTCGGGAGGTT TATGGCT TGCTTACTTTTCTT CACCTTT GATGGTTTCATTGG CGGTGAT CAGTACACTCCTGT TCCTTCT GAGGGCTGTCTGTG AATTCCT TAGCCGTTGCTACC GTCAAAG CAGCTTTGTTACGT GGTATAA CCAGTCTAAACATT TTGCTTC GGAATCAACTGTTA ATGCTAC GGTTGAATATCATA TTGACAT ATCCCATTACGGTC CAACGTCGTGACTGGGAAAACCCTGGCG

C A T T C A A A A A T A T T G T C T G T G C C A C G T A T T C T T A C G C C A A C T A A T C A G G A T T A T A T A T C T G A C T C A A G G A T T C T A A G T A T A T A A A A T T A C A T G T T G G C C G T T C T G T T C A A A A C C T C C C G G T T T A T T T T T G T T C G G C T A T C A T G T A T G A C G G T G C T G C T A T C T T T G A T T T T A A A A C T T A T T A C C T T G A G G G T T A C G C T A A C T A T T T A G T T G C C T C A A A G C C T C T G A T G A G T G A T T C A C T G A A T G A G T G A G C C A G T A T T G G A C G C T A T T G A C T A T C G T T C G C A G A A T T G T A C T A T T T T A T C A G C T A G A A C G C T A G T T C A C C A A C G T G A C C T T T A C C C A A C T T A A T C G C C T T G C A G C A C A

TTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGC GACC AGAAGTATAATCCAAAC GTTA AAGCTATCGCTATGTTT CCCA GAAAATGCCTCTGCCTA CATT TAATCTTGATTTAAGGC TTGT GGTTTCCTTCTGGTAAC TATT TTCTGTCGCTACTGATT ATGA TCAAGGCACTGACCCCG AGTC CGACAAAACTTTAGATC TTCC ATGAAAAAGTCTTTAGT TTTT TCGTCAGGGCAAGCCTT GTTC TTTATGACGATTCCGCA AATA GTCAAACTAAATCTACT AGTA CCCTCTCCGGCATTAAT TTAC TACGATGCGCCCATCTA TCCCCCTTTCGCCAGCTGGCGTAAT

T G C T G G T G G T T C G T T C G G T A T T T T T A A T G G C G A T G A G A T A T T C C C T T C C A T T A T T C A A C C T G A C A G C G T C T T A A T C T A C C T A A G C T T A T T A C T G G C T C A G C T G A A T G C A A A A T A G C A A C A A C T G G C T A T T G C G T T T C C T C T T C T A C G A A A G G C A A A C T T G A A A A G A T G A C G G G C A C T G T T A C T C A G C C T A A C G T C T G G A A A G A T T T C T A T A T G G A A A C T T C C T C A G T G T A T C G T T C T G G T G T T T C T T A A A A T G G A T T C A A T G A A T A G T C A G G G A A A T G T A T C T A A T G G A A T T G A C T C A A A A A T A G C T A G A T T A C C G G C A G A T G C A C G G T A G C G A A G A G G C C C G C A C C G A T C G C C C T T

CTGACCGCCTCACCTCTGTTTTATCTTC GATTGAGGGTTTGA GTTCTAA AAATCTACGCAATT CTCTTCT CCGGAGGTTAAAAA ATATTCT CATGTTGTTTATTG AGCTGGG AAATTAGGCTCTGG CCGTTAT TTTGCTAACATACT TGACGCT GCAAACGCTAATAA TGTTTAT CTTAATACTTTCAT ATTTACT TCTCACTCCGCTGA CCGTTTA TCTTTTGCCTCTTT TACTACT CGCATAAGGTAATT TTGAGGG TAAAGACCTGATTT ATTTGCG TGCCACCTTTTCAG TAGATCT GTTCATCGATTCTC TCAAACT CCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGC

C G T G G C A C T G T T G C A G G C G G T G T T A A T A T A T T T G A G G T T C A G A T G G T A G T C T T T A T T T C T G T T C T A T T G A G G T A G T C T C T C A G A G T A C T T T T C G T C G T C T G G A C A A A A T T G T A A A G A C G C T C G T T A G G G T A T T G C G T A A T A A G G A G T T A C A G T C G G G G G C T A T G A C C G C A T T A A C G T T T C A G A A T A A T A A A A A T T C A A C T G T T G A A A G T T A T T T T A C C G T T T T A G G T T G G T C C C A A T T C A C A A T G A T T A A A G A A A G C A T T T G A T T T A T G G T C A A T T G A C C C T C G C G C C C C A A A T G C C T T T G T T G T T T G C T C C A G A C G T C C C C T T T G C C T G G T T T C C G G C A C C A G A A G C G G T G C C G G A

CAAGGTGATGCTTTAGATTTTTCATTTGCTGCTGGCTCTCAG TTACGTGCAAATAATTTTGAT CCTATGATTTTGATAAATTCA GAATTACTTTACCTTTTGTCG GCGTTGGTAAGATTCAGGATA CTTAATCATGCCAGTTCTTTT AAAATGCCGATGAAAACGCGC GGTTCCGAAATAGGCAGGGGG GTTTAGCAAAATCCCATACAG GCCTTCGTAGTGGCATTACGT TTGAAATTAAACCATCTCAAG TTCTCGTTTTCTGAACTGTTT GAAAATATAGCTAAACAGGTT CTCTCAGGCAATGACCTGATA AAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGT

GCTACAGGGCGCGTAC CTTAATGCGCC ACCCGCCGCG CGTAACCACCAC CACGCTGCG AGTGTAGCGGT GGCGCTGGCA GCGGGCGCTAG AGCGAAAGGA GAAGGGAAGAA GGCGAGAAAG CCGGCGAACGT ACGGGGAAAG AACCGTCTATC AAGGGCGAAA CTCCAACGTCA AGAACGTGGA TCCACTATTAA GGAACAAGAG TGTTCCAGTTT GGTTGAGTGT GCCCGAGATAG CAAAAGAATA CCCTTATAAAT TCGGCAAAAT TGGTTCCGAAA TGTTTGATGG GGCGAAAATCC TGCCCCAGCA CCACGCTGGTT AGCAAGCGGT GAGAGAGTTGC TCACCGCCTGGCCCT

T A T G G T T G C T T T G A C G A G C A C G T A T A A C G A G G A T T T A G A A G T A T T A G A C T T A T T C A T T T C A A T T A C C T G A A T T T A A T G G T T T G A A A T A C C G T T C C T T A T C A T T C C A A G A A C G A G G G A A G C G C A T T A G A C G G G A G A C A A A A G G G C G A C A T T C A A C A G A A C C A C C A C C A G A G C C G C C G T A C T C A G G A G G T T T A G T A C C A G G T G A A T T T C T T A A A C A G C T A T G T T A C T T A G C C G G A A C G A G T T A G G A A T A C C A C A T T C A A C T G C A A A C T C C A A C A G G T C A G G A A A A A C A T T A T G A C C C T G T A A T T T A A A A T T C G C A T T A A A T T T T T T T C A C C A G T G A G A C G G G C A A C A G C T G A T T G C C C T

TTAGAATCAGAGCGGG TTCCTCG TTGTGCT AATTTACAATAGATAATACAT AAGCAAAAGCGCGCAGAGGCG CTACCGTGTATCTTCTGACCT ACGGTATTAATAATCGGCTGT AAGAATTAAAATAACATAAAA CCCGATTGATTACCAGCGCCA CCGCCAGCATCAGAGCCGCCA CGGCCACCCATAGGTGTATCA CCTGATACCTCAGCTTGCTTT ATGCGCAGACCGCGACCTGCT AAAATGCAGTCATCAGTTGAG CATTAGAGAGAACCAGACCGG TGACTTTTGAATCGGTTGTAC CTTGTTAAAACGTTAATATTT GGCGCCAGGGTGGTTTTT GCGGTTTGCGTATTG

A G C T A A A C A G G A G G C C G A T T A A A G G G A T T T T A G A C C C G T C A A A C A A T T C G A C A A C T A C A A A A T A A G A T G A T G A A A C A T A A T T T C G A T A A A T A A G G C G T C C A A T C A A A C C A A G T A C C G C A C A G A G A G C T G A A C A C C C T G A A A T A T G G T G G G A G G G A A G G T A A A C C A C C C T T G A C A G G A G G T T G G C C C G G A T C A G A A C C G C C A C C C G G T T T A G A T A G T T G C G C C G A T C G A A A T C G G T C A A T C A T A A G G A A A G A T A T A C A T A A C G C C A A T C A A A G C G T A C C T T T A A T T G C A A A G C T A C G G G A G A A G C C T T T A T T G T A A T C A G C T C A T T T T T T T A A T G A A T C G G C C A A C G C G C G G G G A G A G

CCTGAGAAGTGTTTTTATA CCAGAAT TTTGCAGAGAGGAACGGTACG AACACTAGTAACATCAAGAAAACAAAAGTTCGTATTAAATCC GTAATTTTACTCATCGAGAACAAGCAGAAATAAATAAGAATA CGATTAGCCATATTGACGGAAATTATATTCCAAAGTCAGAGG CCATCGTATCTCAGAACCGCCACCCTTATAAGGCAGGTCAGA GGCATGGTAGGAACCGAACTGACCAATGTGCAATGACAACAA GGATAGCATTCCTTTTGATAAGAGGTAGCTAAGGAATTACGA CAGCTGCATAACCAATAGGAACGCCATTAAATTTCAACGCAA GGGAAACCTGTCGTGC

A T C A G T G A G G C C A C C G A G T A A A A G A G T C T G T C C A T A T A G A T T C C G A A C G T T A T T A A A A T A C C A A T T A A T T A C A T T T A T A T A T T T C G G A A T C A T A A T T A G C A T G T A A G C C G T T T T T A T T T A G C A G C C T G A G C G C T A A T A T C A T A G A A A T C A T T A A A G G T G A A C C C T C A G G G C C T T G A T A T T C A A T A T A A G C A G A G C C A C C A C C C T T T A A T T G C C C A C G C A T A A C C G A T A A A T C T T T G A A A G A G G A C T A T T A C A A G T A A G A G C A A C A C T A A T T C G C A T T T T T G C G G A T G C C T C A G A A A A A T T T T T A G A A C C A A A T A T T C A A A A A T A A T T C G C G T T G C G C T C A C T G C C C G C T T T C C A G T C

TGTAGCAATACTTCTTTGA TAACCGT CGCAAAT TTTGAACAACTACA TTAAAAG TTTGATGCTTTGTT AATTTCA GCCTGTTTCAAAAC AGAAAAA GAATCTTTACGACT ATCGTAG ACCCATGAAAATTC AGAGATA TCACCACAATCAAG ATCACCG AAATCACCGCCATT AACAAAT GGGATAGGGTTGCA ATTTTCA GGTCGAGGAGCCTC TATATTC GTGTAATCGCCTGA ATGAACG CCTCGACAACATAG TCATAAC TTAATCGCGTTTTA TTAGAGC TTTTAAATAAAGGC TCATATA TTCCTGTATAAGCC TCTGGCC TCACATTAATTGCG TAATGAGTGAGCTAAC

T T A G T A A T A A C A T C A C T T G C C T G A G T A G A A G A A C T C A A A C T A G T A A C A T T A T C A T T T T G T G A T A T T A C C T T T T T T A A T G G A C T T T T T A G T A T C A T A T G C G T C T A A A T T A C C G C G C C C A A T A G A A A A C A A G A A T T G A G T T A A G C T G T C G A C T T G A G C C A T T T G G G C A G A C T C A T T A A A G C C A G A A T C G A G A G C A A G C C C A A T A G G A A C A A A C T G A G G C T T G C A G G G A G T A T C C A G A C C A G G C G C A T A G G C G G A T T T A C C A G A C G A C G A T A A T A T T G C T G A A T A T A A T G C T G A A G C A A T G C A A T G C C T G A G T A G A T T G T A G C C A G C T T T C A T C A C A T A A A G T G T A A A G C C T G G G G T G C C

ATATCCAGAACAATAT ACTAGGAGCACTATCGGCCTTGCTGGTA AAATTCGCCCGGAACAAAGAA TACGAGAAAAAACAGTACATA ATTCCCATCTATACAAATTCT GCAACGTCACAAGCAAATCAG ATTTATTTCCAATAATAAGA CTCCACCCTAATTAGAGCCAGC AAGTGCCGTGGAAAGCGCAGT TTAAGGCTCCCCATGTACCGT CAAGATTTGTTAAAGGCCGCT GCGAACTAACTGGCTGACCTT TTACTTCAAAAAACCAAAATA AGCAAAATTTAGCTCAACATG AGACAGGAAATGTGTAGGTAA AGACATTAAATGTG ATACGAGCCGGA CAATTCCACACAAC

T A C C G C C A G C C A T T G C A A C A G G A A A A A C A T C T A A A A T A T C T T C A C C A G A A G A A A C A A T A A C G G T C A A T A T C A A G A C A A A G A A C G C C A G T A T C A A G A A A A A T A A T A A T A G A A G A C G A T T T T T T G T T T A A G A A A C C A C C A C G G A A T A A G A A A T C A C C T C C C T C A G A G C C G C T G A A T T T A C C A G G C G G A T A A C A C T G A G A A A T C T C C A A A A A A T G C G G G A A C A A A G T A C A A C G G T C A A G A G T A C G T T A A T A A A A C G A G A G G C A G G A A G C C C G A A A G T T A A A T A A G G C A A A G A A T T A G A T T C A A A G A A A A G C C C C A A A A C G A G T A A A T A G C T G T T T C C T G T G T G A A A T T G T T A T C C G C T C A

ACCTACATTTTGACGC TGGAAAT TTGCTCA GGAGGAGCGAATTGAGGAAGG CGATGTGAGCCTTTTACATCG AAAAAGCCATGCAAATCCAAT AAGCTTATCAGATAAGTCCTG GAAATGAAAAATCCAAATAAG GCCAGTAGCAAGAAACGCAAA AGTACCGTTACCACCGGAACC GATTTCGTCGGGGTTTTGCTC AATCGTCACTTTTTTCACGTT TCTAATCTTATACCAAGCGCG AGTTTTGCATGGGAAGAAAAA CATGCAACTTCAAAAAGATTA CAAGGGTGAAAATCATACAGG TCCAACCCGCCGGTTGATAAT ATCATGG ATTCGTA CCCCGGGTACCGAGCTCGA
T C A A T C G T C T G A A A T G G A T T A T T T A C A T T G G C A G A T G A A A G G G A A T T A T C A T C A T A A A C A G T A T G A A T A A C C T T G C T A T G C T G A A C G C T C A A C A G T A G C A A C A A T C G G T A T T C T A A G A A T T A T C C C T A G C A A T A G C T A T C C A T A T A A A C C A T T A C C A T T A G C A G A G C C C C A G T A A G C G T C A T G A T T A G C A C C A G T A C A A A C T A A T A A T A A C C T C A G C A G C G A A A A G C G A T T G A C A A G A A C C G G A T A G G A C G T A A A G A A G T T T T G C C G A T T G C A A A A G T A C G G T G T C T A T C C A A T G A A A G G C C G G A G A C A T G T A C C T C G G A T T C T C C G T G G C A T G C C T G C A G G T C G A C T C T A G A G G A T

GTAATAAAAGGGACATTCT ACGACCA AGATGCAGTTTCACCAGTCAC AATCGGTAATCTGTAAATCGTCGCTACAGTTTCCTGATTATC TTTTTTTATCGCGAGGCGTTTTAGCGTTATGGCTTAATTGAG ATGATGAACCAAGGCCGGAAACGTCAGCAATTACCGAAGCCC ACGAGGCGACAACGCCTGTAGCATTCTTAGACATGGCTTTTG AGTAAAGTCATTCATTACCCAAATCACCCCGACAGCATCGGA ATCAATAACGGAAGTTTCATTCCATAAGCGAGAGGGGGTAAT TTGGAACAAACGGCGGATTTCATAGTCAAATCACC GCCAAGC TAAAACGACGGCCAGT

G G C C A A C A G A G A T A G A A C C C T T C T G A C C T G A A A G C A A A T C A A A T G G C A A T T C A T C A G A A T A T A T T A A T T A A T T T T C C A C T A T A T C C A T A T T T A A C A A C C G C C T G T A A C C T C C C G A C T T G A G C C A T A A A G A A A A G T A A G C A A A A G G T G C C A A T G A A A C C A T C A T C A C C G A C A G G A G T G T A C T G A G A A G G A C A C A G A C A G C C C T C A G G A A T T G G T A G C A A C G G C T A C T T T G A C A C G T A A C A A A G C T G T T A T A C C A A T G T T T A G A C T G G G A A G C A A T A A C A G T T G A T T C C G T A G C A T T A T G A T A T T C A A C C A T G T C A A G A C C G T A A T G G G A T C G C C A G G G T T T T C C C A G T C A C G A C G T T G

CAGACAATATTTTTGAATG CGTGGCA AAGAATA TGATTAGTTGGCGT ATAATCC TAGAATCCTTGAGTCAGATAT TAATTTTATATACT CAACATG GGAGGTTTTGAACAGAACGGC ACAAAAATAAACCG TAGCCGA TAGCAGCACCGTCATACATGA TTTAAAATCAAAGA AATAAGT AGTTAGCGTAACCCTCAAGGT TGAGGCAACTAAAT GAGGCTT CATTCAGTGAATCACTCATCA AATACTGGCTCACT AGCGTCC ATTCTGCGAACGATAGTCAAT GATAAAATAGTACA TCTAGCT GTCACGTTGGTGAACTAGCGT TAAGTTGGGTAAAG TGTGCTGCAAGGCGAT

G C T A T T A G T C T T T A A T G C G C G A A C T G A T A G C C C T A A A A G G T C G T T T G G A T T A T A C T T C T T A A C A A A C A T A G C G A T A G C T T T G G G T A G G C A G A G G C A T T T T C A A T G G C C T T A A A T C A A G A T T A A C A A G T T A C C A G A A G G A A A C C A A T A A A T C A G T A G C G A C A G A A T C A T C G G G G T C A G T G C C T T G A G A C T G A T C T A A A G T T T T G T C G G G A A A C T A A A G A C T T T T T C A T A A A A A A G G C T T G C C C T G A C G A G A A C T G C G G A A T C G T C A T A A A T A T T A G T A G A T T T A G T T T G A C T A C T A T T A A T G C C G G A G A G G G G T A A T A G A T G G G C G C A T C G T A A T T A C G C C A G C T G G C G A A A G G G G G A

GAACGAACCACCAGCA TTGAATAATGGAAGGGAATATCTCATCGCCATTAAAAATACC CTGAGCCAGTAATAAGCTTAGGTAGATTAAGACGCTGTCAGG GAAGAGGAAACGCAATAGCCAGTTGTTGCTATTTTGCATTCAG TGAGTAACAGTGCCCGTCATCTTTTCAAGTTTGCCTTTCGTA ACTGAGGAAGTTTCCATATAGAAATCTTTCCAGACGTTAGGC GACTATTCATTGAATCCATTTTAAGAAACACCAGAACGATAC ATCTAGCTATTTTTGAGTCAATTCCATTAGATACATTTCCCT CTACCGTGCATCTGCCGGTA CGGGCCTCTTCG AAGGGCGATCGGTG

G A A G A T A A A A C A G A G G T G A G G C G G T C A G T C A A A C C C T C A A T C T T A G A A C A A T T G C G T A G A T T T A G A A G A G T T T T T A A C C T C C G G A G A A T A T C A A T A A A C A A C A T G C C C A G C T C C A G A G C C T A A T T T A T A A C G G A G T A T G T T A G C A A A A G C G T C A T T A T T A G C G T T T G C A T A A A C A A T G A A A G T A T T A A G A G T A A A T T C A G C G G A G T G A G A T A A A C G G A A A G A G G C A A A A G A A G T A G T A A A T T A C C T T A T G C G C C C T C A A A A A T C A G G T C T T T A C G C A A A T C T G A A A A G G T G G C A A G A T C T A G A G A A T C G A T G A A C A G T T T G A G C G C C A T T C G C C A T T C A G G C T G C G C A A C T G T T G G G

CTGCAACAGTGCCACG ACACCGC TATATTA GACTACCATCTGAACCTCAAA AAATAAA CCTCAATAGAACAG GAAAAGTACTCTGAGAGACTA AGACGAC TTACAATTTTGTCC GCAATACCCTAACGAGCGTCT TTATTAC CCGACTGTAACTCC ACGTTAATGCGGTCATAGCCC TTCTGAA TTGAATTTTTATTA CGGTAAAATAACTTTCAACAG CCTAAAA TGAATTGGGACCAA AAATGCTTTCTTTAATCATTG ATAAATC AGGGTCAATTGACC AACAAAGGCATTTGGGGCGCG AGCAAAC AAGGGGACGTCTGG CCAGGCA CCGGAAA TCCGGCACCGCTTCTGGTG
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Supplementary Figure 3 

Cadnano design and oligonucleotide sequences of the moderately-curved DNA origami structure Q. Top positions T0-T7 are colored in gold, 

while bottom positions B0-B7 are colored in dark orange. Lateral positions L0-L13 and R0-R13 are colored in green and blue, respectively. Edge 

positions E0-E19 and F0-F19 are colored in purple. Core staples are colored in black; M13 p7249 scaffold is colored in grey. List of DNA staples can 

be found in Supplementary Table 2. Additional list of functional staples utilized can be found in appendix (see Supplementary Notes). 
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G T C A A A G C A A C C A T A G T A C + G C C C T G T A G C G G C G C A T T A A + G C G G C G G G T G T G G T G G T T A C G C G C A G C G T G A C C G + A C A C T T G C C A G C G C C C T A G C G C C C G C T + T T T C G C T T T C T T C C C T T C C T + C T C G C C A C G T T C G C C G T G A T A G A C G G T T T T T C G C + T T T G A C G T T G G A G T C C A C G T T C T T T A A + G T G G A C T C T T G T T C C A A A C T G G A A C A A C A C T C A A C C C T A T C + G G G C T A T T C T T T T G A T T T A T + G G G A T T T T G C C G A + T C G G A A C C A C C A T C A A A C A G + T T T T C G C C T G C T G G G G C A A A C C A G C G T + A C C G C T T G C T G C A A C T C T C T + G G G C C A G G C G G T G A A G G G C A A T

CTAACGAG+AAGCACGTTATACGTGCTC AATTGTTTGTAAAGTCTAATA TCTTTTGCTCAGGTAATTGAA ACACGGTCGGTATTTCAAACC AATACCCGTTCTTGGAATGAT AATTCTCC+TCTAATGCGCTT AATCGGTTGAATGTCGCCCTT TGGCGGCGGCTCTGG+GTGGT GGCGGTACTAAACCTCCTGAG CTGTTTAAGAAATTCACCTCG GTTCCGGC+AGTAACATGGAG GAATGTGGTATTCCTAAATCT ACCTGTTGGAGTTT+TTCCGG GGGTCATAATGTTTTTGGTAC AATGCGAATTTTAACAAAATA CAGCTGTTGCCCGTCTCACTGG+AAAAGAAAAACC

G C C T C C T G T T T A G C T C C C G C T C T G A T T C T T C T A A A T C C T C A G T T G T C G A T G A A T A A T T C G C C A T C A T C T A T T A A A T T T A G G T C A T T T A T C A A G G A A A G A C A G C C T T G G T T T C C C T G T T T T T A T G T T C A G T T T T G T C T T T G G C G C T C T C C C T C T C T G G T G G C G G C T T C A A T G C T A C G G T G A T A C A C C T G A G G G T A A A G C A A G C T G A T A T A T C A A G C A G G T C G C G G A T T G C G C C T C C A A C T G A T G A A T C T A T T A G T T T C T G G T T C G C T T T A A T C C T G A A C C G A T T T A G C T T T A T T A C A T T A A C G T T T A C A A T A A A A T T T A C C C T G G C G C C C A A T A C G C A A A C C G C C T C T C C C C

TCTAAAATCCCTTTAATCG GGCGTACCGTTCCTG ATGTA A GATTTAATACGA G TCTGCGC GATGTTTGTTTC T AGAAGAT TTATTTAACGCCTT TTAT GA GATGAGTGCGGTAC ATTC TT CTTTGTTCAGGGTG GGTAAAC TATTTACCTTCC A CTGAGGG GCCTCAACCTCCTG TTCC TA GGGTGGCGGTTC A AACCGAT GGCGCAACTATCGG CGACA T ATGATTGACCGTCT TCTAC T TTATGTATCTGC G GAAGCTC AAGGTACTCTCT A TATGCTC TTCTCCCGCAAAAG AAAT TT GAGCTGATTTAACA GCAGC GCGCGTTGGCCGATTCATTAAT

T G G C C T C A C T G A T T A T A A A A A C A C T T C T C A G G A T T C T T T A T T A A C G T T C G G G C A A A G A T T A T T A A T T T T G T T T T C T G A A A G A T T C C G G T G T T T A T T C T G A T C G G C T T G C T T G T T C T C T C T C C T C A A T T A C C C T C T G A C A T A T G A A T A A T T T C C G T C A T G G T G G C C A A T C G T C T G A C C T G G G C A G G G T G G C G G T T C T G A C A A T G G T T G T T G T C A T T G T C C A A T T C A G T T C G G T T C C C T T C T G T G T A A T T C C T T T T G G C G A A T A T C A A A A G G A G C A A T T T G A G T G C G T T G A A A T A A A G G C A T T T C T A T T G G T T A A A A A A T T G G C A C G A C A G G T T T C C C G A C T G G

ATGGACAGACTCTTTTACTCGG TTAATTTGCGTG CTATTGA ACTTTTAAAATTAA TTGTAAC AATTGTTAAATGTA TTAACTA TTTCTAGTAATTAT TGGTTTC GATGAAAATAAAAA TGTAAAG G TCTGATATTAGC TGAATTT TAATTCACCTTTAA CT GGCT TTTGTGAATATCAA TATACTT GGGTGGTGGCTCTG TTAAAGG TTATGCGTGGGCGA TTATCAG G CTTTCAAAGTTG AATAATG TCTTACTATGCCTC AC TAAA AAAAATGACCTCTT GCTTTAT AAAATTTTTATCCT GCTTATA TTTTGATGGCGTTC ACGCAATT AAAGCGGGCAGTGAGCGCA

A T G T T A T T A C T A A T C A A A G A A G + T T G C T A C A A C G G C G G C T C T A T A A T G T T A C T C A A T T G G T A T G G T A A T T C A A A T G A A A A T A T A T A C T A A A C A G G C T T T A C A T G C G T A A T G A T T C C T A C G C T G C T A C + G T G G G T T A T C T C T C T A T T G G T C G G T G A C G G T G A G A + G T G G T G A G G A T T T A T T T G A T A T C A A A T C C C T G A A A A T G A C T C C T T T A C C G A A T A T A T C G G G C G A T G A C + T T C A T C T G T C C T T T G T T C C T A T G A T A G T G T T G C G C + T A T T T C T A A G C C A T C C G C T G C T T A A A T A T G A G G G T T C T A C A A T C T T C A G A C G C G A A T T A T A A T G T G A G + A G C T C A C T C A T T A G G C A C C

GCAAGGCCGATAGTT+AGTTCTTCTACTCAGGCAAGTG AATC TCTTTGTTCCGCAAA+G TCAA A+GTTTCCATTAAAAAA TTTG TTGTATAACGCATATGA TCGT TGCTTGCTATTGGGC+G TTTT ATTGGGCTTAACTCA+T ATTG AA+CCCAAATGGCTCAA CGGT TTCCATTCTGGCTTTAA CCCT GTTCCTATTGGGCTT+T TGGA CCCTGCAAGCCTCAGCG TACA ATGCGCCTGGTCTGT+A GTTA T+TCTGGTAAACGAG+T TGAA T+ATTCAGCAATTAAGC TTTT GGCATTGCATTTAAAAT CCTG AGCTGGCTACAGGAA+C CCAGGCTTTACACTTTAT+TTCCGG

C A A T G G C T G G C G G T A A T A T + T T C T G G A T A T T A C C A T A T T A + T T C C T T C T G G T G G T T A G C A A T C T A T A T T G A T T T A + T A A A A A G T A T A C T G G T A A G A A T A A A T T + G T T C T A T A T C T G A T T C A T T T + G T T C T T G C T C T T A T T T G A C A A A G A T T T T G C T G G + C T T C T G A G G T C A G A G A C T G C G C T C T C G A + G G T T A C G G T A C A T G G G C C T T T T A G C G G C C T T T A A C T A A T C T + G A G G T C A G C C A G C C T G T T C G + T T T T T G G T T T T T A + G G T C T T T C G T T G A G C T A C A G + T G C T A A T T C T A C A C A T T A C T C A T T T T T + G T T A A T G T T G A T G A A C T C G T + G T T G T G T G G A A T T G T G A G C G G A

AGGTATTT+ATGAGCGTTTTTCCTGTTG GTTAGTGCTCCTAA ATTCCGC AGGCGAATCCGTTA ACTCACA TTTCTCGCGTTCTT TGGCTTT ATGGGATATTATTT ATAAGCC A+TTAAACAAAAAA TCATTGT ATAAACTTATTCCG TACTGGT GTGGCGG+CTGAGG GGTAAAT CACTTATCCGCCTG ACTCAGT TTTTGGAGATTTTC CCGCAAA T+TACTTTGTTTCG TTGATGA TATTAACGTAGATT CTCGCTA GGGCTTC+CTTAAT AAAACAT CTTTGCCTTGCCTG TCTTTAC GCTTTTCTGATTAT CTCACAT TAACAATTTCACACAGGAAACA+TATGACCATGAT

A T T T C A G A C G A T T G A G C G T C A A A A T G T A G A T A T T T T A G A T A G A T G A T A T T G T T T C T C C C G A T G T T A T T C T G T C T T G C G A T T G G T G A G C G T T T C T T G T T C A G G A C A T A C C G G T C G T T T C T T A T T T T G C T A T T T G G T G T C T T T G C G T A T G G T G C G A G G C G G T T C C G G C T G G A A C G T A C T G A G C A A A A C T G A C G A A A A C G T G A A A A A A T T G A C G A T C C G C T T G G T A T A A T A T T A C T C T T T C T T C C C A A C G T A A A G C C T C T T T T T G A T G C A A C A T A T T T T A T G A T T T A T T G G A T T T T G A A C A A C C G G G G T A C A T T T A C T C G T A C G A A T T C G A G C T C G G T A C C C G G G G A T C C T C T A
CTGCCAATGTAAATAATCC GTGTGACTGGTGAAT CCTTC A AATCAGGAATAT T GTAAAAG TACAGAAGCAAG T ATTTGCA TTAAGCCCTACTGT TATCT T CTCGCGTTCTTAGA GATTG G GGTAAGATAGCTAT TTCTTTT TTGCTAATGGTA C TGGTGGC ATGTATGACGCTTA CCGCT C AGTTTGTACTGG T ATTATTC TCGCTGCTGAGGGT GCTGG C CGGTTCTTGTCAAG CTGAC C ACTTCTTTTGCA A TCCGCTT GTACTTTAGTTG C TGTTAAT GGCCTTTCTCACCC TGATT A AATCCGACGGGTTG GCTTG GAGTCGACCTGCAGGCATGCAA

A T C T C T G T T G G C C A G A A T G T C C C T T T T A T T A C T G G T C C T C A A T T G C C A T C A T C T G A G T A C A A T T A A T A G C G A C G A T T C A G A A T A T G G C G A T T C T C A A A T T G A G G T T C G C T A A A A C G C G G A T T C T T A A A A A G G G C T T C A T A T T G G T G A C G T T T C C G G C T C T G C T G T A T C A T C A A A A G C C A A T C A T G C T A C A G G C G T T G G C A A C G T T C C G A T G C T G T C T T G G G T T T G G G T A A T G A A T A T C T G G T T A C C C C C T C T G G C A A T G C T T G A A A C T T C C A G A C A C G C T A G T G A T T T G A C T G T C T C C G A C A G T T T G T T C C C A C G G A G G C A C T G G C C G T C G T T T T A C A A C G T

GCTTTCAGGTCAGAAGGGTTCT ACGTATTCTTAC ATTCCTT GATTATATTGATGA TGTTACT TCTAAGGGAAAATT CATTTAC TGTTGGCGTTGTTA TTGATAA TCCCGCAAGTCGGG AAATAAT T ATCTGCTTACTT GTTGCCA ATCGATGGTTTCAT CG GTTC TTACCAGTACACTC CTAATCC GGGCTGTCTGTGGA TTCCTTT GCCGTTGCTACCCT CAAAGAT T TTGTTACGTTGA ATAATGA AAACATTTTACTAT AC TCTG ACTGTTATATGGAA CTACTAT ATATCATATTGATG TGCTAGT ACGGTCAATCCGCC GCGTTACC CGTGACTGGGAAAACCCTG

A A A G A C T A A T A G C C A T T C A A A A + A T T G T C T G T G C C T C A A C T G A T C C A A A C A A T C A G G T A T A T T A T G T T T T C A A G G A T A T A T A G T C T G C C T A A A T T A C A A C A G G C G A A G G C T T C A A A A C C A T G G C T G T + C T T T G T T C G G C T C C T T T A T A T T A C G G T G C T G C T G T + T T T T C C C G T T A A A A C T T A T T C T C T T T A C G C T A A C T A T G A A G T T G T T T C A A A G C C T C T G T A G A G T G T T A + G A A T G A G C A G C T G C C A G T T A C G C T A T C C A G T C T T A + A T A G A G A A T T G G G A A T C A T A G T A G A G C T A G A A C G G T T G A T T T A C G A T G A C C T A T C C C A T T C A A C T T A A + G C C T T G C A G C A C A T C C C C C

TTTTAATGGCGATGT+TAGGGCTATCAGTTCGCGCATT TTGA CCATTATTCAGAAGT+A CATC T+ATCTAAGCTATCGCT TATA CTGGCTCGAAAATGCCT CGTT AGCAACTAATCTTGA+T TTTA TCCTCGGTTTCCTTC+G GTAT T+ATTCTGTCGCTACTG GATT TTACTCAAGGCACTGAC GAGG GACAAAACTTTAGAT+T CCTT GAAAAAGTCTTTAGTCC TTAG TCAGGGCAAGCCTTA+C CTTA G+GATTCCGCAGTAT+G TCAG C+AATCTACTCGTTCGC ATTG CCGGCATTAATTTATCA TTAC CGCCCATCTACACC+CG TTTCGCCAGCTGGCGTAAT+CGAAG

C T C T G T T T T A T C T T C T G C T + T G G T T C G T T C G G T A T T T T G C + A A G G T T C T A A C C C T T T G A C G T T A C T C T T C T C A G C + C T A A C C C A A T A T T C T C T T A T T A C T G C A + A G C T G G G T G C A A A A T T T T T G + A G T T A T T A T T G C G T T G T A T T T T A C G C T A A A G G C A + C A T G A A A A T T A T A C G G G C A C T G A G T C T + G A C G T C T G G A A A G A C T C T A T T C G G A A A C T T C C T C A T T G T A T + T T C T G G T G T T T C T C G A A A T C + A T C A A T G A A T A T T + T G G T A A A G T A T C T A A T G G T C + A A T G C C A C A A T A G C T A C C C T C T C G T T C + C G C A C G G T T A C G A T G A G G C C + C A C C G A T C G C C C T T C C C A A C A G

GCAGGCGG+TTAATACTGACCGCCTCAC CTGACCAGATATTG ATATGGT AAACCTGAAAATCT ACTATTG ACCTAAGCCGGAGG GTACTTT GCTGAACATGTTGT AATTGTA C+GCAAATTAGGCT GTATTCC CTACGTTTGCTAAC CAGTCTG GATGGCAA+GCTAA TAACTGT CCTCTTAATACTTT TTTACTA TCACTCCGCTGAAA GTTTAAT T+GCCTCTTTCGTT TACTCGT TAAGGTAATTCACA GGGGGAT ACCTGAT+TTGATT CGAAATG CTTTTCAGCTCGCG TCTCAAA GATTCTCTTGTTTG GGCAGAT TTGCGCAGCCTGAATGGCGAAT+CGCTTTGCCTGG

G C T G C T G G C T C T C A G C G T G G C A C T G T T A T T G A G G G T T T G A T A A T T T T G A C G C A A T T T C T T T A T A A A T T C T T A A A A A G G T A G T C T T T G T C G T T A T T G T C G T C G T C A G G A T A A C T G G A A A G A C G C T C T T T T G G A T A C T G C G T A A T A A C G C G C T A T A A G G G G G C T A T G G G G G C A T C A T G T T T C A G A A T A A A A T T C A C T G T T G A A A G T T G T T T T A C C C T T A G G T T G G T G C C A A T T T A C A T G A T T A A A G T T G A C A T T T G A T A T G G T C A T T C T C C C A T T T G C C C C A A A T G A A A A T G T A G A T C C T C C A G A C T C T C A G T C A A A C T T T T C C G G C A C C A G A A G C G G T G C C G G A A A G C T G G C

TGCTTTAGATTTTTCATTT TTTGAGGTTCAGCAAGGTGA A TTTACGTGCAAAT TTTCTGT CTATGATTTTGA TCTCAGAC GGACAGAATTACTTTACCT T GTTAGCGTTGGTAAGATTC C GGAGTCTTAATCATGCCAGTT TGCCGATGAAAA ACCGAAAA TAGGTTCCGAAATAGGCAG A ATCCCATACAGA TTAGCAAA TCGTAGTGGCATTACGTAT T ATTAAACCATCTCAAGCCC A GAACTGTTTAAAG GTTTTCT ACAGGTTATTGA ATAGCTAA CAATGACCTGATAGCCTTT G CGATACTGTCGTCGTCCCC TGGAGTGCGATCTTCCTGAGGC

CTATGGTTGCTTTGAC ACAGGGC+GTA ATGCGCCGCT CCCGCCGC+TTA ACCACCACA CGCTGCGCGTA TGT+CGGTCA GCGCTGGCAAG GGGCGCTAGG AGCGAAA+AGC AAGGGAAGAA TGGCGAG+AGG ACGGCGAACG AACCGTCTATC AAA+GCGAAA ACTCCAACGTC AAGAACGTGG AGTCCAC+TTA TTGGAACAAG GTTGTTCCAGT AGGGTTGAGT ATAGCCC+GAT AATCAAAAGA AAATCCC+ATA CGA+TCGGCA GATGGTGGTTC AAA+CTGTTT CCAGCAGGCGA CTGGTTTGCC AAGCGGT+ACG GAGTTGCAGC CTGGCCC+AGA ATTGCCCTTCACCGC

G A G C A C G T A T A A C G T G C T T + C T C G T T A G T A T T A G A C T T T A C A A A C A A T T T T C A A T T A C C T G A G C A A A A G A G G T T T G A A A T A C C G A C C G T G T A T C A T T C C A A G A A C G G G T A T T A A G C G C A T T A G A + G G A G A A T T A A G G G C G A C A T T C A A C C G A T T A C C A C + C C A G A G C C G C C G C C A C T C A G G A G G T T T A G T A C C G C C C G A G G T G A A T T T C T T A A A C A G C T C C A T G T T A C T + G C C G G A A C A G A T T T A G G A A T A C C A C A T T C C C G G A A + A A A C T C C A A C A G G T G T A C C A A A A A C A T T A T G A C C C T A T T T T G T T A A A A T T C G C A T T G G T T T T T C T T T T + C C A G T G A G A C G G G C A A C A G C T G

GAGCTAAACAGGAGGC CGG GAG AGAATCA ATCGACAACTGAGGATTTAGA ATAGATGATGGCGAATTATTC TTGATAAATGACCTAAATTTA GGAAACCAAGGCTGTCTTTCC ATAAAAACAG AAAACTGAAC GAGAGGGAGAGCGCCAAAGAC CCA TAGCATTGAAGCCGCCA TTACCCTCAGGTGTATCACCG TGCTTGATATATCAGCTTGCT ATCCGCGACC TGGAGGCGCA GAAACTAATAGATTCATCAGT ACCA TTCAGGATTAAAGCGA AATGTAATAAAGCTAAATCGG GTAAATTTTATTGTAAACGTT GGGCGCCAGG GCGTATT GGGGAGAGGCGGTTT

C G A T T A A A G G G A T T T T A G A C A G G A A C G G T A C G C C T A C A T T T C G T A T T A A A T C C G C G C A G A G A A A C A A A C A T C A A T C T T C T A A G G C G T T A A A T A A A T A A T C G T A C C G C A C T C A T C G A A T A A C A C C C T G A A C A A A G G T T T A C C G G A A G G T A A A T A T C C C T C A G C A G G A G G T T G A G G C G G A A T A G A A C C G C C A C C C T A T C G G T T C C G A T A G T T G C G C C T G T C G A A G A C G G T C A A T C A T G T A G A A G C A G A T A C A T A A C G A G C T T C A G A G A G T A C C T T T G A G C A T A C T T T T G C G G G A G A A A T T T A A T G T T A A A T C A G C T C G C T G C A T T A A T G A A T C G G C C A A C G C G C

TTTATAATCAGTGAGGCCA GTT AGT AATAAAGAATCCTGAGA GTT TTGCCCGAAC GAAAACAAAATTAATAATCT GAATCTTTCA GATCAGAATAAACACCG GGAGAGAGAACAAGCAAGCC TGA GACGGAAATTATTCATATGTCAGAGGGTAAT TGGCCACCAT TGCCCAGGTCAGACGAT AGAACCGCCACCC AACCATTGTC AATTGGACAATGACAAC CACAGAAGGGAACCGAACTG TTA CCAAAAGGAA ATTGCTCCTTTTGATATTCG ACGCACTCAA GAAATGCCTTTATTTCA TGCCAATTTTTTAACCAATA TCG CCAGTCGGGAAACCTG

C C G A G T A A A A G A G T C T G T C C A T C A C G C A A A T T A A T C A A T A G T T A A T T T T A A A A G T G T T A C A A T A C A T T T A A C A A T T T A G T T A A A T A A T T A C T A G A A A G A A A C C A T T T T T A T T T T C A T C C T T T A C A C G C T A A T A T C A G A A A A T T C A T T A A A G G T G A A T T A A G A G C C T T G A T A T T C A C A A A A A G T A T A C A G A G C C A C C A C C C C C T T T A A T C G C C C A C G C A T A A C T G A T A A C C A A C T T T G A A A G C A T T A T T G A G G C A T A G T A A G A G T T T T A A A G A G G T C A T T T T T A T A A A G C A G G A T A A A A A T T T T T A T A A G C G A A C G C C A T C A A A A A A T T G C G T T G C G C T C A C T G C C C G C T T T

CTTTGATTAGTAATAACAT CAA+CTT GTTGTAG ATTATAGAGCCGCC GAGTAAC TTACCATACCAATT ATTTGAA TAGTATATATTTTC GCCTGTT ATTACGCATGTAAA AGGAATC CAC+GTAGCAGCGT GATAACC CCGACCAATAGAGA ACCGTCA CCTCACCAC+TCTC AATAAAT GGGATTTGATATCA ATTTTCA TCGGTAAAGGAGTC GATATAT GAA+GTCATCGCCC GACAGAT TCATAGGAACAAAG AACACTA TTAGAAATA+GCGC GGATGGC CATATTTAAGCAGC GAACCCT GTCTGAAGATTGTA AATTCGC GCT+CTCACATTAT GGTGCCTAATGAGTGA

C A C T T G C C T G A G T A G A A G A A C T + A A C T A T C G G C C T T G C G A T T C + T T T G C G G A A C A A A G A T T G A T T T T T T A A T G G A A A C + T C A A A T C A T A T G C G T T A T A C A A A C G A C + G C C C A A T A G C A A G C A A A A A A + T G A G T T A A G C C C A A T C A A T T T G A G C C A T T T G G G + T T A C C G T T A A A G C C A G A A T G G A A A G G G A + A A G C C C A A T A G G A A C T C C A C G C T G A G G C T T G C A G G G T G T A T + A C A G A C C A G G C G C A T T A A C A + C T C G T T T A C C A G A + A T T C A G C T T A A T T G C T G A A T + A A A A A A T T T T A A A T G C A A T G C C C A G G G + T T C C T G T A G C C A G C T C C G G A A + A T A A A G T G T A A A G C C T G G

TTACCGCCAGCCATTG GAA+TAATATGGTAATATCCAGAA+ATA TAGATTGCTAACCACCAGAAG ATACTTTTTA+TAAATCAATA AAC+AATTTATTCTTACCAGT AAC+AAATGAATCAGATATAG CTTTGTCAAATAAGAGCAAG GACCTCAGAAG+CCAGCAAAAT ACC+TCGAGAGCGCAGTCTCT CTAAAAGGCCCATGTACCGTA CTC+AGATTAGTTAAAGGCCG AAA+CGAACAGGCTGGCTGAC ACGAAAGACC+TAAAAACCAA AGAATTAGCA+CTGTAGCTCA AAC+AAAAATGAGTAATGTGT AGTTCATCAACATT CACACAAC+ACG TCCGCTCACAATTC

C A A C A G G A A A A A C G C T C A T + A A A T A C C T T T A G G A G C A C T A A C G C G G A A T T A A C G G A T T C G C C T T G T G A G T A A G A A C G C G A G A A A A A A G C C A A A A T A A T A T C C C A T G G C T T A T T T T T T T G T T T A A + T A C A A T G A C G G A A T A A G T T T A T A C C A G T A C C T C A G + C C G C C A C A T T T A C C C A G G C G G A T A A G T G A C T G A G T G A A A A T C T C C A A A A T T T G C G G C G A A A C A A A G T A + A T C A T C A A A A T C T A C G T T A A T A T A G C G A G A T T A A G + G A A G C C C A T G T T T T C A G G C A A G G C A A A G G T A A A G A A T A A T C A G A A A A G C A T G T G A G A T C A T G G T C A T A + T G T T T C C T G T G T G A A A T T G T T A

CTCAATCGTCTGAAAT ACG TTG CTACATT AATATCATCTATCTAAAATAT CAGAATAACATCGGGAGAAAC AAACGCTCACCAATCGCAAGA GACCGGTATGTCCTGAACAAG AATAAGAAAC CAAATAGCAA TCGCACCATACGCAAAGACAC CGCC ACGTTCCAGCCGGAAC TTTTCGTCAGTTTTGCTCAGT CGGATCGTCAATTTTTTCACG TTATACCAAG AAGAGTAATA AGAGGCTTTACGTTGGGAAGA AAAA TAAAATATGTTGCATC TGTTCAAAATCCAATAAATCA TACGAGTAAATGTACCCCGGT GAATTCG CTC GAG TAGAGGATCCCCGGGTACC
G G A T T A T T T A C A T T G G C A G A T T C A C C A G T C A C A C G A A G G T A T A T T C C T G A T T A C T T T T A C C T T G C T T C T G T A A T G C A A A T A C A G T A G G G C T T A A A G A T A A T C T A A G A A C G C G A G C A A T C C A T A G C T A T C T T A C C A A A A G A A T A C C A T T A G C A A G G C C A C C A T A A G C G T C A T A C A T A G C G G G C C A G T A C A A A C T A G A A T A A T A C C C T C A G C A G C G A C C A G C G C T T G A C A A G A A C C G G T C A G G T G C A A A A G A A G T T A A G C G G A C A A C T A A A G T A C G A T T A A C A G G G T G A G A A A G G C C A A T C A T C A A C C C G T C G G A T T C A A G C T T G C A T G C C T G C A G G T C G A C T C

CATTCTGGCCAACAGAGAT GGA AAG TTGAGGACCAGTAATAA CAA CAGATGATGG TCGTCGCTATTAATTGTACT ATATTCTGAA TCAATTTGAGAATCGCC AATCCGCGTTTTAGCGAACC AAG CCGGAAACGTCACCAATATGAAGCCCTTTTT TACAGCAGAG TGATTGGCTTTTGATGA AACGCCTGTAGCA GAACGTTGCC AACCCAAGACAGCATCG AACCAGATATTCATTACCCA GGT TGCCAGAGGG TGTCTGGAAGTTTCAAGCAT ATCACTAGCG CTGTCGGAGACAGTCAA GCCTCCGTGGGAACAAA AGT GCC ACGTTGTAAAACGACG

A G A A C C C T T C T G A C C T G A A A G C G T A A G A A T A C G T A A G G A A T T C A T C A A T A T A A T C A G T A A C A A A T T T T C C C T T A G A G T A A A T G T A A C A A C G C C A A C A T T A T C A A C C C G A C T T G C G G G A A T T A T T T A A A G T A A G C A G A T T G G C A A C A T G A A A C C A T C G A T C G G A A C G A G T G T A C T G G T A A G G A T T A G T C C A C A G A C A G C C C A A A G G A A A G G G T A G C A A C G G C A T C T T T G A T C A A C G T A A C A A T C A T T A T A T A G T A A A A T G T T T G T C A G A T T C C A T A T A A C A G T A T A G T A G C A T C A A T A T G A T A T A C T A G C A G G C G G A T T G A C C G T G G T A A C G C C A G G G T T T T C C C A G T C A C G

TGAATGGCTATTAGTCTTT AAT+TTT CACAGAC TGGATCAGTTGAGG GATTGTT CCTTGAAAACATAATATACCT GGCAGACTATATAT TAATTTA TTTTGAAGCCTTCGCCTGTTG AAG+ACAGCCATGG CCGAACA CAGCACCGTAATATAAAGGAG ACGGGAAAA+ACAG AGTTTTA ATAGTTAGCGTAAAGAGAATA TTTGAAACAACTTC CAGAGGC CTGCTCATTC+TAACACTCTA AGCGTAACTGGCAG ACTGGAT ATTCCCAATTCTCTAT+TAAG CTAGCTCTACTATG AACCGTT TGGGATAGGTCATCGTAAATC GGC+TTAAGTTGAA GGGGGATGTGCTGCAA

A A T G C G C G A A C T G A T A G C C C T A + A C A T C G C C A T T A A A A T C A A T + A C T T C T G A A T A A T G G G A T G A G C G A T A G C T T A G A T + A T A T A A G G C A T T T T C G A G C C A G A A C G A + T C A A G A T T A G T T G C T T A A A C + G A A G G A A A C C G A G G A A T A C C A G T A G C G A C A G A A T + A A A T C G T C A G T G C C T T G A G T A A C C T C A + A T C T A A A G T T T T G T C A A G G G G A C T A A A G A C T T T T T C C T A A G + T A A G G C T T G C C C T G A T A A G C + A T A C T G C G G A A T C + C C T G A G C G A A C G A G T A G A T T + G C A A T T G A T A A A T T A A T G C C G G G T A A C G + G G T G T A G A T G G G C G C T T C G + A T T A C G C C A G C T G G C G A A A

AGAAGATAAAACAGAG CAAAGGGTTAGAACCTT+GCAAAATACCGAACGAACCA+AGC AGTAATAAGAGAATATTGGGTTAG+GCTGAGAAGAGTAACGT TACAACGCAATAATAACT+CAAAAATTTTGCACCCAGCT+TGC ACTCAGTGCCCGTATAATTTTCATG+TGCCTTTAGCGTAAAA ACAATGAGGAAGTTTCCGAATAGAGTCTTTCCAGACGTC+AG ACCA+AATATTCATTGAT+GATTTCGAGAAACACCAGAA+AT ACGAGAGGGTAGCTATTGTGGCATT+GACCATTAGATACTTT CTCATCGTAACCGTGCG+GA GATCGGTG+GGC CTGTTGGGAAGGGC

G T G A G G C G G T C A G T A T T A A + C C G C C T G C C A A T A T C T G G T C A G A C C A T A T A G A T T T T C A G G T T T C A A T A G T C C T C C G G C T T A G G T A A A G T A C A C A A C A T G T T C A G C T A C A A T T A G C C T A A T T T G C + G G G A A T A C G T T A G C A A A C G T A G C A G A C T G T T A G C + T T G C C A T C A C A G T T A A A A G T A T T A A G A G G T A G T A A A T T T C A G C G G A G T G A A T T A A A C A A C G A A A G A G G C + A A C G A G T A T G T G A A T T A C C T T A A T C C C C C A A T C A A + A T C A G G T C A T T T C G C G C G A G C T G A A A A G T T T G A G A C A A A C A A G A G A A T C A T C T G C C C C A G G C A A A G C G + A T T C G C C A T T C A G G C T G C G C A A

GCTGAGAGCCAGCAGC CAC TGC ATAACAG GTCAAAATTATCAAACCCTCA AAATTGC AAGAATTTATAAAG AACGACAAAGACTACCTTTTT CGACAAT AGTTATCCTGACGA GCGTCTTTCC ATCCAAAAGA ACGCAGT TATAGCGCGTTATT CCT TGATGCCCCCATAGCCC TGAAACA AGTGAATTTTATTC AAGGGTAAAACAACTTTCAAC CCAACCT GCA ATGTAAATTG TATCAAATGTCAACTTTAATC ACCA TG GGCAAATGGGAGAA AGGATCTACATTTTCATTTGG AGTCTGG AAAGTTTGACTGAG TGCCGGA TGG TTC GCCAGCTTTCCGGCACCGC
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Supplementary Figure 4 

Cadnano design and oligonucleotide sequences of the highly-curved DNA origami structure H. Top positions T0-T7 are colored in gold, while 

bottom positions B0-B7 are colored in dark orange. Lateral positions L0-L13 and R0-R13 are colored in green and blue, respectively. Edge positions 

E0-E19 and F0-F19 are colored in purple. Core staples are colored in black; M13 p7249 scaffold is colored in grey. List of DNA staples can be found 

in Supplementary Table 3. Additional list of functional staples utilized can be found in appendix (see Supplementary Notes). 
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T A C G T G C T C G T C A A A G C A A + A T A G T A C G C G C C C + T A G C G G + C A T T A A G C G C G G C G G G T G T G + G G T T A C G C G C A G C + G A C C G C T A C A C T T G C C A G C G + C T A G C G + C G C T C C T T T C G C T + C T T C C C + C C T T T C T C G C C A C + T C T G A T A G A C G G T T T T T C G C + T T T G A C G T T G G A G T C C A C G T + T T T A A T + T G G A C T C T T G T T C + A A C T G G A A C A A C A C T C A A C C + A T C T C G + C T A T T C T T T T G A T + A T A A G G + T T T T G C C G A T T T C + A A C C A C C A T C A A A C A G G A T T + C G C C T G C T G G G G C A A A C C A G + T G G A C C + T T G C T G C A A C T C T + C A G G G C + G G C G G T G A A G G G C + T C A G C T G T

GCTCTGAT+TAACGAGGAAAGCACGTTA AGTTGTCGAATTGTTTGTAAA ATCATCTTCTTTTGC+AGGTA T+TTATCACACGGTCGGTATT TTGGTTTAATACCCGTTCTTG TCAGTTAA+CTCCCGTCTAAT CCCTCAATCGGTTGAATGTCG GCTGGCGGCGGCTCT+TGGTG GG+GTACTAAACCTCCTGAGT AAGCTGTTTAAGAAATTCACC TCGTTCCG+TAAGTAACATGG TGAATGTGGTATTCCTAAATC GACCTGTTGGAGTT+CTTCCG GG+ATAATGTTTTTGGTACAA GAATTTTAACAAAATATTAAC TGCCCGTCTCACTGGTGAAAAG+AAACCACCCTGG

C T T T A A T C G G C C T C C T G T T T A G C T C C C G T C T A A T A C T T C T A T A A T A C G A T T G A A A T G A A T A T T G T T T C T C A A A C C A T T A A A T A C G C C T G A A T G A T A A G G A A A G C G G T A C G C G C T T C C C T G T T A G G G T G T C C C T T T T G T C T T T G C T T C C C T G T T C T G G T G G C G G T G T C A A T A C G G T G A T A C A C C T G A G G G T T C G A A A G C A A G C T G C G G T A T C A G C A G G T C G C G G A C T G C G C C T C A A C T G A T G A A T C C A T T A G T G T C T G G T T C G C T T T A A T C C T C C G A T T T A G C T T T A T T A C A G G T T T A C A A T T T A A A T T A A T G C C G C C C A A T A C G C A A A C C G C C T C T C C C C G C G C G T T

CCGTTCCTGTCTAAAATCC GGATTCTGGCGTA A ATCCT A GGGCAAAGGATT C TCGC AT TTTTCTTGATGT G TTAGGTC TATTCTTATTTA T CAGC GA TTCTCGATGAGT G TATG TT CTGACTTTGTTC T GCGCTGG GTCAATATTTAC C TCTGA C GCCTCAACCTCC T TCCG AT GGTGGCGGTTCT G ATAAACC CGGCGCAACTAT T TTCGA T ATGATTGACCGT T TTCTA T GTTATGTATCTG C TGAAGCT AAAGGTACTCTC T CTCT TG CCCGCAAAAGTA T TTTG TA TTTAACAAAAAT A GGCAC CATTAATGCAGCT GGCCGATT

T A C T C G G T G G C C T C A C T G A T T A T A A A A A C A C T T C T C C A A A A A A A T T A A T A A C G T T C T C T A A T G T A A T T A A T T T T A G A A A T T A T G A T T C C G G T G T C G A T A A A A A C G G C T T G C T T T T A T A G C G C T C A A T T A C C C T A A A T T T A A T G A A T A A T T T C G G G T G C C A A T C G T C T G A C C G G C T G G G T G G C G G T T C T G A G A T A A T G G T T G T T G T C A T T G C A C A T C A G T T C G G T T C C C T C C T G C G T A A T T C C T T T T G G C G A A T A T C A A A A G G A G C A A T G A G G T G A A A T A A A G G C T T C C T T A T T A A A A A A T G A G C T G G A C A G G T T T C C C G A C T G G A A A G C

TTGCGTGATGGACAGACTCTTT ACAACGGTTAAT TGTATTA TTACTCAAACTTTT GA GCGC AAATGAAATTGTTA GATGAAA TTCTAGTA GCTTT TATTGAT CCTACGATGAAAAT TCTCTCT T TCTCTCTGATAT CCATATG GGTGATAATTCACC GC GGTG TTGTGAATATCAAG ATACTTA GGCTCTGA GTGGT CAATTAA GTTATGCGTGGGCG ATTTATC G CTTTCAAAGTTG TAATAAT CTCTTACTATGCCT AA TTAA CAAAAATGACCTCT CTTTATT CTTGCGT TTTATC TACAATC GGCGTTCCTATTGG ATTAATGT GGGCAGTGAGCGCAACGCA

G C A A G T G A T G T T A T T A C T A A T C + A G A A G T A T T G C T T C T A T T G G C A A A A T G A T A A T G T T + G T A A A A A A A A G G T A A T T C T T A A C T A T A T G A T A C + A A C A G T G G T T T C G C G C G G T A A T G A T T G T A A A G G A + T C T T G T G G G T T A A A T T T T C C T C A A G T C G G T G A C T C + A G G G G A G G A T T T A T T T G T T A T C A A C T C C C T G A A + T G A G G A G G C T C C G A C C G A A T A T A T C G A G G C G A T C + T T C A T C T G T C C T G T T G T T C T T A T G A T A G T G T T G C G + A T A T C T C T A A G C C A T C C G G C T T A A T A G G G T T C + A A A A T T T T C C T G T G A A T T A T T T T T G A T G A G T T A G C + A C T C A T T A G G C A C C C C A G G

T+TACCAGCAAGGCC+TAGTTTGAGTTCTTCTACTCAG ACGG TGGTGGTTTCTTTGT+C CTTG T+ATGTACTGTTTCC+T AAAT A+AATTTGTATAACGCA TACA CT+TTTGCTTGCTAT+G CTGC T+TTATTGGGCTTAA+C TATT GC+TAATTCCCAAATGG TGGC T+CATTCTGGCTTTAAT CCTC G+CCTATTGGGCTTG+A TTTT C+CCTGCAAGCCTCAGC GATA TA+CGCCTGGTCTGT+A CGTT G+GTCTGGTAAACGA+G TTGA T+TATTCAGCAATTAAG TTTG T+CATTTAAAATATATG TTTT C+CAGGAAGGCCAGA+C CTTTA+CTTTATGCTTCC+CTCGTA

T T C C T G T T G C A A T G G C T G G + G T A A T A T T G T T C T + A C T C T A + C A A T T C C G C T C C T T C G T A T T + A A C T C A C A T A T A T + A A T A T T T G T G G C T T T A T A C T + T T G C T C + A A T A A G C C T T C T + A T T A T T T + A C A T T G T T T C T T G + C G A T T G T G C T G G T G A T T T T + T G G G T T C T G T T C A G A G A C T G C + T T C G A C + C T G T T A C G G T A C A + G G G A G C C T A A A A G C G G C C T T + A C A A A T + C G A A G G T C A G C C + C C A G T T C + T A T T T T G G T T T T T + C A G T C T T T T G T T G A G C T A C A + A C T A A T T C C A C A T T A C T C A G + A G G G G C + T G T T G A T G A A A G C + G T G T T G + T G G A A T T G T G A G C + A T A A C A A T

TCAAAATG+GGTATTTCCATGAGCGTTT TATTAGTTGTTAGT TGATGAT AGCAATC+GCGAAT GTTATTC AAAAAGTTTTCTCG T+AGCGT AATTAGGATGGGAT ATACCGG T+TTGACGTTAAAC GCTATTT ACAAAATAAACTTA GGTGCTA AGGGTGG+GCTCTG CGGTAAA ACTTATCCGCCTGG A+CTCAG TTTTTTTGGAGATT ATCCCGC C+TGTACTTTGTTT TCTTGAT TTATTAACGTAGAT TCTCGCT CGGGCTT+TCTTAA TAAAACA TTTGCCTTGCCTGT TT+CCTA TCTGATTATCAACC ATTTAAT TTCACACAGGAAACAGCTATGA+ATGATTACGAAT

A A A T A A T C C A T T T C A G A C G A T T G A G C G G C T C C T A A A G A T A T A G G A A T A C C G T T A T T G T T T C A A G C A A G C G T T C T T T G T C T T G C T A C T G A T T A T T T T T C T T G T T C T T A G A A A A A A A T C G T T T C A G C T A T T T T C C G T G G T G T C T T T G G T A A T A G G G A G G C G G T T C A C T G G A A T A C T G A G C A A A A C C G T G A C G T T C A A C G T G A A A A A G G T G A C G C G C G C T T G G T A T A A G A T T A C T T T T C T T C C C A A C G A A A A G C C T C T T T T T G A T G C A G C A T A T T A T G A T T T A T T G G A T T G A A T C G G G G T A C A T A T G A T C G C T C A C T C G A G C T C G G T A C C C G G G G A T C C T C T A G A G T C G A
CTGGTGAATCTGCCAATGT ACTGGTCGTGTGA T TTAGA T CATCTGATAATC T CCCGA T GACGATTTACAG C CGATTGG CTCAATTAAGCC T CAGGA T AACGCCTCGCGT A TATTT T CTTCGGTAAGAT G TGCGTTT CGGCCTTGCTAA C GGTGG C TGTATGACGCTT A CGCTA C TAGTTTGTACTG G ATTATTA TTCGCTGCTGAG T TCGCT A CGGTTCTTGTCA C CCTGA T AACTTCTTTTGC A ATCCGCT CGTACTTTAGTT C TTAAT G TTCTCACCCTTT T GACAT T CGGGTTGTTACT A CACTG CATGCAAGCTTGG CCTGCAGG

G G G T T C T A T C T C T G T T G G C C A G A A T G T C C C T T T T A T T A A C A T T G A T G A A T T G C C A T G T A A A A A T T A A T T A A T A G A T T T T G T T A A A T A T G G C G A T C T T A T C G G G A G G T T C G C T A G G A T C T T T T C T T A A A A A G G C T T T T T C A T T G G T G A C G T T T T G G C G T A T C A T C A A A A G C C A T C C A A T G C T A C A G G C G T T T T C G T C G T T C C G A T G C T G T C G G G G T T G G G T A A T G A A T A T C T G G T T A C C C C C T C T G G C A T T G C A T G A A A C T T C C A G A C A G C T A T G A C T G T C T C C G G C C G C T A C C C A C G G A G A A T C C G G C C G T C G T T T T A C A A C G T C G T G A

TTCTTACGCTTTCAGGTCAGAA CTGTGCCACGTA CTTCCTC ACAATCAGGATTAT GT AAAG AAGGATTCTAAGGG GCATCAG GTTGGCGT TACAT TCTATTG AAACCTCCCGCAAG TGGGATA A GGCTATCTGCTT TATATGT CTGCTATCGATGGT GT TCTG ACCAGTACACTCCT TAATCCT GTCTGTGG GGGCT CAATTCC AGCCGTTGCTACCC GTCAAAG T TTGTTACGTTGA TATAATG TAAACATTTTACTA GA TTCT AACTGTTATATGGA CTACTAT GGTGATT ATTGAT GTTTTAC ATCCGCCGTTTGTT ACCCAACT CTGGGAAAACCCTGGCGTT

G C G C A T T A A A G A C T A A T A G C C A + C A A A A A T A T T G T A A T T C C T G A A G T A T A A T C C A A A C + T T A C A T C G C T A T G T T T T C C A T T T A C T G C C T C T G + T A A A T T T G A T A A G A T T T A A G G C T T C A A A T A A T A C + G T A A C T T T G T T C T G C C A C C T A C T G A T T A C G G T G T C + G T G A C G T T A A A A C T T A T T T C T C T T G T T A C G C T A + T A T G A T T T A G T T C T C A A A G C C T C T G T A T G A G T G A + G A A T G A G C A G C T A G C C A G T G A C G C T A T C C A G T C C T + A A T A C A G A A T T G G G A A T C T A G T A G A A C G G T T G + T A T C A T G A T T A C C T C C C A T T A C G G T C A T A A T C G C C + G C A G C A C A T C C C C C T T T C G

T+GGTATTTTTAATG+GATGTTTTAGGGCTATCAGTTC TTCA TAACCCTTCCATTAT+A TGTA C+CGTCTTAATCTAA+T ATAT C+ATTACTGGCTCGA+A ACAG C+AATAGCAACTAAT+T TGGC G+TTTCCTCGGTTTC+T TTTA C+ACTTGATTCTGTCGC TTTT T+TCAAGGCACTGACCC AGGA A+ACAAAACTTTAGA+G GTTC A+AAAAAGTCTTTAGTC TTTT G+AGGGCAAGCCTTA+C TCTT T+CGATTCCGCAGTA+G GTCA A+AAATCTACTCGTTCG ATTG A+AATTTATCAGCTAGA GTTC T+ACACCAACGTGA+TA CCAGC+GCGTAATAGCGAA+GGCCC

C C G C C T C A C C T C T G T T T T A + T T C T G C T G G T G G T + G A C T G T + A G A T A T G G T A G G T T C T A T T C + C A C T A T T G A C T C T + T A G T T A + T G G T A C T T T A T A T + T G C G C G + C A A T T G T A G C T G G + G T G T T T + T T A T T C C G T T A T T + T T G T A T G T G T C T G A C G C T A A + G G A T T A T G T T A T A C G G G C A C + T G T C T C + C C T A A C G T C T G G A + G C T T T C T A A A T G G A A A C T T C + C A G T G T + T G T T C T G G T G T T T + C A A A A T + C T T C A A T G A A T A T + A G G G T A A A G T A T C T A A T G G T + A A T G C C A C G C T A C C C T C T C C + C A T C G A + C G T T A C G A T G C G C + A G C A C C + T C G C C C T T C C C A A + G T T G C G C A

GGCACTGT+CAGGCGGTGTTAATACTGA TTTGCCAACTGACC TAATTTT TGACGTT+ACCTGA TAAATTC AACCCAACCTAAGC C+TTGTC TGCATTAGCTGAAC AGGATAA T+TAACTGGCAAAT TTTTGGG ATTTTCTACGTTTG CGCTACA AAAAGATG+AAACG TAACTGT CTCTTAATACTTTC T+ATTTA TTCTCACTCCGCTG CCCGTTT C+TTGCCTCTTTCG ACTACTC ATAAGGTAATTCAC AGGGGGA GACCTGA+TTTGAT GCGAAAT CTTTTCAGCTCGCG CA+AATA TCTTGTTTGCTCCA ATGCACG GCCTGAATGGCGAATGGCGCTT+CCTGGTTTCCGG

T T T T C A T T T G C T G C T G G C T C T C A G C G T A G A T A T T G A T T G A G G T G C A A A A A A T C T A C G C A A T A T T T T G A C G G A G G T T A A A A A G C T T T A C A T G T T G T T T A T T G T A A G A T T C T A G G C T C T G G A A A C C A G T T C C T A A C A T A C T G C G T G A A A A C G C T A A T A A G G G G G C G G G G C A T A T G T T T C A G A A T A A A G A A A A A A A C T G T T G A A A G T T A T T T T A T T T T A G G T T G G T G C C A A T T T A A T G A T T A A A G T T G G C A T T T G T T A T G G T C A T T C T A C C A T T T C C C C A A A T G A A A A T A T C T C T G A C T C T C A G G C A A T C T G G C A G C A C C A G A A G C G G T G C C G G A A A G C T G G C T G G A G T G

GCAAGGTGATGCTTTAGAT ATATTTGAGGTTCA GTTTG G ATTTCTGTTTTAC TCTTT T CTCAGACCTATG TAGTCT G TGGACAGAATTA GTCGTC C GTTAGCGTTGGT ACGCTC G GTCTTAATCATG AATAAGGA GAAAATGCCGAT ATGACC T CGAAATAGGCAG AGGTTC T AAAATCCCATAC TGTTTAGC AGTGGCATTACG CTTCGT C ACCATCTCAAGC AATTAA A TGAACTGTTTAAA CGTTTTC AACAGGTTATTG TAGCTA A ATAGCCTTTGTAG ACCTG G CGTCCCCTCAAA TGTCGT CTGAGGCCGATAC CGATCTTC

CTTTGACGAGCACGTA GTACTAT+TTG CTA+GGGCGC GCTTAATG+CCG ACCCGCCGC CGTAACC+CAC GTC+GCTGCG CAAGTGTAGCG TAG+CGCTGG AGGAGCG+CGC AAG+AGCGAA AGAAAGG+GGG AGA+GTGGCG AACCGTCTATC AAA+GCGAAA ACTCCAACGTC AAA+ACGTGG GAGTCCA+ATT GTT+GAACAA GTGTTGTTCCA GAT+GGTTGA AGAATAG+CGA TAT+ATCAAA GGCAAAA+CCT GTT+GAAATC GTTTGATGGTG GCG+AATCCT TGCCCCAGCAG CCA+CTGGTT GCAGCAA+GGT CTG+AGAGTT CACCGCC+GCC ACAGCTGA+GCCCTT

T A A C G T G C T T T C C T C G T T A + A T C A G A G C T T T A C A A A C A A T T C G A C A A C T T A C C T + G C A A A A G A A G A T G A T A A T A C C G A C C G T G T G A T A A + A C A A G A A C G G G T A T T A A A C C A A A T T A G A C G G G A G + T T A A C T G A C G A C A T T C A A C C G A T T G A G G G C A C C A + A G A G C C G C C G C C A G C A C T C A G G A G G T T T A G T A C + C C G G T G A A T T T C T T A A A C A G C T T C C A T G T T A C T T A + C G G A A C G A G A T T T A G G A A T A C C A C A T T C A C G G A A G + A A C T C C A A C A G G T C T T G T A C C A A A A A C A T T A T + C C G T T A A T A T T T T G T T A A A A T T C C C A G G G T G G T T T + C T T T T C A C C A G T G A G A C G G G C A

AGGAGGCCGATTAAAG AAC CTA ACGGGAG ATCGTATTATAGAAGTATTAG TCA GAGAAACAATATTCATT GGCGTATTTAATGGTTT TCA GCGTACCGCTTTCCTTATCAT ACAGGGAAGC GGACACCCTA ACAGGGAAGCAAAGACAAAAG AGA GTATTGACACCGCCACC CCTCAGGTGTATCACC GAAC CTGATACCGCAGCTTGCTTTC CCGCGACCTG GAGGCGCAGT ACACTAATGGATTCATCAGTT CCAG GGAGGATTAAAGCGAA GTAATAAAGCTAAATC ACCT CGGCATTAATTTAAATTGTAA GCGTATTGGG GCGGTTT AACGCGCGGGGAGAG

G G A T T T T A G A C A G G A A C G G T A C G C C A G A A T C C T A G G A T T A A T C C T T T G C C C G G C G A A T A C A T C A A G A A A A C G A C C T A A T A A A T A A G A A T A A G C T G T C A C T C A T C G A G A A C C A T A A A G A A C A A A G T C A G A C C A G C G C G T A A A T A T T G A C G T C A G A G G G A G G T T G A G G C A C G G A A T A G A A C C G C C A C C C G G T T T A T A T A G T T G C G C C G A T C G A A A A C G G T C A A T C A T A T A G A A A C A G A T A C A T A A C G A G C T T C A G A G A G T A C C T T T A A G A G C A T A C T T T T G C G G G A C A A A T A A T T T T T G T T A A A T G T G C C A G C T G C A T T A A T G A A T C G G C C

TCAGTGAGGCCACCGAGTA TAA TTA AGAAGTGTTT TTTTGG TTT ACGTTATTAA TAGAGA AAATTAATTACAT ATAATTTCTA CACCGGAATC TATCGA AGCAAGCCGTTTT TATAAA CGC GGTAATTGAG AAATTATTCATTAAATTTAG CACCCG TGG GTCAGACGAT CAGCCG CAGAACCGCCACC ACCATTATCT AATGACAACA ATGTGC GGGAACCGAACTG GCAGGA TAC CAAAAGGAAT TTGCTCCTTTTGATATTCGC ACCTCA TTC AAGCCTTTAT ATAAGG AGCTCATTTTTTA CTGTCC AAC CCAGTCGGGA GCTTT

A A A G A G T C T G T C C A T C A C G C A A A T T A A C C G T T G T T A A T A C A A A A A G T T T G A G T A A T C G C G C T A A C A A T T T C A T T T T T T C A T C T A C T A G A A A A A G C A T C A A T A A T T T T C A T C G T A G G A G A G A G A A A T A T C A G A G A G A C A T A T G G G G T G A A T T A T C A C C G C C A C C C T T G A T A T T C A C A A T A A G T A T T C A G A G C C A C C A C T T A A T T G C G C C C A C G C A T A A C G A T A A A T C C A A C T T T G A A A G A T T A T T A A G G C A T A G T A A G A G T T T T A A A G A G G T C A T T T T T G A A T A A A G A C G C A A G G A T A A A G A T T G T A C C A A T A G G A A C G C C A C A T T A A T T G C G T T G C G C T C A C T G C C C

TAGTAATAACATCACTTGC TCT+GAT CAATACT TTTGCCAATAGAAG TTATCAT TTTTTTTAC+AACA ATTACCT TCATATAGTTAAGA GTT+GTA CGCGCGAAACCACT TCATTAC AGA+TCCTTTACAA ACCCACA TTGAGGAAAATTTA CACCGAC TCCTCCCCT+GAGT AAATAAA AGGGAGTTGATAAC TCA+TTC CGGTCGGAGCCTCC ATATATT GAA+GATCGCCTCG GACAGAT CATAAGAACAACAG ACACTAT TAGAGATAT+CGCA GATGGCT ACCCTATTAAGCCG TTTT+GA AATTCACAGGAAAA CAAAAAT AGT+GCTAACTCAT CCTGGGGTGCCTAATG

C T G A G T A G A A G A A C T C A A A C T A + G G C C T T G C T G G T A + A C C G T G + A C A A A G A A A C C A C C A C A A G A + G G A A A C A G T A C A T + A A T T T T G C G T T A T A C A A A T T + T T G T A C + A T A G C A A G C A A A + A G G C A G G + T T A A G C C C A A T A A + A A A T A C C A T T T G G G A A T T A + G C G C C A A T T A A A G C C A G A A T G + A G A G G T + C A A G C C C A A T A G G + C A A A A G C T G A G G C T T G C A G G + G T A T C T + A C A G A C C A G G C G + T A A A C G C + T C G T T T A C C A G A C + C T C A A C T T A A T T G C T G A A T A + A C A A A C A T A T A T T T T A A A T G + A A A A A G + T C T G G C C T T C C T G + G T A C G A G + G G A A G C A T A A A G + T A A A G

GCCATTGCAACAGGAA TTG+TAGAGT+AGAACAATATTAC+CCA GTT+AATACGAAGGAGCGGAA CACAAATATT+ATATATGTGA ATT+GAGCAA+AGTATAAAGC TGT+AAATAAT+AGAAGGCTT GCACAATCG+CAAGAAACAA AACAGAACCCA+AAAATCACCA CAG+GTCGAA+GCAGTCTCTG TTAGGCTCCC+TGTACCGTAA TCG+ATTTGT+AAGGCCGCTT ATA+GAACTGG+GGCTGACCT CAAAAGACTG+AAAAACCAAA TGGAATTAGT+TGTAGCTCAA ACA+GCCCCT+CTGAGTAATG CAC+GCTTTCATCA CAATTCCA+CAA ATTGTTAT+GCTCA

A A A C G C T C A T G G A A A T A C C + C A T T T T G A A C T A A C A A C T A A T A A T C A T C A A T T C G C + G A T T G C T G A A T A A C C G A G A A A A C T T T T T A C G C T + A A T C C C A T C C T A A T T C C G G T A T G T T T A A C G T C A A + A A A A T A G C T A A G T T T A T T T T G T T A G C A C C C A G A G C + C C A C C C T T T T A C C G C C A G G C G G A T A A G T C T G A G + T A A T C T C C A A A A A A A G C G G G A T A A A C A A A G T A C A + G A T C A A G A A T C T A C G T T A A T A A A G C G A G A T T A A G A + A A G C C C G T G T T T T A A C A G G C A A G G C A A A T A G G + A A G G T T G A T A A T C A G A A T T A A A T A T T C G T A A T C A T + T C A T A G C T G T T T C C T G T G T G A A

CTGAAATGGATTATTT CGT AAT GCCGCTC GGTATTCCTATATCTTTAGGA TAAC CGCTTGCTTGAAACAA AGTAGCAAGACAAAGAA ATC TTTCTAAGAACAAGAAAAATA AAACGATTTT AAAATAGCTG CTATTACCAAAGACACCACGG CTCC TATTCCAGTGAACCGC GTCACGGTTTTGCTCAG AAC CGCGTCACCTTTTTCACGTTG ATACCAAGCG AAGTAATCTT GAGGCTTTTCGTTGGGAAGAA AAAA ATAATATGCTGCATCA TTCAATCCAATAAATC CCGA GAGTGAGCGATCATATGTACC CGAGCTC TAC GGG TCGACTCTAGAGGATCCCC
A C A T T G G C A G A T T C A C C A G T C A C A C G A C C A G T A T C T A A A G A T T A T C A G A T G A T C G G G A C T G T A A A T C G T C G C C A A T C G G G C T T A A T T G A G A T C C T G A A C G C G A G G C G T T T A A A T A A A T C T T A C C G A A G C A A A C G C A T T A G C A A G G C C G G C C A C C G A A G C G T C A T A C A T T A G C G G C A G T A C A A A C T A C T A A T A A T C T C A G C A G C G A A A A G C G A T T G A C A A G A A C C G G T C A G G A G C A A A A G A A G T T T A G C G G A T A A C T A A A G T A C G G A T T A A C A A A G G G T G A G A A A A T G T C A A G T A A C A A C C C G T C A G T G C C A A G C T T G C A T G C C T G C A G G

GCCAACAGAGATAGAACCC CTG ATT TAAAAGGGAC TGTTAA CAA GGCAATTCAT TTACAT TATTAATTAATTT TAACAAAATC TCGCCATATT ATAAGA AGCGAACCTCCCG GATCCT AAA CTTTTTAAGA AACGTCACCAATGAAAAAGC CGCCAA ATA GCTTTTGATG TGGATG ACGCCTGTAGCAT AACGACGAAA ACAGCATCGG ACCCCG TATTCATTACCCA ACCAGA GTA GCCAGAGGGG GTCTGGAAGTTTCATGCAAT ATAGCT GTC GCCGGAGACA GTAGCG GGATTCTCCGTGG GCC ACG ACG ACGTTGTAAA TCACG

T T C T G A C C T G A A A G C G T A A G A A T A C G T G G C A C A G G A G G A A G A T A A T C C T G A T T G T A C C T T T C C C T T A G A A T C C T T C T G A T G C A C G C C A A C A T G T A C A A T A G A C T T G C G G G A G G T T T T A T C C C A T A A G C A G A T A G C C A C A T A T A A C C A T C G A T A G C A G A C C A G A A G G A G T G T A C T G G T A G G A T T A C C A C A G A C A G C C C G G A A T T G G G G T A G C A A C G G C T C T T T G A C A T C A A C G T A A C A A C A T T A T A T A G T A A A A T G T T T A T C A G A A T C C A T A T A A C A G T T A T A G T A G A A T C A C C A T C A A T G T A A A A C A A C A A A C G G C G G A T A G T T G G G T A A C G C C A G G G T T T T C C C A G

CTATTAGTCTTTAATGCGC TTG+TGG AATATTT ACTTCAGGAATTAC GGATTAT AAACATAGCGATGTAA+GTTT AGGCAGTAAATGGA TTA+CAG AAGCCTTAAATCTTATCAAAT TAC+GTATTATTTG ACAAAGT CCGTAATCAGTAGGTGGCAGA TAACGTCAC+GACA TAAGTTT ATA+TAGCGTAACAAGAGAAA TTGAGAACTAAATC AGAGGCT CTGCTCATTC+TCACTCATAC GCGTCACTGGCTAG CTGGATA TTCCCAATTCTGTATT+AGGA ACCGTTCTACTAGA GATA+CA ACCGTAATGGGAGGTAATCAT TGC+GGCGATTATG CGAAAGGGGGATGTGC

G A A C T G A T A G C C C T A A A A C A T C + C A T T A A A A A T A C C + A T G A A T + A T A A T G G A A G G G T T A T A C A A + T T A G A T T A A G A C G + G A T A T T + T C G A G C C A G T A A T + G C T G T A + A T T A G T T G C T A T T + G G C C A A + G A A A C C G A G G A A A + C T A A A G C G A C A G A A T C A A G T + G A A A A G G G T C A G T G C C T T G A + A T C C T C + T C T A A A G T T T T G T + T G A A C G A C T A A A G A C T T T T T + T A A A A G + T A A G G C T T G C C C T + C A A G A C + T A C T G C G G A A T C G + A T G A C C G A A C G A G T A G A T T T + T C A A T T C T A G C T G A T A A A T T + T G A A C T A + T C A C G T T G G T G T + A G G G C C + T T C G C T A T T A C G C + G C T G G

AACAGAGGTGAGGCGG TAGAACCTACCATATCT+ACAGTC+ACCACCAGCAGAA+TAA GCA+ATATAAAGTACCA+TAACTA+AGAGTCAATAGTG+GAA ACAA+AATAACGGAATAA+AAACAC+CCAGCTACAATTG+CGC GACA+GTGCCCGTATAACATAATCC+TTAGCGTCAGACACAT ACTG+GAAGTTTCCATTTAGAAAGC+TCCAGACGTTAGG+GA CCCT+ATATTCATTGAAG+ATTTTG+AAACACCAGAACA+AC GATG+GGAGAGGGTAGCGTGGCATT+ACCATTAGATACTTTA GCT+GCGCATCGTAACG+TC AAGGGCGA+GGT TGCGCAAC+TTGGG

T C A G T A T T A A C A C C G C C T G + A C A G T G C C G G T C A G T T G G C A A A A A A A T T A T C A G G T + A A C G T C A G A A T T T A G C T T A G G T T G G G T T G A C A A + G G T T C A G C T A A T G C A T T A T C C T A T T T G C C A G T T A + A C C C A A A A C A A A C G T A G A A A A T T G T A G C G C G T T T + C A T C T T T T A C A G T T A G A A A G T A T T A A G A G T A A A T + A C A G C G G A G T G A G A A A A A C G G G C G A A A G A G G C A A + G G A G T A G T G T G A A T T A C C T T A T T C C C C C T A T C A A A + T C A G G T C A T T T C G C C G C G A G C T G A A A A G T A T T + T G T G G A G C A A A C A A G A C G T G C A T C C G G A A A C C A G G + A A G C G C C A T T C G C C A T T C A G G C

CAGCAGCAAATGAAAA AGC GAG CTACGCT TTTTTGCACCTCAATCAATAT AGAT GT CGTCAAAATATTGC TAAAGCTTTTTAACCTC ATG AAACAAC TAGAATCTTACAAT TTCCAGAGCC AGGAACTGGT GTATGTT AGCGTTTTCACGCA ATT ATATGCCCCGCCCCCTT CTGAAAC TTTCTTTATT TTT AATAAAATAACTTTCAACAGT AACCTAA ACC TTAAATTGGC AACAAATGCCAACTTTAATCA CCAT GA GGAAATGGTAGAAT AGATATTTTCATTTGG TCAG CTGAGAG TGCTGCCAGATTGC CTTCTGG CCG GCA CACTCCAGCCAGCTTTCCG

A T C T A A A G C A T C A C C T T G C T G A A C C T C A A A T A T C A A A C C G T A A A A C A G A A A T A A A G A A C A T A G G T C T G A G A G A C T A C T A A T T C T G T C C A G A C G A C G A C C A A C G C T A A C G A G C G T C C A T G A T T A A G A C T C C T T A T T A T C G G C A T T T T C G G T C A T A C T G C C T A T T T C G G A A C C T A G T A T G G G A T T T T G C T A A A C A C G T A A T G C C A C T A C G A A G G G C T T G A G A T G G T T T A A T T T T T T A A A C A G T T C A G A A A A C G C A A T A A C C T G T T T A G C T A T C T A C A A A G G C T A T C A G G T C T T T G A G G G G A C G A C G A C A G T A T C G G C C T C A G G A A G A T C G

0

1

L

2

3

4

5

6

7

T

8

9

10

11

B

12

13

14

15

16

17

R

18

19

B

3 4 11 12 19

L 2 5 10 13 18

1 6 9 14 17 R

0 7 8 15 16

T

223



 

 

 

Supplementary Figure 5 

Characterization of folded DNA origami nanoscaffolds. (a) Assembly of the folded bare 

origami structures L, Q, H was initially assessed via agarose gel (2%) electrophoresis analysis. 

Lanes containing marker DNA ladder (1kb) and M13 single-stranded p7249 scaffold (Sc) were 

also included. (b) Structure of folded bare origami L, Q and H was further validated using negative-

stain transmission electron microscopy (TEM; scale bars: 100 nm) and atomic force microscopy 

(AFM; scale bars: 200nm).  
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Supplementary Figure 6 

Unspecific interaction of curved DNA origami with model lipid membranes, mediated by 

Mg2+. Binding of bare origami H (labeled with Alexa488, green) to the surface of DOPC GUVs 

and DOPC:DSPC:Chol (2:2:1 mol ratio) supported lipid bilayers (SLBs) in a 5 mM Tris-HCl, 1 

mM EDTA, pH 8.0 buffer containing (a) 20mM MgCl2 and no NaCl or (b) a buffer with no MgCl2 

and 150mM NaCl. DOPC GUVs were electroformed in sucrose solutions iso-osmolar to the 

buffers utilized ((a) 70 mOsm kg-1 and (b) 300 mOsm kg-1). For fluorescence detection, 

membranes were labeled with 0.1 % DiD (far-red fluorescent dye). As seen in panel (a), presence 

of a buffer containing 20 mM MgCl2 and no NaCl led to extensive binding of DNA origami 

(labeled with green fluorescent dye Alexa488) to DOPC GUVs and to the liquid-ordered phase of 

DOPC:DSPC:Chol SLBs (dark regions). On the other hand as seen in panel (b), in the presence of 

a buffer containing no MgCl2 and 150 mM NaCl, binding of DNA origami to the surface of 

membranes was not observed, as green fluorescence can be only found in solution and not at the 

membrane level. Scale bars:10 µm. 
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Supplementary Figure 7 

Distinct amounts of MgCl2 and NaCl in solution modulate the attachment of bare DNA 

origami to membranes. Varying amounts of MgCl2 and NaCl in solution allowed (a-b) or 

prevented (c) unspecific attachment of bare DNA origami H (labeled with Alexa488, green) to 

lipid bilayers (DOPC:DSPC:Chol (2:2:1) SLBs; labeled with DiD, red). Upon addition of MgCl2 

to the lipid bilayer displayed in panel (c), binding of bare origami H to the membrane could be 

triggered (d). Scale bar: 10 µm. 
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Supplementary Figure 8 

Specific attachment of curved origami H to lipid membranes via (a) high affinity polyvalent neutravidin-biotin interaction and (b) covalent 

attachment. (a) DOPC GUVs containing 2 mol% of biotin-modified DOPE molecules (DOPE-Cap-Biotin) were incubated with DNA nanostructures 

H containing 3’-TEG-biotin functionalized oligonucleotide staples at origami positions B0, B3 and B6. Upon addition of neutravidin (1 µM) and after 

less than 1h incubation, extensive binding of the curved nanostructure to the surface of GUVs was observed. (b) DOPC GUVs containing 10 mol% of 

maleimide-modified DOPE lipid molecules (MPB-DOPE) were incubated with DNA origami nanostructure H containing protected 3’-thiol-modified 

strands (3’-C3-SS at positions B0, B3 and B6). Upon addition of excess concentration of reducing agent (TCEP), which would cleave the protecting 

disulfide bonds, and after overnight incubation, the thiolated DNA origami nanostructure H was able to be crosslinked to GUVs, although not as 

efficiently as with the biotin-neutravidin strategy. For these experiments, GUVs were fluorescently-labeled with 0.05 mol% Atto655-DOPE (red) and 

the DNA origami nanostructures with Atto488-modified strands (green). Moreover, while for strategy (a) standard imaging buffer (5 mM Tris-HCl, 1 

mM EDTA, 5 mM MgCl2, 300 mM NaCl, pH 8.0) was utilized, in case of strategy (b) we utilized a 10 mM Hepes, 5 mM MgCl2, 300 mM NaCl, pH 

7.4 buffer, as the thiol-maleimide crosslinking requires a lower pH and a non-amine buffer. Scale bars: (a) 10 µm; (b) 5 µm. 
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Supplementary Figure 9 

Side-specific attachment of origami H to GUVs through hybridization with TEG-chol 

modified oligonucleotides. Origami H nanostructures (labeled with Atto488, green) presenting 

18 nucleotide-long single-stranded overhangs (a-b) on the concave surface – origami H3ext 

(overhangs extending form the 3’-end of bottom positions B0, B3 and B6) or (c-d) on the convex 

surface – origami HI3ext (overhangs extending form the 3’-end of top positions T0, T3 and T6), 

were added to DOPC GUVs (labeled with Atto655-DOPE, red) previously pre-incubated with 2 

µM of 3’/5’-modified TEG-chol modified complementary oligonucleotide strands. Panels (a,c): 

when 3’-end TEG-chol functionalized oligonucleotides were used (proximal orientation), 

hybridization between the DNA overhangs on origami H and membrane-bound complementary 

strands will occur in tight proximity to lipid bilayer surface. Due to the bulkiness and curvature of 

this nanostructure, membrane attachment of structure H3ext via its concave surface, will be 

hindered (a). On the other hand, significant binding of structure HI3ext to membranes via its more 

accessible convex surface was still observed (c). Panels (b,d): when 5’-end TEG-chol 

functionalized oligonucleotides are used (distal orientation), hybridization between the DNA 

overhangs on origami H and membrane-bound complementary strands will be more accessible. 

Independently of the concave (H3ext; (b)) or convex (HI3ext; (d)) binding orientation, strong 

attachment of the curved origami H could be achieved. Scale bars: (a, b) 10 µm; (c, d) 5 µm.  
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Supplementary Figure 10 

Attachment of origami H to GUVs through TEG-chol modified 18bps overhangs. 

Nanostructures H (labeled with Atto488, green) displaying 3’/5’-TEG-chol modified 18 

nucleotide-long DNA strands, now directly hybridized during origami folding with single-stranded 

overhangs at the bottom positions B0, B3 and B6, were used. (a) Proximal positioning of the three 

TEG-chol modifications on the concave surface (H3TC3; TEG-Chol at 3’-end) resulted in virtually 

no attachment of origami H to DOPC GUVs (labeled with Atto655-DOPE, red), even after longer 

incubation times (i.e. overnight). (b) On the other hand, by placing the three TEG-Chol moieties 

at the distal end of the 18 bps overhangs (H3TC5; TEG-Chol at 5’-end) strong membrane binding 

of origami H after 1h of incubation was observed. Hence, the increase of the linker length from ~2 

nm (length of the TEG moiety) to ~8 nm (combined length of the TEG moiety and the 18 bps 

overhang) rendered the cholesteryl moieties on the curved and bulky origami H nanostructures 

less sterically hindered and more accessible for binding macroscopically flat lipid membranes, 

such as GUVs. Scale bars: 5 µm. 
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Supplementary Figure 11 

Side-specific attachment of origami Q to GUVs through TEG-chol modified 18bps 

overhangs. We further assessed binding to DOPC GUVs (labeled with Atto655-DOPE, red) of 

origami Q nanostructures (labeled with Atto488, green), previously functionalized with three 

TEG-chol moieties at the distal 5’ (TC5) and proximal 3’ (TC3) ends of 18 bps overhangs at the 

concave (bottom positions B0, B3 and B6; origami Q3TCX), convex (top positions T0, T3 and T6; 

origami QI3TCX) or lateral non-curved (right positions R0, R6 and R12; origami QR3TCX) origami 

surfaces. (a-c): Independently of the surface of the nanostructures carrying the modifications, 

distal positioning of the TEG-chol moieties (TC5) resulted in strong binding of the DNA origami 

Q nanostructures to GUVs. (d-f): When the TEG-chol moieties were positioned in close proximity 

to the DNA origami core (TC3), membrane binding of those nanostructures depended on which 

surface was carrying hydrophobic modifications. If the cholesteryl groups are localized on the 

concave surface of origami Q (origami Q3TC3, (d)), no significant binding to GUVs was reported. 

On the other hand, if the cholesteryl groups were localized on the convex surface of origami Q 

(QI3TC3, (e)) and mainly lateral surface with essentially zero curvature (QR3TC3, (f)), significant 

(yet weaker) membrane binding was observed. Scale bars: 10 µm. 
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Supplementary Figure 12 

Dependence on the length of the TEG-chol modified linkers/overhangs, for attaching origami 

Q to GUVs. Independently of the origami surface on which the distal 5’-TEG-chol moieties 

localized, for structure Q3TC5 (cholesteryl anchors at the concave facet of origami Q) and QI3TC5 

(cholesteryl anchors at the convex facet of origami Q) with 18 bps overhangs (linker length ~8 

nm), a strong attachment to lipid membranes was observed ((a) and (c), respectively). However, 

shortening those overhangs to 9 bps (linker length ~5 nm) resulted in a strong reduction of the 

binding of curved nanostructures Q to the GUVs. For such linker length, weak binding to lipid 

membranes was still observed for structure QI3TC5 with hydrophobic anchors at the convex 

origami facet (d); yet no membrane binding of structure Q3TC5 with anchors at the concave origami 

surface (b) was reported. Overall, placing the TEG-chol moieties at the distal end of 18 bps 

overhangs provided an appropriate linker length for overcoming steric hindrance during the 

attachment of our nanostructures to GUVs. Scale bars: 5 µm. Green fluorescence: origami labeled 

with Atto488; red fluorescence: membranes labeled with Atto655-DOPE. 
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Supplementary Figure 13 

Effect of the number and positioning of TC5 anchors on the binding of curved DNA origami nanostructures to freestanding lipid bilayers via 

their concave surface. TEG-chol moieties placed at the distal 5’-end of 18 bps overhangs (from here on called TC5) were used at the bottom concave 

origami positions. In the absence of TC5 anchors and using imaging buffer containing 5 mM MgCl2 and 300 mM NaCl, bare origami structures H0 

and Q0 did not attach to GUVs (a, g). Use of single TC5 anchors on structures H1 and Q1 did not promote efficient membrane binding of the 

nanostructures (b, c, h, i), unless the TC5 anchor was placed at the most accessible edge position B6 (d, j), indicating that steric hindrance clearly 

affected membrane binding. Strong binding to GUVs was however achieved upon incorporation of 3× TC5 anchors; independently of the anchors 

being localized at the central positions B2, B3 and B4 (H3center, (e); Q3center, (k)) or distributed across the concave facet at positions B0, B3 and B6 (H3, 

(f); Q3, (l)). Although membrane attachment did not greatly depend on the degree of curvature of our nanostructures, only in the presence of the 

moderately-curved structure Q3 a significant amount of GUVs (~ 18%) displayed tubular-like outwards deformations (arrows, (m)). Scale bars: 10 

µm. Green fluorescence: origami labeled with Atto488; red fluorescence: membranes labeled with DOPE-Atto655. 
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Supplementary Figure 14 

Membrane binding of curved DNA nanostructures with single TC5 anchors is dependent on 

the linker/overhang length. The use of a longer linker/overhang (27 bps, instead of the typical 

18 bps) did not improve membrane binding of nanostructures H1B3 and Q1B3 containing a single 

TC5 anchor at the central concave position B3 (a-d). On the other hand, shortening the 

linker/overhang from 18 to 9 bps for single TC5 anchors placed at the most accessible edge 

position B6, fully abolished the weak membrane binding observed for both DNA origami H1B6 

and Q1B6 nanostructures (e-h). Scale bars: 5 µm. Green fluorescence: origami labeled with 

Atto488; red fluorescence: membranes labeled with Atto655-DOPE. 
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Supplementary Figure 15 

Dependence on DNA origami bulk concentration and degree of curvature of DNA nanostructures with concave membrane-binding interface, 

for triggering membrane tubulation upon hyperosmotic stress. Structures L3, Q3 and H3 (possessing 3× TC5 anchors at positions B0, B3 and B6) 

bound to DOPC GUVs were imagined after at least 1h incubation period. Osmotic stress was achieved by increasing outer osmolarity in 10%. For 

origami structure Q3 (moderate curvature; (c-e, k-m)), triggering the generation of outwards positively-curved membrane tubules on GUVs upon 

hyperosmotic stress was dependent on the overall bulk concentration of origami utilized (at least 5 nM bulk concentration was required; deformations 

marked with arrows). On the other hand, origami structures L3 (no curvature; (a-b, i-j)) and H3 (strong curvature; (f-h, n-p) were not able to 

significantly affect the shape of vesicles upon hyperosmotic stress. Note that even at increased bulk concentrations (10 nM), highly-curved origami H3 

was not able to trigger significant membrane deformation on GUVs, e.g. tubulation (panels (h, p)). Scale bars: 10 µm. Green fluorescence: origami 

labeled with Atto488; red fluorescence: membranes labeled with DOPE-Atto655. 
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Supplementary Figure 16 

Dependence on DNA origami bulk concentration and curvature of membrane anchoring origami facet, for triggering membrane deformations 

upon hyperosmotic stress with origami Q nanostructures. Data presented in this figure complements the previous data presented in Supplementary 

Fig. 15, being acquired under the same conditions. When compared with control vesicles in the absence of origami (a, h), no significant effect on 

vesicle shape was observed upon hyperosmotic stress when origami Q with no hydrophobic anchor (structure Q0) was present in solution, independently 

of the bulk concentration assayed (b-c, i-j). Regarding membrane-bound nanostructure Q variants with three TC5 anchors, for structure QR3 (displaying 

anchors at the non-curved origami lateral surface) no significant membrane deformations on GUVs were observed even at increased QR3 bulk 

concentrations (f-g, m-n). However, evagination/invagination-type of membranes deformations (marked with arrows) were observed for the membrane-

bound convex QI3 structure (d-e, k-l). Similarly to what was reported for the concave Q3 structure (Supplementary Fig. 15), we also observed a 

dependence on the total bulk concentration of QI3 required for triggering deformations upon vesicle deflation; as shape changes only significantly 

happened at higher concentrations (5 nM). Scale bars: 10 µm. Green fluorescence: origami labeled with Atto488; red fluorescence: membranes labeled 

with DOPE-Atto655. 
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Supplementary Figure 17 

Generation of membrane deformations upon hyperosmotic stress by concave nanostructures Q and H bearing increased number of TC5. Data 

presented in this figure complements previous data presented in Supplementary Fig. 15 and Supplementary Fig. 19, being acquired under the same 

conditions. The moderately-curved structure Q7 bearing 7× TC5 anchors required lower bulk concentrations for triggering membrane tubulation 

(marked with arrows) on GUVs (a-c, g-i), when compared with its counterpart bearing only 3× TC5 anchors (Supplementary Fig. 15c-e and k-m). For 

the highly curved DNA origami H7 bearing 7× TC5 anchors on their concave surface, on the other hand, despite the increase in the number of 

hydrophobic anchors resulting in a stronger membrane attachment, we were still not able to observe significant membrane deformations upon 

hyperosmotic stress (i.e. tubulation) on GUVs (d-f, j-l). Scale bars: 10 µm. Green fluorescence: origami labeled with Atto488; red fluorescence: 

membranes labeled with DOPE-Atto655. 
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Supplementary Figure 18 

Incorporation of polymerizing moieties and its effect on the ability of moderately-curved origami Q nanostructures to deform lipid vesicles. 

(a-e): Negative-stain TEM images of bare origami Q structure variants displaying different types and number of polymerizing moieties. Addition of 

polymerizing staples at the marked ends (in green; upper schemes) of monomeric structure Q (a) allowed for tip-to-tip blunt end stacking interactions 

(b-d). By varying the number of blunt ends from 5 to 7 and 13, it was possible to control the size of the resulting oligomers – dimers, trimers and even 

tetramers (marked as stars). Polymerization could also be triggered via lateral sticky interactions (e). Incorporation of 14 protrusions capable of 

hybridizing with their counterparts on each side of the origami Q, resulted in the formation of sheet like polymers of origami Q in solution (marked 

with asterisks). (f-j): Variants of structure Q3 (labeled with Atto488, green) with and without corresponding polymerizing moieties were pre-incubated 

at 3 nM with DOPC GUVs for at least 1h and generation of membrane tubulations was followed after hyperosmotic stress. Altogether, at such 

intermediate DNA origami bulk concentration, we could only report significant tubulation events (marked with arrows) on GUVs upon osmotic shock 

were for the membrane-bound variant Q3-S14 bearing lateral polymerization strands (j). Scale bars: (a-e) 100 nm; (f-j) 10 µm.  
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Supplementary Figure 19 

Requirements for induction of membrane deformations by BAR-mimicking origami 

structure Q can be tuned via number of cholesteryl anchors or lateral polymerization. For 

structure Q3 (a-d), only at high bulk concentrations (5 nM) tubulation of almost all GUVs was 

triggered. For structure Q7 with additional cholesteryl anchors (i-j), the minimal bulk 

concentration required to trigger membrane tubulation was shifted to lower values (2 nM). 

Similarly for structure Q3-S14 displaying lateral sticky overhangs (e-h), lower total bulk 

concentration were necessary for triggering vesicle tubulation when compared to structure Q3 (a-

d). Representative confocal images at the equatorial plane of GUVs incubated for at least 1 h with 

varying concentrations of Atto488-labeled DNA nanostructures are shown after hyperosmotic 

stress. The red dotted line indicates the concentration regime (total bulk concentration of origami 

Q) required for triggering membrane tubulation on freestanding lipid bilayers. Scale bars: 5µm. 
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Supplementary Figure 20 

Dependence on the total bulk concentration of linearly-polymerizing concave structure Q3-E13, for triggering membrane shape deformations 

upon hyperosmotic stress. Data presented in this figure was acquired under the same conditions as the one displayed in Supplementary Fig. 19 and 

Supplementary Fig. 15. (a) Schematic representations of the polymerization strategy based on tip-to-tip stacking interactions via 2× 13 blunt ends, 

based on the polymers observed by negative-stain TEM with bare structure Q-E13. (b-g) Similar to what we observed for the monomeric membrane-

bound structure Q3 (Supplementary Fig. 19 and Supplementary Fig. 15), membrane-bound structure Q3-E13 (labeled with Atto488, green) only 

triggered significant membrane deformations (i.e. tubulation) upon hyperosmotic stress at high bulk concentrations (5 nM). Scale bars: (a) 100 nm; (b-

g) 10 µm. 
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Supplementary Figure 21 

GUV shape deformations triggered by membrane-bound convex variants of origami Q with 

lateral polymerization strands. Data presented in this figure complements previous data 

presented in Fig. 3 and Supplementary Fig. 16, being acquired under the same conditions. (a) 

Schematic representation of the formation of origami sheets by sticky interactions between 

neighboring origami structures displaying 2× 14 lateral TATATA overhangs, based on the 

observations by negative-stain TEM imaging of origami Q-S14. (b-g) For vesicles incubated with 

high DNA origami bulk concentrations (i.e. 5 nM) of convex polymerizing structure QI3-S14, 

stable evagination-like deformations were reported upon hypersosmotic (e, f). Additionally, a 

small percentage of vesicles (~15%) presented inwards tubules decorated with DNA origami 

(arrows), even in the absence of osmotic shock (d, g). Scale bars: (a) 100 nm; (b-g) 10 µm. Green 

fluorescence: origami labeled with Atto488; red fluorescence: membranes labeled with DOPE-

Atto655. 
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Supplementary Figure 22 

Determination of DNA origami particle density at the surface of GUVs by point FCS and 

fluorescence intensity calibration. (a) Representative auto-correlation curve obtained for 

structure Q3 on the upper pole of a GUV at low (ρ = 0.06) surface densities. (b) Linear relationship 

(calibration curve in red) between fluorescence intensities (obtained via confocal microscopy) and 

surface densities (determined for ρ < 0.2, where the one-component two-dimensional diffusion 

model (equation 2) is valid) recovered for membrane-bound DNA origami on individual GUVs by 

FCS (open circles). 
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Supplementary Figure 23 

Attachment of origami structures L3 and H3 to GUVs upon overnight incubation. (a, c) 

Representative membrane binding curves obtained using a Langmuir isotherm fit (equation 1) for 

the flat origami structure L3 (a) and the highly-curved origami structure H3 (c). Each data point 

corresponds to the fluorescence intensity at the membrane level of DNA origami structures 

(labeled with 3× Atto-488 dyes) for single GUVs. (b, d) Shape variations observed for GUVs 

incubated overnight with structures L3 and H3. Even at high densities of membrane-bound DNA 

origami (≥ 100 particles per µm2, estimated from the fluorescence brightness via calibration curve 

of Supplementary Figure 22b), no tubulation events were observed for GUVs incubated with the 

flat structure L3 (b) or highly-curved structure H3 (d). Unlike the GUVs incubated with 

moderately-curved structure Q3 (Fig. 4c), GUVs with membrane-bound structures L3 and H3 

displayed, at best, increased flaccid membrane deformations. Scale bars: 10 µm. 
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Supplementary Figure 24 

Apparent dissociation constants (Kd) recovered from the analysis of membrane binding of 

different variants of curved DNA origami scaffolds. Affinity of various cholesteryl-modified 

BAR-mimicking DNA nanostructures to DOPC GUVs was determined after overnight incubation, 

from the analysis of the fluorescence intensity of membrane-bound DNA origami as a function of 

total bulk concentration. Representative binding curves obtained and respective Langmuir 

isotherm fits (equation 1) are depicted in Fig. 4a and Supplementary Fig. 23. Values correspond 

to the average Kd (± st. dev.): L3 (ntotal = 288 GUVs; n = 131-157 GUVs per fit, 2 repeats), Q3 

(ntotal = 277 GUVs; n = 83-100 GUVs per fit, 3 repeats), Q3-S14 (ntotal = 84 GUVs; n = 36-48 

GUVs per fit, 2 repeats), Q7 (ntotal = 117 GUVs; n = 53-64 GUVs per fit, 2 repeats), H3 (ntotal = 

106 GUVs; n = 48-58 GUVs per fit, 2 repeats) and H7 (ntotal = 103 GUVs; n = 47-56 GUVs per 

fit, 2 repeats). ΔGbinding was calculated via ΔG = RTlnKd. 

 

  

 
L3 Q

3

Q
3-

S
14 Q

7
H
3

H
7

0.1

1

10
K

d
 (

n
M

)

-23.0

-22.5

-22.0

-21.5

-21.0

-20.5

-20.0

-19.5

-19.0

-18.5


G

b
in

d
in

g
 (

k
B
T

)

243



 

 

 
 

Supplementary Figure 25 

Efficiencies of vesicle tubulation for origami structure Q3-S14 bearing lateral 

polymerization overhangs and origami structure Q7 possessing additional cholesteryl 

anchors. Percentages of GUVs with (closed bars) and without (open bars) outwards tubules 

observed after overnight incubation at different total bulk concentrations of DNA origami 

structures Q3-S14 (a; ntotal = 118 GUVs; n = 13-31 GUVs per origami concentration) and Q7 (b; 

ntotal = 297 GUVs; n = 55-64 GUVs per origami concentration). 
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Supplementary Table 1
List of DNA staples - Origami L

Start End Sequence Length Type Pos.

00[031] 03[027] CTTAATGCGCCAGCACGTTTCCTCGGATTAAA 32 #0_core

00[053] 06[049] CGTAACCACCACGAAGTATTAGACTTTTAAAAG 33 #0_core

00[073] 06[070] AGTGTAGCGGTTCAATTACCTGAATAATTTCA 32 #0_core

00[094] 06[091] GCGGGCGCTAGTTTGAAATACCGTTAGAAAAA 32 #0_core

00[115] 06[112] GAAGGGAAGAAATTCCAAGAACGAGATCGTAG 32 #0_core

00[136] 06[133] CCGGCGAACGTCATTAGACGGGAGAAGAGATA 32 #0_core

00[157] 06[154] AACCGTCTATCGCGACATTCAACAGATCACCG 32 #0_core

00[178] 06[175] CTCCAACGTCAACCAGAGCCGCCGTAACAAAT 32 #0_core

00[199] 06[196] TCCACTATTAAAGGTTTAGTACCAGATTTTCA 32 #0_core

00[220] 06[217] TGTTCCAGTTTTCTTAAACAGCTATTATATTC 32 #0_core

00[241] 06[238] GCCCGAGATAGAGCCGGAACGAGTTATGAACG 32 #0_core

00[262] 06[259] CCCTTATAAATCCACATTCAACTGCTCATAAC 32 #0_core

00[283] 06[280] TGGTTCCGAAAAACAGGTCAGGAAATTAGAGC 32 #0_core

00[304] 06[301] GGCGAAAATCCTGACCCTGTAATTTTCATATA 32 #0_core

00[325] 06[322] CCACGCTGGTTGCATTAAATTTTTTTCTGGCC 32 #0_core

00[346] 01[346] GAGAGAGTTGCTGAGACGGGCA 22 #0_core

02[034] 07[048] TTGTGCTATAACGACGCAAATAGAAGAACTCAAACTAGTAAC 42 #0_core

02[346] 02[329] GGCGCCAGGGTGGTTTTT 18 #0_core

03[028] 03[063] GGGATTTTAGACCCGTCAAACAATTCGACAACTACA 36 #0_core

03[064] 03[105] AAATAAGATGATGAAACATAATTTCGATAAATAAGGCGTCCA 42 #0_core

03[106] 03[147] ATCAAACCAAGTACCGCACAGAGAGCTGAACACCCTGAAATA 42 #0_core

03[148] 03[189] TGGTGGGAGGGAAGGTAAACCACCCTTGACAGGAGGTTGGCC 42 #0_core

03[190] 03[231] CGGATCAGAACCGCCACCCGGTTTAGATAGTTGCGCCGATCG 42 #0_core

03[232] 03[273] AAATCGGTCAATCATAAGGAAAGATATACATAACGCCAATCA 42 #0_core

03[274] 03[315] AAGCGTACCTTTAATTGCAAAGCTACGGGAGAAGCCTTTATT 42 #0_core

03[316] 03[346] GTAATCAGCTCATTTTTTTAATGAATCGGCC 31 #0_core

04[048] 10[028] TTTGCAGAGAGGAACGGTACGTCTGTCCTTGCTCA 35 #0_core

04[090] 04[049] AACACTAGTAACATCAAGAAAACAAAAGTTCGTATTAAATCC 42 #0_core

04[132] 04[091] GTAATTTTACTCATCGAGAACAAGCAGAAATAAATAAGAATA 42 #0_core

04[174] 04[133] CGATTAGCCATATTGACGGAAATTATATTCCAAAGTCAGAGG 42 #0_core

04[216] 04[175] CCATCGTATCTCAGAACCGCCACCCTTATAAGGCAGGTCAGA 42 #0_core

04[258] 04[217] GGCATGGTAGGAACCGAACTGACCAATGTGCAATGACAACAA 42 #0_core

04[300] 04[259] GGATAGCATTCCTTTTGATAAGAGGTAGCTAAGGAATTACGA 42 #0_core

04[342] 04[301] CAGCTGCATAACCAATAGGAACGCCATTAAATTTCAACGCAA 42 #0_core

05[049] 05[048] CGTTATTGGAGGAGCGAATTGAGGAAGGATATAGATTCCGAA 42 #0_core

05[070] 05[069] TTACATTCGATGTGAGCCTTTTACATCGAAAATACCAATTAA 42 #0_core

05[091] 05[090] TCATAATAAAAAGCCATGCAAATCCAATTATATATTTCGGAA 42 #0_core

05[112] 05[111] TTTTTATAAGCTTATCAGATAAGTCCTGTAGCATGTAAGCCG 42 #0_core

05[133] 05[132] GCTAATAGAAATGAAAAATCCAAATAAGTTAGCAGCCTGAGC 42 #0_core

05[154] 05[153] AAAGGTGGCCAGTAGCAAGAAACGCAAATCATAGAAATCATT 42 #0_core

05[175] 05[174] TGATATTAGTACCGTTACCACCGGAACCAACCCTCAGGGCCT 42 #0_core

05[196] 05[195] CCACCACGATTTCGTCGGGGTTTTGCTCCAATATAAGCAGAG 42 #0_core

05[217] 05[216] CGCATAAAATCGTCACTTTTTTCACGTTCCTTTAATTGCCCA 42 #0_core

05[238] 05[237] AAAGAGGTCTAATCTTATACCAAGCGCGCCGATAAATCTTTG 42 #0_core

05[259] 05[258] GAGCAACAGTTTTGCATGGGAAGAAAAAACTATTACAAGTAA 42 #0_core

05[280] 05[279] TTGCGGACATGCAACTTCAAAAAGATTAACTAATTCGCATTT 42 #0_core

05[301] 05[300] TTTTAGACAAGGGTGAAAATCATACAGGTGCCTCAGAAAAAT 42 #0_core

05[322] 05[321] AATAATTTCCAACCCGCCGGTTGATAATACCAAATATTCAAA 42 #0_core

06[048] 00[032] TTTGAACAACTACAGGATTTAACCCGCCGCG 31 #0_core

06[069] 00[054] TTTGATGCTTTGTTATTCATTCACGCTGCG 30 #0_core

06[090] 00[074] GCCTGTTTCAAAACTTAATGGGGCGCTGGCA 31 #0_core

06[111] 00[095] GAATCTTTACGACTCCTTATCAGCGAAAGGA 31 #0_core

06[132] 00[116] ACCCATGAAAATTCGGAAGCGGGCGAGAAAG 31 #0_core

06[153] 00[137] TCACCACAATCAAGCAAAAGGACGGGGAAAG 31 #0_core

06[174] 00[158] AAATCACCGCCATTAACCACCAAGGGCGAAA 31 #0_core

06[195] 00[179] GGGATAGGGTTGCAACTCAGGAGAACGTGGA 31 #0_core

06[216] 00[200] GGTCGAGGAGCCTCGTGAATTGGAACAAGAG 31 #0_core
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06[237] 00[221] GTGTAATCGCCTGAGTTACTTGGTTGAGTGT 31 #0_core

06[258] 00[242] CCTCGACAACATAGAGGAATACAAAAGAATA 31 #0_core

06[279] 00[263] TTAATCGCGTTTTAAAACTCCTCGGCAAAAT 31 #0_core

06[300] 00[284] TTTTAAATAAAGGCAACATTATGTTTGATGG 31 #0_core

06[321] 00[305] TTCCTGTATAAGCCAAAATTCTGCCCCAGCA 31 #0_core

06[342] 00[326] TCACATTAATTGCGTCACCAGAGCAAGCGGT 31 #0_core

07[021] 04[021] CCTGAGTTAACCGTAAAAGAGCCAGAAT 28 #0_core

07[049] 07[090] ATTATCATTTTGTGATATTACCTTTTTTAATGGACTTTTTAG 42 #0_core

07[091] 07[132] TATCATATGCGTCTAAATTACCGCGCCCAATAGAAAACAAGA 42 #0_core

07[133] 07[174] ATTGAGTTAAGCTGTCGACTTGAGCCATTTGGGCAGACTCAT 42 #0_core

07[175] 07[216] TAAAGCCAGAATCGAGAGCAAGCCCAATAGGAACAAACTGAG 42 #0_core

07[217] 07[258] GCTTGCAGGGAGTATCCAGACCAGGCGCATAGGCGGATTTAC 42 #0_core

07[259] 07[300] CAGACGACGATAATATTGCTGAATATAATGCTGAAGCAATGC 42 #0_core

07[301] 07[342] AATGCCTGAGTAGATTGTAGCCAGCTTTCATCACATAAAGTG 42 #0_core

08[048] 08[021] ACTAGGAGCACTATCGGCCTTGCTGGTA 28 #0_core

08[090] 08[070] TACGAGAAAAAACAGTACATA 21 #0_core

08[132] 08[112] GCAACGTCACAAGCAAATCAG 21 #0_core

08[174] 08[153] CTCCACCCTAATTAGAGCCAGC 22 #0_core

08[216] 08[196] TTAAGGCTCCCCATGTACCGT 21 #0_core

08[258] 08[238] GCGAACTAACTGGCTGACCTT 21 #0_core

08[300] 08[280] AGCAAAATTTAGCTCAACATG 21 #0_core

08[347] 11[347] ATACGAGCCGGATCCTGTGATTCGTAATGCCTGCAGGT 38 #0_core

09[021] 15[048] AACAGGAAAAACATAAGAATAATAGCCCTAAAAGGTCGTTTG 42 #0_core

09[063] 09[062] AACGGTCAATATCATAGAATCCTTGAGTCAGATATAAACAAT 42 #0_core

09[105] 09[104] TAATAATAGAAGACGGAGGTTTTGAACAGAACGGCAGAAAAA 42 #0_core

09[147] 09[146] ATAAGAAATCACCTTAGCAGCACCGTCATACATGACCACGGA 42 #0_core

09[189] 09[188] GATAACACTGAGAAAGTTAGCGTAACCCTCAAGGTCCAGGCG 42 #0_core

09[231] 09[230] AACGGTCAAGAGTACATTCAGTGAATCACTCATCAAAAGTAC 42 #0_core

09[273] 09[272] GAAAGTTAAATAAGATTCTGCGAACGATAGTCAATGAAGCCC 42 #0_core

09[315] 09[314] CAAAACGAGTAAATGTCACGTTGGTGAACTAGCGTAAAGCCC 42 #0_core

10[027] 11[048] TGGAAATGATTATTTACATTGGCAGATGAAAGGGA 35 #0_core

11[070] 11[090] AATAACCTTGCTATGCTGAAC 21 #0_core

11[112] 11[132] GTATTCTAAGAATTATCCCTA 21 #0_core

11[154] 11[175] CATTACCATTAGCAGAGCCCCA 22 #0_core

11[196] 11[216] CAGTACAAACTAATAATAACC 21 #0_core

11[238] 11[258] CAAGAACCGGATAGGACGTAA 21 #0_core

11[280] 11[300] AGTACGGTGTCTATCCAATGA 21 #0_core

11[322] 05[342] GGATTCTCCGTGGCATCATGGCGCGTTGCGCTCAC 35 #0_core

12[048] 18[028] AGATGCAGTTTCACCAGTCACCCTGAAATATATTA 35 #0_core

12[090] 12[049] AATCGGTAATCTGTAAATCGTCGCTACAGTTTCCTGATTATC 42 #0_core

12[132] 12[091] TTTTTTTATCGCGAGGCGTTTTAGCGTTATGGCTTAATTGAG 42 #0_core

12[174] 12[133] ATGATGAACCAAGGCCGGAAACGTCAGCAATTACCGAAGCCC 42 #0_core

12[216] 12[175] ACGAGGCGACAACGCCTGTAGCATTCTTAGACATGGCTTTTG 42 #0_core

12[258] 12[217] AGTAAAGTCATTCATTACCCAAATCACCCCGACAGCATCGGA 42 #0_core

12[300] 12[259] ATCAATAACGGAAGTTTCATTCCATAAGCGAGAGGGGGTAAT 42 #0_core

12[335] 12[301] TTGGAACAAACGGCGGATTTCATAGTCAAATCACC 35 #0_core

13[049] 13[048] AATTCATGACTACCATCTGAACCTCAAAGCAAATCAAATGGC 42 #0_core

13[091] 13[090] TTTAACAGAAAAGTACTCTGAGAGACTACCACTATATCCATA 42 #0_core

13[133] 13[132] AAGTAAGGCAATACCCTAACGAGCGTCTTGAGCCATAAAGAA 42 #0_core

13[175] 13[174] AGTGTACACGTTAATGCGGTCATAGCCCTCATCACCGACAGG 42 #0_core

13[217] 13[216] CAACGGCCGGTAAAATAACTTTCAACAGTCAGGAATTGGTAG 42 #0_core

13[259] 13[258] TTAGACTAAATGCTTTCTTTAATCATTGTGTTATACCAATGT 42 #0_core

13[301] 13[300] TATTCAAAACAAAGGCATTTGGGGCGCGCCGTAGCATTATGA 42 #0_core

14[048] 14[049] TGATTAGTTGGCGTCTAAAATATCTTCACCAGAAGATAATCC 42 #0_core

14[090] 14[091] TAATTTTATATACTAGACAAAGAACGCCAGTATCACAACATG 42 #0_core

14[132] 14[133] ACAAAAATAAACCGGATTTTTTGTTTAAGAAACCATAGCCGA 42 #0_core

14[174] 14[175] TTTAAAATCAAAGACCCTCAGAGCCGCTGAATTTAAATAAGT 42 #0_core

14[216] 14[217] TGAGGCAACTAAATATCTCCAAAAAATGCGGGAACGAGGCTT 42 #0_core

14[258] 14[259] AATACTGGCTCACTCGTTAATAAAACGAGAGGCAGAGCGTCC 42 #0_core

14[300] 14[301] GATAAAATAGTACAGCAAAGAATTAGATTCAAAGATCTAGCT 42 #0_core

14[342] 08[322] TAAGTTGGGTAAAGAGCTGTTAGACATTAAATGTG 35 #0_core

15[021] 12[021] CGAACTGCGTGGCACTTCTGAACGACCA 28 #0_core

15[049] 15[090] GATTATACTTCTTAACAAACATAGCGATAGCTTTGGGTAGGC 42 #0_core

15[091] 15[132] AGAGGCATTTTCAATGGCCTTAAATCAAGATTAACAAGTTAC 42 #0_core
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15[133] 15[174] CAGAAGGAAACCAATAAATCAGTAGCGACAGAATCATCGGGG 42 #0_core

15[175] 15[216] TCAGTGCCTTGAGACTGATCTAAAGTTTTGTCGGGAAACTAA 42 #0_core

15[217] 15[258] AGACTTTTTCATAAAAAAGGCTTGCCCTGACGAGAACTGCGG 42 #0_core

15[259] 15[300] AATCGTCATAAATATTAGTAGATTTAGTTTGACTACTATTAA 42 #0_core

15[301] 15[342] TGCCGGAGAGGGGTAATAGATGGGCGCATCGTAATTACGCCA 42 #0_core

16[062] 16[021] TTGAATAATGGAAGGGAATATCTCATCGCCATTAAAAATACC 42 #0_core

16[104] 16[063] CTGAGCCAGTAATAAGCTTAGGTAGATTAAGACGCTGTCAGG 42 #0_core

16[147] 16[105] GAAGAGGAAACGCAATAGCCAGTTGTTGCTATTTTGCATTCAG 43 #0_core

16[189] 16[148] TGAGTAACAGTGCCCGTCATCTTTTCAAGTTTGCCTTTCGTA 42 #0_core

16[231] 16[190] ACTGAGGAAGTTTCCATATAGAAATCTTTCCAGACGTTAGGC 42 #0_core

16[273] 16[232] GACTATTCATTGAATCCATTTTAAGAAACACCAGAACGATAC 42 #0_core

16[315] 16[274] ATCTAGCTATTTTTGAGTCAATTCCATTAGATACATTTCCCT 42 #0_core

16[347] 19[347] CGGGCCTCTTCGGCCATTCCCGGAAACAGGAAGATCGC 38 #0_core

17[021] 17[034] TGAGGCGGTCAGTC 14 #0_core

17[329] 16[316] GCCATTCCTACCGTGCATCTGCCGGTA 27 #0_core

18[027] 19[062] ACACCGCAATGAAAAATCTAAAGCATCACCTTGATCAAAATTATTTGCA 49 #0_core

18[062] 18[063] AAATAAACAGAATATATTAATTAATTTTCCTCAATAGAACAG 42 #0_core

18[104] 18[105] AGACGACACCGCCTGTAACCTCCCGACTTTACAATTTTGTCC 42 #0_core

18[146] 18[147] TTATTACCAAAAGGTGCCAATGAAACCACCGACTGTAACTCC 42 #0_core

18[188] 18[189] TTCTGAATGAGAAGGACACAGACAGCCCTTGAATTTTTATTA 42 #0_core

18[230] 18[231] CCTAAAATACTTTGACACGTAACAAAGCTGAATTGGGACCAA 42 #0_core

18[272] 18[273] ATAAATCGGGAAGCAATAACAGTTGATTAGGGTCAATTGACC 42 #0_core

18[314] 18[315] AGCAAACCCATGTCAAGACCGTAATGGGAAGGGGACGTCTGG 42 #0_core

19[063] 19[104] CGTAATGAATTTATCAAAATCATAGGCGACAAAAGGTAAAGT 42 #0_core

19[105] 19[146] AATTCTATCCTGAATCTTACCAACGCAAAAGAACTGGCATGA 42 #0_core

19[147] 19[188] TTAAGGCGCGTTTTCATCGGCATTTTCCCCCTGCCTATTTCG 42 #0_core

19[189] 19[230] GAACCCTGTATGGGATTTTGCTAAACACGTAATGCCACTACG 42 #0_core

19[231] 19[272] AAGGCCTTGAGATGGTTTAATTTCAAAAACAGTTCAGAAAAC 42 #0_core

19[273] 19[314] GAGAAAACCTGTTTAGCTATATTTTCTATCAGGTCATTGCCT 42 #0_core

19[315] 12[336] GAGAGACGACAGTATCGGCCTCCAGGCAATCGCCAGGGTTTTGCCAAGC 49 #0_core

11[049] 11[069] ATTATCATCATAAACAGTATG 21 #1_bottom B0

11[091] 11[111] GCTCAACAGTAGCAACAATCG 21 #1_bottom B1

11[133] 11[153] GCAATAGCTATCCATATAAAC 21 #1_bottom B2

11[176] 11[195] GTAAGCGTCATGATTAGCAC 20 #1_bottom B3

11[217] 11[237] TCAGCAGCGAAAAGCGATTGA 21 #1_bottom B4

11[259] 11[279] AGAAGTTTTGCCGATTGCAAA 21 #1_bottom B5

11[301] 11[321] AAGGCCGGAGACATGTACCTC 21 #1_bottom B6

08[069] 08[049] AAATTCGCCCGGAACAAAGAA 21 #2_top T0

08[111] 08[091] ATTCCCATCTATACAAATTCT 21 #2_top T1

08[152] 08[133] ATTTATTTCCAATAATAAGA 20 #2_top T2

08[195] 08[175] AAGTGCCGTGGAAAGCGCAGT 21 #2_top T3

08[237] 08[217] CAAGATTTGTTAAAGGCCGCT 21 #2_top T4

08[279] 08[259] TTACTTCAAAAAACCAAAATA 21 #2_top T5

08[321] 08[301] AGACAGGAAATGTGTAGGTAA 21 #2_top T6

02[055] 02[035] AATTTACAATAGATAATACAT 21 #3_left L0

02[076] 02[056] AAGCAAAAGCGCGCAGAGGCG 21 #3_left L1

02[097] 02[077] CTACCGTGTATCTTCTGACCT 21 #3_left L2

02[118] 02[098] ACGGTATTAATAATCGGCTGT 21 #3_left L3

02[139] 02[119] AAGAATTAAAATAACATAAAA 21 #3_left L4

02[160] 02[140] CCCGATTGATTACCAGCGCCA 21 #3_left L5

02[181] 02[161] CCGCCAGCATCAGAGCCGCCA 21 #3_left L6

02[202] 02[182] CGGCCACCCATAGGTGTATCA 21 #3_left L7

02[223] 02[203] CCTGATACCTCAGCTTGCTTT 21 #3_left L8

02[244] 02[224] ATGCGCAGACCGCGACCTGCT 21 #3_left L9

02[265] 02[245] AAAATGCAGTCATCAGTTGAG 21 #3_left L10

02[286] 02[266] CATTAGAGAGAACCAGACCGG 21 #3_left L11

02[307] 02[287] TGACTTTTGAATCGGTTGTAC 21 #3_left L12

02[328] 02[308] CTTGTTAAAACGTTAATATTT 21 #3_left L13

17[035] 17[055] AAACCCTCAATCTTAGAACAA 21 #4_right R0

17[056] 17[076] TTGCGTAGATTTAGAAGAGTT 21 #4_right R1

17[077] 17[097] TTTAACCTCCGGAGAATATCA 21 #4_right R2

17[098] 17[118] ATAAACAACATGCCCAGCTCC 21 #4_right R3

17[119] 17[139] AGAGCCTAATTTATAACGGAG 21 #4_right R4

17[140] 17[160] TATGTTAGCAAAAGCGTCATT 21 #4_right R5
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17[161] 17[181] ATTAGCGTTTGCATAAACAAT 21 #4_right R6

17[182] 17[202] GAAAGTATTAAGAGTAAATTC 21 #4_right R7

17[203] 17[223] AGCGGAGTGAGATAAACGGAA 21 #4_right R8

17[224] 17[244] AGAGGCAAAAGAAGTAGTAAA 21 #4_right R9

17[245] 17[265] TTACCTTATGCGCCCTCAAAA 21 #4_right R10

17[266] 17[286] ATCAGGTCTTTACGCAAATCT 21 #4_right R11

17[287] 17[307] GAAAAGGTGGCAAGATCTAGA 21 #4_right R12

17[308] 17[328] GAATCGATGAACAGTTTGAGC 21 #4_right R13

00[020] 00[005] GCTACAGGGCGCGTAC 16 #5_ends E0

00[361] 00[347] TCACCGCCTGGCCCT 15 #5_ends F0

01[005] 01[020] TATGGTTGCTTTGACG 16 #5_ends E1

01[347] 01[361] ACAGCTGATTGCCCT 15 #5_ends F1

02[020] 02[005] TTAGAATCAGAGCGGG 16 #5_ends E2

02[361] 02[347] GCGGTTTGCGTATTG 15 #5_ends F2

03[005] 03[020] AGCTAAACAGGAGGCC 16 #5_ends E3

03[347] 03[361] AACGCGCGGGGAGAG 15 #5_ends F3

04[020] 04[002] CCTGAGAAGTGTTTTTATA 19 #5_ends E4

04[358] 04[343] GGGAAACCTGTCGTGC 16 #5_ends F4

05[002] 05[020] ATCAGTGAGGCCACCGAGT 19 #5_ends E5

05[343] 05[358] TGCCCGCTTTCCAGTC 16 #5_ends F5

06[020] 06[002] TGTAGCAATACTTCTTTGA 19 #5_ends E6

06[358] 06[343] TAATGAGTGAGCTAAC 16 #5_ends F6

07[002] 07[020] TTAGTAATAACATCACTTG 19 #5_ends E7

07[343] 07[358] TAAAGCCTGGGGTGCC 16 #5_ends F7

08[020] 08[005] ATATCCAGAACAATAT 16 #5_ends E8

08[361] 08[348] CAATTCCACACAAC 14 #5_ends F8

09[005] 09[020] TACCGCCAGCCATTGC 16 #5_ends E9

09[343] 09[361] TGAAATTGTTATCCGCTCA 19 #5_ends F9

10[020] 10[005] ACCTACATTTTGACGC 16 #5_ends E10

10[361] 10[343] CCCCGGGTACCGAGCTCGA 19 #5_ends F10

11[005] 11[020] TCAATCGTCTGAAATG 16 #5_ends E11

11[348] 11[361] CGACTCTAGAGGAT 14 #5_ends F11

12[020] 12[002] GTAATAAAAGGGACATTCT 19 #5_ends E12

12[358] 12[343] TAAAACGACGGCCAGT 16 #5_ends F12

13[002] 13[020] GGCCAACAGAGATAGAACC 19 #5_ends E13

13[343] 13[358] CCCAGTCACGACGTTG 16 #5_ends F13

14[020] 14[002] CAGACAATATTTTTGAATG 19 #5_ends E14

14[358] 14[343] TGTGCTGCAAGGCGAT 16 #5_ends F14

15[002] 15[020] GCTATTAGTCTTTAATGCG 19 #5_ends E15

15[343] 15[358] GCTGGCGAAAGGGGGA 16 #5_ends F15

16[020] 16[005] GAACGAACCACCAGCA 16 #5_ends E16

16[361] 16[348] AAGGGCGATCGGTG 14 #5_ends F16

17[005] 17[020] GAAGATAAAACAGAGG 16 #5_ends E17

17[343] 17[361] AGGCTGCGCAACTGTTGGG 19 #5_ends F17

18[020] 18[005] CTGCAACAGTGCCACG 16 #5_ends E18

18[361] 18[343] TCCGGCACCGCTTCTGGTG 19 #5_ends F18

19[005] 19[020] CTGAGAGCCAGCAGCA 16 #5_ends E19

19[348] 19[361] ACTCCAGCCAGCTT 14 #5_ends F19
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Supplementary Table 2
List of DNA staples - Origami Q

Start End Sequence Length Type Pos.

00[031] 03[027] ACAGGGCGCGTACTTTCCTCGAGCGGAGACAG 32 #0_core

00[053] 06[049] CCCGCCGCGCTTATTACAAACAATTTTGAGTAAC 34 #0_core

00[073] 06[070] CGCTGCGCGTACTGAGCAAAAGAGGATTTGAA 32 #0_core

00[094] 06[091] GCGCTGGCAAGTACCGACCGTGTATGCCTGTT 32 #0_core

00[115] 06[112] AGCGAAAGGAGCAGAACGGGTATTAAAGGAATC 33 #0_core

00[136] 06[133] TGGCGAGAAAGGAGACGGGAGAATTAAGATAACC 34 #0_core

00[157] 06[154] AACCGTCTATCATTCAACCGATTACACCGTCA 32 #0_core

00[178] 06[175] ACTCCAACGTCGAGCCGCCGCCACTAATAAAT 32 #0_core

00[199] 06[196] AGTCCACTATTATTTAGTACCGCCCGATTTTCA 33 #0_core

00[220] 06[217] GTTGTTCCAGTTTTCTTAAACAGCTGATATAT 32 #0_core

00[241] 06[238] ATAGCCCGAGATACTTAGCCGGAACAGGACAGAT 34 #0_core

00[262] 06[259] AAATCCCTTATAAATACCACATTCCCAACACTA 33 #0_core

00[283] 06[280] GATGGTGGTTCACTCCAACAGGTGTGGATGGC 32 #0_core

00[304] 06[301] CCAGCAGGCGAACATTATGACCCTAGAACCCT 32 #0_core

00[325] 06[322] AAGCGGTCCACGAAAATTCGCATTGGAATTCGC 33 #0_core

00[346] 01[346] CTGGCCCTGAGATTTCACCAGTGA 24 #0_core

02[034] 07[048] AGAATCAGTTAGTAGTTGTAGTATCGGCCTTGCGATTCATTTT 43 #0_core

02[346] 02[329] GCGTATTGGGCGCCAGG 17 #0_core

03[028] 03[063] GAACGGTACGCCTACATTTCGTATTAAATCCGCG 34 #0_core

03[064] 03[105] CAGAGAAACAAACATCAATCTTCTAAGGCGTTAAATAAATA 41 #0_core

03[106] 03[147] ATCGTACCGCACTCATCGAATAACACCCTGAACAAAGGTT 40 #0_core

03[148] 03[189] TACCGGAAGGTAAATATCCCTCAGCAGGAGGTTGAGGCGGA 41 #0_core

03[190] 03[231] ATAGAACCGCCACCCTATCGGTTCCGATAGTTGCGCCTGT 40 #0_core

03[232] 03[273] CGAAGACGGTCAATCATGTAGAAGCAGATACATAACGAG 39 #0_core

03[274] 03[315] CTTCAGAGAGTACCTTTGAGCATACTTTTGCGGGAGAAATT 41 #0_core

03[316] 03[346] TAATGTTAAATCAGCTCGCTGCATTAATG 29 #0_core

04[048] 10[028] GTTAATAAAGAATCCTGAGAGCAAATTCTACATT 34 #0_core

04[090] 04[049] GAATCTTTCAGAAAACAAAATTAATAATCTTTGCCCGAAC 40 #0_core

04[132] 04[091] TGAGGAGAGAGAACAAGCAAGCCGATCAGAATAAACACCG 40 #0_core

04[174] 04[133] TGGCCACCATGACGGAAATTATTCATATGTCAGAGGGTAAT 41 #0_core

04[216] 04[175] AACCATTGTCAGAACCGCCACCCTGCCCAGGTCAGACGAT 40 #0_core

04[258] 04[217] TTACACAGAAGGGAACCGAACTGAATTGGACAATGACAAC 40 #0_core

04[300] 04[259] ACGCACTCAAATTGCTCCTTTTGATATTCGCCAAAAGGAA 40 #0_core

04[342] 04[301] TCGTGCCAATTTTTTAACCAATAGAAATGCCTTTATTTCA 40 #0_core

05[049] 05[048] TTTAAAAAATATCATCTATCTAAAATATAATCAATAGTTAAT 42 #0_core

05[070] 05[069] TTAACAACAGAATAACATCGGGAGAAACGTGTTACAATACAT 42 #0_core

05[091] 05[090] TACTAGAAAACGCTCACCAATCGCAAGATTTAGTTAAATAAT 42 #0_core

05[112] 05[111] ATTTTCAGACCGGTATGTCCTGAACAAGAAGAAACCATTTTT 42 #0_core

05[133] 05[132] AATATCACAAATAGCAAAATAAGAAACTCCTTTACACGCT 40 #0_core

05[154] 05[153] GGTGAATTCGCACCATACGCAAAGACACGAAAATTCATTAAA 42 #0_core

05[175] 05[174] ATTCACAACGTTCCAGCCGGAACCGCCTAAGAGCCTTGAT 40 #0_core

05[196] 05[195] CCACCACTTTTCGTCAGTTTTGCTCAGTAAAAGTATACAGAG 42 #0_core

05[217] 05[216] CACGCATCGGATCGTCAATTTTTTCACGCCCCTTTAATCGCC 42 #0_core

05[238] 05[237] CTTTGAAAAGAGTAATATTATACCAAGAACTGATAACCAA 40 #0_core

05[259] 05[258] ATAGTAAAGAGGCTTTACGTTGGGAAGAAGCATTATTGAGGC 42 #0_core

05[280] 05[279] GTCATTTTAAAATATGTTGCATCAAAAGAGTTTTAAAGAG 40 #0_core

05[301] 05[300] AAAAATTTGTTCAAAATCCAATAAATCATTATAAAGCAGGAT 42 #0_core

05[322] 05[321] CCATCAATACGAGTAAATGTACCCCGGTTTTATAAGCGAACG 42 #0_core

06[048] 00[032] ATTATAGAGCCGCCTTAGACTATGCGCCGCT 31 #0_core

06[069] 00[054] TTACCATACCAATTCAATTACACCACCACA 30 #0_core

06[090] 00[074] TAGTATATATTTTCTTTGAAATGTAGCGGTCA 32 #0_core

06[111] 00[095] ATTACGCATGTAAACATTCCAGGGCGCTAGG 31 #0_core

06[132] 00[116] CACAAGTAGCAGCGTGCGCATTAAGGGAAGAA 32 #0_core

06[153] 00[137] CCGACCAATAGAGAGGGCGACACGGCGAACG 31 #0_core

06[174] 00[158] CCTCACCACCCTCTCCACCACCAAAAGGGCGAAA 34 #0_core

06[195] 00[179] GGGATTTGATATCACAGGAGGAAGAACGTGG 31 #0_core

06[216] 00[200] TCGGTAAAGGAGTCAGGTGAATTGGAACAAG 31 #0_core
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06[237] 00[221] GAACGGTCATCGCCCCCATGTTAGGGTTGAGT 32 #0_core

06[258] 00[242] TCATAGGAACAAAGATTTAGGAATCAAAAGA 31 #0_core

06[279] 00[263] TTAGAAATATCGCGCGGAAGCAACGAAATCGGCA 34 #0_core

06[300] 00[284] CATATTTAAGCAGCACCAAAAAAATCCTGTTT 32 #0_core

06[321] 00[305] GTCTGAAGATTGTATTTTGTTCTGGTTTGCC 31 #0_core

06[342] 00[326] GCTAACTCACATTATTTTTTCTGAGTTGCAGC 32 #0_core

07[021] 04[021] ACTCAAACCAATACTTCATCACAGTGTT 28 #0_core

07[049] 07[090] GCGGAACAAAGATTGATTTTTTAATGGAAACAGTCAAATCATA 43 #0_core

07[091] 07[132] TGCGTTATACAAACGACGCGCCCAATAGCAAGCAAAAAAATTGA 44 #0_core

07[133] 07[174] GTTAAGCCCAATCAATTTGAGCCATTTGGGAATTACCGTTAAA 43 #0_core

07[175] 07[216] GCCAGAATGGAAAGGGAGCAAGCCCAATAGGAACTCCACGCTG 43 #0_core

07[217] 07[258] AGGCTTGCAGGGTGTATGTACAGACCAGGCGCATTAACACCCTC 44 #0_core

07[259] 07[300] GTTTACCAGACGATTCAGCTTAATTGCTGAATATAAAAAATTTT 44 #0_core

07[301] 07[342] AAATGCAATGCCCAGGGCCTTCCTGTAGCCAGCTCCGGAAGCAT 44 #0_core

08[048] 08[021] GAAACTAATATGGTAATATCCAGAACAATA 30 #0_core

08[090] 08[070] ATACTTTTTACATAAATCAATA 22 #0_core

08[132] 08[112] AACAAAAATGAATCAGATATAG 22 #0_core

08[174] 08[153] GACCTCAGAAGAGCCAGCAAAAT 23 #0_core

08[216] 08[196] CTAAAAGGCCCATGTACCGTA 21 #0_core

08[258] 08[238] AAAAACGAACAGGCTGGCTGAC 22 #0_core

08[300] 08[280] AGAATTAGCATGCTGTAGCTCA 22 #0_core

08[347] 11[347] CACACAACATACGATAGCTGTGAGCTCAGCTTGCATGC 38 #0_core

09[021] 15[048] CATGGAAATACCTTTCACAGACTCGCCATTAAAATCAATATACT 44 #0_core

09[063] 09[062] CGCCTTGTGAGTAACCTTGAAAACATAATATACCTACGGATT 42 #0_core

09[105] 09[104] CCCATGGCTTATTTTTTTGAAGCCTTCGCCTGTTGATAATAT 42 #0_core

09[147] 09[146] TTTATACCAGTACCCAGCACCGTAATATAAAGGAGGAATAAG 42 #0_core

09[189] 09[188] AAGTGACTGAGTGAATAGTTAGCGTAAAGAGAATAGGCGGAT 42 #0_core

09[231] 09[230] GTACAATCATCAAAACTGCTCATTCAGTAACACTCTAAAACAAA 44 #0_core

09[273] 09[272] AGCCCATGTTTTCAATTCCCAATTCTCTATTATAAGTAAGAGGA 44 #0_core

09[315] 09[314] AAAGCATGTGAGATTGGGATAGGTCATCGTAAATCAATCAGA 42 #0_core

10[027] 11[048] TTGACGCAGATTCACCAGTCACACGAAGGTAT 32 #0_core

11[070] 11[090] TGCTTCTGTAATGCAAATAC 20 #0_core

11[112] 11[132] TAAGAACGCGAGCAATCCAT 20 #0_core

11[154] 11[175] CCATTAGCAAGGCCACCATAA 21 #0_core

11[196] 11[216] AGTACAAACTAGAATAATAC 20 #0_core

11[238] 11[258] TGACAAGAACCGGTCAGGTG 20 #0_core

11[280] 11[300] ACTAAAGTACGATTAACAGG 20 #0_core

11[322] 05[342] ACCCGTCGGATTCAGAATTCGAAAATTGCGTTGC 34 #0_core

12[048] 18[028] CAATTGAGGACCAGTAATAAAGAATACATAACAG 34 #0_core

12[090] 12[049] ATATTCTGAATCGTCGCTATTAATTGTACTCAGATGATGG 40 #0_core

12[132] 12[091] AAGAATCCGCGTTTTAGCGAACCTCAATTTGAGAATCGCC 40 #0_core

12[174] 12[133] TACAGCAGAGCCGGAAACGTCACCAATATGAAGCCCTTTTT 41 #0_core

12[216] 12[175] GAACGTTGCCAACGCCTGTAGCATGATTGGCTTTTGATGA 40 #0_core

12[258] 12[217] GGTAACCAGATATTCATTACCCAAACCCAAGACAGCATCG 40 #0_core

12[300] 12[259] ATCACTAGCGTGTCTGGAAGTTTCAAGCATTGCCAGAGGG 40 #0_core

12[335] 12[301] GCCTCCGTGGGAACAAACTGTCGGAGACAGTCAA 34 #0_core

13[049] 13[048] AATATAAGTCAAAATTATCAAACCCTCAGTAAGGAATTCATC 42 #0_core

13[091] 13[090] ACGCCAAAACGACAAAGACTACCTTTTTGAGTAAATGTAACA 42 #0_core

13[133] 13[132] TAAGCAGATCCAAAAGAGCGTCTTTCCGAATTATTTAAAG 40 #0_core

13[175] 13[174] TACTGGTTGATGCCCCCATAGCCCCCTATCGGAACGAGTG 40 #0_core

13[217] 13[216] AGCAACGAAGGGTAAAACAACTTTCAACCCAAAGGAAAGGGT 42 #0_core

13[259] 13[258] AAAATGTTATCAAATGTCAACTTTAATCAATCATTATATAGT 42 #0_core

13[301] 13[300] ATATGATAGGATCTACATTTTCATTTGGGTATAGTAGCATCA 42 #0_core

14[048] 14[049] TGGATCAGTTGAGGAGGAGCACTAACGCGGAATTAGATTGTT 42 #0_core

14[090] 14[091] GGCAGACTATATATGAACGCGAGAAAAAAGCCAAATAATTTA 42 #0_core

14[132] 14[133] AAGTTACAGCCATGGTTTTGTTTAACGTACAATGACGCCGAACA 44 #0_core

14[174] 14[175] ACGGGAAAATCACAGTCAGAGCCGCCACATTTACCCAAGTTTTA 44 #0_core

14[216] 14[217] TTTGAAACAACTTCAAATCTCCAAAATTTGCGGCGCAGAGGC 42 #0_core

14[258] 14[259] AGCGTAACTGGCAGTCTACGTTAATATAGCGAGATACTGGAT 42 #0_core

14[300] 14[301] CTAGCTCTACTATGGGCAAGGCAAAGGTAAAGAATAACCGTT 42 #0_core

14[342] 08[322] GGCGATTAAGTTGAACATGGTCAGTTCATCAACATT 36 #0_core

15[021] 12[021] CTAAAACAAATATTTTAGCGTAAAGGGA 28 #0_core

15[049] 15[090] TCTGAATAATGGGATGAGCGATAGCTTAGATTAATATAAGGCA 43 #0_core

15[091] 15[132] TTTTCGAGCCAGAACGAAATCAAGATTAGTTGCTTAAACCAGAA 44 #0_core
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15[133] 15[174] GGAAACCGAGGAATACCAGTAGCGACAGAATCAAAATCGTCAG 43 #0_core

15[175] 15[216] TGCCTTGAGTAACCTCACGATCTAAAGTTTTGTCAAGGGGACT 43 #0_core

15[217] 15[258] AAAGACTTTTTCCTAAGAATAAGGCTTGCCCTGATAAGCCAATA 44 #0_core

15[259] 15[300] CTGCGGAATCGTCCTGAGCGAACGAGTAGATTTAGCAATTGATA 44 #0_core

15[301] 15[342] AATTAATGCCGGGTAACGTTGGTGTAGATGGGCGCTTCGCTATT 44 #0_core

16[062] 16[021] CAAAGGGTTAGAACCTTTGGCAAAATACCGAACGAACCACCAGC 44 #0_core

16[104] 16[063] AGTAATAAGAGAATATTGGGTTAGACGCTGAGAAGAGTAACGT 43 #0_core

16[147] 16[105] TACAACGCAATAATAACTTACAAAAATTTTGCACCCAGCTAATGC 45 #0_core

16[189] 16[148] ACTCAGTGCCCGTATAATTTTCATGTTTGCCTTTAGCGTAAAA 43 #0_core

16[231] 16[190] ACAATGAGGAAGTTTCCGAATAGAGTCTTTCCAGACGTCTGAG 43 #0_core

16[273] 16[232] ACCATAAATATTCATTGATGCGATTTCGAGAAACACCAGAAGAAT 45 #0_core

16[315] 16[274] ACGAGAGGGTAGCTATTGTGGCATTTTGACCATTAGATACTTT 43 #0_core

16[347] 19[347] GATCGGTGCGGGCGCGCCATTTTCTGGTCGGCCTCAGG 38 #0_core

17[021] 17[034] TAACACCGCCTGCCA 15 #0_core

17[329] 16[316] AGGCAAACTCATCGTAACCGTGCGATGA 28 #0_core

18[027] 19[062] TGCCACGCATCACCTTGCTGAACCTCAAATATTTGCACGTAAAAC 45 #0_core

18[062] 18[063] AAATTGCTCAGTAACAAATTTTCCCTTAAAGAATTTATAAAG 42 #0_core

18[104] 18[105] CGACAATCATTATCAACCCGACTTGCGGAGTTATCCTGACGA 42 #0_core

18[146] 18[147] ACGCAGTATTGGCAACATGAAACCATCGTATAGCGCGTTATT 42 #0_core

18[188] 18[189] TGAAACAAAGGATTAGTCCACAGACAGCAGTGAATTTTATTC 42 #0_core

18[230] 18[231] CCAACCTGCATCTTTGATCAACGTAACATGTAAATTGGCA 40 #0_core

18[272] 18[273] TGACCATTGTCAGATTCCATATAACAGGCAAATGGGAGAA 40 #0_core

18[314] 18[315] AGTCTGGATACTAGCAGGCGGATTGACCAAAGTTTGACTGAG 42 #0_core

19[063] 19[104] AGAAATCAAAATCATAGGTCTGAGAAGGTAAAGTAATTCTG 41 #0_core

19[105] 19[146] TCCAGAATCTTACCAACGCTAACGAACTGGCATGATTAAG 40 #0_core

19[147] 19[188] ACTCCTTTTCATCGGCATTTTCGGTCTGCCTATTTCGGAAC 41 #0_core

19[189] 19[230] CTATTCTGTATGGGATTTTGCTAAATACGTAATGCCACTA 40 #0_core

19[231] 19[272] CGAAGGGCTTGAGATGGTTTAATTCTTTAAACAGTTCAG 39 #0_core

19[273] 19[314] AAAACTCAATAACCTGTTTAGCTATAAAGGCTATCAGGTCA 41 #0_core

19[315] 12[336] TTGCGGGGACGACGACAGTATGCCGGAGTGGTAACGCCAGGCCAGT 46 #0_core

11[049] 11[069] ATTCCTGATTACTTTTACCT 20 #1_bottom B0

11[091] 11[111] AGTAGGGCTTAAAGATAATC 20 #1_bottom B1

11[133] 11[153] AGCTATCTTACCAAAAGAATA 21 #1_bottom B2

11[176] 11[195] GCGTCATACATAGCGGGCC 19 #1_bottom B3

11[217] 11[237] CCTCAGCAGCGACCAGCGCT 20 #1_bottom B4

11[259] 11[279] CAAAAGAAGTTAAGCGGACA 20 #1_bottom B5

11[301] 11[321] GTGAGAAAGGCCAATCATCA 20 #1_bottom B6

08[069] 08[049] TAGATTGCTAACCACCAGAAG 21 #2_top T0

08[111] 08[091] AACCTAATTTATTCTTACCAGT 22 #2_top T1

08[152] 08[133] CTTTGTCAAATAAGAGCAAG 20 #2_top T2

08[195] 08[175] ACCCGTCGAGAGCGCAGTCTCT 22 #2_top T3

08[237] 08[217] CTCGGAGATTAGTTAAAGGCCG 22 #2_top T4

08[279] 08[259] ACGAAAGACCGATAAAAACCAA 22 #2_top T5

08[321] 08[301] AACCCAAAAATGAGTAATGTGT 22 #2_top T6

02[055] 02[035] ATCGACAACTGAGGATTTAGA 21 #3_left L0

02[076] 02[056] ATAGATGATGGCGAATTATTC 21 #3_left L1

02[097] 02[077] TTGATAAATGACCTAAATTTA 21 #3_left L2

02[118] 02[098] GGAAACCAAGGCTGTCTTTCC 21 #3_left L3

02[139] 02[119] AAAACTGAACATAAAAACAG 20 #3_left L4

02[160] 02[140] GAGAGGGAGAGCGCCAAAGAC 21 #3_left L5

02[181] 02[161] TAGCATTGAAGCCGCCACCA 20 #3_left L6

02[202] 02[182] TTACCCTCAGGTGTATCACCG 21 #3_left L7

02[223] 02[203] TGCTTGATATATCAGCTTGCT 21 #3_left L8

02[244] 02[224] TGGAGGCGCAATCCGCGACC 20 #3_left L9

02[265] 02[245] GAAACTAATAGATTCATCAGT 21 #3_left L10

02[286] 02[266] TTCAGGATTAAAGCGAACCA 20 #3_left L11

02[307] 02[287] AATGTAATAAAGCTAAATCGG 21 #3_left L12

02[328] 02[308] GTAAATTTTATTGTAAACGTT 21 #3_left L13

17[035] 17[055] ATATCTGGTCAGACCATATAG 21 #4_right R0

17[056] 17[076] ATTTTCAGGTTTCAATAGTCC 21 #4_right R1

17[077] 17[097] TCCGGCTTAGGTAAAGTACAC 21 #4_right R2

17[098] 17[118] AACATGTTCAGCTACAATTAG 21 #4_right R3

17[119] 17[139] CCTAATTTGCCAGGGAATACGT 22 #4_right R4

17[140] 17[160] TAGCAAACGTAGCAGACTGTT 21 #4_right R5

251



17[161] 17[181] AGCGTTTGCCATCACAGTTAAA 22 #4_right R6

17[182] 17[202] AGTATTAAGAGGTAGTAAATT 21 #4_right R7

17[203] 17[223] TCAGCGGAGTGAATTAAACAA 21 #4_right R8

17[224] 17[244] CGAAAGAGGCAAAACGAGTATG 22 #4_right R9

17[245] 17[265] TGAATTACCTTAATCCCCCAA 21 #4_right R10

17[266] 17[286] TCAAAAATCAGGTCATTTCGCG 22 #4_right R11

17[287] 17[307] CGAGCTGAAAAGTTTGAGACA 21 #4_right R12

17[308] 17[328] AACAAGAGAATCATCTGCCCC 21 #4_right R13

00[020] 00[005] CTATGGTTGCTTTGAC 16 #5_ends E0

00[361] 00[347] ATTGCCCTTCACCGC 15 #5_ends F0

01[005] 01[020] GAGCACGTATAACGTG 16 #5_ends E1

01[347] 01[361] GACGGGCAACAGCTG 15 #5_ends F1

02[020] 02[005] GAGCTAAACAGGAGGC 16 #5_ends E2

02[361] 02[347] GGGGAGAGGCGGTTT 15 #5_ends F2

03[005] 03[020] CGATTAAAGGGATTTT 16 #5_ends E3

03[347] 03[361] AATCGGCCAACGCGC 15 #5_ends F3

04[020] 04[002] TTTATAATCAGTGAGGCCA 19 #5_ends E4

04[358] 04[343] CCAGTCGGGAAACCTG 16 #5_ends F4

05[002] 05[020] CCGAGTAAAAGAGTCTGTC 19 #5_ends E5

05[343] 05[358] GCTCACTGCCCGCTTT 16 #5_ends F5

06[020] 06[002] CTTTGATTAGTAATAACAT 19 #5_ends E6

06[358] 06[343] GGTGCCTAATGAGTGA 16 #5_ends F6

07[002] 07[020] CACTTGCCTGAGTAGAAGA 19 #5_ends E7

07[343] 07[358] AAAGTGTAAAGCCTGG 16 #5_ends F7

08[020] 08[005] TTACCGCCAGCCATTG 16 #5_ends E8

08[361] 08[348] TCCGCTCACAATTC 14 #5_ends F8

09[005] 09[020] CAACAGGAAAAACGCT 16 #5_ends E9

09[343] 09[361] TTCCTGTGTGAAATTGTTA 19 #5_ends F9

10[020] 10[005] CTCAATCGTCTGAAAT 16 #5_ends E10

10[361] 10[343] TAGAGGATCCCCGGGTACC 19 #5_ends F10

11[005] 11[020] GGATTATTTACATTGG 16 #5_ends E11

11[348] 11[361] CTGCAGGTCGACTC 14 #5_ends F11

12[020] 12[002] CATTCTGGCCAACAGAGAT 19 #5_ends E12

12[358] 12[343] ACGTTGTAAAACGACG 16 #5_ends F12

13[002] 13[020] AGAACCCTTCTGACCTGAA 19 #5_ends E13

13[343] 13[358] GGTTTTCCCAGTCACG 16 #5_ends F13

14[020] 14[002] TGAATGGCTATTAGTCTTT 19 #5_ends E14

14[358] 14[343] GGGGGATGTGCTGCAA 16 #5_ends F14

15[002] 15[020] AATGCGCGAACTGATAGCC 19 #5_ends E15

15[343] 15[358] ACGCCAGCTGGCGAAA 16 #5_ends F15

16[020] 16[005] AGAAGATAAAACAGAG 16 #5_ends E16

16[361] 16[348] CTGTTGGGAAGGGC 14 #5_ends F16

17[005] 17[020] GTGAGGCGGTCAGTAT 16 #5_ends E17

17[343] 17[361] CGCCATTCAGGCTGCGCAA 19 #5_ends F17

18[020] 18[005] GCTGAGAGCCAGCAGC 16 #5_ends E18

18[361] 18[343] GCCAGCTTTCCGGCACCGC 19 #5_ends F18

19[005] 19[020] AAATGAAAAATCTAAA 16 #5_ends E19

19[348] 19[361] AAGATCGCACTCCA 14 #5_ends F19
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Supplementary Table 3
List of DNA staples - Origami H

Start End Sequence Length Type Pos.

00[031] 03[027] GTACTATGGTTGTTAGAATCCTAAACCGGTAC 32 #0_core

00[053] 06[049] GCTTAATGCGCCGAATTCGACAACTTATTATCAT 34 #0_core

00[073] 06[070] CGTAACCACCACAAAGAAGATGATAAATTACCT 33 #0_core

00[094] 06[091] CAAGTGTAGCGCGTGTGATAAATACAGTTTAGTA 34 #0_core

00[115] 06[112] AGGAGCGGGCGCGTATTAAACCAAATTCATTAC 33 #0_core

00[136] 06[133] AGAAAGGAAGGGGAGAATTAACTGACGACCCACA 34 #0_core

00[157] 06[154] AACCGTCTATCACCGATTGAGGGCACACCGAC 32 #0_core

00[178] 06[175] ACTCCAACGTCGCCGCCGCCAGCACAAATAAA 32 #0_core

00[199] 06[196] GAGTCCACTATTGTTTAGTACCGCCGGTCATTTTC 35 #0_core

00[220] 06[217] GTGTTGTTCCACTTAAACAGCTTCCATATATT 32 #0_core

00[241] 06[238] AGAATAGCCCGATTAGCCGGAACGAGAGACAGAT 34 #0_core

00[262] 06[259] GGCAAAATCCCTATACCACATTCACGACACTAT 33 #0_core

00[283] 06[280] GTTTGATGGTGCTCCAACAGGTCTTGATGGCT 32 #0_core

00[304] 06[301] TGCCCCAGCAGAAACATTATGACCGTTTTTTAGA 34 #0_core

00[325] 06[322] GCAGCAAGCGGTTTGTTAAAATTCCCCAAAAAT 33 #0_core

00[346] 01[346] CACCGCCTGGCCTTTTTCTTTTCA 24 #0_core

02[034] 07[048] ACGGGAGAGAGCTTCAATACTCTTGCTGGTAATACCGTGGAACA 44 #0_core

02[346] 02[329] GCGGTTTGCGTATTGGG 17 #0_core

03[028] 03[063] GCCAGAATCCTAGGATTAATCCTTTGCCCGGCG 33 #0_core

03[064] 03[105] AATACATCAAGAAAACGACCTAATAAATAAGAATAAGCT 39 #0_core

03[106] 03[147] GTCACTCATCGAGAACCATAAAGAACAAAGTCAGACCA 38 #0_core

03[148] 03[189] GCGCGTAAATATTGACGTCAGAGGGAGGTTGAGGCACGG 39 #0_core

03[190] 03[231] AATAGAACCGCCACCCGGTTTATATAGTTGCGCCGATCG 39 #0_core

03[232] 03[273] AAAACGGTCAATCATATAGAAACAGATACATAACGAGC 38 #0_core

03[274] 03[315] TTCAGAGAGTACCTTTAAGAGCATACTTTTGCGGGACAA 39 #0_core

03[316] 03[346] ATAATTTTTGTTAAATGTGCCAGCTGCA 28 #0_core

04[048] 10[028] TTTTTTTGGAGAAGTGTTTAACCGTTGCCGCTC 33 #0_core

04[090] 04[049] ATAATTTCTAAAATTAATTACATTAGAGAACGTTATTAA 39 #0_core

04[132] 04[091] CGCTATAAAAGCAAGCCGTTTTTATCGACACCGGAATC 38 #0_core

04[174] 04[133] TGGCACCCGAAATTATTCATTAAATTTAGGGTAATTGAG 39 #0_core

04[216] 04[175] ACCATTATCTCAGAACCGCCACCCAGCCGGTCAGACGAT 39 #0_core

04[258] 04[217] TACGCAGGAGGGAACCGAACTGATGTGCAATGACAACA 38 #0_core

04[300] 04[259] TTCACCTCATTGCTCCTTTTGATATTCGCCAAAAGGAAT 39 #0_core

04[342] 04[301] AACCTGTCCAGCTCATTTTTTAATAAGGAAGCCTTTAT 38 #0_core

05[049] 05[048] TTTGAGTGGTATTCCTATATCTTTAGGAGTTAATACAAAAAG 42 #0_core

05[070] 05[069] ATTTCATCGCTTGCTTGAAACAATAACAATCGCGCTAACA 40 #0_core

05[091] 05[090] GAAAAAATCAGTAGCAAGACAAAGAATTTTTCATCTACTA 40 #0_core

05[112] 05[111] CATCGTATTTCTAAGAACAAGAAAAATAGCATCAATAATTTT 42 #0_core

05[133] 05[132] TCAGAGAAAAATAGCTGAAACGATTTTGGAGAGAGAAATA 40 #0_core

05[154] 05[153] ATTATCACTATTACCAAAGACACCACGGGACATATGGGGTGA 42 #0_core

05[175] 05[174] TATTCACTATTCCAGTGAACCGCCTCCCCGCCACCCTTGA 40 #0_core

05[196] 05[195] GCCACCAACGTCACGGTTTTGCTCAGAATAAGTATTCAGA 40 #0_core

05[217] 05[216] ACGCATACGCGTCACCTTTTTCACGTTGACTTAATTGCGCCC 42 #0_core

05[238] 05[237] CTTTGAAAAGTAATCTTATACCAAGCGACGATAAATCCAA 40 #0_core

05[259] 05[258] TAGTAAGGAGGCTTTTCGTTGGGAAGAAAGATTATTAAGGCA 42 #0_core

05[280] 05[279] TCATTTTATAATATGCTGCATCAAAAAAGTTTTAAAGAGG 40 #0_core

05[301] 05[300] AGGATACCGATTCAATCCAATAAATCTGAATAAAGACGCA 40 #0_core

05[322] 05[321] AGGAACGGAGTGAGCGATCATATGTACCAAGATTGTACCAAT 42 #0_core

06[048] 00[032] TTTGCCAATAGAAGTACAAACCTACAGGGCGC 32 #0_core

06[069] 00[054] TTTTTTTACAAAACACCTGAGCAACCCGCCGC 32 #0_core

06[090] 00[074] TCATATAGTTAAGATACCGACGTCACGCTGCG 32 #0_core

06[111] 00[095] CGCGCGAAACCACTAGAACGGTAGGGCGCTGG 32 #0_core

06[132] 00[116] AGAATTCCTTTACAATAGACGGAAGAAAGCGAA 33 #0_core

06[153] 00[137] TTGAGGAAAATTTAACATTCAAGAACGTGGCG 32 #0_core

06[174] 00[158] TCCTCCCCTCAGAGTCCACCAGAAAAGGGCGAAA 34 #0_core

06[195] 00[179] AGGGAGTTGATAACTCAGGAGAAAGAACGTGG 32 #0_core

06[216] 00[200] CGGTCGGAGCCTCCTGAATTTGTTTGGAACAA 32 #0_core
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06[237] 00[221] GAACGGATCGCCTCGATGTTACGATAGGGTTGA 33 #0_core

06[258] 00[242] CATAAGAACAACAGTTTAGGATATAAATCAAA 32 #0_core

06[279] 00[263] TAGAGATATCGCGCAGAAGCAAAGTTCCGAAATC 34 #0_core

06[300] 00[284] ACCCTATTAAGCCGGTACCAAGCGAAAATCCT 32 #0_core

06[321] 00[305] AATTCACAGGAAAATAATATTCCACGCTGGTT 32 #0_core

06[342] 00[326] AGTGAGCTAACTCATAGGGTGGCTGAGAGAGTT 33 #0_core

07[021] 04[021] CTATCGGCTCTTTGATCAAATTTTATAA 28 #0_core

07[049] 07[090] AAGAAACCACCACAAGAATGGAAACAGTACATAAAATTTTGCGT 44 #0_core

07[091] 07[132] TATACAAATTCTTTGTACCAATAGCAAGCAAATCAGGCAGGAGTTA 46 #0_core

07[133] 07[174] AGCCCAATAATAAAATACCATTTGGGAATTAGAGCGCCAATTAA 44 #0_core

07[175] 07[216] AGCCAGAATGGAAGAGGTAGCAAGCCCAATAGGAACAAAAGCTGA 45 #0_core

07[217] 07[258] GGCTTGCAGGGAGTATCTGTACAGACCAGGCGCATAAACGCCCTCG 46 #0_core

07[259] 07[300] TTTACCAGACGACTCAACTTAATTGCTGAATATAACAAACATAT 44 #0_core

07[301] 07[342] ATTTTAAATGCAAAAAAGCGTCTGGCCTTCCTGTAGTACGAGCCGG 46 #0_core

08[048] 08[021] TTGATTAGAGTCCAGAACAATATTACCGCCA 31 #0_core

08[090] 08[070] CACAAATATTCAATATATGTGA 22 #0_core

08[132] 08[112] TGTGAAAATAATATAGAAGGCTT 23 #0_core

08[174] 08[153] AACAGAACCCAGCAAAATCACCA 23 #0_core

08[216] 08[196] TTAGGCTCCCCATGTACCGTAA 22 #0_core

08[258] 08[238] ATAACGAACTGGCTGGCTGACCT 23 #0_core

08[300] 08[280] TGGAATTAGTGCTGTAGCTCAA 22 #0_core

08[347] 11[347] CAATTCCACACAACATGGTCAGGGTACGTGCCAAGCTT 38 #0_core

09[021] 15[048] ACCTACATTTTGAACAATATTTTAAAAATACCGAATGAATGAATA 45 #0_core

09[063] 09[062] TTGCTGAATAACCGAAACATAGCGATGTAACAGTTTTCGCCTGA 44 #0_core

09[105] 09[104] TAATTCCGGTATGTAAGCCTTAAATCTTATCAAATCCCATCC 42 #0_core

09[147] 09[146] TTTGTTAGCACCCACCGTAATCAGTAGGTGGCAGAAGTTTAT 42 #0_core

09[189] 09[188] TAAGTCTGAGTTTAAATAGTTAGCGTAACAAGAGAAAAGGCGGA 44 #0_core

09[231] 09[230] ACAACGATCAAGAATCTGCTCATTCAGTCACTCATACACAAAGT 44 #0_core

09[273] 09[272] GCCCGTGTTTTAACTTCCCAATTCTGTATTATAGGAAAGAGGAA 44 #0_core

09[315] 09[314] TCAGAATTAAATATACCGTAATGGGAGGTAATCATTTGATAA 42 #0_core

10[027] 11[048] AATCGTCAGTCACACGACCAGTATCTAAAGA 31 #0_core

11[070] 11[090] GTAAATCGTCGCCAATCGGG 20 #0_core

11[112] 11[132] GCGAGGCGTTTAAATAAAT 19 #0_core

11[154] 11[175] AGCAAGGCCGGCCACCGAAG 20 #0_core

11[196] 11[216] GTACAAACTACTAATAATCT 20 #0_core

11[238] 11[258] ACAAGAACCGGTCAGGAGC 19 #0_core

11[280] 11[300] CTAAAGTACGGATTAACAA 19 #0_core

11[322] 05[342] TAACAACCCGTCACGAGCTCCCACATTAATTGC 33 #0_core

12[048] 18[028] CAATGTTAATAAAAGGGACGTGGCACCTACGCT 33 #0_core

12[090] 12[049] TAACAAAATCTATTAATTAATTTTTACATGGCAATTCAT 39 #0_core

12[132] 12[091] AAAGATCCTAGCGAACCTCCCGATAAGATCGCCATATT 38 #0_core

12[174] 12[133] ATACGCCAAAACGTCACCAATGAAAAAGCCTTTTTAAGA 39 #0_core

12[216] 12[175] AACGACGAAAACGCCTGTAGCATTGGATGGCTTTTGATG 39 #0_core

12[258] 12[217] GTAACCAGATATTCATTACCCAACCCCGACAGCATCGG 38 #0_core

12[300] 12[259] GTCATAGCTGTCTGGAAGTTTCATGCAATGCCAGAGGGG 39 #0_core

12[335] 12[301] GCCGGATTCTCCGTGGGTAGCGGCCGGAGACA 32 #0_core

13[049] 13[048] CCTGATTTTTTTGCACCTCAATCAATATAGGAGGAAGATAAT 42 #0_core

13[091] 13[090] AACATGATGTAAAGCTTTTTAACCTCTTCTGATGCACGCC 40 #0_core

13[133] 13[132] CAGATAGAGGAACTGGTTTCCAGAGCCTTTATCCCATAAG 40 #0_core

13[175] 13[174] TGTACTGATATGCCCCGCCCCCTTATTAGACCAGAAGGAG 40 #0_core

13[217] 13[216] GCAACGGAATAAAATAACTTTCAACAGTCCGGAATTGGGGTA 42 #0_core

13[259] 13[258] AAATGTTAACAAATGCCAACTTTAATCAAACATTATATAGTA 42 #0_core

13[301] 13[300] CCATCATCAGAGATATTTTCATTTGGTTATAGTAGAATCA 40 #0_core

14[048] 14[049] ACTTCAGGAATTACTAACAACTAATAATCATCAATGGATTAT 42 #0_core

14[090] 14[091] AGGCAGTAAATGGAAGAAAACTTTTTACGCTCAAATTTAGGCAG 44 #0_core

14[132] 14[133] TACCAGTATTATTTGTTAACGTCAAAAAAAATAGCTAACAAAGT 44 #0_core

14[174] 14[175] TAACGTCACCGGACAGAGCCGCCACCCTTTTACCGCCTAAGTTT 44 #0_core

14[216] 14[217] TTGAGAACTAAATCTCTCCAAAAAAAGCGGGATAAAGAGGCT 42 #0_core

14[258] 14[259] GCGTCACTGGCTAGCTACGTTAATAAAGCGAGATTCTGGATA 42 #0_core

14[300] 14[301] ACCGTTCTACTAGAAGGCAAGGCAAATAGGTAAAGGGATATTCA 44 #0_core

14[342] 08[322] TGCAAGGCGATTATGTCGTAATCACCAGCTTTCATCA 37 #0_core

15[021] 12[021] ATCGCCATTTGAATGGGAATACATTCTG 28 #0_core

15[049] 15[090] ATGGAAGGGTTATACAAGCTTAGATTAAGACGCTGATATTTTTCG 45 #0_core

15[091] 15[132] AGCCAGTAATAAGCTGTAAGATTAGTTGCTATTTTGGCCAAAGGAA 46 #0_core
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15[133] 15[174] ACCGAGGAAACGCTAAAGCGACAGAATCAAGTTTGAAAAGGGTC 44 #0_core

15[175] 15[216] AGTGCCTTGAGTATCCTCGATCTAAAGTTTTGTCGTGAACGACTA 45 #0_core

15[217] 15[258] AAGACTTTTTCATAAAAGAATAAGGCTTGCCCTGACAAGACAATAC 46 #0_core

15[259] 15[300] TGCGGAATCGTCATGACCGAACGAGTAGATTTAGTCAATTCTAG 44 #0_core

15[301] 15[342] CTGATAAATTAATGAACTAGGTCACGTTGGTGTAGAGGGCCTCTTC 46 #0_core

16[062] 16[021] TAGAACCTACCATATCTCAACAGTCGAACCACCAGCAGAAGATAA 45 #0_core

16[104] 16[063] GCAGAATATAAAGTACCATATAACTAGAAGAGTCAATAGTGATGAA 46 #0_core

16[147] 16[105] ACAAATAATAACGGAATAAATAAACACACCCAGCTACAATTGAACGC 47 #0_core

16[189] 16[148] GACACAGTGCCCGTATAACATAATCCCTTTAGCGTCAGACACAT 44 #0_core

16[231] 16[190] ACTGAGGAAGTTTCCATTTAGAAAGCTTTCCAGACGTTAGGCTGA 45 #0_core

16[273] 16[232] CCCTAAATATTCATTGAAGCGATTTTGAGAAACACCAGAACAATAC 46 #0_core

16[315] 16[274] GATGCCGGAGAGGGTAGCGTGGCATTTGACCATTAGATACTTTA 44 #0_core

16[347] 19[347] AAGGGCGATCGGTAGGCAAAGGCACCGACAGTATCGGC 38 #0_core

17[021] 17[034] CTGCAACAGTGCCGG 15 #0_core

17[329] 16[316] GGAAACCGCTGGGCGCATCGTAACGAATC 29 #0_core

18[027] 19[062] GAGAGCTGCTGAACCTCAAATATCAAACCGTAAAACAGAAATAA 44 #0_core

18[062] 18[063] GTAGATGTACCTTTCCCTTAGAATCCCGTCAAAATATTGC 40 #0_core

18[104] 18[105] AAACAACTACAATAGACTTGCGGGAGGTTAGAATCTTACAAT 42 #0_core

18[146] 18[147] GTATGTTCCACATATAACCATCGATAGCAGCGTTTTCACGCA 42 #0_core

18[188] 18[189] CTGAAACGTAGGATTACCACAGACAGCTTTTTTCTTTATT 40 #0_core

18[230] 18[231] AACCTAACTCTTTGACATCAACGTAACTTAAATTGGCACC 40 #0_core

18[272] 18[273] GACCATTATCAGAATCCATATAACAGGGAAATGGTAGAAT 40 #0_core

18[314] 18[315] CTGAGAGATGTAAAACAACAAACGGCGGTGCTGCCAGATTGC 42 #0_core

19[063] 19[104] AGAACATAGGTCTGAGAGACTACTAATTCTGTCCAGAC 38 #0_core

19[105] 19[146] GACGACCAACGCTAACGAGCGTCCATGATTAAGACTCC 38 #0_core

19[147] 19[188] TTATTATCGGCATTTTCGGTCATACTGCCTATTTCGGAA 39 #0_core

19[189] 19[230] CCTAGTATGGGATTTTGCTAAACACGTAATGCCACTACG 39 #0_core

19[231] 19[272] AAGGGCTTGAGATGGTTTAATTTTTTAAACAGTTCAGA 38 #0_core

19[273] 19[314] AAACGCAATAACCTGTTTAGCTATCTACAAAGGCTATCA 39 #0_core

19[315] 12[336] GGTCTTTGAGGGGACGACGCTTCTGGATAGTTGGGTAACACGACG 45 #0_core

11[049] 11[069] TTATCAGATGATCGGGACT 19 #1_bottom B0

11[091] 11[111] CTTAATTGAGATCCTGAAC 19 #1_bottom B1

11[133] 11[153] CTTACCGAAGCAAACGCATT 20 #1_bottom B2

11[176] 11[195] CGTCATACATTAGCGGCA 18 #1_bottom B3

11[217] 11[237] CAGCAGCGAAAAGCGATTG 19 #1_bottom B4

11[259] 11[279] AAAAGAAGTTTAGCGGATAA 20 #1_bottom B5

11[301] 11[321] AGGGTGAGAAAATGTCAAG 19 #1_bottom B6

08[069] 08[049] GTTTGAATACGAAGGAGCGGAA 22 #2_top T0

08[111] 08[091] ATTACGAGCAACCAGTATAAAGC 23 #2_top T1

08[152] 08[133] GCACAATCGAGCAAGAAACAA 21 #2_top T2

08[195] 08[175] CAGCCGTCGAAGCGCAGTCTCTG 23 #2_top T3

08[237] 08[217] TCGAGATTTGTTAAAGGCCGCTT 23 #2_top T4

08[279] 08[259] CAAAAGACTGATAAAAACCAAA 22 #2_top T5

08[321] 08[301] ACAAAGCCCCTGCCTGAGTAATG 23 #2_top T6

02[055] 02[035] ATCGTATTATAGAAGTATTAG 21 #3_left L0

02[076] 02[056] GAGAAACAATATTCATTTCA 20 #3_left L1

02[097] 02[077] TCAGGCGTATTTAATGGTTT 20 #3_left L2

02[118] 02[098] GCGTACCGCTTTCCTTATCAT 21 #3_left L3

02[139] 02[119] GGACACCCTAACAGGGAAGC 20 #3_left L4

02[160] 02[140] ACAGGGAAGCAAAGACAAAAG 21 #3_left L5

02[181] 02[161] GTATTGACACCGCCACCAGA 20 #3_left L6

02[202] 02[182] GAACCCTCAGGTGTATCACC 20 #3_left L7

02[223] 02[203] CTGATACCGCAGCTTGCTTTC 21 #3_left L8

02[244] 02[224] GAGGCGCAGTCCGCGACCTG 20 #3_left L9

02[265] 02[245] ACACTAATGGATTCATCAGTT 21 #3_left L10

02[286] 02[266] GGAGGATTAAAGCGAACCAG 20 #3_left L11

02[307] 02[287] ACCTGTAATAAAGCTAAATC 20 #3_left L12

02[328] 02[308] CGGCATTAATTTAAATTGTAA 21 #3_left L13

17[035] 17[055] TCAGTTGGCAAAAAAATTATC 21 #4_right R0

17[056] 17[076] AGGTTTAACGTCAGAATTTAGC 22 #4_right R1

17[077] 17[097] TTAGGTTGGGTTGACAAAAGGT 22 #4_right R2

17[098] 17[118] TCAGCTAATGCATTATCCTAT 21 #4_right R3

17[119] 17[139] TTGCCAGTTACAACCCAAAACA 22 #4_right R4

17[140] 17[160] AACGTAGAAAATTGTAGCGCG 21 #4_right R5
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17[161] 17[181] TTTGCCATCTTTTACAGTTAGA 22 #4_right R6

17[182] 17[202] AAGTATTAAGAGTAAATGAACA 22 #4_right R7

17[203] 17[223] GCGGAGTGAGAAAAACGGGCG 21 #4_right R8

17[224] 17[244] AAAGAGGCAAAAGGAGTAGTGT 22 #4_right R9

17[245] 17[265] GAATTACCTTATTCCCCCTAT 21 #4_right R10

17[266] 17[286] CAAAAATCAGGTCATTTCGCCG 22 #4_right R11

17[287] 17[307] CGAGCTGAAAAGTATTTTTGTG 22 #4_right R12

17[308] 17[328] GAGCAAACAAGACGTGCATCC 21 #4_right R13

00[020] 00[005] CTTTGACGAGCACGTA 16 #5_ends E0

00[361] 00[347] ACAGCTGATTGCCCTT 16 #5_ends F0

01[005] 01[020] TAACGTGCTTTCCTCG 16 #5_ends E1

01[347] 01[361] CCAGTGAGACGGGCA 15 #5_ends F1

02[020] 02[005] AGGAGGCCGATTAAAG 16 #5_ends E2

02[361] 02[347] AACGCGCGGGGAGAG 15 #5_ends F2

03[005] 03[020] GGATTTTAGACAGGAA 16 #5_ends E3

03[347] 03[361] TTAATGAATCGGCC 14 #5_ends F3

04[020] 04[002] TCAGTGAGGCCACCGAGTA 19 #5_ends E4

04[358] 04[343] GCTTTCCAGTCGGGA 15 #5_ends F4

05[002] 05[020] AAAGAGTCTGTCCATCACG 19 #5_ends E5

05[343] 05[358] GTTGCGCTCACTGCCC 16 #5_ends F5

06[020] 06[002] TAGTAATAACATCACTTGC 19 #5_ends E6

06[358] 06[343] CCTGGGGTGCCTAATG 16 #5_ends F6

07[002] 07[020] CTGAGTAGAAGAACTCAAA 19 #5_ends E7

07[343] 07[358] AAGCATAAAGTGTAAAG 17 #5_ends F7

08[020] 08[005] GCCATTGCAACAGGAA 16 #5_ends E8

08[361] 08[348] ATTGTTATCCGCTCA 15 #5_ends F8

09[005] 09[020] AAACGCTCATGGAAAT 16 #5_ends E9

09[343] 09[361] TAGCTGTTTCCTGTGTGAA 19 #5_ends F9

10[020] 10[005] CTGAAATGGATTATTT 16 #5_ends E10

10[361] 10[343] TCGACTCTAGAGGATCCCC 19 #5_ends F10

11[005] 11[020] ACATTGGCAGATTCAC 16 #5_ends E11

11[348] 11[361] GCATGCCTGCAGG 13 #5_ends F11

12[020] 12[002] GCCAACAGAGATAGAACCC 19 #5_ends E12

12[358] 12[343] TCACGACGTTGTAAA 15 #5_ends F12

13[002] 13[020] TTCTGACCTGAAAGCGTAA 19 #5_ends E13

13[343] 13[358] GCCAGGGTTTTCCCAG 16 #5_ends F13

14[020] 14[002] CTATTAGTCTTTAATGCGC 19 #5_ends E14

14[358] 14[343] CGAAAGGGGGATGTGC 16 #5_ends F14

15[002] 15[020] GAACTGATAGCCCTAAAAC 19 #5_ends E15

15[343] 15[358] GCTATTACGCCAGCTGG 17 #5_ends F15

16[020] 16[005] AACAGAGGTGAGGCGG 16 #5_ends E16

16[361] 16[348] TGCGCAACTGTTGGG 15 #5_ends F16

17[005] 17[020] TCAGTATTAACACCGC 16 #5_ends E17

17[343] 17[361] CGCCATTCGCCATTCAGGC 19 #5_ends F17

18[020] 18[005] CAGCAGCAAATGAAAA 16 #5_ends E18

18[361] 18[343] CACTCCAGCCAGCTTTCCG 19 #5_ends F18

19[005] 19[020] ATCTAAAGCATCACCT 16 #5_ends E19

19[348] 19[361] CTCAGGAAGATCG 13 #5_ends F19
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Supplementary Notes – List of functional DNA staples 

1. Functional staples for Origami H

Bottom positions 

oligoname Sequence Description Partner staples

B_00 TTATCAGATGATCGGGACT unmodified staples

B_01 CTTAATTGAGATCCTGAAC

B_02 CTTACCGAAGCAAACGCATT

B_03 CGTCATACATTAGCGGCA

B_04 CAGCAGCGAAAAGCGATTG

B_05 AAAAGAAGTTTAGCGGATAA

B_06 AGGGTGAGAAAATGTCAAG

B18_00 TTATCAGATGATCGGGACTGCTATGGGTGGTCTGGTT staples with extension for TEG-Chol(18) 5'-Chol-TEG- AACCAGACCACCCATAGC

B18_01 CTTAATTGAGATCCTGAACGCTATGGGTGGTCTGGTT

B18_02 CTTACCGAAGCAAACGCATTGCTATGGGTGGTCTGGTT

B18_03 CGTCATACATTAGCGGCAGCTATGGGTGGTCTGGTT AACCAGACCACCCATAGC-TEG-Chol-3'

B18_04 CAGCAGCGAAAAGCGATTGGCTATGGGTGGTCTGGTT

B18_05 AAAAGAAGTTTAGCGGATAAGCTATGGGTGGTCTGGTT

B18_06 AGGGTGAGAAAATGTCAAGGCTATGGGTGGTCTGGTT

B09_06 AGGGTGAGAAAATGTCAAGGGTCTGGTT staples with extension for TEG-Chol(9) 5'-Chol-TEG- AACCAGACC

B27_03 CGTCATACATTAGCGGCAGCTATGGGTGGTCTGGTTGGGATTGGC staple with extension for TEG-Chol(27) 5'-Chol-TEG- GCCAATCCCAACCAGACCACCCATAGC

BD_00 TTATCAGATGATCGGGACTAAAAAACACCAAACCC staples with extension for Atto488 dye 5'-Atto488- GGGTTTGGTGTTTTTT

BD_01 CTTAATTGAGATCCTGAACAAAAAACACCAAACCC

BD_02 CTTACCGAAGCAAACGCATTAAAAAACACCAAACCC

BD_03 CGTCATACATTAGCGGCAAAAAAACACCAAACCC

BD_04 CAGCAGCGAAAAGCGATTGAAAAAACACCAAACCC

BD_05 AAAAGAAGTTTAGCGGATAAAAAAAACACCAAACCC

BD_06 AGGGTGAGAAAATGTCAAGAAAAAACACCAAACCC

B_00_Biot TTATCAGATGATCGGGACT-TEG-Biotin-3' biotinylated staples

B_03_Biot CGTCATACATTAGCGGCA-TEG-Biotin-3'

B_06_Biot AGGGTGAGAAAATGTCAAG-TEG-Biotin-3'

B_00_Thio TTATCAGATGATCGGGACT-C3-SS-3' thiolated staples

B_03_Thio CGTCATACATTAGCGGCA-C3-SS-3'

B_06_Thio AGGGTGAGAAAATGTCAAG-C3-SS-3'
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Edge positions 

 

 

 

  

oligoname Sequence Description Partner staples

T_00 GTTTGAATACGAAGGAGCGGAA unmodified staples

T_01 ATTACGAGCAACCAGTATAAAGC

T_02 GCACAATCGAGCAAGAAACAA

T_03 CAGCCGTCGAAGCGCAGTCTCTG

T_04 TCGAGATTTGTTAAAGGCCGCTT

T_05 CAAAAGACTGATAAAAACCAAA

T_06 ACAAAGCCCCTGCCTGAGTAATG

TD_00 GTTTGAATACGAAGGAGCGGAAAAAAAACACCAAACCC staples with extension for At488 dye 5'-Atto488- GGGTTTGGTGTTTTTT

TD_01 ATTACGAGCAACCAGTATAAAGCAAAAAACACCAAACCC

TD_02 GCACAATCGAGCAAGAAACAAAAAAAACACCAAACCC

TD_03 CAGCCGTCGAAGCGCAGTCTCTGAAAAAACACCAAACCC

TD_04 TCGAGATTTGTTAAAGGCCGCTTAAAAAACACCAAACCC

TD_05 CAAAAGACTGATAAAAACCAAAAAAAAACACCAAACCC

TD_06 ACAAAGCCCCTGCCTGAGTAATGAAAAAACACCAAACCC

T18_00 GTTTGAATACGAAGGAGCGGAAGCTATGGGTGGTCTGGTT staples with extension for TEG-Chol(18) 5'-Chol-TEG- AACCAGACCACCCATAGC

T18_03 CAGCCGTCGAAGCGCAGTCTCTGGCTATGGGTGGTCTGGTT AACCAGACCACCCATAGC-TEG-Chol-3'

T18_06 ACAAAGCCCCTGCCTGAGTAATGGCTATGGGTGGTCTGGTT

oligoname Sequence Description Partner staples

E_06 TAGTAATAACATCACTTGCAAAAAACACCAAACCC staples with extension for Al488 dye 5'-Alexa488- GGGTTTGGTGTTTTTT

E_13 CCCAAACCACAAAAAATTCTGACCTGAAAGCGTAA TTTTTTGTGGTTTGGG-Alexa488-3'

F_06 CCCAAACCACAAAAAACCTGGGGTGCCTAATG

F_13 GCCAGGGTTTTCCCAGAAAAAACACCAAACCC
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2. Functional staples for Origami Q 

 

Bottom positions 

 

 

 

  

oligoname Sequence Description Partner staples

B_00 ATTCCTGATTACTTTTACCT unmodified staples

B_01 AGTAGGGCTTAAAGATAATC

B_02 AGCTATCTTACCAAAAGAATA

B_03 GCGTCATACATAGCGGGCC

B_04 CCTCAGCAGCGACCAGCGCT

B_05 CAAAAGAAGTTAAGCGGACA

B_06 GTGAGAAAGGCCAATCATCA

B18_00 ATTCCTGATTACTTTTACCTGCTATGGGTGGTCTGGTT staples with extension for TEG-Chol(18) 5'-Chol-TEG- AACCAGACCACCCATAGC

B18_01 AGTAGGGCTTAAAGATAATCGCTATGGGTGGTCTGGTT AACCAGACCACCCATAGC-TEG-Chol-3'

B18_02 AGCTATCTTACCAAAAGAATAGCTATGGGTGGTCTGGTT

B18_03 GCGTCATACATAGCGGGCCGCTATGGGTGGTCTGGTT

B18_04 CCTCAGCAGCGACCAGCGCTGCTATGGGTGGTCTGGTT

B18_05 CAAAAGAAGTTAAGCGGACAGCTATGGGTGGTCTGGTT

B18_06 GTGAGAAAGGCCAATCATCAGCTATGGGTGGTCTGGTT

B09_00 ATTCCTGATTACTTTTACCTGGTCTGGTT staples with extension for TEG-Chol(9) 5'-Chol-TEG- AACCAGACC

B09_03 GCGTCATACATAGCGGGCCGGTCTGGTT

B09_06 GTGAGAAAGGCCAATCATCAGGTCTGGTT

B27_03 GCGTCATACATAGCGGGCCGCTATGGGTGGTCTGGTTGGGATTGGC staple with extension for TEG-Chol(27) 5'-Chol-TEG- GCCAATCCCAACCAGACCACCCATAGC

BD_00 ATTCCTGATTACTTTTACCTAAAAAACACCAAACCC staples with extension for Atto488 dye 5'-Atto488- GGGTTTGGTGTTTTTT

BD_01 AGTAGGGCTTAAAGATAATCAAAAAACACCAAACCC

BD_02 AGCTATCTTACCAAAAGAATAAAAAAACACCAAACCC

BD_03 GCGTCATACATAGCGGGCCAAAAAACACCAAACCC

BD_04 CCTCAGCAGCGACCAGCGCTAAAAAACACCAAACCC

BD_05 CAAAAGAAGTTAAGCGGACAAAAAAACACCAAACCC

BD_06 GTGAGAAAGGCCAATCATCAAAAAAACACCAAACCC
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oligoname Sequence Description Partner staples

T_00 TAGATTGCTAACCACCAGAAG unmodified staples

T_01 AACCTAATTTATTCTTACCAGT

T_02 CTTTGTCAAATAAGAGCAAG

T_03 ACCCGTCGAGAGCGCAGTCTCT

T_04 CTCGGAGATTAGTTAAAGGCCG

T_05 ACGAAAGACCGATAAAAACCAA

T_06 AACCCAAAAATGAGTAATGTGT

TD_00 TAGATTGCTAACCACCAGAAGAAAAAACACCAAACCC staples with extension for At488 dye 5'-Atto488- GGGTTTGGTGTTTTTT

TD_01 AACCTAATTTATTCTTACCAGTAAAAAACACCAAACCC

TD_02 CTTTGTCAAATAAGAGCAAGAAAAAACACCAAACCC

TD_03 ACCCGTCGAGAGCGCAGTCTCTAAAAAACACCAAACCC

TD_04 CTCGGAGATTAGTTAAAGGCCGAAAAAACACCAAACCC

TD_05 ACGAAAGACCGATAAAAACCAAAAAAAACACCAAACCC

TD_06 AACCCAAAAATGAGTAATGTGTAAAAAACACCAAACCC

T18_00 TAGATTGCTAACCACCAGAAGGCTATGGGTGGTCTGGTT staples with extension for TEG-Chol(18) 5'-Chol-TEG- AACCAGACCACCCATAGC

T18_03 ACCCGTCGAGAGCGCAGTCTCTGCTATGGGTGGTCTGGTT AACCAGACCACCCATAGC-TEG-Chol-3'

T18_06 AACCCAAAAATGAGTAATGTGTGCTATGGGTGGTCTGGTT

T09_00 TAGATTGCTAACCACCAGAAGGGTCTGGTT staples with extension for TEG-Chol(9) 5'-Chol-TEG- AACCAGACC

T09_03 ACCCGTCGAGAGCGCAGTCTCTGGTCTGGTT

T09_06 AACCCAAAAATGAGTAATGTGTGGTCTGGTT
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Lateral positions (left side) 

 

 

 

  

oligoname Sequence Description Partner staples

L_00 ATCGACAACTGAGGATTTAGA unmodified staples

L_01 ATAGATGATGGCGAATTATTC

L_02 TTGATAAATGACCTAAATTTA

L_03 GGAAACCAAGGCTGTCTTTCC

L_04 AAAACTGAACATAAAAACAG

L_05 GAGAGGGAGAGCGCCAAAGAC

L_06 TAGCATTGAAGCCGCCACCA

L_07 TTACCCTCAGGTGTATCACCG

L_08 TGCTTGATATATCAGCTTGCT

L_09 TGGAGGCGCAATCCGCGACC

L_10 GAAACTAATAGATTCATCAGT

L_11 TTCAGGATTAAAGCGAACCA

L_12 AATGTAATAAAGCTAAATCGG

L_13 GTAAATTTTATTGTAAACGTT

LS_00 TATATATTTATCGACAACTGAGGATTTAGA staples for lateral oligomerization

LS_01 TATATATTTATAGATGATGGCGAATTATTC

LS_02 TATATATTTTTGATAAATGACCTAAATTTA

LS_03 TATATATTTGGAAACCAAGGCTGTCTTTCC

LS_04 TATATATTTAAAACTGAACATAAAAACAG

LS_05 TATATATTTGAGAGGGAGAGCGCCAAAGAC

LS_06 TATATATTTTAGCATTGAAGCCGCCACCA

LS_07 TATATATTTTTACCCTCAGGTGTATCACCG

LS_08 TATATATTTTGCTTGATATATCAGCTTGCT

LS_09 TATATATTTTGGAGGCGCAATCCGCGACC

LS_10 TATATATTTGAAACTAATAGATTCATCAGT

LS_11 TATATATTTTTCAGGATTAAAGCGAACCA

LS_12 TATATATTTAATGTAATAAAGCTAAATCGG

LS_13 TATATATTTGTAAATTTTATTGTAAACGTT
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Lateral positions (right side) 

 

 

 

  

oligoname Sequence Description Partner staples

R_00 ATATCTGGTCAGACCATATAG unmodified staples

R_01 ATTTTCAGGTTTCAATAGTCC

R_02 TCCGGCTTAGGTAAAGTACAC

R_03 AACATGTTCAGCTACAATTAG

R_04 CCTAATTTGCCAGGGAATACGT

R_05 TAGCAAACGTAGCAGACTGTT

R_06 AGCGTTTGCCATCACAGTTAAA

R_07 AGTATTAAGAGGTAGTAAATT

R_08 TCAGCGGAGTGAATTAAACAA

R_09 CGAAAGAGGCAAAACGAGTATG

R_10 TGAATTACCTTAATCCCCCAA

R_11 TCAAAAATCAGGTCATTTCGCG

R_12 CGAGCTGAAAAGTTTGAGACA

R_13 AACAAGAGAATCATCTGCCCC

RS_00 TATATATTTATATCTGGTCAGACCATATAG staples for lateral oligomerization

RS_01 TATATATTTATTTTCAGGTTTCAATAGTCC

RS_02 TATATATTTTCCGGCTTAGGTAAAGTACAC

RS_03 TATATATTTAACATGTTCAGCTACAATTAG

RS_04 TATATATTTCCTAATTTGCCAGGGAATACGT

RS_05 TATATATTTTAGCAAACGTAGCAGACTGTT

RS_06 TATATATTTAGCGTTTGCCATCACAGTTAAA

RS_07 TATATATTTAGTATTAAGAGGTAGTAAATT

RS_08 TATATATTTTCAGCGGAGTGAATTAAACAA

RS_09 TATATATTTCGAAAGAGGCAAAACGAGTATG

RS_10 TATATATTTTGAATTACCTTAATCCCCCAA

RS_11 TATATATTTTCAAAAATCAGGTCATTTCGCG

RS_12 TATATATTTCGAGCTGAAAAGTTTGAGACA

RS_13 TATATATTTAACAAGAGAATCATCTGCCCC

R18_00 ATATCTGGTCAGACCATATAGGCTATGGGTGGTCTGGTT staples with extension for TEG-Chol(18) 5'-Chol-TEG- AACCAGACCACCCATAGC

R18_06 AGCGTTTGCCATCACAGTTAAAGCTATGGGTGGTCTGGTT AACCAGACCACCCATAGC-TEG-Chol-3'

R18_12 CGAGCTGAAAAGTTTGAGACAGCTATGGGTGGTCTGGTT
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oligoname Sequence Description Partner staples

E_08 TTACCGCCAGCCATTG staples for tip-to-tip interactions:

E_09 CAACAGGAAAAACGCT - Q-E5 structures (10 of 10)

E_10 CTCAATCGTCTGAAAT - Q-E7 structures (10 of 14)

E_14 TGAATGGCTATTAGTCTTT - Q-E13 structures (10 of 26)

E_18 GCTGAGAGCCAGCAGC

F_08 TCCGCTCACAATTC

F_09 TTCCTGTGTGAAATTGTTA

F_10 TAGAGGATCCCCGGGTACC

F_14 GGGGGATGTGCTGCAA

F_18 GCCAGCTTTCCGGCACCGC

E_04 TTTATAATCAGTGAGGCCA additional staples:

E_19 AAATGAAAAATCTAAA - Q-E7 structures (4 of 14)

F_04 CCAGTCGGGAAACCTG - Q-E13 structures (4 of 26)

F_19 AAGATCGCACTCCA

E_03 CGATTAAAGGGATTTT additional staples:

E_05 CCGAGTAAAAGAGTCTGTC - Q-E13 structures (12 of 26)

E_06 CTTTGATTAGTAATAACAT

E_07 CACTTGCCTGAGTAGAAGA

E_11 GGATTATTTACATTGG

E_15 AATGCGCGAACTGATAGCC

F_03 AATCGGCCAACGCGC

F_05 GCTCACTGCCCGCTTT

F_06 GGTGCCTAATGAGTGA

F_07 AAAGTGTAAAGCCTGG

F_11 CTGCAGGTCGACTC

F_15 ACGCCAGCTGGCGAAA
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Top positions 

 

 

 

 

oligoname Sequence Description Partner staples

B_00 ATTATCATCATAAACAGTATG unmodified staples

B_01 GCTCAACAGTAGCAACAATCG

B_02 GCAATAGCTATCCATATAAAC

B_03 GTAAGCGTCATGATTAGCAC

B_04 TCAGCAGCGAAAAGCGATTGA

B_05 AGAAGTTTTGCCGATTGCAAA

B_06 AAGGCCGGAGACATGTACCTC

B18_00 ATTATCATCATAAACAGTATGGCTATGGGTGGTCTGGTT staples with extension for TEG-Chol(18) 5'-Chol-TEG- AACCAGACCACCCATAGC

B18_03 GTAAGCGTCATGATTAGCACGCTATGGGTGGTCTGGTT

B18_06 AAGGCCGGAGACATGTACCTCGCTATGGGTGGTCTGGTT

oligoname Sequence Description Partner staples

T_00 AAATTCGCCCGGAACAAAGAA unmodified staples

T_01 ATTCCCATCTATACAAATTCT

T_02 ATTTATTTCCAATAATAAGA

T_03 AAGTGCCGTGGAAAGCGCAGT

T_04 CAAGATTTGTTAAAGGCCGCT

T_05 TTACTTCAAAAAACCAAAATA

T_06 AGACAGGAAATGTGTAGGTAA

TD_00 AAATTCGCCCGGAACAAAGAAAAAAAACACCAAACCC staples with extension for At488 dye 5'-Atto488- GGGTTTGGTGTTTTTT

TD_01 ATTCCCATCTATACAAATTCTAAAAAACACCAAACCC

TD_02 ATTTATTTCCAATAATAAGAAAAAAACACCAAACCC

TD_03 AAGTGCCGTGGAAAGCGCAGTAAAAAACACCAAACCC

TD_04 CAAGATTTGTTAAAGGCCGCTAAAAAACACCAAACCC

TD_05 TTACTTCAAAAAACCAAAATAAAAAAACACCAAACCC

TD_06 AGACAGGAAATGTGTAGGTAAAAAAAACACCAAACCC
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APPENDIX TO V.2

G Materials and Methods

G.1 DNA origami folding and purification

Dynamic DNA origami nanostructures consisting of a 22-helix bundle with hexagonal lat-
tice based on the M13mp18 7429-nucleotide long scaffold plasmid (p7429), has been de-
signed using CaDNAno [Douglas et al., 2009b] (Figures V.1 and G.1). All structures were
constituted of one or more of three modules: basic module (N), short module (S) and
long module (L). The list of sequences used for each module can be found in Supplemen-
tary Tables G.1 and G.2. Site specific toehold-mediated strand displacement was used
to make the system dynamic. Protecting strands (P) contained 7/8 nucleotide overhangs
(toeholds) on the 3′-end (Supplementary Tables G.1 and G.2), available for initiation of
strand displacement upon addition of complementary removal strands (R).

High purity salt free (HPSF) purified staple oligonucleotides needed for origami folding
were purchased from Eurofins MWG Operon (Ebersberg, Germany), and single-stranded
M13mp18 scaffold DNA was supplied by Bayou Biolabs (Metairie, LA, USA). Long oligonu-
cleotides (> 120 nucleotides) necessary to assemble DNA origami nanostructures contain-
ing the modules S and L were designed using the online application NUPACK (http:
//www.nupack.org) [Zadeh et al., 2011] and the IDT (Skokie, Illinois, USA) online tool
OligoAnlazyer 3.0 (https://eu.idtdna.com/calc/analyzer). These long oligos were
purchased from Eurogentec (Seraing, Belgium). The 5′-Cy3 or Cy5-functionalized oligonu-
cleotides were acquired from Eurofins, while the 5′-cholesterol modified with a tetra-
ethylene glycol linker (chol-TEG)-functionalized oligonucleotides (all HPLC-purified) were
purchased from Sigma-Aldrich (Taufkirchen, Germany). For DNA origami nanostructure
modification with chol-TEG anchors, the respective bottom positions were extended with
18-nucleotide long sequence (GCTATGGGTGGTCTGGTT) complementary to the chol-
TEG modified oligonucleotide. DNA origami nanostructures were folded, purified in FOB
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G. Appendix to V.2

buffer (5 mM Tris-HCl, 1 mM EDTA, 20 mM MgCl2, pH 8.0) or imaging buffer (5 mM
Tris-HCl, 1 mM EDTA, 5 mM MgCl2, 300 mM NaCl, pH 8.0) and quantified as previously
described (see III.1 and V.1).

G.2 oxDNA simulations

We ran molecular dynamic simulations (MD simulations) using oxDNA, a coarse-grained
model whose basic unit is a rigid nucleotide that interacts with other nucleotides through
stacking, hydrogen-bonding, excluded volume, electrostatic and backbone potentials [Ouldridge
et al., 2011, Sulc et al., 2012]. An Andersen-like thermostat [Russo et al., 2009] ensured
diffusive particle motion in the canonical ensemble. Simulations were performed on GPUs
and required approximately 6 × 107 steps. Temperature was set to 23 0C and high salt
concentration was used ([Na+] = 0.5 M), to resemble the experimental conditions.

Sequence was only incorporated into the single stranded region of the "closed" module
L, where a hairpin is folded. Importantly, sequence did not significantly alter the angle
distribution of the module N and the "flexible" module S.

To determine the angle of each DNA origami nanostructure, we consider two vectors ~A and
~B as shown in Figure G.2. A1x, A1y and A1z denote the average of x, y and z component of
coordinates for ~A along the helices (0-21) (Figure V.1) defined by the centre of base-pair
(bp) lying on the interface 1. Similarly, we have calculated theA2x, A2y and A2z along
the interface 2. ~A is defined as (A2x − A1x)x̂ + (A2y − A1y)ŷ + (A2z − A1z)ẑ. The same
approach was used to define ~B considering the centre of bp lying on interface 3 and 4.
Using ~A and ~B, we defined the angle θ = cos−1(AB/|A||B|). We further defined the bend
direction upward or downward using the vector ~C and ~D. The x component of ~C is defined
as (A1x + B4x)/2− (A2x + B3x)/2. Similarly, y and z component of ~C are obtained. ~D is
defined in same manner as ~C considering the (8,13) and (10,11) along interface 5 and 6,
correspondingly (Figure G.2B). If C > 0 the origami is bend in upward direction, if C < 0
the bend is in downward direction, according to the reference.
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G.3 Transmission electron microscopy (TEM)

To confirm the folding of the DNA origami nanostructures, negative-stain TEM imaging
was performed on a CM120 BioTWIN (FEI/Philipds, Hillsboro, Oregon, USA) TEM ,
with a LaB6 filament operated at 120 kV. Images were recorded with a MegaView III
camera (Soft Imaging System GmbH, Münster, Germany). Typically, 3 µL of folded, pu-
rified and diluted (1/10 in FOB buffer) DNA origami nanostructures were adsorbed on
glow-discharged formvar-supported carbon coated Cu300 grids (Plano GmbH, Wetzlar,
Germany) and stained using a 2% aqueous uranyl formate solution containing 25 mM
sodium hydroxide. To confirm the conformational switch upon strand displacement, sam-
ples were incubated with 100x excess of the respective removal strands (R) and imaged
as described above. The bending angles were determined manually using ImageJ software
(http://rsb.info.nih.gov/ij/) [Schindelin et al., 2015]. In short, the angle tool was
used to measure the angle of individual structures (N = 200-500 particles) by choosing the
edge and the centre positions of each structure. Bending angles were binned in ranges of
10o for display. Further image analysis was performed using the same software.

G.4 Agarose gel electrophoresis

The quality of DNA origami nanostructure folding was investigated through agarose gel
electrophoresis (Figure V.4), as previously described (see III.1). Fluorescence analysis of
agarose gels was used to verify the efficiency of the strand displacement mechanism. For
this specific experiment, protecting strand (P) as well as n0(1-4) Cy5-modified at the 5′-
end were incorporated into the DNA origami nanostructures. Additionally, a permanently
bound Cy3-modified oligo was incorporated into the nanostructures. Individual samples
were incubated overnight with 10× excess of respective complementary removing strands
(R). Samples were loaded in 2% agarose gel and electrophoresis was performed as always
(see III.1). The gels were scanned with epi-illumination using Amersham 600 CCD Im-
ager (GE Healthcare, Little Chalfont, UK) using a 460 nm or 630 nm LED light source
for excitation of Cy3 or Cy5 fluorescence, respectively. After performing a background
correction of the gel images, Atto488 and Cy5 fluorescence intensities within the bands of
interest were integrated, and the normalized Cy5/Cy3 ratios were calculated (Figure V.4).
As all structures possess a Cy3 label, this signal could be used as internal standard for
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fluorescence intensity normalization. In the end, the gel was incubated with SYBR Safe
for two hours for DNA staining and imaged as previously described (see III.1).

G.5 Giant unilamellar vesicle (GUV) preparation and confocal
microscopy imaging

GUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (Avanti Polar Lipids,
Alabaster, AL, USA), containing additional 0.005 mol% Atto655-DOPE (AttoTEC GmbH,
Siegen, Germany) were produced by electroformation [Angelova and Dimitrov, 1986] in
polytetrafluoroethylene chambers with Pt electrodes 4 nm apart, as described previously
(see III.1, III.2 and V.1). Importantly, the used aqueous sucrose solution was osmotically
equilibrated to the imaging buffer (610 mOsm kg−1). Experiments were carried out in
40 µl 384-multiwell plates with 1.5 glass bottom (Sensoplate, Greiner Bio-One GmbH,
Frickenhausen, Germany). Freshly plasma cleaned wells (10min) were passivated with
PLL(20)-g[3.5]-PEG(2) (SuSoS AG, Dübendorf, Switzerland) by incubation with a 0.5 mg
ml−1 solution in Milli-Q water for at least 15min and consequently thoroughly washed with
water and imaging buffer. 3 µl of the GUV suspension (diluted 1:50 in 610 mOsm kg−1

sucrose solution) were mixed with a 18 µl DNA origami solution (5nM total concentration)
diluted in imaging buffer, and samples were incubated at 4 0C overnight. Before measure-
ment, the samples were equilibrated at the microscope objective (T = 27.5± 1.00C) for at
least 30 min.

Confocal imaging was performed on a commercial laser scanning microscope LSM 780
with a ConfoCor3 unit (Zeiss, Jena, Germany) using a water immersion objective (C-
Apochromat, 40× /1.2W UV–VIS–IR, Zeiss, Jena, Germany). Samples were excited with
the 488nm line of an Ar-ion-laser or with the 633nm line of a He–Ne laser (for Cy3 and
Atto655 excitation, respectively). To avoid the effect of polarization selection in excitation
of the GUVs, an achromatic λ/4 plate (Edmund Optics, Barrington, NJ, USA) was installed
in the excitation beam path. Images were recorded at the equatorial planes of GUVs, with
a 1 Airy unit pinhole, 512×512 pixel resolution and a scan rate of 3.15 µs per pixel. Further
image analysis was performed using the ImageJ software (http://rsb.info.nih.gov/ij/)
[Schindelin et al., 2015].
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Figure G.2: Predicted hairpin folding in "closed" conformation of module L.
Secondary structure and respective folding free-energy ∆G of strands l(1,3) (left) and l(2,4)
(right) were predicted using the IDT (Skokie, Illinois, USA) online tool OligoAnlazyer 3.0
(https://eu.idtdna.com/calc/analyzer).
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Figure G.3: Schematic representation of the vectors taken into account for
bending angle determination. A) Angle θ is calculated from ~A and ~B, defined along
the helices (0-21) (Figure V.1) by the centre of bp lying on the interface (1, 2) and (3,
4), respectively. The bend direction according to the reference (bottom-left corner) is
defined using the vector ~C, according to interfaces (1-4), and ~D, according to the centre
of bp lying on helices (8,13) and (10,11) over interface (5, 6). B) Cross-section view of the
helices considered for definition of ~D.
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