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NATURALITY OF HEEGAARD FLOER INVARIANTS
UNDER POSITIVE RATIONAL CONTACT SURGERY

THOMAS E. MARK & BULENT TOSUN

Abstract

For a nullhomologous Legendrian knot in a closed contact 3-
manifold Y we consider a contact structure obtained by positive
rational contact surgery. We prove that in this situation the Hee-
gaard Floer contact invariant of Y is mapped by a surgery cobord-
ism to the contact invariant of the result of contact surgery, and
we characterize the spin® structure on the cobordism that induces
the relevant map. As a consequence we determine necessary and
sufficient conditions for the nonvanishing of the contact invariant
after rational surgery on a Legendrian knot in the standard 3-
sphere, generalizing previous results of Lisca-Stipsicz and Golla.
In fact our methods allow direct calculation of the contact invari-
ant in terms of the rational surgery mapping cone of Ozsvath and
Szabé. The proof involves a construction called reducible open
book surgery, which reduces in special cases to the capping-off
construction studied by Baldwin.

1. Introduction

One of the fundamental outstanding problems in 3-dimensional con-
tact topology is the determination of which (closed, oriented) 3-manifolds
admit tight contact structures. The question has been resolved in
many cases, e.g., by work of Eliashberg-Thurston [9] and Gabai [13],
any 3-manifold with nontrivial second homology admits a tight con-
tact structure. Lisca and Stipsicz [24] determined exactly which Seifert
3-manifolds have tight contact structures. However, the situation for
hyperbolic rational homology spheres is still largely open.

Any closed oriented 3-manifold admits contact structures, and any
contact structure £ can be described by contact surgery on a Legen-
drian link in S® [5]. If such a description for ¢ can be obtained for
which all contact surgery coefficients are negative, then & is Stein fill-
able and hence tight. It is therefore natural to consider the extent to
which contact surgery with positive coefficients results in tight contact
structures; it is this question that motivates this paper.

As a proxy for tightness of a contact structure we consider the nonva-
nishing of the Heegaard Floer contact invariant ¢(§), which is a strictly
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stronger condition. Our main result is a naturality property for this
invariant under positive rational contact surgery, generalizing a well-
known result in the case of contact +1 surgery [23]. To state it, we
recall a bit of the formal structure of Heegaard Floer invariants.

For a closed oriented 3-manifold Y, the Heegaard Floer homology
of Y is an abelian group that is the homology of a finitely-generated
chain complex CF (Y) of free abelian groups. Forming the tensor prod-
uct with the field F = Z/2Z we get a chain complex of F-vector spaces
whose homology is the Heegaard Floer homology ﬁ(Y) - HF (Y;TF)
with coefficients in F, which will be our exclusive concern. There is
always a decomposition of HF (Y) as a direct sum of Heegaard Floer
groups HF (Y, t) associated to spin® structures t on Y. Moreover, for
a/gonnected sum of 3;13anif01ds, we have a Kiinneth decomposition
HEY'#Y" {#¢) >~ HF(Y' {) @ HF(Y",¢"). To any cobordism W :
Y1 — Y5 between closed oriented 3-manifolds, i.e., a compact oriented
4-manifold with boundary 0W = —Y; u Y3, entRped with a SBiEC struc-
ture s, is associated a homomorphism Fyys : HF(Y1,4) — HF (Y, t2)
where t; = sly;.

If £ is a contact structure on Y, the Heegaard Floer contact invariant
of ¢ is an element ¢(§) € HF(—Y, t¢), where —Y is Y equipped with the
other orientation and t¢ is the spin® structure associated to the contact
structure £. It is a basic result of Ozsvath and Szabd, to whom the
theory of Heegaard Floer homology and the construction of ¢(&) is due,
that ¢(§) = 0 if € is overtwisted [31].

Now suppose K < Y is an oriented nullhomologous knot and fix a
Seifert surface S for K. For an integer n, there is a cobordism from Y
to the result Y, (K) of n-framed surgery along K, consisting of a single
2-handle attached with framing n. More generally let p/q be a rational
number with p, ¢ relatively prime and ¢ > 0, and write p = mq — r for
integers m and r with 0 < r < ¢. Then there is a “rational surgery
cobordism” W : Y#—L(q,7) — Y,,,(K), where we use the convention
that L(q,r) is the lens space obtained by —¢q/r surgery on the unknot
in S3. Indeed, we form Y#—L(q,r) by performing ¢/r surgery on a
meridian of K < Y, and then W is given by attaching a 2-handle along
the image of K after this surgery with an appropriate choice of framing
(in terms of a Kirby picture, one would call it framing m). Observe
that Ho(W,Y#—L(q,7);Z) =~ Z, generated by the homology class of
the core of the 2-handle which we write as [F']. We orient the core F
such that the induced orientation on K is opposite to that induced by
the Seifert surface S. We also have

Hy(W;Z)/Ho(Y#—L(q,7); Z) = Z,

generated by a class [S] € Hy(W;Z) whose sign is fixed by the require-

~.

ment that [S] — ¢[F] under inclusion. There is some ambiguity in the
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characterization of [S] by these conditions if Hy(Y;Z) # 0; one can
specify the class [§] uniquely by using the Seifert surface S to construct
a surface closing off—in Y#—L(q, r)—q parallel copies of the core F,
but for the statement and applications of our theorem we will not need
this.

Equip Y with a contact structure &, and assume K is a Legendrian
representative of the smooth knot K. We have two “classical invariants”
of K, the Thurston-Bennequin number tb(K) and the rotation number
rot(KC), where the latter depends on the orientation of K and in general
on the choice of S. The dependence on S is eliminated if we suppose that
the Euler class of £, or equivalently the first Chern class of t¢, is torsion.
For a rational number z/y # 0, there is a notion of contact z/y surgery
along K, which provides a contact structure £,/ on the 3-manifold ob-
tained by surgery on K with coefficient p/q = tb(K) + x/y. Note that
g=yand p=1x+y th(K). When z # +1 one can obtain several differ-
ent contact structures by rational contact surgery, depending on certain
choices; our results concern one particular such contact structure, writ-
ten f;/y and corresponding to choosing “all negative stabilizations” in
the construction. For more details see Section [3| in particular Theorem
and following text. -

Recall that the contact invariant c(§) € HF(—Y') satisfies a cer-
tain naturality property under contact +1 surgeries, in the sense that
it W Y — Y41 (K) is the surgery cobordism then there ex-
ists a spin® structure s on —W such that the induced homomorphism
HF(=Y) — HF(=Yyc)+1(K)) carries ¢(§) to ¢(&41). Our first main
result generalizes this property to any positive rational contact surgery.

Theorem 1.1. Let K be an oriented nullhomologous Legendrian knot
in a contact 3-manifold (Y,€), and let 0 < % € Q be a contact surgery

coefficient corresponding to smooth surgery coefficient % = th(K) + Z.
Let W : Y#—L(q,7) — Y,)(K) be the corresponding rational surgery
cobordism, where p = mq—r as above, and consider the contact structure

5;/y on Yyq(K).

1) There exists a spin® structure s on W and a generator ¢ € ﬁ(L(q, T))
such that the homomorphism

Fowe: HE(=Y#L(q,r)) = HF(=Y,,(K))
induced by W with its orientation reversed satisfies
Fone(e(§) ®8) = e(&5,).

2) Assume also that & and §;/y have torsion first Chern class. Then
s has the property that

~.

+{c1(5),[S]) = p + (rot(K) — tb(K))g — 1.
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Note that part (2) of the theorem characterizes the spin® structure
s uniquely up to conjugation under the given hypotheses. A version of
this theorem for positive integer contact surgeries is implicit in [25].

A couple of remarks are in order about the class ¢ € HF (L(q,1)).
First, this class depends only on ¢ and r, not on Y, K, or £. Sec-
ond, though ¢ is homogeneous with respect to the decomposition of
OF (L(g,r)) along spin® structures, it is not, as might be supposed, al-
ways the contact invariant of a contact structure on —L(gq,r). It may
more naturally be interpreted as an invariant associated to a certain
transverse knot in the latter manifold (the knot Oy of Section ,
though we neither need nor pursue this interpretation. For our purposes
here, it suffices to observe that for each spin® structure t on L(q,r),
we have ﬁ(L(q,T),t) = [ and therefore the generator ¢ is specified
uniquely by its associated spin® structure.

Theorem is proved by use of a construction we call “reducible
open book surgery”, which can be seen as a generalization of the opera-
tion on open book decompositions known as “capping off” a boundary
component. From this point of view the theorem above follows from a
generalization of a theorem of Baldwin on the behavior of the contact
invariant under capping off |3]. Our generalization is given as Theorem
2.3 below.

We now specialize to Legendrian knots in the standard contact 3-
sphere. Theorem allows us to determine exactly when a positive
contact surgery yields a contact structure with nonvanishing Heegaard
Floer invariant. The answer depends on certain other Heegaard-Floer-
theoretic invariants for the knot K < S3, viz.:

e The integer 7(K) discovered by Ozsvath and Szabé6 [28] and by
Rasmussen [38]. If —K denotes the mirror of K, it is known that
7(—K) = —7(K); note that 7(K) is independent of the orientation
of K. It was proved by Plamenevskaya [36] that in the standard
contact structure, if K is an oriented Legendrian knot isotopic to
K then

(1) tb(K) + | rot(K)| < 27(K) — 1.
e The concordance invariant €(K) € {—1,0,1} introduced by Hom

[18]. It was shown in [18] that if K is slice then e(K) = 0, and if
e(K) =0 then 7(K) = 0.

Theorem 1.2. Let K be an oriented Legendrian knot in S® and 0 <
5 € Q. Write (Yyy, £;/y) for the contact manifold obtained by contact 5
surgery on IC, in which all stabilizations are chosen to be negative. Let
c({gﬁ_/y) € ﬁ(—Yx/y) be the Ozsvdth-Szabd contact invariant of &ty
and write K for the smooth knot type underlying IC. Finally, let g =
% + tb(KC) be the corresponding smooth surgery coefficient.
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1) If tb(K) — rot(K) < 27(K) — 1, then C(E;/y) =0.

2) Suppose tb(K) — rot(K) = 27(K) — 1.
a) If e(K) =1, then c(ﬁg;/y) # 0 if and only if £ > 27(K) — 1.
b) If e(K) = 0, then c(§x—/y) # 0 if and only if% > 27(K).
c) If e(K) = —1, then c(fx_/y) = 0.

Clearly, if we are to have c({g;/y) # 0, we must orient K such that

rot(K) < 0. Alternatively, one can consider §;F/y, obtained by all positive
stabilizations; indeed, it is easy to deduce versions of Theorems and
for £ using the fact that {gj/y(lC) = ;F/y(f), where K is K with the
opposite strand orientation (cf. [25, Lemma 2.2]).

A result analogous to Theorem [I.2] for the case of integer surgeries
was obtained by Golla [15]; note that in the integer case, the distinction
between cases 2(a) and 2(b) of the theorem does not arise. Golla also
obtains some partial results for rational surgeries as [15, Proposition
6.18], which shows that in case 2(a) of Theorem the condition g >
27(K) — 1 suffices to give the existence of some tight structure on Y, .
Our methods treat integer and rational surgeries simultaneously, and
give information specific to the contact structure 5;/31'

As an application of Theorem we prove the following general-
ization of a result of Lisca and Stipsicz [22, Theorem 1.1]. Again, the
existence portion of the result can also be deduced from the work of
Golla [15].

Theorem 1.3. Let K < S® be a knot with slice genus gs(K)
0 that admits a Legendrian representative K with tb(K) + |rot(K)]
29s(K) — 1. Then the manifold Sg/q(K) obtained by smooth g surgery
along K admits a tight contact structure, for every g ¢ [29s(K) —1—
| Tot(K)|, 295 (K) — 1].

In particular if K is oriented so that rot(K) < 0, then the contact

structure §;/yUC) is tight for % the contact surgery coefficient corre-

v

sponding to smooth % surgery as above.

Proof. Recall that |7(K)| < gs(K), so by we must have 7(K) =
9s(K). We consider contact % surgery along the representative .

If g < 2¢gs(K) —1 — |rot(K)| then the contact surgery coefficient is
% = g —tb(K) < 0. Any negative contact surgery can be realized by a
sequence of contact —1 surgeries [7], and such surgeries result in a Stein
fillable, hence tight, contact structure.

If £ > 2¢,(K)—1 then we orient K such that rot(K) < 0 and consider
the contact structure §;/y given by contact surgery with coefficient % =

E—tb(K) = £ —(2¢5(K) —1—|r0t(K)|) > 0. By a result of Hom 18, p.
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Figure 1. The Legendrian IC,,, with n crossings in the
indicated twist region. A ribbon move across the twisted
band shows /C,, is slice. Note that for n > 1, K}, generally
does not have maximal Thurston-Bennequin invariant in
its smooth isotopy class.

288], since 7(K) = gs(K) we have ¢(K) = sign(7(K)) = 1. The contact
structure 5;/11 is then tight by Theorem q.e.d.

A similar argument shows that if K is a slice knot with a Legendrian
representative K satisfying tb(KC) + |rot(K)| = 2¢gs(K) — 1 = —1, then
S;’/q(K) admits a tight contact structure for all % ¢ [—1 —|rot(K)[,0).
As an example, Figure [I| shows a family of slice Legendrian knots /C,,,
n > 1, each satisfying tb(K,) = —2 and |rot(KC,,)| = 1. For n = 1 the
smooth type of KC,, is the knot 89, a hyperbolic knot, from which it
is easy to see that IC,, is hyperbolic for all but at most finitely many
n. It then follows that S,/ (K,) admits a tight contact structure for
all g ¢ [—2,0), in particular by taking p = 1 we obtain (for each n) an
infinite family of hyperbolic integer homology spheres with tight contact
structures.

Our techniques also allow specification of the class C(f;/y) more pre-
cisely than in Theorem thanks to the second part of Theorem
To understand this, we briefly recall a method due to Ozsvath and
Szabé for calculating the Heegaard Floer homology of the result of ra-
tional surgery along K < S® (see [35]).

Given K < 53\, Ozsvath and Szabd define a filtration of the chain
complex B := CF(S®) and, with some additional machinery, produce
a chain complex denoted CFK®(K). From this complex one obtains
a sequence of subquotient complexes Ay = Ag(K), s € Z, with certain
properties:

e For |s| » 0, we have A; ~ B, where ~ denotes chain homotopy
equivalence.
e For any n > 2g(K) — 1 and |s| < §, there is an isomorphism

As = CF(S(K), t),
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where t; is the spin® structure on S3(K) obtained as follows. Let
W, : 83 — S3(K) be the surgery cobordism and s, € Spin®(W,,)
the spin® structure characterized by

{c1(ss), [§]> +n=2s

where [S] is obtained from a Seifert surface capped off in W, as
before. Then ts = ss|g3(x)-

e For each s there are chain maps v, hs : As — B. If vge and hgy are
the corresponding maps in homology, we have that for s » 0, v
is an isomorphism while hg, is trivial, and likewise v_g, is trivial
while h_gy is an isomorphism.

Now suppose £ € Q is a rational number, with ¢ > 0 as before. Define

q
a chain complex X, (K) as follows. First let

Apjq = @(kvA[EJ) and By, = D(k, B).
keZ ! keZ
Here the entry “k” in (k, AlEJ) indexes the direct sum, as in [35]. Define
q

a chain map D, : A, — B,/ by
Dyjq(k, x) = (k,v(x)) + (k + p, h(x)).

Here and to follow, we omit the subscript on the maps v and h whenever
their domain is clear from context.

Finally, let X, /q(K ) be the mapping cone of D, /q- This mapping cone
gives the Floer homology of the result of p/q surgery along K, and also
determines the maps induced by the surgery cobordism, according to
the following.

Theorem 1.4. For any knot K < S3 and any rational number % e Q,
we have:
1. (Ozsvdth-Szabd [35)) There is a chain homotopy equivalence ® :

Xp/g(K) — CF(Sg/q(K)), in particular the homology of X/, (K)

is isomorphic to ﬁ?(Sz/q(K)).
2. Let Wy, : S*#—L(q,r) — S;’/q(K) be the rational surgery cobord-
ism, where p = mq—r, and let 5 € Spin®(W,,,). Write [§] for the
generator of Hg(Wp/q)/Hg(—L(q,r)) as above. Then the map in

Floer homology induced by s corresponds via ® to the inclusion of
(k, B) in X, ,(K), where k is determined by

(2) {er(s),[S]) +p+q—1=2k.

For the case of integer surgeries, the analog of the second claim is
spelled out in [34]. The version for rational surgeries is more complicated
but essentially similar, however it (particularly formula ) does not
seem to appear in the literature. We give a proof of the second part of
the theorem in Section [5] (Corollary [5.9)).
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Comparing the second parts of Theorems[T.1]and bearing in mind
that the necessary orientation reversal is equivalent to replacing K by
—K and p by —p in Theorem gives the following.

Corollary 1.5. Let K < S3 be a knot with Legendrian representative
K, fix0 < 7 €Q, and let % = tb(K) + - Then the contact invariant

c({g;/y) € ﬁ(—S;’/q(K)) is equal (up to conjugation) to the generator
of the image in homology of the map given by the inclusion

(k, B) = X_p/q(—K),
where k satisfies
(3) 2k = (rot(KC) — tb(K) + 1)g — 2.

This corollary is the essential step in the proof of Theorem Note
also that it gives a direct description of the contact invariant c(ﬁg;/y) in
terms of the mapping cone formula for Floer homology.

We now give a concrete example of the application of Corollary to
calculation of a contact invariant. The example illustrates the “typical”
situation in which one obtains a nonvanishing invariant.

Let K be the (1,2) cable of the right-handed trefoil knot (here the
(p, q) cable of a knot type K’ is the knot type obtained by taking the
curve that traverses the meridional direction p times and the longitudi-
nal direction ¢ times on the boundary of a tubular neighborhood of a
representative of K’). This knot has 7(K) = g(K) = 2, and admits a
Legendrian representative I with tb(K) = 2 and rot(K) = —1 (see [12]).
In particular we have tb(K) —rot(K) = 27(K) — 1, and hence we expect
to find nonvanishing contact invariant c(§;/y) for all g with correspond-
ing smooth surgery coefficient satisfying % +th(K) > 27(K) — 1 = 3.

Let us choose % = %, corresponding to smooth surgery with coefficient

%. According to Corollary the contact invariant c(fg/z) is given by
the image in homology of the inclusion of (k, B) in the mapping cone,
where for our data k = —3.

The knot Floer complex for K was determined by Hedden |17, Propo-
sition 3.2.2]. For the experts, the results can be summarized diagram-
matically and without explanation as in Figure

For our purposes, it more than suffices to know the following, where
A, refers to the subquotient complex obtained from the complex for the
mirror knot —K:

0 if s < -2

Vs and fiy are{ onto ifs>—1
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7 DU & 7

Figure 2. CFK®(S3 K) (left) and CFK*(S3, —K) (right)

A portion of the cone X_7/5(—K) can then be described as follows:
(=4, A2) (=3,4-2) (=2,4-1)--- (3,41) (4,42) (5, 42)

/ 40
o . N/

B (—=3,B) B - B B B

Since the homology of (—3, B) does not interact with the map induced
on homology by D_z; it clearly survives to the homology of X_75(—K),

which proves the nonvanishing of 0(53?/2). A couple of other remarks:

e By computing the homology of X_7/(—K), we can see that the

class c(fg_/z) is the generator of ﬁ’(—Sg’/Q(K), te) @ IF. In general
the technique allows explicit description of the contact invariant
as an element of its corresponding Floer group, via the mapping
cone as above (at least, modulo automorphisms).

e Varying the numerator of the surgery parameter x/y, or equiv-
alently p/q, has the effect of adjusting the source of the arrow
labeled as h, in the diagram above. In particular the reader
can check that the homology generator of (—3,B) vanishes in
Hy(X_p5(=K)) for any p < 7, and survives whenever p > 7,
the transition corresponding to the (non) vanishing of the rele-
vant map h, (of course, Corollary applies only for surgery
coefficients p/q > 2). Similarly, if a Legendrian representative for
K is chosen with a smaller value of tb — rot, we are led to consider
the inclusion of (k, B) for k > —3. The homology generator of this
group is in the image of a v, and hence vanishes.

e For this choice of K, the surgery manifold S;’/Q(K ) is a Seifert
fibered space. In particular, it was known previously by work of
Lisca-Stipsicz to admit a tight contact structure (likewise, Golla’s
results apply to show such a structure exists). However by our
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method we obtain an explicit, relatively simple surgery description
for such a structure.

In the next section we describe the key geometric construction that
leads to our results, called reducible open book surgery, and prove a nat-
urality property for the contact invariant under this operation. Section
shows how to apply reducible open book surgery to deduce Theorem
The proof of Theorem is given in Section [4] which may be read
independently of the preceding sections. In the last section we prove

the second part of Theorem
Acknowledgements. We are grateful to Cagr1 Karakurt and Kather-

ine Raoux for useful discussions and comments, and to John Etnyre for
his interest and support of this project. Thanks are also due to the
referees for their careful reading and many corrections. The first author
was supported in part by NSF grant DMS-1309212 and a grant from the
Simons Foundation (523795, TM). The second author was supported in
part by an AMS-Simons travel grant, and also thanks the Max Planck
Institute for Mathematics for their hospitality during the summer of
2014.

2. Reducible Open Book Surgery

Let Y be a closed oriented 3-manifold equipped with an open book
decomposition (S,¢). Recall that this means S is a compact oriented
surface with boundary, and the monodromy ¢ is an orientation preserv-
ing diffeomorphism fixing a neighborhood of 0S5. Moreover, we are given
a diffeomorphism Y =~ (S x [0,1])/ ~, where the equivalence relation
identifies (x,1) with (¢(z),0) for all z € S, and also (x,t) with (z,t)
for all ¢, and all z € 0S.

A surface diffeomorphism is reducible if a power preserves an essential
(multi-) curve on the surface. Here we will be interested particularly in
the case that v < S is a simple closed curve, and ¢ fixes v. Moreover, we
assume -y separates S into two subsurfaces, each containing at least one
component of dS. In this situation, reducible open book surgery along
~v is defined to be the surgery on v (thought of as a knot in Y) with
framing equal to that induced by the page on which - lies.

As a basic example one could consider v to be parallel to a boundary
component of S, assuming 0S5 has at least two components. Then “re-
ducible” open book surgery along - is equivalent to page-framed surgery
along the corresponding boundary (binding) component, an operation
usually called “capping off” the open book.

We write Y, for the result of page-framed surgery along a reducing
curve v as above.

Lemma 2.1. Let S’ U S” be the (disconnected) result of surgery along
~ < S, thought of as an abstract surface. Write ¢' and ¢" for the dif-
feomorphisms of S" and S” obtained by restricting ¢ and then extending
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by the identity across the surgery disks. Then there is a diffeomorphism
Y, = Y'#Y",
where Y and Y are described by the open books (S’,¢") and (S”, ¢").

The proof is straightforward; we point out two items. First, since it is
preserved by the monodromy the curve v sweeps out a torus in Y (and
the framing induced by the torus is the same as that induced by S).
After page-framed surgery, the torus becomes the separating 2-sphere
in the connected sum Y'#Y”. Second, if W, : Y — Y, is the 2-handle
cobordism corresponding to the surgery, then the cocore of the 2-handle
intersects Y5 in a knot K'# K", where K’ < Y is the 1-braid in the open
book (57, ¢') traced by the center of the capping disk in S’ (and similar
for K”). We can then think of Y as obtained from Y’ UY” by a version
of “contact normal sum” along the (transverse) knots K’ and K", with
framings induced by the corresponding open books.

Now, by fundamental work of Thurston-Winkelnkemper [39] and Giroux
[14], there is a correspondence between open book decompositions and
contact structures on 3-manifolds. In particular, the 3-manifolds Y, Y’
and Y” each carry contact structures &, ¢ and £”, and the cobordism
W., connects the contact manifolds (Y, &) and (Y'#Y", &'#£").

If v is parallel to a component of 0S, then S”, say, is just a disk and the
monodromy ¢” is isotopic to the identity. Thus (Y”,¢") = (53, 4q), and
W, is the “capping-off cobordism” studied by Baldwin in [3|. The main
result of [3] states that the map in Heegaard Floer homology induced
by the reversed cap-off cobordism, W, : =Y’ — —Y, equipped with
a particular spin® structure, carries the contact invariant of (Y’, ) to
that of (Y,&). For the more general reducible open book surgery, recall
that under the Kiinneth decomposition HF(—(Y'#Y")) = HF (-Y")®
ﬁ?(—Y”), we can write ¢(§'#£") = c¢(£') ® c(£"). However, the obvious
generalization of Baldwin’s theorem is false, in general: there is usually
not a spin® structure on W, that carries ¢(£) ® ¢(£”) to ¢(€). Neverthe-
less, an adaptation of Baldwin’s techniques can prove a statement that
suffices for our purposes.

Note that Baldwin also considers reducible open books in the context
of capping off: he observes that if Y7 = (S1,¢1) and Yo = (52, ¢2)
are open books each with at least two boundary components then the
open book Y = (S7 U S2,¢1 U ¢2) obtained by gluing two boundary
components of S; and Sy can be realized as the result of capping off
Y1#Y5. Thus the cobordism —Y — —(Y;#Y3) respects the contact
class. Reducible open book surgery results in a cobordism in the other
direction, —(Y'#Y”) — —Y, and behaves somewhat differently. To
understand this, we recall some of the basics of Heegaard Floer theory,
and the construction of ¢(£) via open books following Honda, Kazez and
Matié¢ [20].
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The Heegaard Floer chain complex for a closed oriented 3-manifold
Y requires for its construction a choice of Heegaard diagram: this is
a triple (X, a, 3) where ¥ is a closed oriented surface of genus g > 1
and o = {a1,...,a4} and B = {f1,..., By} are g-tuples of simple closed
curves disjointly embedded in ¥, such that the members of each g-tuple
are linearly independent in H;(X;Z). The g-tuples determine a pair of
3-dimensional handlebodies H, and Hg uniquely specified by the re-
quirement that each «; bound an embedded disk in H, and correspond-
ingly for the 3; in Hg. The orientations of H, and Hg are determined
by the requirement 0H, = ¥ = —0Hpg, and the triple (X,c,3) is a
Heegaard diagram for Y if there is an orientation-preserving diffeomor-
phism between H, uy Hg and Y. By isotopy of the curves in o and 3,
we arrange that all the intersections between the o; and §; are trans-
verse double points; for the purposes of Heegaard Floer theory we must
also choose a basepoint w € ¥ in the complement of a and 3. The
collection (X, at, B, w) is called a pointed Heegaard diagram; we require
certain admissibility conditions on this diagram that can be achieved
by isotopy as well (c.f. [30, Section 5]).

Given a (pointed) Heegaard diagram, the Heegaard Floer chain com-
plex has generators obtained as follows. We form the symmetric power
Sym? ¥, being the space of unordered g-tuples of (not necessarily dis-
tinct) points on X, topologized in the natural way as a quotient of 9.
This space is naturally an orbifold, but it is well-known that it can be
provided with the structure of a smooth 2¢g-dimensional manifold by,
for example, choosing a complex structure on 3. In Sym? 3 lie two
g-dimensional tori T, and Ty, being the images of a; x --- x ay and
B1 x -+ x By; since the a curves are disjoint, we see T, is smoothly em-
bedded (and similarly for Tg). Moreover, under the admissibility condi-
tions, the two tori intersect transversely at isolated points x € T, N Tpg
that can be described concretely as g-tuples x = {z1,..., 24} such that
each z; lies at an intersection of o; and S, (), where o is some permu-
tation of {1,...,n}.

The chain complex CF (Y) is freely generated over F = Z/27 by
the intersection points x. The construction of the differential is much
more delicate, involving a count of holomorphic disks with boundary
on the tori T, and Tg and “connecting” intersection points x and y
in an appropriate sense. The most we need to say for the moment
is that the generators x fall into equivalence classes respected by the
differential; in fact, granted the choice of basepoint w one can associate
a spin® structure s,,(x) to each generator, and there is a corresponding
decomposition of chain complexes C'F Y) =0, CF (Y,s).

Now suppose we are given an open book decomposition (.5, ¢) for Y.
Following Honda, Kazez, and Mati¢ [20], we can then obtain a pointed
Heegaard diagram for Y as follows:
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e Let ay,...,a, be a collection of properly embedded arcs in S that
cut S into a disk, and let b1,...,b, be a set of arcs obtained by
a small translation of the a; that moves the boundaries in the
positively oriented direction of 0.5, and such that b; intersects a;
transversely in a single point of int(S).

o The Heegaard surface X is given by S;/; U (—Sp), where S; refers
to the image of S x {t} ¢S x [0,1] in Y.

e Fori = 1,...n, the attaching circle o; is equal to a; x {3} ua; x {0},
while 3; is given by b; x {2} U ¢(b;) x {0}. We assume that all
intersections between o and [ curves are transverse.

e The basepoint w for the diagram is placed in S/, away from the
regions between the arcs a; and b;.

See Figure (a) below for an example, where the a- and - curves appear
in red and blue, respectively.

We refer to a pointed Heegaard diagram constructed in this way from
an open book decomposition as an HKM diagram. Reversing the roles
of a and S curves, we can think of (2,3, a,w) as giving a Heegaard
diagram for —Y (which we also call an HKM diagram). In this diagram
the generator x for CF (=Y) corresponding to the n intersection points
between the a; and b; on ¥y, is a cycle—a fact which relies on the
location of the basepoint—and by [20] it represents the contact invariant
(&) e HF(-Y).

Definition 2.2. Let Y be a rational homology 3-sphere. An open
book decomposition (S, ¢) supporting a contact structure & on'Y is HKM
strong if there is an HKM diagram corresponding to (S,®) with the
property that the canonical generator x is the only intersection point in
1ts spin® structure.

Since in an HKM diagram the canonical intersection point x lies in the
spin® structure s¢ associated to the contact structure, a necessary con-
dition for a contact rational homology sphere (Y, ¢) to admit an HKM
strong open book decomposition is that the Floer homology HF (=Y, s¢)
is isomorphic to F (and x represents the generator of this module). In
fact, by moving the basepoint in the HKM diagram (c.f. [30, Lemma
2.19]), one sees that for every spin® structure t, the group Hr (=Y, t) is
isomorphic to F: thus if Y is a rational homology sphere admitting an
HKM strong open book decomposition then necessarily Y is an L-space.
We will see below that the standard contact structure on a lens space
admits an HKM strong open book decomposition.

Now suppose (S, ¢) is a reducible open book decomposition as pre-
viously, with v < S a separating curve fixed by the monodromy. Since
S has boundary on each side of v, we can choose the arcs aq,...,a, in
such a way that a; connects two different boundary components of S
and intersects y transversely in a single point, while the other a; are
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disjoint from ~. We obtain a new set of attaching circles ~1,...,y, on

Figure 3. (a) shows an HKM diagram (« curves in
red, § in blue) associated to an open book with mon-
odromy fixing a separating curve <y (indicated, with
other « curves, in green, parallel to §’s). Note that no «
or (3 curves except a1 and f; cross the grey curve ¢(71).
The Heegaard diagram in (b) is obtained from the v and
~ curves in (a) after destabilizing by cancelling v, with
the o curve it hits, after possibly sliding some ~ curves
over 7;. This is the connected sum of the diagrams in (c)
at the basepoints 2’ and 2”, which are not the standard
basepoints in the HKM diagrams for the decomposed
monodromies ¢’ and ¢”.
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¥ = 81/pu—5p by taking 71 = v while the other ; are (small Hamilton-
ian perturbations of) the corresponding ;. Since our surgery is framed
using the page, it is easy to see that (3, a,7y) is a Heegaard diagram
for the open book surgery Y, = Y'#Y”. In fact, (X, c,7y) is obtained
by a single stabilization from a connected sum of HKM diagrams corre-
sponding to (S, ¢') and (S”, ¢"). Note, however, that some handleslides
may be necessary in the destabilization, and in particular (3, a,7y) is
not necessarily obtained by a connected sum of pointed HKM diagrams
(c.f. Figure . We place basepoints w’ and w” on either side of 71, so
that w’ lies on the side of the diagram corresponding to S’.

The following generalizes Baldwin’s theorem on capping off to the
case of reducible open book surgery.

Theorem 2.3. Assume that the reducible open book surgery corre-
sponding to v < S < Y gives rise to open books (S’,¢') and (S”,¢")
as above, and assume that (S”,¢") is HKM strong. Then there exists
a generator ¢ € ﬁ(fY”), and a spin® structure so on the surgery co-

bordism W, : —(Y'#Y") — =Y such that
By, 50 (c(§) ®¢) = c(€).

In fact, the class ¢ is represented by the canonical generator x” on
the HKM diagram for (Y &"), with basepoint z” as in Figure

The main idea in the proof is to consider holomorphic triangles in the
triple diagram (X, ~, 3, a), much like [3]. Indeed, this triple diagram de-
scribes the natural 2-handle cobordism between Y and Y/#Y”, thinking
of the cobordism as connecting —(Y'#Y”) to =Y. (As in [3], the dia-
gram is “left-subordinate” to the cobordism; see |32, Section 5.2].) By
construction of the diagram, there is a small triangle 1y € ma(x0, 0, X)
admitting a unique holomorphic representative, where x € Tg n T, is
the canonical (HKM) representative of ¢(§), 8 € T., n T4 is the standard
highest-degree intersection point, and x¢ € T, n T, is the intersection
point given by the standard intersections between the ~; and «; for
1 # 1, together with the unique intersection point in v; N a;.

In the following we continue to assume Y” is a rational homology
sphere.

Lemma 2.4. After possibly adjusting the monodromy ¢ by an iso-
topy, the diagram (X,~, 3, a,w') is weakly admissible in the sense that
every triply-periodic domain with n,y = 0 has both positive and negative
coefficients.

Proof. Suppose P is a nonnegative triply periodic domain in (X, ~, 3, o, w'),
i.e., a nonnegative integer linear combination of regions between the at-
taching circles, excluding the region containing w’, whose boundary (as
a chain) is a linear combination of «, 3, and v circles. We write the
circles as @« = o' U a1 U @”, where the primes refer to the side of
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the diagram containing the curves, and similarly for 3 and ~. Since
Ny (P) = 0, the combinatorial arguments from |3, proof of Lemma 2.2]
show that none of the circles o', 3’, 4/ appear in oP.

Consider the surface with boundary H obtained from ¥ by cutting
along v and ¢(y1) € —Sp, so H is a disjoint union H = H' v H” cor-
responding to the two sides of our diagram. Write m for the coefficient
of P in the “small” region between a and 31 in H' near v; < 0H'.

By identifying the two boundary components of H”, we obtain a Hee-
gaard diagram (i], 4,8, &) as in Figure |4, and P gives rise to a domain
in this diagram. Observe that the new diagram is a Heegaard triple
diagram describing surgery along a knot K” in Y” whose meridian cor-
responds to 41 and longitude is 1. The set of triply-periodic domains
in such a diagram is spanned by a domain for which the longitude 3
appears in the boundary with coefficient equal to the order in first ho-
mology of K”, if that order is finite (c.f. the discussion in Section [5.1]).
In our diagram the coefficient of 81 in the boundary of P is just m, up
to sign. Since we are assuming b1 (Y"”) = 0, it follows that for any non-
trivial, nonnegative periodic domain in the original diagram we must
have m # 0.

Consider the portion of the diagram near ¢(v1) < dH'. Here it still
must be the case that the coefficients of P differ by m across each of
a1 and B1. Therefore we can ensure that a nonnegative triply periodic
domain does not exist by introducing winding, in the sense of [30| Sec-
tion 5], of 81 around the curve ¢(71), in both directions; this can be
achieved by isotopy of the monodromy ¢ and thus still corresponds to
an HKM diagram. q.e.d.

The following refers to the triple diagram (X,7, 83, o, w’, w") corre-
sponding to reducible open book surgery (Figure (a)).

Figure 4. The Heegaard triple obtained by cutting the
diagram of Figure (3| along 71 and ¢(v1) and identifying
boundary components. Shown is the portion correspond-
ing to the right side of the diagram, H”.
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Proposition 2.5. Fory € TgnT,, let ¢ € ma(x0,0,y) be a homotopy
class of Whitney triangles such that

1) Ty ("b) =0

2) 5w’(w) = S/ (w())

3) ¢ admits a holomorphic representative.
Then y = x, and ¥ = 1.

In fact, the argument applies to triangles satisfying (1) and (2) and
whose corresponding domain in ¥ has only nonnegative coefficients,
which is true if 1) admits a holomorphic representative.

Proof. First we claim that any such 1 also has n,»(¢) = 0. For this
recall that the quantity f(xo) = {c1(sw (¢)), [FA]) + [FA]* = 2(nw (¢) —
Ny (1)) depends only on the intersection point x¢ and not, particularly,
on the triangle ¥ € ma(xg,0,y). (See Lemma here [F)] is the
generator of Hy(W, —(Y'#Y")) represented by the core of the 2-handle.)
If 5,/(¢) = 8,/ (¢09) then the only term of f(x¢) that depends on
is Ny (YY) — Ny (10). In particular since ng (1) = nyr (o) = 0, the
assumption n,,(¢) = 0 forces n,» (1)) = 0 as well.

Hence the triangle 1) must have vanishing coefficients in both “large”
regions of the diagram (X,~, 3, a). The combinatorial arguments from
[3, Proposition 2.3] now apply directly to give the conclusion.  q.e.d.

The proposition implies that an appropriately-defined chain map be-
tween (X, v, a,w’) and (X, 3, o, w') sends the generator xg to the canon-
ical representative x of the contact invariant ¢(§), since there is just one
homotopy class of triangle to consider and that homotopy class admits
a unique holomorphic representative (we define the relevant chain map
below). Moreover, if we write xg = x(, Xx1 X X, where x1 € 71 X aq is
the unique intersection as before, then after destabilizing the diagram
the intersections x{, and x{ are the canonical intersection points in HKM
diagrams for =Y’ and —Y".

Lemma 2.6. Assume that the diagram (X", 4", ", w") is HKM strong

for the contact structure £ supported by (S”,¢"). Then the intersection

point Xg 18 a cycle in the chain complex 6?'(2,7,04,11/). Moreover,
under the Kinneth isomorphism

HE(Y'#Y")~ HF(Y)Q@ HF(Y"),
the class [xg] corresponds to c(§) ® ¢, where ¢ is the class represented
by the intersection point x§ in the diagram (X",~",a”,2").
Observe that since the diagram is HKM strong, the generator x{ is a

cycle in CF regardless of the position of the basepoint. It is, however,
dealing with the basepoints that is the main difficulty in the proof of
the lemma. To do so we make use of some technology from knot Floer
theory.
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Recall that if (X, o, 3,w,z) is a doubly-pointed Heegaard diagram
describing a knot K < Y, the knot Floer chain complex CFK~ (Y, K) =
CFK~ (¥, a,B,w, z) is generated over F[U] by intersection points in
the usual way, with differential counting holomorphic disks that miss
the basepoint z and keeping track of intersections with w via the power
of U. Explicitly:

dex= > #M(@U™Py.
nz(¢)=0

Here the sum is over intersection points y and Whitney disks ¢ €
m2(x,y) having Maslov index 1. There is a chain map CFK~ (¥, ¢, B, w, z) —
6’1\7(2, o, 3, z) given by setting U = 1 (i.e., forgetting the basepoint w
and declaring z to be the new basepoint). In the following, we will
need to treat the basepoints we have been labeling as w’, w”, 2/, 2’
in different ways in the knot complex. To avoid confusion, we will use
notation such as CFK~ (X ,v',&/,n, = 0,U™) to indicate the knot
Floer complex in which w’ plays the role of z above and 2’ corresponds
to w.

Proof of Lemma[2.6. Consider the two Heegaard diagrams (¥',v/, o/, w', 2’)
and (X",4",a”,w",z") of Figure [3|c), and the corresponding tensor
product of knot Floer complexes

CFK?(EC 7/7 a/7 nw/ = 07 Unz/ )®Z[U]CFK7(2”, ’)’”7 a”’ ’)’LZ// = 07 Unw//)_

According to [29, Section 7] (see also [33, Section 11]), there is an iso-
morphism of this complex with the complex CF K~ (X'#X" v uvy", o’ u
A" ny =mn = 0,0 ") obtained as follows. First form the triple
diagram (X'#X" v uv", &’ vy", a’ U a” W' w"), where the tildes in-
dicate small Hamiltonian perturbation, as in Figure Denoting by
0’ (resp. 60”) the canonical intersections between o’ and & (resp. ~”
and 4”), the image of x’®x” from the tensor product complex is ob-
tained by counting holomorphic triangles in the triple diagram, having
vanishing multiplicity at w’ and with corners at X’ x §” and 6’ x x”,
where X’ € v/ n &' and X" € a” n 4" are the obvious intersection points
corresponding to x’ and x”. We observe:

e There is a “small triangle” ¥y € ma (X[ x 07,60 x X3, x(, x x()) ad-

mitting a unique holomorphic representative.
e Any other triangle ¢ € mo(X{, x 0", 0" x x(, 0’ x u”) with n,(¢) = 0
and with nonnegative coefficients is actually equal to .

Indeed, the first of these is clear from the diagram. For the second we
adapt the argument from [21, Section 7]: first note that any triangle
as in the claim differs from 1)y by splicing a disk ¢ € ma(x( x %3, u’ x u”)
with nonnegative coefficients, boundary on T, and T.,, and n,s(¢) = 0.
Clearly such a disk must have vanishing coefficients on the ¥’ side of the
diagram, and in particular we must have u’ = x,. But then ¢ gives rise
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E,#Z//

Figure 5. Heegaard triple for the Kiinneth argument.

to a disk starting from x{ supported on ¥, which is necessarily trivial
by the HKM strong condition.
To pass from the connected sum diagram to the HKM diagram (X, v, o, w’, w”),
we must stabilize and then slide some ~ circles as necessary (reversing
the transition from Figure [3(a) to (b)). Stabilization (at w’) certainly
maps X(, X Xg — X(, xx1 x X(; the maps induced by handleslides involve
counts of holomorphic triangles that also have the desired behavior by
an argument entirely similar to the one above. We leave the reader to
fill in the details.
We have now seen that there is a chain isomorphism

CFK~ (E/, vy, n, =0, Un:") ®Z[U] CFK~ (E”, v, " n,n =0, Umw')
— CFK™(3,7y,a,ny = 0,U"")
such that the chain x{®x{ is sent to x{ xz; x x{. Moreover, it is
clear that both x{, and x{ are cycles in the respective factors on the left

side (x{, by virtue of the placement of the basepoint w’, and x{ in light
of the HKM strong condition). Applying the natural transformation

CFK~ — CF we get a homology isomorphism

ﬁ(Z’,’y’, o w')® I/{?’(E”, ~' a” ") — ﬁ’(E,'y, a,w')
mapping [x(|®[x(] to [x{, xz1 xx{], where the latter class is well-defined
since CFK~ — C'F is a chain map. q.e.d.

Proof of Theorem [2.3. The triple diagram (X, v, 3, a, w’) is left-subordinate
to the surgery cobordism W,. Writing sy for the spin® structure in-
duced by the small triangle vy, we see from Proposition that the
corresponding chain map given by

Frwy) = Y #M@)x
Yema(y,0,x)

(where the sum is over homotopy classes of triangles with Maslov index
0, S (1) = s (hg), and nyy (1) = 0) carries X' xx1 x x” to the HKM
generator x in (3,3, a,w’), which is a cycle representing ¢(£). The
theorem then follows from Lemma [2.6 q.e.d.



20 THOMAS E. MARK & BULENT TOSUN

3. Positive Contact Surgery

We consider positive contact surgery along a nullhomologous Legen-
drian knot K < (Y, &) (we abuse notation slightly here, using the same
notation for a knot type and a particular Legendrian representative of
it). We adhere to conventions from the introduction, so the smooth
surgery coefficient will be written as g. The corresponding contact
surgery coefficient will be written ¥, so that y = g while z = p—q th(K).
We write p = mq—r as previously, where 0 < r < ¢, so that the rational
surgery cobordism is W = W, : Y#(—L(q,7)) — Y4(K).

Our strategy in the proof of Theorem [I.T|relies on reducible open book
surgery. Our construction applies in particular in the case of a contact
surgery coefficient % > 1, so for most of this section we will make that
assumption. In Section we show how to deduce the general case
from this one.

3.1. Naturality. Our main goal for this section is the following, which
is a portion of Theorem [I.1]

Theorem 3.1. Let K < (Y,£) be an oriented nullhomologous Legen-
drian knot, and I € Q a contact framing with = 1. Let (Y, (K), S;/y)
be the result of contact % surgery on K, with the contact structure
£,y described below. If W YH4(—=L(q,7)) — Ypu(K) is the corre-

sponding rational surgery cobordism, then there exists a spin® structure
s € Spin®(W) and a generator ¢ € HF(L(q,r)) with the property that

F_ws(c(§) ®¢) = c(&,,);

where =W : =Y #L(q,r) — —Y,,4(K) is the oppositely-oriented cobord-
18m.

This theorem is an application of Theorem where we realize —W
above as a reducible open book surgery cobordism between Y, /q(K ) and
Y#(—L(q,r)). To do this, we review an algorithm due to Ding, Geiges
and Stipsicz [7] for describing a rational contact surgery in terms of +1
surgeries, and interpret that algorithm in the context of open books.

Theorem 3.2 (DGS algorithm). Given Y,&, K as in Theorem |3.1

let 0 < % € Q be a contact surgery coefficient. Let r € Z be the minimal

*— <0, and form the continued fraction

positive integer such that —
T 1
Y —rz = la1,a2,...,an] = a1 — ﬁ’

where each a; < —2. Then any contact % surgery on K can be described

as contact surgery along a link (Kél) U-eru KéT)) uKiu---UK,, where
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. Kél), e ,Kér) are parallel Legendrian pushoffs of the original Leg-
endrian K,

e Ky is obtained from a Legendrian pushoff of K(()T) by stabilizing
lap + 1| times,

o for j = 2, K; is obtained from a Legendrian pushoff of K;_1 by
stabilizing |a; + 2| times,

e the contact surgery coefficient on each K(()Z) is +1, while the coef-
ficient is —1 for the other K.

The ambiguity in the resulting contact structure &,/ arises from the
choice of stabilizations used for each Kj; the contact structure S;/y is

the one given by choosing all these stabilizations to be negative (with
respect to the chosen orientation of K).
Note that if ¥ > 1, then we have 7 = 1 in Theorem i.e., there is

only one +1 contact surgery required in the algorithm. We will assume

% > 1 from now until Subsection and write K for K(()l) in the

algorithm above.

Recall that for any Legendrian K < (Y, &) one can find an open book
decomposition supporting £ such that K lies on a page of the open book
and such that the contact framing on K agrees with the framing induced
by the open book (see [11, Corollary 4.23], for example). Moreover, it
was observed in [2] that one can arrange for stabilizations of K to appear
on pages of the stabilized open book in the following way. Having fixed
an orientation for K, choose an embedded path ¢ on the page, which
starts on a boundary component and approaches K “from the right.”
Stabilize the open book using the arc on the page that is the non-closed
component of the boundary of a regular neighborhood of K Uc; then the
negative stabilization K~ is Legendrian isotopic to a curve on the page
of the stabilized open book that is parallel to the boundary component
meeting ¢, and the page framing of K~ agrees with the contact framing
(see Figure @ The stabilization involves composing the monodromy of
the open book with a Dehn twist along the closed curve C' that is the
union of the indicated arc with the core of the new 1-handle.

Iterating this procedure, we can stabilize the open book repeatedly
to obtain a decomposition supporting £ in which an arbitrary number
of stabilizations of K appear as curves on the page. In particular, given
% > 1, we can find an open book decomposition for which all the Leg-
endrians Ky, ..., K, from Theorem [3.2] appear as closed curves on the
page, with contact framing equal to the page framing. Moreover, since
performing —1 (resp. +1) surgery along a closed curve in the page,
where the framing is measured with respect to the page framing, is
equivalent to composing the monodromy of the open book with a right-
(resp. left-) handed Dehn twist, we get an open book decomposition for
5;/y by adding a left twist to ¢ along K = Kj, and right twists along
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K K K~

Figure 6. Stabilizing a Legendrian on the page of an
open book. The left picture is before stabilization, the
center and right-hand pictures are equivalent pictures
after stabilization, with the stabilized Legendrian K~
indicated, and where the monodromy has been composed
with a right twist about C.

each K1, ..., K, (the Dehn twists corresponding to the various pushoffs
commute, since the curves are disjoint in the page). The procedure is
illustrated in Figure m Note that each K is a parallel copy of some sta-
bilized Legendrian K~™, but not all stabilizations are necessarily used
and some may be repeated. We denote the open book decomposition
for (Ym/y(K),gg/y) obtained this way by (S, ¢).

Observe that in (5, ¢) the monodromy preserves the once-stabilized
Legendrian K—, and that K~ separates S with boundary components
on each side. Applying reducible open book surgery along K, we
obtain a 3-manifold that is the connected sum of manifolds with open
book decompositions (S, ¢’) and (S”, ¢”). Note in particular that after
the reducing surgery, the original Legendrian K < S’ is isotopic to the
first stabilization curve C, and therefore the right twist along C' cancels
with the left twist we introduced along K = K. Hence, the open book
(57, ¢') is indeed the original open book for (Y, ¢) we began with.

On the other hand, the open book (S”,¢") is clearly planar and the
monodromy ¢” is given by the composition of right twists along all but
one boundary component together with various copies of the disjoint
circles K7 as indicated in Figure |8} The proof of Theorem [3.1] rests on
the following result.

Lemma 3.3. The 3-manifold Y described by (S”,¢") is diffeomor-
phic to the lens space —L(q, 7). Moreover, the 2-handle cobordism Y}, —
Y#(—L(q,r)) corresponding to the reducible open book surgery is diffeo-
morphic to —W,,, the rational surgery cobordism with its orientation
reversed. Finally, the open book decomposition (S”,¢") is HKM strong

in the sense of Definition[2.3.
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K K- K- - K

Figure 7. Iterating the stabilization procedure. Note
that a right Dehn twist is introduced to the monodromy
around each new boundary component except for the
last.

(}SV/7 ¢/) (’SV//7 ¢N>

Figure 8. The result of reducible open book surgery
along K~ in the open book of Figure The connect-
sum points are indicated.

Proof. The first sentence follows from the second. The latter can
be proved in a manner analogous to |25, Proposition 4.1], in fact our
constructions in this section are generalizations of those in [25]. Work-
ing more directly, Figure [9] shows the contact surgery diagram result-
ing from the Ding-Geiges-Stipsicz procedure, along with a copy of the
once-stabilized knot K~. Note that K is a Legendrian in a 3-manifold



24 THOMAS E. MARK & BULENT TOSUN

AN
S o

+1
0
-1
-1
-1

a1+ 2
=/
as + 2
K, /
.-/’
an, + 2

Ky

Figure 9. The Ding-Geiges-Stipsicz picture for rational
contact surgery. The boxes indicate the number of sta-
bilizations; note each a; + 2 < 0, i.e., all stabilizations
are negative.

(Y, &), which itself can be described by a contact surgery diagram; this
background diagram is not indicated in the figure. The reducible open
book surgery cobordism is given by a 2-handle attached along K~ with
framing equal to the Thurston-Bennequin invariant of K ~; we turn the
cobordism over and reverse its orientation by bracketing all surgery co-
efficients and introducing a O-framed meridian for K~. To simplify the
picture, note that the stabilized pushoffs K, ..., K, can be successively
slid, each over the preceding, to give a chain of unknots (in fact, since
we have performed —1 contact surgery on each of these knots, |6] im-
plies each K is Legendrian isotopic to a stabilized standard Legendrian
meridian of K;_; for j = 2,...,n). The corresponding smooth surgery
picture is shown in Figure a), and a little more manipulation of the
diagram (sliding K~ and then K over Kj) gives Figure [L0[(d). Recall-
ing that [a1,...,a,] = %, that z = p — ¢tb(K), y = ¢, and writing

y—x’
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(t+1)

t+1) K \ t+1 K
(0)
2o
(a1 +1) ) (a1 +1) )
(az) O (a2) /_w
< <X

() (d)

Figure 10. The reducible open book surgery cobord-
ism, upside-down and with reversed orientation. Here
we write ¢t = tb(K) for the Thurston-Bennequin number
of the original knot K.

p = mq — r it is easy to obtain Figure which is nothing but the
surgery cobordism W), . Since our picture has the wrong orientation,
the proof is complete except for the claim that the diagram for —L(q, r)
is HKM strong. We postpone this to Section q.e.d.
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(i) (1)
K o K

N N

t+1 m

Figure 11. Simplification of Figure still writing ¢ = tb(K).

Proof of Theorem 3.1l The previous lemma shows that the oppositely-
oriented surgery cobordism —W,,, : =Y #L(q,7) — —Y,,(K) is diffeo-
morphic to the reducible open book surgery cobordism, after turning
around. The naturality property of such reducible surgery cobordisms

(Theorem proves the result. q.e.d.

3.2. Spin® structures. We now wish to identify the spin® structure
on the rational surgery cobordism whose existence is guaranteed by
Theorem Since it is obtained from the reducible open book surgery
construction, let us write sgops € Spin®(—W,, /q) for that spin€ structure.

To begin with, observe that there is another natural spin® structure
on W, arising from the Ding-Geiges-Stipsicz algorithm. Indeed, we
can think of the diagram of Figure |§| (without the handle corresponding
to K7) as describing a 4-manifold X, ,, which is clearly diffeomorphic
to that given in Figure [L0}(d) after removing all brackets. Thus X, 4
contains the rational surgery cobordism W, , : Y#—L(q,7) — Y}, (K).
Moreover, since there is a single +1 contact surgery coefficient in the
diagram of Figure @ the manifold X, , = X, ;#CP? admits an almost-
complex structure Jpgs whose Chern class evaluates on the 2-handles
corresponding to the Legendrians in Figure [9 as the corresponding ro-
tation number—see [7, Proposition 3.1], also [8,/16]. (Here and to fol-
low, we suppose an oriented Seifert surface for K has been fixed.) We
get a corresponding spin® structure spgg on )A(p’q, and write spgg €
Spin®(W),,) also for its restriction to the rational surgery cobordism.
Note that both srops and spgs restrict to Y, ,(K) as the spin® struc-
ture induced by the contact structure.

The next result characterizes the spin® structure arising from Jpgs;
we will see that spops is essentially the “same” as this one (in quotes,
since sRopgs is on the oppositely-oriented manifold).

Lemma 3.4. Fiz a generator [S] € Ha(W,,q; Z) satisfying (1), i.e.,
so that [S] corresponds to q times the relative class given by the core
F of the 2-handle, where the latter is oriented so that OF = —K. The
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spin® structure spas € Spin®(W,,) satisfies
{e1(spas), [S]) =rot(K)y+2—1=p+ (rot(K) —th(K))g— 1

Proof. For simplicity, we suppose that the initial contact manifold
is (Y,€) = (53,&4q). The general case (involving keeping track of a
contact surgery diagram for (Y,¢)) is similar.

The Legegdrians K = Ky, Ki,..., K, in Figure [J correspond to 2-
handles in X, 4, and since all the K; are nullhomologous we get cor-
responding homology classes kg, k1,...,k, € HQ()?p,q;Z). The Chern

class ¢ = ¢1(Jpas) € H 2()?197(1, Z) of the almost-complex structure satis-
fies

{c,kyy = rot(K)
(e, kj) = rot(K)+ar+---+aj+2j—1 forj=1,...n
The handleslides relating Figure |§| to Figure d) show that
{e,lyy = rot(K)
(4) {e, b1y = a1 +1
(e, ljy = a;j+2 forj=2,...,n,

where lg = ko and ¢; = k;j — kj_q1 for j = 1,...,n are the homology
classes corresponding to the handles in Figure [L0[d) (with brackets re-
moved).
With respect to the basis {¢o, {1, ..., ¢y}, the intersection form of X,
is given by the matrix
[ t+1 -1 |
-1 a+1 1
1 a
Qx,, = 2
1
1 a,

The cobordism W), , is given just by the handle addition corresponding
to Lo, after adding {1,...,¢,, and therefore the class [S] € Ha(W),q, Z)
can be represented in our basis as a generator for the kernel of the matrix
obtained by deleting the row corresponding to £y in the intersection
matrix for X, , (see, for example, |26, Section 9]). To understand this
class, recall that for a rational number xg/x; > 0, its continued fraction
expansion is obtained inductively by using the division algorithm to
write

rg = bixri —xo with 0 <29 <13
0<

1 le’Q — I3 with T3 < T9

Tn—1 = bpxy,
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where the procedure stops when the remainder x,, divides the preceding
remainder x,_1. If xg/x; is in lowest terms, this happens just when
x, = 1. In particular, this means that the vector (zg,z1,...,x,) is in
the kernel of

[ 1 - 1
1 —by 1
1 —b
(6)  M(=by,...,—by) = 3
1
1 —b,

and conversely the kernel of this matrix is spanned by a vector uniquely
specified by requiring its entries to be decreasing positive integers with
final entry 1. Moreover, this canonical kernel vector (x, ..., z,) has the
property that ged(xj, zj11) = 1, and zo/z1 = [b1, ..., b,] as a continued
fraction.

Deleting the row corresponding to £y in the intersection matrix for
X, q gives the matrix M = M~ (a1 + 1, aq,...,ay), which is obtained
from M(a; + 1, a2, ...,ay) by reversing the sign of the (1,1) entry. The
kernel of M is spanned by the vector y = (yo,¥1,-..,Yn), where the
y; satisfy equations analogous to above, modulo the first sign. It
follows, arranging y, = 1, that yo/y1 = 1 + [a1,...,a,] = y/(y — x).
Since y; > 0 for j > 1, we conclude yp = —y and y; = = — y.

Thinking of the generator y as a linear combination of the ¢; and
using , the evaluation of ¢ on y is given by rot(K)yo + (a1 + 1)y +
(a2 +2)ya +- - -+ (an + 2)yy,. It follows from the equations My = 0 that

—yo+ (a1 + Dyy + (a2 +2)y2 + -+ + (an—1 + 2)yn_1 + (an + Dy, = 0,

and this, along with yo = —y, y1 = * — vy, and y, = 1, shows quickly
that {c,y) = —rot(K)y — = + 1.
Finally, observe that y corresponds to the class —[S], since the coef-
ficient of the relative class [F] is yg = —y = —¢q rather than q.
q.e.d.

By construction, Jpgs induces the plane field f;/y on Y,,. It also

induces a plane field épgg on the lens space L(g,q — 1) € Xp 4, but in
general this is not homotopic to a “standard” contact structure. To un-
derstand this, write P for the plumbed 4-manifold obtained by attaching
2-handles to a chain of unknots in S with framings a; + 1,as,...,ax,
(that is, P is given by the diagram of Figure [10(d), with the knot K
omitted and brackets removed). Writing 1, ..., ¢, for the corresponding
2-dimensional homology classes as above, the Chern class of Jpgg eval-
uates on the /; according to . On the other hand, there is a standard
contact structure on L(q,q—r) (the universally tight one), induced by a
particular Stein structure on a plumbed manifold bounding L(q,q —r).
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If a1 < —3 then this manifold is just P itself, but if a; = —2 we may
need to blow down. The result we need is the following.

Lemma 3.5. There exists a complex structure J on P inducing the
standard Stein fillable contact structure Egtein, on L(q,q—1). Moreover,
we have

(D), ) = a1 +3

A~

<01(J),£j> = aj+2 forj=2,... n.

Proof. First suppose a1 < —3, so that all surgery coefficients appear-
ing in the diagram for P are at most —2. Then P admits a Stein struc-
ture obtained by drawing each unknot in the plumbing diagram as a Leg-
endrian, with all-negative stabilizations chosen so that the surgery co-
efficients are each one less than the corresponding Thurston-Bennequin
numbers. As before, the Chern class of the complex structure evaluates
on the classes ¢; as the rotation number, and then it is easy to check
the desired statement.

Now suppose that for some k € {1,...,n — 1} we have a; = -+ =
ar = —2, and ary1 < —3. Blowing down sequentially, we see that P =

=2 . . : . .
Py#kCP~ where Py is a plumbing of spheres having self-intersection
ags1 + 1,ak49,...,a,. If e1,..., e, are the exceptional spheres corre-
sponding to the blowups, we can write

/
by=e, la=ey—e1, ..., g =ep—er1, lpr1 =10 — ey,

where £}, is the homology class of the sphere of square ap,1 + 1 in
Py. There is then a Stein structure Jgie; on Py obtained as above,
with (c1(Jstein)s lpi1) = ak+1 + 3 and {c1(Jstein), £j) = a; + 2 for j =
k+2,...,n. We can then blow up (Fy, Jstein) in the complex category
to obtain a complex structure Jon P = Pg#k(CiP% This complex

~

structure has ¢i(J) = ¢1(Jstein) — €1 — -+ - — €, where €; is Poincaré

dual to the exceptional sphere e;, and moreover J induces the same
plane field on L(q,q —r) = 0P = 0Py as Jstcin does. It is now easy to

s ~

check that {ci(J),l+1) = a1 + 2, that {ci1(J),{;) = 0 = a; + 2 for
2 < j <k, and that {ci(J),41) =1 = a1 + 3 as desired.
The only remaining case, that all a; = —2, is proved easily along the

same lines. q.e.d.

Comparing the Lemma above with , we see that cl(f) —c1(spgs) =
20%, where (¥ € H?*(P;Z) is Kronecker dual to £1. Strictly, spgs is
defined on P#CP? and here we refer to the restriction of its Chern class
on P. We know, however, that ¢;(spgs) evaluates on the generator of
Hy(CP?) as 3, and so ¢ (spCs) prcp2 = c3(spas)p+9 (using a subscript
to indicate the manifold on which we consider a cohomology class).
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Recall that for an oriented 2-plane field n having torsion Chern class
on an oriented 3-manifold M, the rational number d3(n) is the “3-
dimensional invariant” of Gompf [16], defined by

4d3(n) = ¢i(Z,J) = 30(Z) — 2x(Z)

for any almost-complex 4-manifold (Z, J) having 0Z = M and such that
TM n J(TM) =n. From this definition, we find

—_

d3(épas) = Z( 1(spGs) pyepr — 30(P#CP?) — 2x(P#CP?))
= (Alepas)p — 30(P) —2x(P)) + 1
and therefore using .J on P to compute d3(Estein) gives
d3(&stein) — d3(épas) = i(%(f)P — ci(spas)p) — 1
(7) = (ci(spas) U ) + (£1)* — 1.

To evaluate this, identify the classes ¢; with their Poincaré duals in
H?(P;Q) (since we must pass to rational coefficients to evaluate the
expressions above), and write £f = Y m;{; for some coefficients m;.
Clearly, (m1, ..., my) is the first column of the inverse to the intersection
matrix of P. The intersection matrix is M, which is obtained from
M(ay + 1,as,...a,) by deleting its first column (c.f. (6)). From the
discussion after @, we have that My y; = (y0,0,...,0), where the y;

are as in that discussion and y; is the vector (yi,...,yn). Dividing
through by yo gives that the first column of M is (Z—(l), e z—g), and

now it is straightforward to see that

Cl(ﬁDgs)UfT = (a1+1, az+2,... ,an—|—2)~(&, RN yj)T
Yo Yo
Now note that (£1)? is just the (1,1) entry of M, which we have seen

to be Z—é = [a1 + 1,a2,...,a,]"". Returning with this to proves

1
= —(yo—11+1).
Yo

1 1 1
d3(Espeim) — d3(€pas) = — (o —n + 1) + B —1= — = —=,
Yo Yo Yo q

where the last equality is the fact that yo = —y = —q observed in the
proof of Lemma
To relate this to the surgered contact structure E;/y, observe that by

additivity of the 3-dimensional invariant,

ds(&,,,) — ds(§#épas) = i(cf (spas)w,,, — 30 (Wyse) — 2x(Wyyg))-

Here we assume that ¢ and §;/y have torsion first Chern class. Note
that ds(§#&pas) = d3(§) + ds(épas) + %, so the previous two equations
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give
(8)
1 1

1
Z(C%(EDGS)WPM _3U(Wp/q)_2X(Wp/q)) = d3(ém—/y)_d3(£)_d3(63t6in)_6_5-

This last equation essentially characterizes spgs in terms of contact
geometric data that we can carry to our consideration of srogps.

Turning now to srops € Spin“(—W,,,), observe that the map induced

in HF by spops carries the class c(§)®¢é to c(fg/y). Therefore we must
have

deg(Fow, onoss) = deg(c(€,),)) — deg(c(§) ® &)
= —d3(&,),) + d3(§) — deg(e).

In the above we are using the fact that for a contact structure £ with
torsion Chern class the contact invariant lies in degree —ds(§) — % of
Heegaard Floer homology (of the oppositely-oriented 3-manifold).
On the other hand, the degree shift formula in Heegaard Floer ho-
mology tells us
deg(F,Wp

/q :5ROBS) =

(C%(ﬁROBS)*Wp/q - 30’(*Wp/q) - 2X(*Wp/q)> .

PN

Hence
9)

1@ (oroms) — 30(~Wy,) — 2x(~Wy) = ~ds(€,) + ds(€) — deg(0)

Our goal now is to determine the quantity deg(¢).

Recall that ¢ is a class in the Floer homology of the 3-manifold rep-
resented by the open book (S”,¢") on the right side of Figure [8 The
corresponding Heegaard diagram is drawn explicitly in Figure where
the class ¢ is given by the canonical intersection generator x”, with base-
point z”.

It is worth pausing for a moment with this diagram, which we write
as (X", a”,8"). By construction, if equipped with basepoint w”, it is an
HKM diagram associated to the open book (S”,¢") and describing the
3-manifold L(q,q — ). We can also see the diagram as embedded in a
surgery picture for L(q,r). Indeed, if L(g,r) is described as surgery on
a link of unknots with coefficients b;, where —q/r = [ba, ..., by| for b; <
—2, we can surround the link by the Heegaard surface X" as suggested
in Figure (where the link is drawn in light grey). The a-circles
in the diagram bound disks in the complement, while the 3 circles are
exactly b;-framed longitudes of the link components and therefore bound
disks after the surgery. We therefore obtain a Heegaard diagram for
L(q,r), but notice that in this description the Heegaard surface must
be oriented by an inward normal (as the boundary of the a-handlebody;
this is consistent with L(q,7) = —L(q,q—17)). Observe that the surgery



32 THOMAS E. MARK & BULENT TOSUN

[bj+2| [be+-2]
—— —_——

Figure 12. A genus (¢ — 1) Heegaard diagram aris-
ing from the HKM procedure applied to the open book
(S”,¢") of Figure |8l It can also be seen as an embedded
Heegaard diagram for L(q,r) if the surface is oriented
“inward.” Here —gq/r = [ba,...,by].

coefficients b; correspond to the number of twists in each 3 circle at
the “top” of the diagram, which correspond to the number of parallel
copies of each stabilization of K appearing in the Ding-Geiges-Stipsicz
algorithm. Explicitly, if K~" appears n, times in the algorithm for
contact x/y surgery on K, then for j = 2,...,¢ — 1 there are n, extra
twists in the j-th 3 circle, while there are ny — 1 extra twists in the ¢-th.
Correspondingly, the surgery coefficients b; are given by b; = —n; — 2
for j =2,...,£—1, while by = —ny — 1. The special case of j = ¢ arises
because the last boundary component in S” does not get a Dehn twist
from the stabilization procedure, c.f. Figure

It is straightforward to check that the open book (S”, ¢") for L(q,q—
r) corresponds to the standard (universally tight) contact structure;
in particular it is the boundary of the complex structure J on the
plumbing manifold P considered before. Hence the intersection point
(x”,w") represents the contact invariant ¢(£gein ) of the universally tight
contact structure, which is a generator of the group ﬁ’(—L(q,q —
T),55tein). Changing the basepoint gives the element ¢, which is repre-
sented by (x”,2”) and now lies in a different spin® structure. In fact,
by [30, Lemma 2.19], we see that s,/(x") = s51ein + PD[u], where p is
a closed circle on the Heegaard diagram dual to the leftmost « circle
in Figure and oriented so as to cross a once when traveling from
w” to 2”. Thinking of the diagram as embedded in the surgery picture
for L(q,7) = —L(q,q — r), we have that pu is just a positively-oriented
meridian to the first component of the chairlgf unknots.

Recall that the Floer homology group HF(L(q,r),s) in any spin®
structure s is 1-dimensional over F, and lies in a grading denoted d(L(q,r),s) €
Q. These grading levels were computed recursively by Ozsvath and
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Szabé in |27, Proposition 4.8]; in our orientation convention their for-
mula reads

(10) aL@m%oz4;(muwm+1—q—mﬂ—d@ug%u
Here the index i € {0,...,q — 1} refers to a particular labeling of the
spin® structures on L(q,r), and in the d-invariant on the right we re-
duce ¢ and ¢ modulo r. The labeling is obtained by drawing a genus-1
Heegaard diagram for L(q,r) where the « circle has slope 0 and the
circle has slope —g/r, then marking the ¢ intersection points sequen-
tially around the « circle, starting with the intersection point adjacent
to the basepoint (c.f. Figure 2 of [27]). This diagram can be seen as an
“embedded” diagram as above, where there is now just a single unknot
with coefficient —¢g/r describing the surgery and the Heegaard surface
is oriented inward. The usual sequence of Kirby moves from the inte-
ger surgery on a chain to this picture clearly takes the meridian u to a
meridian of this unknot, and moreover it is easy to see that changing a
spin® structure by adding the dual to [p] corresponds to increasing the
label by & +— @ + r.

The universally tight contact structure we are denoting by £gyein On
L(q,q—r) has the property that with the spin® structure labeling above
we have ¢(Estein) € ﬁ?(L(q, r),i = 0). Thus from the discussion above
we have

@ga—d%@@wm»:d@@wxm_dgmwxm=1_;,

where the second equality is a simple exercise with . Now recall
that deg(c(&stein)) = —d3(Estein) — % Making this replacement above,
and using the result to eliminate deg(é) from (9 gives
%(C%(5ROBS)—Wp/q - 30(_Wp/q) - 2X(_VVp/q))

= —d3(&,,) + d3(§) + d3(Estein) + T3

= _i(C%@DGS)Wp/q - 3U(Wp/q) - 2X(Wp/q>) - 11
where we have used (8). Observe that o(—W,,) = —o(W,,) and
X(=Wpq) = Xx(Wp/q) = 1 to conclude:

ci(sroBs)-w,,, = —c1(SDas)w, , -

Corollary 3.6. Suppose that & and S;/y have torsion first Chern
class. Then the spin® structure spos carrying c(§)®¢ to c(g;/y) satisfies

{c1(sroBs), [S]) = £{e1(spas), [S])-

for [S] € Ho(W),4;Z) a generator.

p

This follows since, unless p/¢ = 0, the nondegenerate part of the
intersection form of W, is 1-dimensional, corresponding to the class
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Figure 13.

[S]. If p/q = 0, then much of the above discussion does not apply (since
typically f;m will have non-torsion Chern class), but the conclusion of
the corollary still holds simply because in this case srops and spgs
are determined by their restriction to Y),,,(K), where they agree—in
particular, in this case we get that the sign is +1.

Note that the corollary implies that sgopg and spgs are equal up to
conjugation (and possibly elements of order 2 in Ha(W),/4; Z)). Further-

P
more, since sgops and spgs both restrict to 5(/ on Y}/, (K), it follows
z/y

that unless 55—/ is self-conjugate the sign appearing in the corollary
z/y

must be +1. In practice we are usually interested in algebraic proper-
ties of the map induced by sgops in Floer homology (e.g., injectivity),
and since these are insensitive to conjugation the sign is immaterial.

3.3. HKM Strong. In order to apply the naturality property of re-
ducible open book surgeries (Theorem , and complete the proof of
Lemma [3.3| we must verify that Heegaard diagrams of the sort in Figure
arising from planar open book decompositions (S”,¢") as on the
right of Figure [§], are HKM strong: that is, the canonical generator for
Heegaard Floer homology is the only one in its spin¢ structure. This
is essentially independent of the rest of our arguments, and here we
reproduce the relevant Heegaard diagram with more natural notation.
Figure [I3] shows an “embedded” Heegaard diagram describing the lens
space L(zg,z1), where 22 = [c1,...,¢,] and each ¢; > 2 (the Heegaard
surface should be considered as oriented by an inward-pointing normal).
As before, the diagram can be seen either as arising from the descrip-
tion of L(xg,x1) as the result of surgery along a chain of unknots—the
“embedded” picture—or from the HKM procedure applied to a planar
open book decomposition. The intersection point v = (vy,...,v,) is the
canonical generator in the latter description.

We number the a and 8 curves in the diagram from left to right
as shown. Observe that each f; intersects only «oj;_1, aj, and aji1,
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and has just one intersection with each of aj_1 and o1 (with obvious
modifications if j = 1 or n). If u e T, n Ty is a Heegaard Floer gen-
erator, write u = (u1,...,u,) where u; € aj N f,(;) for a permutation
o. We will say that u is a “paired generator” if o(j) = j for each j,
and a “non-paired” generator otherwise; similarly an individual inter-
section point between o and 3 curves is “paired” if it lies on o N B;
for some j. Our first observation is that a non-paired generator is al-
ways in the same spin® equivalence class as a paired one. Indeed, by
the way in which the § curves intersect the a’s, it is easy to see that
a non-paired generator must have components u;_1, u; appearing as
the intersections marked with squares in Figure for possibly several
values of j. For such j there is an obvious quadrilateral in the figure
connecting u;_1,u; with two paired intersection points, namely v; and
the intersection point marked with an open circle. Hence to determine
spin® equivalence classes of generators, it suffices to consider only paired
generators.

Recall that the difference between the spin® structures induced by
intersection points u,w € T, n Ty is measured by a class e(u,w) €
Hy(L(xo,x1);Z) that is the union of 1-chains on the Heegaard surface:
one traces paths on a-circles from the components of u to the compo-
nents of w, then returns to u along the 8 circles. We wish to see that
for any (paired) generator u distinct from the canonical generator v,
the class €(v,u) is nonzero.

Let u be a paired generator. If u; is a component of u that is distinct
from vj, we can construct a 1-cycle e(u;) by following «; counterclock-
wise in the diagram from v; to u;, then turning right to follow 3; back to
vj. Orient the components of the chain of unknots (light grey in Figure
counterclockwise and write yu; for the oriented meridian of the j-th
component: then by inspecting Figure E we see €(u;) is homologous to
rj(u)p; — pjv1, for some integer rj(u) with 1 < rj(u) < ¢; — 1. If the
coordinate u; coincides with v;, we set €(u;) = 0. Then we have

e(v,u) = Ze(uj) = anuj,

J

for some coefficients n; satisfying —1 < n; < ¢; — 1 for each j.

To understand the class in Hy(L(xg,x1);Z) corresponding to this ele-
ment, observe that the linking matrix coming from the surgery diagram
is a presentation matrix for Hy(L(zg,x1);Z) in which the meridians

Wi, -, Uy provide a generating set. This linking matrix is
—C1 1 0 1
1 —C9 0 1
1 1
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where we have applied a sequence of column operations, and the z;
satisfy the recursive relations 2,41 = 0, z,, = land xj = ¢ 117j41— 712
for 0 < j<n-—2(cf ) In particular, the order of the homology
is xg, and the lens space is L(xg,z1). From the second version of the
presentation matrix we see pu, is a generator for Hi(L(xo,x1);Z) =
Z/xoZ, and for 1 < j < n —1 we have pj = xju,. Thus in Hy,

e(v,u) = (Z njxj> Hn

and to see this is nontrivial it suffices to show that 0 < > n;z; < zg for
the coefficients n; arising from a paired generator u # v.

We have observed already that —1 < n; < ¢; — 1 for each j. By
considering the classes e(u;) described above, it is easy to say a little
more:

(a) For j = 2, we have nj < ¢j — 2 unless e(uj_1) = 0.

(b) If €(u;) = 0 then either n; = 0 or nj = —1, where the latter occurs
if and only if e(u;—1) # 0.
(c) If nj = —1 for some j, then there exists j' < j with ny > 0, and

moreover n;» = 0 for all j' < j” < j.

Claim 1: If €(v,u) = (3 njz;) pin as above, then Y njxz; > 0.

Since not all n; can vanish if u # v, this is obvious if all n; > 0.
Suppose jo is the largest index with nj, = —1; then we have Z n;xrj =

Jzjo

—xj,. If j1 < jo is the next smaller index with n; > 0 as in point
(c) above, then > .- . njz; > xj, — zj, > 0 since the z; form a strictly
decreasing sequence. Repeat this argument inductively.

Claim 2: If Y njx; is a linear combination of the integers z; with
ni < ¢ —1and nj <c¢j—2forall j > 1, then Y njz; < zo.

To see this use the recursive relations among the z; to write

anxj <(c1—Dxp+ (e —2)za 4+ -+ (cn — 2)xy = 29 — Ty, < Tp.
J

Now suppose €(v,u) = (>, n;x;)u,. We have just seen that if n; <
cj — 2 for j = 2 then €(v,u) # 0 in the first homology of L(xq,z1),
while we know n; < ¢; — 1 for all j. It is easy to see that if n;, = ¢, — 1
for some k > 1 then necessarily €(ug_1) = 0, and hence from point (b)
above we know ny_q is either 0 or —1. In the second case we have

anl”j = ot ngpaTgg — Tp—1 + (Ck — )T + Mg 1Ty o
J

< o FNp2Tp—2 + N1 Tkl T,

where we have used zy_1 = cprr — 1 > (¢ — 1)z, following from
the recursion for the x; and the fact that the z; are decreasing. In the
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last expression the coefficients of x;_1 and zj, both being zero, are no
more than c,_1 — 2 and ¢, — 2, respectively.

Suppose jg is the largest index such that nj, = c¢;, — 1. As we have
just seen, if the preceding coefficient n;,_1 = —1, we can bound the
sum »,njz; by a linear combination of z; in which two more of the
coefficients satisfy the hypothesis of Claim 2 above, then repeat the
argument (a little thought shows that the new sum does in fact arise
from a difference class e¢(v,u) for some u, but regardless it is clear
that the coefficients n; for j < jo — 1 are unchanged and therefore still
satisfy (a), (b), and (c) above). In the other case, that nj,_; = 0, we
have €(uj,—2) = 0 and therefore n;,_» is also either 0 or —1. Continuing
inductively, we can therefore bound ), n;xz; either by a combination of
x; that satisfies the hypotheses of Claim 2, or a sum satisfying those
hypotheses except that for some jy we have ny =ng = --- =nj,_1 =0
and nj, = ¢j, — 1. In the latter case, simply observe

Znﬂﬁj = (¢o = Djo + jor12jo41 + -+
< Zjo—1 F Njo+1Zjo+1 oo
S T1F MGo+1The+1 T
and since the coefficient of x1 is 1 < ¢; — 1, the last expression satisfies

the hypotheses of Claim 2 and is therefore less than xg. This completes
the proof that the diagram of Figure [13]is HKM strong.

3.4. General surgery coefficient. The results of the preceding sub-
sections suffice to prove Theorem[I.1]in the case that the contact surgery
coefficient % is at least 1. To allow general positive coeflicients we use

the following result, which generalizes |25, Proposition 2.4] (see also [4]).

Lemma 3.7. Let K < (Y,&) be an oriented nullhomologous Legen-
drian knot and 0 < % € Q a positive contact framing. Then the contact

structure f;/y(K) obtained by contact g surgery along K is isomorphic
to the contact structure 51_+x/y(K_) obtained by contact 1 + % surgery
along the negatively stabilized knot K~ .

Proof. Let r € Z be the minimal positive integer with 7 - <0,
€T

and write the continued fraction expansion e = [ai,...,a,] as in
Theorem Observe that %4— 1= Lz:y > 1, and the relevant continued

oty _ _aty _
y—(z+y) T
—1— % =[b1,...,by] for some b;. It is easy to see that in fact

[b1,...,bp] =[—(r+1),a1,...,a,]

(just note —(r + 1) — —g— = —1 — ¥£). Therefore, having placed K on

y—rx
the page of an open book supporting & as before, we compare the results

fraction expansion for this surgery coefficient is
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© | ©
©| | Ha+2 .-
© | ©

K K~ K; K>

Figure 14. Open book describing 1+ % contact surgery

along the negatively stabilized knot K ~. The diagram is
to be interpreted as a subsurface of the page of the open
book, compare to Figure [} The knot K is indicated by
the black circle at the left of the diagram (and does not
get a Dehn twist). Circles in red indicate that a right
Dehn twist is performed while the blue circle correspond-
ing to K~ indicates a left Dehn twist.

of the DGS algorithm applied to % surgery on K and to 1 + % surgery
on K

e For %

§ surgery on K, we apply 7 left-handed Dehn twists along
curves parallel to K in the page, then right handed Dehn twists
along stabilized pushoffs according to the coefficients [ay, ..., a,].

e For 1+ % surgery on K, we apply a single left Dehn twist along

K~ in the page, then right handed Dehn twists along stabilized

pushoffs according to [b1, ..., by ], where as just observed we have
by = —(r+1), and (ba,...,by) = (a1,...,a,) (in particular m =
n+1).

The situation for 1 + % surgery on K~ is illustrated in Figure
To relate this to the diagram describing % surgery on K, we recall the

daisy relation from [10,37]. In our context, the relation described in
[10, Figure 2] or |37, Figure 11] can be drawn as in Figure Moving

© o

Figure 15. The daisy relation between compositions of
right Dehn twists, drawn on a cylinder with r + 1 holes.
The order of twists on the curves on the right is from
“bottom to top,” but that will not be important for our
purpose.

1% 1) L (R
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=

Figure 16. In (a), the result of applying the daisy rela-
tion to the open book described in Figure [[4 Diagram
(b) results from sequential destabilizations along the cir-
cles ¢1,...cy; observe in (b) we see r left Dehn twists
along K and a right Dehn twist along K», which is an
la; + 1]-stabilized copy of K.

the parallel twists around the left boundary component in that figure to
the other side of the relation, it is easy to see that Figure[I4]is equivalent
to Figure (a). There is clearly an arc connecting different boundary
components of the page and intersecting ¢, exactly once, which we can
use to destabilize the open book. Then a similar situation holds se-
quentially for the curves c¢,_1,c¢,—9,... , SO we can make a sequence of
destabilizations to obtain Figure [L6[(b). The latter open book is just
the description of contact % surgery on K. q.e.d.

Proof of Theorem[1.1]. First assume 5 > 1. Then the first part of The-
orem is Theorem whose proof is now complete. In particular,
the spin® structure on —W that has F_ys(c(§) ® ¢) = c(§x_/y) is SROBS,
coming from the reducible open book surgery result Theorem The
second part of Theorem follows from Lemma determining the
evaluation of ¢ (spgs) on the homology generator [S] of the surgery co-
bordism, together with Corollary that shows srops and spgg have
the same pairing with [S] (up to sign, and in the torsion case).

If0 < £ <1, then by the preceding lemma c(ﬁg/y(K)) = c(fix/y(K_)),
in obvious notation. Applying the part of the theorem just proved to
the contact 1 —l—% surgery, note that the smooth surgery coefficient % cor-
responding to contact % surgery on K is the same as that corresponding
to contact 1 +§ surgery on K ~. Hence the corresponding surgery cobor-
disms W are smoothly identical, and the same is true for the homomor-
phisms F_yy. Furthermore, since rot(K~) —th(K ™) = rot(K) — th(K),
we see that the spin® structure on W specified in the case of 1 +
surgery is the same as the one claimed in part 2 of Theorem for
surgery. q.e.d.

< IR 8
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Finally, we spell out the proof of Corollary We recall the state-
ment: suppose K < (53, £yq) is a Legendrian knot in the standard con-
tact structure on S? and write K for the underlying smooth knot type.
Fix a contact surgery coefficient £ > 0 and let £ be the corresponding
smooth surgery coeflicient. We claim that under the identification of
ITIF’(—S;’/(](K)) with H,(X_,/,(—=K)), where —K is the mirror of K,

the contact invariant c({g;/y) (or possibly its conjugate) is given by the
image in homology of the inclusion

(k, B) = X_p/q(=K)

—p/q

where
2k = (rot(K) —tb(K) + 1)g — 2.

Put another way, the contact invariant is equal to the image in ho-
mology of the copy of B in X_,,(—K) that is the target of the map

vg : (k, As(—K)) — B, where s = [%J = 1 (rot(K) — th(K) — 1).

Proof of Corollary[1.5 By the argument in the proof of Theorem
above, it suffices to assume 7 > 1. Let W, (K) : —L(q,r) — Sg/q(K)
be the rational surgery cobordism of Figure According to Theorem
the manifold —W,,,(K) = W_p,,(=K) equipped with the spin®
structure sgops carries the generator ¢ € HF (L(g,r)) to the contact
invariant c(§;/y) € HF (—(S;’/q(K ))). Moreover, by Lemma and
Corollary sroBs has the property that (possibly replacing srops by
its conjugate)
{e1(srops), [S]) = p + (rot(K) — th(K))g — 1.

By Theorem (c.f. Corollary , the map induced by sgropg corre-
sponds to the inclusion of (k, B) where k is characterized by {c1(sroBs), [S])—
p+q— 1 = 2k since we are working on W_,,.(—K). The conclusion
follows.

P/q

q.e.d.

4. Proof of Theorem [1.2]

Recall that Theorem [I.2]asserts necessary and sufficient conditions for
the nonvanishing of the contact invariant c({gﬂ_/y) obtained by contact %

surgery on a Legendrian in S3. Using Corollary our approach to the
proof will be to characterize the conditions under which the inclusion
of (k, B) in the mapping cone X_,,,(—K) induces a nontrivial map in
homology, where

k- —%(tb(lC) —rot(K) + g+ — 1
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(c.f. (3)). Recall that (k, B) is the target of the maps Vlk/q| : Al |
and Ry(x4p)/q| : AlmJ — B, and note that [g] = —%(tb(lC)—rot(lC)
q
while | £22] = —L(th(K) — rot(K) + 1) + 1 + [22].

- B
+1),

Lemma 4.1. For k as above,
® V/q| 18 trivial in homology if and only if both

1
v(-K)=—-71(K)+1 and i(tb(lC) —rot(K) + 1) = 7(K).
® N|(ktp)/q 18 trivial in homology if and only if

LS —v(—K) + %(tb(}C) —rot(K) + 1).

q
Proof. Recall that the knot invariant v(K) is defined to be the small-
est value of s such that vy : A; — B is surjective in homology. It is
known that in fact vss is surjective for all s > v(K), and vanishes for
s < v(K). By symmetries of the knot complex (more specifically, conju-
gation invariance of maps induced by cobordisms together with |34, The-
orem 2.3]), the map hsy is surjective if and only if v_g, is surjective,
and therefore hgy is trivial if and only if s > —v(K). Since we are con-
sidering the mapping cone for the mirror image —K, we find that vz
is trivial in homology if and only if —3(tb(K) — rot(K) + 1) < v(—K).
Now, it is also known that v(—K) equals either —T(K) or —7(K) + 1.
On the other hand, by Plamenevskaya’s result (1)) we always have the
inequality —f(tb(lC) —rot(K) + 1) = —7(K), from which the first part
of the lemma follows.
Turning to the second part, we have that hj(p)/e vanishes in ho-
mology if and only if the v-map with “opposite” domain does. This is

equivalent to
—|22| < v(-K) 3(th(K) — 1ot (K) + 1) = 1 — |22 | < v(-K)
(t

)+

[P7) > —v(=K) + 5(th(K) —r0t(K) +1) — 1
1
P

Hﬂ

2> —y(—K) + §(th(K) — rot(K) + 1),

which is the second part of the lemma. q.e.d.

We now prove the first claim of Theorem (1.2} which is that ¢(§ /y)

vanishes if £ (tb(K)—rot(K)+1) < 7(K). From the Lemma, this assump-
tion means that v|g/q| is surjective in homology. We claim that there
is a cycle a € A[ | such that vy g« ([a]) is a generator of H(B), while

Pii/q)+([a]) = 0, which clearly shows that the generator of the homology
of (k, B) vanishes in the homology of X_,,(—~K). To see the claim,
recall that A[ k| is the subquotient of the knot Floer complex typically

described as C'{max(i, j — [g]) = 0}. Here ¢ and j are the two filtrations
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on the knot Floer complex CFK*(—K); for details see [29]. By defini-
tion of 7, there is a cycle a in the vertical complex B = C{i = 0} that
is supported in C{i = 0,5 < 7(—K)} and generates the homology of
B. Our assumption says that [g] = —3(th(K) —rot(K) + 1) > 7(—K),
hence a can be considered as a cycle in Al% I and since it lies in the
subcomplex with j < [§J7 it vanishes under /4. This proves part (1)
of Theorem [L.2
Now we turn to part 2 of the theorem. The relevant portion of the
mapping cone appears as:
(kaA[EJ) (k +p)ALMJ)
q

q

A\
(k, B)

We have drawn this figure under the assumption that £ > 0, but the
arguments are insensitive to this condition.

The condition v(—K) = —7(K) + 1 is equivalent to €(K) = 1, and
therefore the assumptions in 2(a) of the theorem—that ¢(K) = 1 and
th(K) —rot(K) = 27(K) — 1-—are equivalent to the condition that vy
(which is to say v;(_g), given the assumptions) vanishes in homology.
Hence in this case we get

(k’ AT(*K)) (k +p, AT(_K)+1+L%J)

Turning t0 7y(g4p)/q), Observe that by Lemma the condition g >
27(K) — 1 in 2(a) is equivalent in this situation to the condition that
| (k+p)/q) venishes in homology. Hence for such %, the mapping cone
picture becomes

(k,Ar—ry)  (k+p, As) where s > —7(—K)

s
s
’

l RN
| // //
* ’// \(\,*
(k,B

/U*:O

and it is now clear that the generator of the homology of (k, B) survives
as a nonzero class in the homology of the mapping cone. This proves
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that in 2(a), the condition that the smooth surgery coefficient % =

Tt tb(K) be greater than 27(K) — 1 suffices to ensure that c({g;/y) # 0.
For the converse, we must see that c(g;/y) = 0 when  + th(K) =
g < 27(K) — 1. Observe that if ¢(¢ ) = 0 for some r > 0, then the

contact invariant of & vanishes for all 0 < s < r: indeed, for such s
the result of contact r surgery is obtained from the contact s surgery
by a sequence of Legendrian surgeries, which preserve nonvanishing of
the contact invariant. Hence it suffices to assume 2 = 27(K) — 1 (this
simplifies the arguments to follow somewhat, though they go through
in general). In particular, we have ¢ = 1. The portion of the mapping
cone near (k, B) now appears as follows, where we write 7 for 7(—K),
and observe 7(—K) +p=—7(—K) — 1

Since hs is onto in homology if and only if v_g is onto, which is always
true for —s = 7 + 1 (recall we are working in the mapping cone for
—K), we have that h_z_; above is onto. Hence, as long as there is
a class a in Hy(A_7_1) with h_»_1,(a) # 0 and v_7_1,(a) = 0, we
see that c(&,) is a boundary in X_,,,(—K). We claim this is always
the case. Observe there is always a cycle y € C{j = —7 — 1,i < 0}
generating the homology of C{j = —7 — 1} by definition of 7: indeed,
this is the “horizontal version” of the statement that the homology of
the vertical complex C{i = 0} is generated by a cycle supported in
C{i =0,j <7+ 1}. But such a chain y then clearly determines a cycle
in A_7_; that is carried to a generator of homology by h_»_1 and is in
the kernel of v_7_;. (Note that this argument does not actually require
e(K) = 1, but we will need to prove stronger vanishing statements in
other cases.) This completes the proof of 2(a) of Theorem
For the remaining cases, the following will be useful.

Lemma 4.2. A knot K = S® has e(K) = 0 if and only if the chain
maps
vr i Ay > B oand byt Ay — B

induce the same nontrivial map in homology (with coefficients in F).

Proof. First recall that hg is defined as the composition of the quotient
map As — C{j = s}, followed by a certain chain homotopy equivalence
between the latter complex and B = C{i = 0}. At the level of homology,
however, there is a unique identification H,(j = s) = H4«(B) = F. Since
we are interested in the map on homology, for the purposes of this proof
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we consider hy to simply be the quotient map to C{j = s}, and leave
implicit the homotopy equivalence.
For an integer s, we have the two complexes

Ag = C{max(i,j —s) =0} and A, = C{min(i,j — s) = 0},

which are subquotient complexes of the Z @ Z-filtered knot complex
CFK®*(K). Between these, in a sense, is the vertical complex B =
C{i = 0}, and we have natural chain maps

vs: As — B and v, :B — Al

given by a quotient followed by inclusion in each case. We have already
seen the first of these; the other map v/ is given by the quotient C'{i =
0} — C{i > s} followed by the inclusion of the latter as a subcomplex of
A’ Both of these maps have interpretations as maps induced by surgery
cobordisms: v; is induced by a cobordism S3,(K) — 52 for N » 0, while
!, arises from a cobordism $3 — S3/(K) for N « 0. The invariant ¢(K)
can be defined by considering the maps induced in homology by vs and
v’ for the value s = 7(K):

e ¢(K) = 1ifand only if v, is surjective and v_. is trivial in homology.

e ¢(K) =0 if and only if both v, and v, are surjective in homology.

e ¢(K) = —1 if and only if v, is trivial and v is surjective in ho-

mology.

It is shown by Hom in [18], where the invariant e is introduced, that
these are the only possibilities for the behavior of v, and v.. Moreover,
it is always true that v, is surjective in homology for s > 7 + 1 and
trivial for s < 7(K), and v/, is surjective for s’ < 7 — 1 and trivial for

s> 7(K).
We have a commutative diagram
h- .
vy R
v

where R is the map in homology induced by the quotient C{j = 7} —
C{j = 7,i = 0} followed by inclusion as a subcomplex in A’.

Now assume €(K) = 0, so in particular v, is surjective in homology.
By Proposition 3.6 (2) of [18] the vanishing of € also implies 7(K) = 0,
and hence by symmetry h, is surjective as well. If there is a class
a € Hy(A;) such that v, (a) # 0 while h;(a) = 0, the diagram above
shows that v/ is necessarily trivial, contrary to the assumption ¢(K) = 0.
Hence ker(h;) < ker(v;), and since both kernels are codimension 1 in
H.(A;) they are identical. Therefore the maps in homology induced by
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v, and h, are surjective maps to I having the same kernel, which proves
the forward implication of the lemma.

For the reverse implication, observe that if e(K) = —1 then by defi-
nition v, is trivial in homology. Hence it suffices to assume €(K) = 1,
so that v, is surjective in homology, and prove that there is a class
a € Hy(A;) with v;(a) # 0 but h-(a) = 0. For this, we recall from [19]
another characterization of € in terms of “simplified bases” for the knot
Floer complexes.

The knot Floer complex (CFK*(K),0%) is Z @ Z-filtered, which
means that the chain groups are bigraded and the differential is nonin-
creasing in both gradings. In particular the boundary map 0* decom-
poses as a sum of homogeneous maps, and we denote by 0¥t and o
the sum of components that preserve the first grading or the second,
respectively. A filtered basis {x;} for CFK% is vertically simplified if
for each i exactly one of the following is true:

e When expressed as a combination of basis elements, 0V***x; has
exactly one nonzero term.

e x; appears as a nonzero term of 0V*''z; for exactly one j, and
(9vert

T = x;.
J 7
e 0V''y; = 0, and x; does not appear in the basis expression of
overty; for any j.

There is a similar definition for a horizontally simplified basis. Such
bases (vertically or horizontally simplified) give rise to bases for C{i = 0}
and C{j = 0} respectively, with the property that there is a unique basis
element satisfying the third condition above: this is because both com-
plexes have homology F. Such an element is called the “distinguished
element” of the basis. Hom shows that there is always a horizontally
simplified basis for CFK® with a particular element zy, which is the
distinguished element of some vertically simplified basis (in general, the
latter basis must be different from the former). Then the assumption
€(K) = 1 is equivalent to the condition that this z is equal to 0"z
for some x; in the horizontally simplified basis.

Let {z;} be such a horizontally simplified basis for CFK® and con-
sider the associated basis for A.. We assume ¢(K) = 1, so that v, :
H.(A;) — H.(i = 0) is surjective. By definition of 7, a generator
of Hy(i = 0) lies in the subcomplex C{i = 0,5 < 7}, but in a verti-
cally simplified basis such a generator is the distinguished element x.
Hence we can consider zg as an element of A, as well, and we note
Oa,x0 = 0" xy = Pz = 0, the last equality following from the fact
that 7o = 0"x; when €(K) = 1. Thus zo determines a cycle in A,
such that v, [x0] is a generator of H,(B). On the other hand h,,[z¢] is
nothing but the homology class of xg thought of in the horizontal com-
plex C{j = 0}, which clearly vanishes. The element zy € A, represents
the desired homology class a. q.e.d.
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We now return to the proof of part (2) of Theorem and so assume
tb(IC) — rot(K) = 27(K) — 1. This means that we are interested in
the image in homology of the inclusion of (k, B) in X_,/,(—K), where

k= —2(th(K) —rot(K) + 1)g + ¢ — 1 = —q7(K) + ¢ — 1. As we saw
before, since k/q = —7(K) + 1 — 1/q, we have [g] = —7(K) = 17(—K)
while || = 7(-K) + 1.

First consider the case ¢(K) = —1 as in 2(c) of Theorem |1.2} we must
see that c(§;/y) = 0. The mapping cone near (k, B) looks like

A
W v%
B
We have that v- is onto homology, since e(—K) = —e(K) = 1. By

Lemma there is in fact a class a € Hy(Az) with vz,(a) # 0 and
hz4(a) = 0, proving that c(§;/y) is a boundary in X_, (- K).

Finally we turn to the case ¢(K) = 0. Here 7(K) = v(K) = v(—K) =
0, and part 2(b) of Theorem is equivalent to the assertion that the
contact invariant c(faj/y) is nontrivial if and only if the smooth surgery

coefficient ZEJ = 7 + tb(K) is nonnegative. For g > 0, the mapping cone
reads:

Az A

\(\,K vz Ak

(k —p,B) (k, B)
where s = |*2|. Since necessarily s > —v(—K), the map h, is trivial
in homology. On the other hand, vz is surjective in homology; in fact
by Lemma vz and hz give the same surjection in homology. Hence
any cycle in Az that is mapped to the generator ¢(£,) of the homology
of (k, B) is also mapped onto the generator of homology of (k — p, B),
and we conclude only that these two generators are homologous in the
mapping cone. If p > ¢, then the vertical map to (k — p, B) has domain
Ay with s/ < 7, and hence is trivial in homology. This shows that
c(&,”) determines a nonzero class in the homology of X_,, (—K). For

general p > 0, a similar argument holds with a longer “sawtooth” picture
demonstrating the nontriviality of ¢(&,).
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Ifp< 0 the diagram above becomes

k le\ l’€+IP|J
q
\\\/5\
v N
.
(k —jlpl, B (k + |p|, B)

where we choose j to be the smallest integer such that [k%mj = [g] -1

In particular, all intermediate complexes A are copies of As.

| E=2llel
Since [g
homology, while the map labeled h; is a homology surjection. The re-
maining solid arrows in the diagram are surjections in homology having
the same kernel at Az, given our assumptions and Lemma[.2] It follows
easily that the homology generator of (k, B) is trivial in the homology
of X_p/q(—K).

Finally for g = 0, the only maps in X_,, , (— K) interacting with (k, B)
are vz, hz : A= — B. These are nontrivial, but give the same map in
homology by Lemma [£.2}—hence their sum vanishes in homology with
coefficients in I, and the class determined by the homology generator
of (k, B) is nontrivial in the homology of X_, (= K).

This completes the proof of Theorem

| =7 =v(—K) = 0 the vertical map to (k— j|p|, B) is trivial in

5. Rational Surgery Mapping Cone

In this section we describe the proof of the second part of Theorem
[1.4] and along the way prove some facts that were used at isolated points
in the preceding. This section is nearly independent of the rest of the
paper, and follows lines that will be familiar to experts; we assume a
reasonable familiarity with Heegaard Floer theory as in [29}34,35].

5.1. Rationally nullhomologous knots. Let M be a compact ori-
ented 3-manifold with connected boundary diffeomorphic to a torus.
It is a standard exercise that the inclusion induces a homomorphism
H,(0M;7Z) — H(M;Z) with kernel isomorphic to Z, and hence up to
orientation there is a unique isotopy class of simple closed curve v < 0M
and integer ¢ > 0 such that c[v] generates this kernel. We can find a
curve n < 0M dual to v, and we orient v and n such that, with the nat-
ural orientation on dM, the intersection number v.n is +1. It follows
that n represents a class in Hy(M;Z) of infinite order.

Let Y be the closed 3-manifold obtained by Dehn filling of M along
a curve p homologous to sv + tn, for relatively prime s, ¢t with ¢ > 0
and s # 0. Observe that H1(Y) = Hi(M)/[n]. The core of the filling
torus gives rise to a knot K < Y, whose homology class we can describe
as follows. Choose integers s',¢ with s’t —t's = 1; then a longitude of
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K is given by the curve A = s'v + t'n. It is now easy to see that K is
rationally nullhomologous in Y, of order ¢ := ct.

Turning this around, if K < Y is a knot that is rationally nullhomol-
ogous of order ¢, then there is a well-defined isotopy class of curve v on
the boundary of nbd(K) and an integer ¢ > 0 dividing ¢ such that cv
represents a generator of the kernel of the map on homology induced
by the inclusion d(nbd(K)) — M =Y —nbd(K). Likewise, we have a
canonically-determined meridian p of K with v.u =t := g/c on M.

We have some choice in selecting a longitude A for K, in that any
curve of the form A+kp is also a longitude. On the other hand, for given
A we can write v = tA + ru for some uniquely determined r. Hence, a
canonical longitude Ay, for K is specified by requiring

vV =1tAqn + 71t where 0 <r < t.

Observe that while there is some ambiguity in the choice of 7 in the
discussion above, if the pair (Y, K) is given (with K rationally nullho-
mologous of order ¢), then the meridian p and the curve v on d(nbd(K))
are canonically determined, and the canonical longitude Ay, is then
uniquely specified by the equation above.

Using pt, Acan as coordinates for d(nbd(K')) we can consider an integer
(“Morse”) surgery on K with surgery coefficient m. Equivalently, the
surgery Yy, (K) is given by Dehn filling of M along the curve A.qn +mpu.

Lemma 5.1. The natural 2-handle cobordism Wy_, Y — Y, (K)
has Ho(Wy,,.;Z)/H2(Y;Z) = Z, generated by the homology class of a
surface Sy,,, having self-intersection —qcr.

More generally, the second homology of the surgery cobordism corre-
sponding to Am = Acan + M s generated by the class of a surface Sy,
with self-intersection q(mgq — cr).

This can be proven by examining the exact sequences for the pair
(Wy,.,Y) and the triple (W, _,0W,_,Y), or by a direct geometric con-
struction of the surface Sy . In either case the key observation is that
in Y),, the induced knot (the core of the surgery) has order |c(mt — )]
in homology.

Remark 5.2. The integer ¢ is called the “multiplicity” of K by
Baker-Etnyre [1] and is equal to the number of boundary components
of a rational Seifert surface for K. It is not hard to check that the
quantity cr appearing in the Lemma is equal modulo q to the inter-
section number between a pushoff of K and its rational Seifert surface,
i.e., it is essentially the numerator of the Q/Z valued self-linking of [K].
More precisely, if £ is the representative in [0,1) of lkg7([K], [K]), then
cr = gb.

Now fix a framing A = )\, for the rationally null-homologous knot
K c Y. Tt is easy to see that the surgery cobordism W) has Ho(W,,Y;7Z) ~
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Z, generated by a relative cycle [F)\] (represented by the core of the
2-handle), and moreover we can arrange that under the natural map

L Hoy(Wy) — Ha(W,,Y) we have
(11) ([Sx]) = alFAl-

Hence for a class a € H?(W),), we can define an evaluation of o on [F}]
by

(o [R]) = ;<a, S\ e Q.

Similarly, we have a rational number
1
[FX]-[FA] = qﬁ[SA]-[sA]-
In particular if A = A, as above, then [F)\].[F)\] = (mq — cr)/q.

Remark 5.3. Strictly, we should work with an oriented knot K.
Then longitudes and meridians are taken to be oriented by standard
conventions; likewise the surface Sy inherits an orientation from a ra-
tional Seifert surface for K. While we are mostly interested in the case
that Y is a rational homology sphere, for the general case we suppose
a choice of rational Seifert surface has been fixed once and for all. We
stick with these conventions henceforth, but without further mention.

Now let (X, e, B, w, z) be a Heegaard diagram adapted to the knot
K < Y. Recall that this means 3, corresponds to a meridian of K,
and the basepoints w and z lie to either side of 34. Choose any framing
A for K, and consider the corresponding set of attaching curves -y, all
obtained by small Hamiltonian translation of the 8 curves, except that
7vg represents the framing A (this conforms to the usual conventions
of the theory, but reverses the role of v and 5 curves as compared to
Section . For any Heegaard Floer generator x € T, n Tg, we define a
rational number

f(x) = <er(sw (@), [FA]) + [FA]-[F3] = 2(nw(¥) — na(¥)).
Here 1) € ma(x,03,,%’) is any triangle connecting the generator x to
some intersection point x" € Ty N T,.

Lemma 5.4. The function f(x) is independent of the choice of 1,
x', and X, i.e., it depends only on X.

This was essentially proven by Ozsvath and Szabé 35| proof of Lemma
4.6]. We reprise and expand their argument.

Proof. Note that by introducing a trivial winding of ~, around g,
we can always arrange that a given intersection point x € T, N Ty is
connected by a (small) triangle to some point x’ € T N T,.

Now fix A = A,,. Since Ho(W))/H2(Y) =~ Z is generated by [S)],
there is a triply-periodic domain Pg in (3, o, 3,7, w) representing this
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generator. We can determine the coefficients of Pg in regions of 3
near 3, as follows. Observe that if 3, is replaced by the curve v, we
obtain a Heegaard diagram describing the result of Dehn filling ¥ —
nbd(K) along the torsion curve v. In particular, the first Betti number
of this filling is one more than the Betti number of Y. Hence, there
is a (doubly) periodic domain in the diagram (3, a,, v, w) containing v
with multiplicity c¢ in its boundary, corresponding to a rational Seifert
surface for K. On the other hand, since v = tA., + rp in homology,
by replacing v by a concatenation of copies of A = 7, and p = 3,4, we
can construct a triply-periodic domain in (¥, a, 8, 7, w) representing S)
and containing v, with multiplicity ¢ and 8, with multiplicity mq — cr
in its boundary. See Figure
To see that f(x) is independent of the choice of triangle 1 € ma(x, ©4.,%x’)

(for x’ fixed), observe that two such triangles differ by a triply-periodic
domain (up to a multiple of the Heegaard surface, which clearly does
not affect f). Thus it suffices to assume ¢’ = ¢ + Pg. The values of f
corresponding to ¢ and 1)’ then differ by the quantity

@PD[Ps], [FA]) = 2(nw(Ps) = n:(Ps)).

Using Lemma [5.1] and considering Figure we have that both terms
above are equal to 2(mgq — cr).

Now consider the effect on f(x) of replacing x” by another intersection
point x” such that s, (x"”) = §,(x’). Then there is a Whitney disk
¢ € mo(x/,x"), and given ¢’ € ma(x, O3, %’), we can construct a triangle
" € mo(x,03y,%x") as " =1’ + ¢. But this adjustment does not affect
6,(1¢') and hence the first term in f(x) is preserved. The second term
is not affected by choice of 1, while the third is invariant since v’ and
¢” have the same boundary in Tg. Therefore, given A the function f(x)
depends at most on the spin® structure s, (x’).

It is now clear that we can adjust 7, = A by an isotopy without
affecting f. Thus, we introduce sufficient trivial winding of v, around
Bg (c.f. [30, Figure 2] or Figure 18 below) such that the following holds:
any spin® structure represented by an intersection point in T, N T, that
is connected by a triangle in (X, o, 3,7, w) to a generator in Ty, N Tg,
is also represented by an intersection point that is supported in the
winding region. (This is possible since any two spin® structures in Y)
cobordant to a given s € Spin®(Y") differ by a multiple of the Poincaré
dual of the meridian of K.)

Hence, to examine the dependence of f(x) on the spin® structure
s, (x’), it suffices to consider two generators x’,x” € T, n T,, both
supported in the winding region and differing only in their component
on 74. Moreover we can suppose these components are as pictured in
Figure Finally, we can assume that x’ and x” are connected to x
by a “small triangle,” i.e., for i # g, the component of x’ (and x”) on
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—q—cr= —q —q
T{ g &
= :
bor { v w | z
—cr 0 0
a
—q—-cr / o / —q —q
By
—q
(m—1)q—cr
S
—cr q — cr2q — cr w o
mq — cr 0
«

By

Figure 17. Heegaard diagrams near the meridian curve
B¢, where the top and bottom of each diagram are to be
identified. Top, the torsion curve v is shown together
with coefficients of a periodic domain containing v c
times in its boundary. Away from the pictured region, v
is taken to be t copies of the longitude A4y, (not shown).
Bottom, the longitude \,;, = Acqn +mpu, with coefficients
of the corresponding triply-periodic domain. Away from
the picture, the coefficients agree with those in the upper
diagram, after collapsing the parallel copies of A.;, that
comprise v. Note that there may be additional o curves
appearing, parallel to the one shown.

v; is the canonical “closest point” to the corresponding component of x
under the Hamiltonian isotopy between (; and ~;.

Letting ¢’ and 1" be the small triangles corresponding to x’ and
x" respectively, we consider the difference f(x,¢") — f(x,¢’). Clearly
[F)\].[Fy] is unchanged, while

(nw (") = nz(¥")) = (nw(¥') = nz(¢)) = —1.
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lip
fyg . e PP eﬂ’y
mq — cr
0
« >
X / 7
(m—1)g—cr \ X x —q

By

Figure 18. The region near §, in Figure (17| (bottom),
after winding. Chosen orientations on «, 3, and ~ curves
are indicated, with some coefficients of Pg.

Recall that there is a method to calculate the evaluation of ¢;(s, (1))
on [Sy] from the Heegaard diagram, summarized by the formula

(12)  La(sw(®), [S2]) = X(Ps) — 21y (Ps) + #0Ps + 20 (3, Ps)

(see [27, Proposition 6.3]). We review the definitions of the terms in
this formula as we go along, but for the moment observe that the only
term on the right hand side that depends on v is the “dual spider num-
ber” o(1, Pg). This quantity is obtained by considering small left-hand
pushoffs o/, 3, and 7/ of each «, 3, and 7 curve, according to a chosen
orientation on these curves (the dual spider number is independent of
this choice). Take arcs a, b and ¢ in the 2-simplex A that is the domain
of ¥ : A — Sym9(X), where a, b, ¢ connect a basepoint u € int(A) to
the a, B, and v boundary segments of A, respectively. Identifying these
arcs with their image 1-chains in 3, we have

(1, Ps) = ny)(Ps) + (0w Ps).a + (g Ps).b + (04 Ps).c

With conventions indicated in Figure and taking u to be near the
By corner of A, we find that in the difference o (¢, Pg) —o(¢)', Pg) only
the terms involving (04Ps).a remain. Each intersection of the arc a
with the o curve in the diagram contributes —¢q to this quantity, and
we get one more such contribution from " than from ¢’. Hence

{e1(5w (")), [SA]) — {er(sw(¥)), [Sa]) = —24.

Therefore

er(sw(®™), [FA]) = ea(sw(¥)), [2]) = —2,
which cancels the difference in the term —2(n, () — n.(¢0)) in f(x).
Thus, f is independent of the choice of x'.
Finally, we must see f is independent of the framing A. In light of
the preceding it suffices for this to consider the diagrams of Figure
in which a given framing A is replaced by A — pu. We can consider the
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—(m+1)g+cr —(m+1)g+cr
-4 w z -4 w
L] L] L]
aﬁw
0 S —mq + cr 0 —mq + cr
7 x )(\q x 7 x
—q 0 |™™*l—(m+1)g+ecr —q 0 f’%\o ('”\msx —(m+1)g+ecr

Figure 19. Invariance of f(x) under change of framing.
Shown is the region of Figure 17| (bottom) near 3, after
one winding, before and after a change of framing. The
coefficients of the triply periodic domain are shown, after
subtracting mq — cr copies of the Heegaard surface for
convenience.

smallest triangles in each diagram and assume the points of x’ and x”
agree away from the portion of the diagram indicated in the figure.
From Lemma[5.1] the term [F)].[F)] decreases by 1 from the left to the
right side of the figure. Clearly the small triangles have n,, —n, = 0, so
we turn to the Chern class term.

Referring to , the Euler measure x(Pg) is defined by

X
X(Ps) = an‘(X(Dz‘) — $#(corners in D;))

if the domain Pg is expressed as a linear combination ), n; D; of domains
(closures of components) of ¥ — (e, 3,4). It is easy to see, using the fact
that the domains Pg, and Pg,_, on the two sides of Figure [19]| agree in
the portion of ¥ not pictured, that this term is unchanged on replacing
A by A — p. Likewise, we've arranged that n,(Ps,) = nw(Ps,_,) = 0.

The term #0Pg in denotes the coefficient sum of all terms in
0Pg, expressed as an integer linear combination of «, 5, and v curves.
Easily,

#aPSA - #aPSx,H = —q,
coming just from the contribution of the term 34. For the dual spider
number, we find

oY, Psy) —o(¥", Ps,_,) = =aB" b + ny)(Ps, —Ps,_,) = 0.

Adding these contributions to the Chern class term and dividing by ¢
as before, it follows that f(x,\) = f(x, A — p).
q.e.d.

5.2. Surgery exact triangle. The proof of Theorem is based on
a long exact sequence relating the Floer homology groups of manifolds
obtained by different surgeries along a knot K, and in particular the
deduction of part 2 of the theorem is based on an analysis of the maps in
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this sequence. We recall the construction of this surgery exact sequence,
following [34] and [35].

As before, consider a rationally null-homologous knot K < Y, and
an adapted Heegaard diagram (X, o, 3, w) where 3, = p is a meridian
of K. Fixing a framing A for K and an integer m > 0, we can produce
Heegaard diagrams

o (¥, a,7,w) for the surgery Y)(K) where v; is a small translate of
Bj except that v, = A.

o (3,68, w) for Yy, (K), where §; is a translate of 3; except that
0g = A+ my.

To condense notation, fix a basepoint p € 3, such that w and z are
joined by an arc only intersecting 3, transversely at p, and not intersect-
ing any other curve in the diagram. For a domain P in a Heegaard dia-
gram as above we write my,(0P) for the multiplicity with which the por-
tion of OP on [, crosses p: equivalently, we set m,(0P) = 1y, (P)—n.(P).
Next define a twisted Floer chain complex for Y generated by intersec-
tions between the tori T, and Tg in Sym9(X), with coefficients in the
ring F[C),] where Cy, is the cyclic group of order m. We think of this
as F[Cp,] = F[T, T71]/(1 — T™). The boundary in this chain complex
is

AUT'x) = D #M(p)Tm @y —rne(@)y,
pem2(x,y)
Since K is rationally null-homologous the homology is actually un-
twisted: there is an F[C),] chain isomorphism

0:CF(Y,F[Cy]) = CFT(Y)QF[Cy.],

where the differential on the codomain is the tensor product of the
differential on CF*(Y) with the identity on F[C,,], given by

0(x) = x @I (#xx0),

Here x( denotes a chosen intersection point (in each spin® equivalence
class) and ¢xx, is a fixed choice, for each x € T, N Tg, of a disk con-
necting x to xg (c.f. [34, proof of Theorem 3.1]). Note that we are free
also to multiply 6 by a fixed power of T if we choose.

Now, in this situation there is an exact triangle

N1

HF™(Yy) > HE* (Yaimp)

< Y/

HET(Y,F[Crm])

The maps in this triangle are induced by chain maps defined as follows:
first note that (X,7,d) describes the connected sum of L(m,1) with
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#9-161 5 §2 We fix a “canonical” intersection point O,5 € Ty nTs
(adjacent to the basepoint). Then

(13) A = > #M@UWy.

"pEﬂ-Z (X7e’y5 7y)

For the maps involving the twisted Floer group, we have

(14) Ry)= > #ME)TEIY) .y,

pema(y,0sp,V)

and

(15) f3(Tv) = > HM()U™ ) x
Yemy(v,04,,%)
mp(dY)=—s mod m
where ©s3 and Og, are the usual canonical intersection points.
Ozsvath and Szabd’s proof of the exactness of the triangle |34, Theo-
rem 3.1 implies that CF*(Y)) is quasi-isomorphic to the mapping cone
of fo. In particular the map

CF" (Yasmp) @ CET (Y, F[Cp]) — CFT(Ya)

given by (a,b) — f3(b)+ ha(a) defines a quasi-isomorphism Cone(fa) —
CF*(Y)), where hs is a null-homotopy of f3o f. It follows that the
composition of this quasi-isomorphism with the map in homology in-
duced by the natural inclusion CE* (Y, F[C,,]) — Cone(f2) is just the
map f3 in the surgery triangle.

On the other hand, the map f3 (and all the maps in the triangle)
can be identified with homomorphisms induced by cobordisms, as we
now explain. Consider the natural 2-handle cobordism W) : Y — Y,
equipped with a spin® structure s. The corresponding homomorphism
on Floer complexes CFT(Y) — CF*(Y)) is defined by a count of holo-
morphic triangles in (¥, a, 8,7, w) analogously to , without refer-
ence to T or s, and where the sum is over homotopy classes of triangle
whose associated spin® structure is exactly s.

Lemma 5.5. For a given integer s, let 1, denote the restriction of
9= to the summand CF*(Y)® T° < CF*(Y) ® F[Cyy]. Then the
composition

faons :CFH(Y)=2CFt(Y)®T* < CF*(Y)®F[Cy] — CF*(Y))

is equal to the sum of the homomorphisms induced by those spin® struc-
tures on W), represented by homotopy classes of triangle v having

my(0Y) — mp(0pxx,) +s =0 mod m.

In particular, the set of such triangles constitutes a union of spin® equiv-
alence classes.
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Proof. From the definition of 6, it follows that n, : CFT(Y) —
CF*(Y,F[C,,]) is given by

e(x) = T Ox0)
Hence the composition is given explicitly by

fzoms(x) = > LM ()U™ W) x|
Yemy(x,05,,Y)
mp(0Y)=mp(0pxxy)—s mod m

Thus we need only verify the last statement.

For this recall that triangles ¢ € m2(x, ©gy,y) and ¢’ € ma(x’, ©3,,y’)
induce the same spin® structure on W)y (they are “spin® equivalent”) if
and only if ¥/ = ¥ + ¢as + Pay for some disks @op € m2(X',X), Pay €
m2(y,y’) in the indicated diagrams. (In principle a disk ¢g, could also
appear, but here 1 and ¢’ are assumed to have corners on ©g,. Hence
such a disk is a (3, y)-periodic domain, up to multiples of the Heegaard
surface. Both of these have no boundary on 8, hence their boundary
has m, = 0.) Since the basepoint p is on (4, we have m,(0¢qa,) = 0.
Additivity shows that if m,(dY') — my(0px x,) + s = 0 mod m then
modulo m,

0 = mp(dY) +mp(0dap) — mp(ddx x,) + s
= mp(aw) - mp(a(¢x’ X0 ¢aﬂ)) +s

But ¢y x, — ¢ap is a disk connecting x to xg and while it need not
be the same as ¢xx,, we observe that since the knot is rationally null-
homologous the value of m,, vanishes for periodic domains in (3, at, 8, w).
Hence we can replace ¢x/x, — ¢ag by ¢xx, in the above and the conclu-
sion follows.

q.e.d.

In a similar vein, we have:

Lemma 5.6. Let 0 : CF(Y,F[C,,]) — CF*(Y) denote the com-
position of 0 with the projection to the coefficient of T®. Then the com-
position

Os0 fa: CF+(Y>\+mu) - CF+(Y)

is equal to a sum of maps induced by the 2-handle cobordism Y v, —
Y equipped with the spin® structures represented by triangles v in the
diagram (X, o, 8, B,w) such that

mp(0Y) + mp(dpxx,) = s mod m.

Proof. Again, the point is that the assignment ¢ — m,,(0v)+mp(0pxx,) €
Z/mZ descends to spin® equivalence classes. Writing ' = ¢+ o5 + Po
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as before, note that this time ¢, € ma(x,x’) rather than m(x’,x).
Hence

mp(al/’/) +mp(0dxrxg) = mp(d) +my(dpag) + mp(0dx x,)
= mp(0Y) + mp(0pxx,)

by analogous reasoning. q.e.d.

Explicitly, the last lemma says that
6 © f2 = Z FW)\-%—mlus : Tm(5)

S€SpIn®(Wxtmpu)

where m : Spin®(Wixymu) — Z/mZ is induced by 1 — my(dy) +
my(0pxx,) as above.

We now use the results from the previous subsection to relate the spin®
structures on the various surgery cobordisms relevant to the surgery
triangle to one another. According to Lemma for given s the com-
position fsons : CFT(Y) — CF*(Y)) is given by the sum of homo-
morphisms induced by spin® structures on W) represented by triangles
¢ such that mp(9Y) — mp(dpxx,) + s = 0 mod m. For such ¢ we have

Cer(sw (), (XD + [INLIEA] = F(x) + 2my(09)
(16) = f(x) 4+ 2(mp(0pxx,) —s) mod m.

A similar statement is true for the triangles counted in the composition
05 o f2, except that in this case we consider the cobordism Yy ., — Y
given by —Wj iy, and triangles are in the diagram (X, «, 6,3, w). If
Y is such a triangle, the triangle v, = —,, obtained by negating
the coefficients of v, is a triangle we can use to compute f(x), and in
particular we have

F0) = Lealsw@m)), [Fan D) + [Fx - [Fx,] = 2mp(0¢m)
= {e1(sw(®m)), [Fa, D + [Fx, ] [Fa,] + 2mp(0¢n)

According to Lemma 05 o f2 is given by the sum of maps counting
triangles ¢, satisfying my(0¢nm) + mp(ddxx,) = s mod m. Hence
becomes, modulo m,

(e1(sw()), [FA]) + [FX].[FA] = 1 (5w (¥m)), [F, 1) + [F, ][ F, ]

One way to view this result is to note that for any framing on K,
the spin® structures on the corresponding surgery cobordism W, which
extend a fixed spin® structure on Y, can be labeled uniquely by the
rational numbers {ci(s), [F]|) + [F].[F'] where [F] is the generator of
Hy(W,Y') as usual. We have seen that the inclusion of CF*(Y) as the
coefficient of T in the mapping cone of f, corresponds to a map induced
by spin® structures on Wy. The above says that the coefficient of T is
also the target of maps induced by spin® structures on W) 4, equipped
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with spin® structures having the same labels (modulo m) as the ones on
Wy (but thought of as on =Wy ).

5.3. Rational Surgeries. We now consider the situation of a knot
Ky < 83, and the formula deduced by Ozsvath and Szabé for the Hee-
gaard Floer homology of a 3-manifold obtained by rational surgery on
Ky. We write p/q for the surgery coefficient, where henceforth p/q is
in lowest terms with ¢ > 0. In [35] it is pointed out that the surgered
manifold S;’ i (Ko) can be obtained by an integral (“Morse”) surgery on
a rationally null-homologous knot K in a lens space. Here we adopt
slightly different conventions from those in [35]: write p = mq — r for
0 < r < g, and consider the knot O/, described as the meridian of the
surgery curve in Sf;’/r(U ) (here U is the unknot in S3). Sticking with

our conventions, SS’/T(U) = —L(g,7). If we let K = Ko#Oy,,

integral surgery on K gives rise to Sg /q(Ko), in particular the relevant
surgery has framing m in the obvious surgery diagram. Note that in
this situation K is rationally null-homologous of order ¢ and admits
a rational Seifert surface with connected boundary, and therefore (in
the notation of Section has ¢ = 1 and t = ¢q. Moreover, it can be
seen that our use of the symbols m and r here is consistent with that
previously, in the sense that the framing on K that yields S;’/q(KO) is
)\can + muy.

Now, for sufficiently large integral framing A on a rationally null-
homologous knot K, the groups HF (Y\(K),t) become standard, i.e.,
independent of A\ in an appropriate sense (c.f. [35, Section 4]). In par-
ticular this holds for the knot Ko = S3, where it is known [29] that for
sufficiently large framings N there is an isomorphism

(17) U CF(S3(Ko), 5) — As(Ko).

Here As(Kj) is a certain subquotient complex of the knot Floer chain
complex described as A; = Cy{max(i,j — s) = 0} (c.f. [29, Theorem
4.4]). It would be appropriate to write /Als for this complex, but since
we will have no need for other variants (e.g., Al), we omit the extra
notation. On the other side, CF (53 (Ky), s) indicates the Floer chain
complex in a spin® structure—indicated by s € Z—characterized by the
property that it is the restriction of a spin® structure s; on the corre-
sponding surgery cobordism satisfying {ci(ss), [Sn]) + N = 2s. Also
relevant for us, the isomorphism is realized by a count of holomor-
phic triangles in a Heegaard triple-diagram (X, a, 7y, 3, w, z) describing
the surgery cobordism —Wy connecting S (K) to S3. The relevant set
of triangles comprises those inducing the given spin® structure s on the
surgery, and could in principle induce many spin® structures on —Wy
all differing by multiples of N [ﬁ], but for sufficiently large N only one
of these can contribute to the stated isomorphism.

then an
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TTo
—q :
q
(m—1)q | —q+r —q
0 05+ Vg
mqg P9 7 ~—1 Qg
T y - 0 r 0
—q —q+r 0 R (O PAS
Bg :Yg+1 Bg+1

Figure 20. A diagram for integer surgery on K =
Ko#0Oy,. The lens space summand appears on the right,

where @1 is shown as a (¢, 7) curve intersecting 3,1 in
points Zo, ... Zq—1. Coeflicients for Py are shown; note
that 7411 does not appear in 0Pg.

Turning to the rationally null-homologous knot K = Ko#0O,,, recall
that combining the Kiinneth principle for knot Floer homology with
the large-surgery result just mentioned, and observing that the knot
Floer theory for O, is essentially trivial, we find that for sufficiently
large framings A on K there is an isomorphism CF (YA(K),t) = As(Ko)
for some integer s depending on the spin® structure t € Spin®(Y)(K))
(see [35], Corollary 5.3 and the proof of Theorem 1.1). Our aim is to
determine the relationship between t, as specified in terms of the surgery
cobordism —W), : Y\(K) — —L(q,r), the integer s, and the mapping
cone formula for rational surgery deduced in [35] as a consequence of
the surgery triangle described above.

We begin by comparing the Heegaard triples for integer surgery on
Ko < S3 and for integer surgery on K < —L(gq,r). To avoid confusion
let us now write Wy for the surgery cobordism S® — S3(Kjp), and
decorate the “rational version” with tildes, as W;\ 1 —L(q,r) — Y5(K)
with A a framing on K. Starting from the Heegaard diagram for Ogy/r
described in |35, Proof of Lemma 7.1], we can form a triple diagram
describing —WN/X by connected sum with a corresponding diagram for
Wy: c.f. Figure

Thus (3, a, v, B, w, z) describes the cobordism W), while (fl, &, 5, B, w, 2)
corresponds to the diagram after connected sum with —L(q, ) and rep-
resents W;\. (Here 3 denotes the connected sum of X with a torus.)
We let 34, 74 be the curves appearing in the triple for W), depicted
in Figure while Bgﬂ» Yg+1 are the indicated “extra” curves in the
diagram for WX' Fix an intersection point x € T, N T, and suppose
Tj € 74 is the component appearing in the figure. There are ¢ distinct
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lifts of x to a generator in Tg N Ts, with components #; (0 <i<qg—1)
on Bg+1- Correspondingly, for a “small triangle” v; with corner on x;
in (X, a,7,8), there are ¢ small triangles v;; in (X, &,%,3). In each
diagram we can find a triply-periodic domain, Pg and Pg, representing

the generator in second homology of W) and WN/;\ respectively.

Lemma 5.7. We have the following relation between the Chern num-
bers of the triangles 1; and j;:

(e1(sw(¥5.0)), [Pgl) — aler(sw(¥4)), [Ps]) = ¢ + 7 — 1 — 2.

Proof. The coefficients of the triply-periodic domains are indicated
in Figure From there the calculation is an exercise with the Chern
class formula along the lines of those in Section [5.1 q.e.d.

Corollary 5.8. Let t;, € Spin®(Y;(K)) (for A= AN = Aean + N
sufficiently large) be the spin® structure obtained as the restriction of
sj, € Spin®(W5) characterized by

<Cl(5k)a [SS\]> +P+q—1= 2k,

where [S5] € HQ(WS\; Z) is a generator as previously, and P = Nq —r.
Then there is an isomorphism

CF(Y;\(K),{]C) = AS(K()),
where s = [g]

Proof. Let X be a generator in (X, &, %, w). We can write X = x; XZ;
for some 4, where x; € T, n T, is a generator for large integral surgery
on Ky  S2. The identification is realized by counting triangles in
(3, o, v, B, w, z) that are spin® equivalent to the evident small triangle
1; connecting x; to its corresponding generator y € T, n Tg.

Likewise, if t = §,(X) then the corresponding large-surgery iden-
tification CF (Y5, t) = A¢(K) (for some relative spin® structure £ €
Spin®(—L(q,r), K)) involves a count of triangles spin® equivalent to the
small triangle v;;. By the Kiinneth theorem for the knot Floer chain
complex, we have an identification A¢(K) =~ A4(Ko). Now s is charac-
terized by the equation {(¢1(s,(%;)), [Sn]) + N = 2s. From the lemma,

Cer(sw(¥4a), [S5]) = «erlsw(®)), [SND +q+r—1-2i
= 25¢q —Nq+q+r—1-2i
= 2((s+1)g—(+1)—P—q+1
showing {c1 (5w (¢j,)), [S5]) +P+q—1 = 2k, where k = (s+1)q—(i+1).
Since 0 < ¢ < ¢ — 1, it follows that s = [g], while t is the restriction of

Sw(1j4)-

q.e.d.
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Corollary 5.9. If X, ,(Ko) is the rational surgery mapping cone for
Ko < S3, then the map in homology induced by the inclusion

(kv B) - p/q(KO)

corresponds, under the identification H(X,/,(Ko)) = ﬁ(S’g/q(Ko)),
to the map in Floer homology induced by the 2-handle cobordism W :

—L(q,7) — S;’/q(Ko) equipped with the spin® structure s characterized
by

(er(sk), [ +p+q—1 =2k,
Proof. Tt suffices, by the truncation arguments in [35], to prove a
corresponding statement in the context of the surgery exact triangle.
Indeed, the cone complex X, (Kp) is the limit of the cone of fy :

C/’J\T(Y)\,LNN) — CF(Y, F[Cn]) as N increases. We saw previously that
for a rationally null-homologous knot K ¢ Y = —L(q,r), the inclusion
of B=CF (Y) as the coefficient of T* corresponds to a map induced by
W with a certain spin® structure. The mapping cone is set up in such a
way that the coefficient of T becomes (after the truncation argument)
the target of the map vy : (k, A5(Kp)) — (k, B) where s = [g] This
map, in turn, is induced by the surgery cobordism: we have a commuta-
tive diagram (combining the proofs of [35, Theorem 4.1] and Corollary

5.9):

_— Fow, . _—
CF(83,,(Ko), ) ——2% CF(—L(g,7),5)

v =

Us

As(Ky) - B.
Therefore, from the remarks at the end of the previous section, we know
the spin® structure inducing the inclusion map and the one inducing v,
have the same “label” (the value of the Chern number plus the square
of the generator in relative homology). Let us write me : —L(q,r) —

3
Sp/ q

S;’D g —L(g,r) denotes the large-surgery cobordism turned around

(with P = Nq —r). If s, € Spin®(W,, ) has

{e1(sa); [Fan]) + [Fa,)? = a,

we can write [Fy, ]?> = m — ¢ by Lemma Then the map induced by
5, corresponds to the inclusion of B in the mapping cone as the target
of the map induced by the spin® structure s, having the same label, i.e.,
having

(K) for the surgery cobordism, where p = mq — r, while —MN/}\N :

(e1(8a), [Fay]) + [F/\N]2 =a.
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Since [Fyy]?> = N — o, we can say

qa = <{c1(8a), [Say]) + Ng —r = {e1(sa), [Sn,.]) + mg — 7.

Hence,

(1(8a), [Say ) + P+ q—1={alsa), [Sy, D +p+a—1,

so that the convention determining the index k£ in the mapping cone
Xp/q(Ko) agrees with the identification between the large-surgery com-
plexes A¢(K) and A,(Kp) obtained in the previous corollary.

1]

[9]

(12]

(13]

(14]

q.e.d.
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