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We introduce a general framework for thermometry based on collisional models, where ancillas probe
the temperature of the environment through an intermediary system. This allows for the generation of
correlated ancillas even if they are initially independent. Using tools from parameter estimation theory,
we show through a minimal qubit model that individual ancillas can already outperform the thermal
Cramer-Rao bound. In addition, due to the steady-state nature of our model, when measured collectively
the ancillas always exhibit superlinear scalings of the Fisher information. This means that even collective
measurements on pairs of ancillas will already lead to an advantage. As we find in our qubit model, such
a feature may be particularly valuable for weak system-ancilla interactions. Our approach sets forth the
notion of metrology in a sequential interactions setting, and may inspire further advances in quantum
thermometry.
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Quantum metrology aims to employ resources such as
entanglement [1], coherence [2], and squeezing [3] to
provide improvements in the precision of a large variety
of physical measurements [4–6]. One such type, which
stands out due to its universal importance, is thermometry
[7,8]. Several papers have discussed how quantum resour-
ces could be used to yield significant enhancements in
temperature estimation [9–17]. This could have a large
impact particularly on low temperature applications such
as ultracold atoms, trapped ions, and superconducting
devices, where minimally invasive thermometric methods
are seldom available (cf. the proposal in Ref. [18] for a
counterexample).
Quantum thermometry can be cast under the general

framework of parameter estimation theory. The goal is to
estimate the temperature T of a thermal environment by
allowing it to interact with one or more ancillas, which
are then subsequently measured. In the simplest meas-
urement protocol, N identical ancillas thermalize indi-
vidually with the environment. The finite heat capacity
C of each ancilla will then limit the precision of the
corresponding temperature estimate to a minimum
uncertainty of ðΔT=TÞ2 ≥ kB=NC, corresponding to the
Cramer-Rao bound for thermal states [7,8]. The 1=N
scaling of the temperature variance, also known as the
standard limit, stems from statistically independent mea-
surements of each ancilla. In practice, the bound may
not be attainable when the ancilla interacts strongly with
its environment [18].

In general, superlinear scalings in 1=N can be obtained
with collective measurements on correlated ancillas, e.g.,
by preparing an initially entangled N-ancilla state [1,2].
Alternatively, one may performN sequential measurements
on the same ancilla [19–22] in such a way that the outcomes
are correlated. Specifically in the context of thermometry,
this method would generally not improve the accuracy of
temperature estimation [21], but this could in principle
change using adaptive schemes [22].
In this Letter, we introduce an alternative framework of

thermometry inspired by collisional models [23–27], in
which the quantum advantages arise from repeated inter-
actions between a continuous stream of independently
prepared ancillas and a system mediating the thermal
contact with the environment. We show that, at sufficiently
high repetition rates and strong interactions, individual
ancillas already surpass the thermal Cramer-Rao bound
[12]. In addition, enhancements are also found by exploit-
ing the quantum correlations that are created among
multiple ancillas. The Letter presents first the theoretical
framework, then the explicit results based on a minimal
qubit model.
Formal framework.—We consider thermometry in a

collisional model setting as depicted in Fig. 1. A system
S is coupled to a thermal environment E at temperature T
while interacting with a stream of independent and iden-
tically prepared (i.i.d.) ancillas fA1; A2;…g. Information
about T is encoded in the ancillas through S, which can
then be retrieved by suitable measurements of a sufficiently
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large number of ancillas in order to build the statistics.
Experiments with Rydberg atoms probing a thermally
excited cavity, for instance, would be a natural physical
implementation of this scheme [28].
Assuming that the system-ancilla (SA) interaction time

τSA is short compared to the system-environment (SE)
coupling time τSE between subsequent ancillas and the
characteristic thermalization time, we can neglect the
environment during the SA interaction. Hence, we describe
the dynamics by alternating between the repeated appli-
cation of a unitary map USAn

ðρÞ ¼ USAn
ρU†

SAn
acting on

the system and the nth ancilla, followed by the thermal map
ESðρÞ acting only on the system during τSE, see Fig. 1(b).
Here, USAn

¼ e−iVτSA=ℏ is the unitary operator generated by
the SA interaction Hamiltonian VSAn

. The thermal map
ESðρÞ alone would drive the system towards the Gibbs state
ρthS ¼ e−HS=kBT=Z, whereHS is the system Hamiltonian and
T is the environment temperature.
The global state of S; A1;…; An before the next SA

interaction is given by

ρSA1;…;An
¼ ES∘USAn

∘…∘ES∘USA1
ðρS ⊗ ρ⊗n

A Þ; ð1Þ
where ∘ stands for map composition and ρA is the initial
state of the ancillas. The reduced state ρS of the system
therefore evolves stroboscopically according to the quan-
tum channel

ρSðnÞ ¼ trAn
fES∘USAn

ρSðn − 1Þ ⊗ ρAg≕Φ½ρSðn − 1Þ�:
ð2Þ

The state ρSðnÞ summarizes the information content about
E that the ancilla Anþ1 will have access to.
After sufficient SA interactions, the system will no

longer depend on its initial state and will eventually reach
a fixed point ρ�S ¼ Φðρ�SÞ. This steady state contains
information about T that can be extracted by measuring
subsequent ancillas. In general, ρ�S will deviate from ρthS ,
which reflects the unavoidable measurement disturbance
[29]. In what follows, we will assume that the system has
already reached ρ�S, which eliminates transient effects and
establishes translational invariance for subsequent states
ρA1;…;AN

of N adjacent ancillas after they have interacted
with S.
The key point in our approach is that even though the

ancillas are initially independent, the final state ρA1;…;AN
is

generally correlated due to their common interaction with S
and the continuous exchange of information between S and
E. As a consequence, measurements on the collective state
ρA1;…;AN

ofN ancillas, e.g., bipartite measurements (N ¼ 2)
as in Fig. 1(b), could in principle give us more information
about the temperature of the environment as compared to
individual measurements of N ancillas.
Temperature estimation.—The quantum Fisher informa-

tion (QFI) allows us to quantify the precision of a
thermometry scheme without reference to an explicit
measurement protocol or experimental implementation
[1,4,5,30]. Indeed, the standard deviation of any unbiased
temperature estimator ΔT obeys the Quantum Cramer-Rao
bound

ΔT2 ≥
1

F ðT; ρÞ ; ð3Þ

where F ðT; ρÞ is the QFI of temperature given the temper-
ature-dependent quantum state ρ.
Conventionally, ρ is taken to be the state of a probe

system that is in direct thermal contact with the environ-
ment. Moreover, the inequality (3) is in general strict. The
only exception is if the probe fully thermalizes. In this case
its information content about the temperature will be given
by the thermal Fisher information (TFI)

F ðT; ρÞ ¼ F th ¼
C

kBT2
; C ¼ hH2

Ai − hHAi2
kBT2

; ð4Þ

with HA as the ancilla Hamiltonian and C its heat capacity.
In this special case, there exist estimators for which the
inequality (3) is saturated in a single shot [7,8]. Repeating
this process with N probes then yields the aforementioned
1=N scaling of ðΔT=TÞ2.
Here, by contrast, N ancillas acquire information about

E indirectly and get correlated with each other through

(a)

(b)

FIG. 1. (a) Schematic diagram of collisional thermometry.
A stream of ancillas sequentially interacts with a system S,
which is coupled to a heat environment E at temperature T.
(b) Exemplary circuit representation. The system and the ancillas
evolve stroboscopically in a sequence of SE thermalization and
pairwise SAi interaction steps. The system is assumed to have
converged to the fixed point ρ�S of the stroboscopic map. Quantum
advantages can be obtained by performing collective measure-
ments on blocks of ancillas (illustrated here for blocks of
length 2).
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successive interactions with S. Information is extracted
from the N-ancilla state ρA1;…;AN

by means of a quantum
measurement described by a positive operator valued
measure (POVM) Πx, where x denotes the set of possible
outcomes. This produces a probability distribution pðxÞ ¼
trfΠxρA1;…;AN

g, from which one can construct the Fisher
information

FNðΠ; T; ρA1;…;AN
Þ ¼

X

x

pðxÞ
� ∂
∂T lnpðxÞ

�
2

: ð5Þ

The QFI is obtained by maximizing over all possible
POVMs acting on a block of N ancillas, resulting in [30]:

FNðT; ρA1;…;AN
Þ ¼ max

Π
FNðΠ; T; ρA1;…;AN

Þ
¼ trðρA1;…;AN

Λ2Þ; ð6Þ

where Λ is the symmetric logarithmic derivative, which is a
solution of the Lyapunov equation ΛρA1;…;AN

þ ρA1;…;AN

Λ ¼ 2∂TρA1;…;AN
.

In Eq. (6), the length N of the block of ancillas is
arbitrary, with FN representing the optimal precision that
can be obtained from access to all possible measurement
strategies on N ancillas. For instance, F 1 represents the
best possible precision that can be obtained from informa-
tion on individual ancillas, as encoded in the completely
marginalized product state ðρ0AÞ⊗N (irrespective of whether
the ancillas are correlated or not). In this scenario the Fisher
information for N ancillas is simply NF 1 and will thus be
linear in N by construction. However, in general ρ0A will not
be the thermal state of the environment, so that, as we show
below, one can still obtain advantages over the TFI (4).
Another key advantage of our framework is that, once

the system is operating in the steady state, collective
measurements on blocks of N ancillas always lead to
advantages when compared with individual measurements.
This is due to the fact that the steady state is translation
invariant, so that all ancillas individually contain the same
amount of information (and hence collective states can
only contain more), or in symbols, FN ≥ NF 1, with
equality when the ancillas are not correlated to each other.
Collective measurements hence always lead to superlinear
scalings.
Qubit model.—We now introduce a minimal qubit model

that fits the described framework. We take the system
and ancillas to be resonant qubits with frequency Ω, so that
HS ¼ ℏΩσSz=2 and HA ¼ ℏΩσAz =2, where σi are the Pauli
matrices. The SE interaction is modeled by a standard
quantum master equation which, in the interaction picture,
reads as

dρ
dt

¼ LSðρÞ ¼ γðn̄þ 1ÞD½σS−� þ γn̄D½σSþ�: ð7Þ

Here D½L� ¼ LρL† − 1
2
fL†L; ρg, γ is a temperature-inde-

pendent coupling constant, and n̄ ¼ ðeℏΩ=kBT − 1Þ−1. The
thermal map ES in Eq. (1) is obtained by integrating Eq. (7)
over a certain time τSE, yielding ESðρÞ ¼ eLSτSEðρÞ.
Motivated by the framework of thermal resource theory

[31], we describe the SA interactions by a partial SWAP

Hamiltonian VSAn
¼ ℏgðσSþσAn− þ σS−σ

Anþ Þ, which describes
energy exchange as a thermal operation that does not
require external work when on resonance. We are left with
the effective SE and SA couplings, γτSE and gτSA, the
temperature T, and the initial ancilla state ρA as the free
parameters of our model.
Information acquired by a single ancilla.—We begin by

addressing the scenario where one only has access to
individual measurements on each ancilla. This means that
irrespective of whether or not the ancillas are correlated,
these correlations are assumed to be inaccessible to the
experimenter. When the first ancilla interacts with the
initially thermal state of the system, its QFI will be bounded
by the TFI (4), which in this specific case reads F th ¼
ðℏΩ=2kBT2Þ2sech2ðℏΩ=kBTÞ. For subsequent ancillas,
this is no longer true since the system state does not
remain thermal. Once the stroboscopic steady state ρ�S is
reached, however, the QFI for all ancillas become identical
and equal to F 1 in Eq. (6) (with the Fisher information for
N ancillas being simply NF 1). Remarkably, as we now
show, in this case each ancilla can actually gain more
information than F th.
Figure 2 depicts F 1=F th as a function of the couplings

gτSA and γτSE for an exemplary temperature. In Figs. 2(a)
and 2(b), we consider ancillas prepared in the ground state
jgi and in the state jþi ¼ ðjgi þ jeiÞ= ffiffiffi

2
p

, respectively.
The TFI bound is always attained for full swaps
(gτSA ¼ π=2) in the limit of perfect thermalization between
subsequent ancillas (γτSE → ∞), which is barely visible

FIG. 2. Quantum Fisher information F 1 in units of
F thð≈0.015Þ for a single ancilla at steady state, as a function
of the SE coupling γτSE and the SA coupling gτSA for (a) ground-
state ancillas and (b) jþi ancillas at kBT=ℏΩ ¼ 2 (i.e.,
n̄ ¼ 1.514). Dotted contour lines mark where F 1 ¼ F th; coher-
ent ancillas only exceed this in the limit of strong environment
coupling and in close vicinity of a full swap.

PHYSICAL REVIEW LETTERS 123, 180602 (2019)

180602-3



for the coherent case in (b). The greatest QFI values are
generally attained also close to a full swap, but with
ground-state ancillas. For instance, in (a) we see F 1=
F th ≈ 4 for γτSE ≲ 1; the attainable ratio would grow with
temperature.
The reason for this enhancement is that, at steady-state

operation and incomplete thermalization between adjacent
interactions, the ancillas probe the environment temper-
ature not only through the average system excitation (which
saturates at 1=2 for high T), but also through the effective
thermal relaxation parameter Γ ¼ γð2n̄þ 1ÞτSE (growing
indefinitely with T). Explicitly for full swaps between ρ�S
and ground-state ancillas, the QFI reads as

F 1

F th
¼ ðn̄þ 1ÞðeΓ − 1þ 2n̄ΓÞ2

e2Γðn̄þ 1Þ − n̄ − eΓ
; ð8Þ

which makes evident the sensitivity on Γ. A similar
dependence on the relaxation rate was also observed in
Ref. [12], but for a single qubit-environment interaction.
This effect is particularly advantageous at high temper-

atures (kBT ≫ ℏΩ), where Eq. (8) exhibits a maximum at
Γ ≈ 0.8, in which F 1=F th ≈ 0.65ðkBT=ℏΩÞ2. For kBT ≫
ℏΩ one may therefore go significantly above thermal
sensitivity. The existence of this maximum is a competition
of two limiting cases. In the Zeno limit, Γ ≪ 1, one gets
F 1 → 0. Conversely, when Γ ≫ 1 Eq. (8) behaves as
F 1=F th ≃ 1þ 4Γn̄e−Γ, which tends to 1, always from
above. This means that for large Γ (which can always be
obtained by choosing a sufficiently large τSE) one will
always be above thermal sensitivity. For low temperatures,
on the other hand, while it is possible to go above F th, no
substantial improvements take place.
Exploiting ancilla correlations.—Substantial enhance-

ments can also be obtained by exploiting the correlations
between ancillas, as captured by the QFIFN in Eq. (6) [32].
Figure 3 shows the numerical behavior of the QFI as a

function of N in the weak-coupling limit for various ancilla
states (dots, circles, and crosses for jgi, jei, and jþi,
respectively) and thermal couplings. As mentioned below
Eq. (6), in our framework collective measurements always
lead to an advantage in comparison with individual mea-
surements. This is quite visible in Fig. 3, where all choices
of parameters always lead to a scaling that is larger than
NF 1 (dotted lines). Figure 3(a) represents the Zeno limit
Γ → 0, with γτSE ¼ 0.01. In this case the superlinear
enhancements in FN are not substantial. Better results
are achieved in the interval of intermediate γτSE, between
0.1 and 1 in Figs. 3(b)–3(d). For greater γτSE ≫ 1, correla-
tions between successive ancillas vanish and FN → NF 1.
We also observe that jei ancillas are initially worse but
eventually catch up to jgi ancillas aroundN ∼ 10. Ancillas in
jþi-states exhibit the highest superlinear enhancement.
The superlinear improvement is caused by quantum

correlations that build up between subsequent ancillas.
Indeed, a large improvement occurs between F 1 and F 2

when they become accessible. The state of two adjacent
ancillas, for instance, not only encodes information about T
in the individual excitations, but it also exhibits genuine
distributed coherence [34]. For instance, if ρA ¼ jgihgj, we
find the coherence

hgejρA1A2
jegi ¼ e−Γ=2 cosðgτSAÞp0

A; ð9Þ

where

p0
A ¼ hejρA1

jei ¼ n̄ð1 − e−ΓÞ sin2ðgτSAÞ
ð2n̄þ 1Þ½1 − e−Γ cos2ðgτSAÞ�

; ð10Þ

is the population of a single ancilla. This excitation
probability p0

A is limited by the weak coupling angle
gτSA and vanishes in the Zeno limit Γ → 0. The coherence
(9), however, decays with an additional e−Γ=2, so once

(a) (b) (c) (d)

FIG. 3. Log-log plot of quantum Fisher information FN in units of F th (≈0.015) with the number of measured ancillas, N, for a fixed
weak SA coupling gτSA ¼ π=100 and kBT=ℏΩ ¼ 2. Panels (a) to (d) correspond to SE couplings γτSE ¼ 0.01, 0.1, 0.4, and 1,
respectively. Numerics is limited to 12 data points [32,33]. The markers (blue dots, red circles, and purple crosses) correspond to the use
of jgi, jei, and jþi-state ancillas while the dotted lines give the individual measurement scenario NF 1. Note that the purple line for jþi-
state ancillas cannot be seen in Panels (c) and (d) as F 1 < 10−5F th there.
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again we should obtain optimal quantum enhancements at
moderate Γ.
The enhancement when going from F 1 to F 2 can be

significant. To illustrate this, we consider the case gτSA≪1
and ground-state ancillas, for which we find

F 2

2F 1

≈ 1þ ðn̄ΓÞ2
eΓ − 1

þO½gτSA�2: ð11Þ

This ratio has a maximum at 0.65n̄2, attained at Γ ≈ 1.6.
For large n̄ the enhancement can therefore be quite
significant. Similarly, excited-state ancillas have their
best enhancement of 0.65ðn̄þ 1Þ2 at the same Γ value.
The QFI FN at this value of Γ is presented in Fig. 3(c).
Exploiting the correlations between the ancillas may be

particularly useful in the weak system-ancilla coupling
regime (gτSA ≪ 1). In this case the process is much less
invasive so that F 1 is generally quite small. It therefore
becomes important to exploit the substantial enhancements
stemming from correlations. For instance, in Fig. 3(b),
we get F 10=10F 1 ≈ 4, 10, and 14 for jgi, jei and jþi,
respectively. We emphasize that this does not require initial
correlations between the ancillas, which further demon-
strates the virtue of the collisional thermometry scheme.
Feasibility.—The key assumption behind our setup is the

dynamical nature of the sequential interactions. This does
not mean, however, that one needs to have access to an
infinite number of ancillas. A finite number together with
the ability to recycle or reset them (e.g., by coupling them
to a large bath) is sufficient. For example, one can design
the following protocol for N ¼ 2 ancillas: interact them
sequentially with the system, perform a collective meas-
urement on both, and then reset them to their original state.
Repeating this process over and over will generate precisely
our collisional setup, but allowing one to only exploit the
advantages quantified by F 2.
Finally, it is also worth mentioning that local measure-

ments on the ancillas also lead to some correlations,
although usually much smaller than those extractable from
collective measurements. Notwithstanding, these correla-
tions may be exploited in a similar way.
Conclusions.—We have introduced a framework for

thermometry using collisional models. As an example, we
have demonstrated that improved sensitivities of temperature
can be reached even in a minimal qubit model. Specifically,
if one is not constrained by short probing times or weak
interactions, our scheme predicts a sensitivity that could
outperform the thermal Cramer-Rao bound. In addition,
our scheme also yields enhancements by exploiting the
correlations developed between the ancillas. In fact, due to
the translational invariance of the stroboscopic steady-state,
collective measurements will always lead to an advantage
when compared with individual measurements. Our frame-
work opens the doors for metrology as a whole in the context
of an open system, e.g., measuring environment relaxation

rates.A natural and interesting follow-upwould bewhether it
is possible to push further these enhancements by consid-
ering probes with initial entanglement.
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