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The resource theory of thermal operations explains the state transformations that are possible in a very specific
thermodynamic setting: there is only one thermal bath, auxiliary systems can only be in the corresponding
thermal state (free states), and the interaction must commute with the free Hamiltonian (free operation). In this
paper we study the mildest deviation: the reservoir particles are subject to inhomogeneities, either in the local
temperature (introducing resource states) or in the local Hamiltonian (generating a resource operation). For small
inhomogeneities, the two models generate the same channel and thus the same state transformations. However,
their thermodynamics is significantly different when it comes to work generation or to the interpretation of the
“second laws of thermal operations.”
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I. INTRODUCTION

Foundationally, thermodynamics is a theory of states and
their transformations. In quantum information science, the
same can be said for entanglement theory. This analogy
was discussed very early [1,2], and later resulted in the
development of the broad framework of resource theories.
Among those, the resource theory of thermal operations is
a formalization of the thermodynamics of systems in contact
with thermal baths [3–5]. The lack of resources is described by
what can be achieved with a single thermal bath at temperature
T (because with two different temperatures one can run an
engine). Specifically, the free states are the thermal states
τ at temperature T , and the free operations U are those
that conserve the total energy. Both notions are defined with
respect to a reference Hamiltonian, usually taken as H =
HS + HR where S indicates the system and R a reservoir of
auxiliary systems. Then, the thermal states read τ = τS ⊗ τR

where τX = e−βHX /ZX , ZX = Tr(e−βHX ) and β = 1/kBT . An
operation represented by the unitary U is a free operation if

[H,U ] = 0 . (1)

If the system is prepared in the state ρ, a free evolution (i.e.,
one that can be achieved without resources) is then of the form

E[ρ] = TrR[U (ρ ⊗ τR)U †] . (2)

Recent studies have addressed the robustness of the frame-
work under modifications of the states [6–8] or of the model-
ing of the thermal bath [9–11]. In this paper, we look at what
is arguably the mildest form of deviation: an inhomogeneous
reservoir. This is a reservoir made of a large number N
of systems, whose local parameters deviate randomly from
those that would define an exact thermal operation. For this
first study, we shall focus on inhomogeneities either in local
temperature or in the local Hamiltonian.

II. MODEL

A. Introducing inhomogeneities

The system is a qudit, and the reservoir consists of N qudits
labeled by r ∈ {1, 2, . . . , N}. We work with a Hamiltonian of
noninteracting systems

H = HS + HR = g0s(S)
z +

N∑
r=1

grs(r)
z , (3)

where g0 > 0, the gr will be discussed later, and sz is the
operator representing the spin in the direction z. For every
qudit, the eigenstates of sz for the eigenvalue ( j − d−1

2 )h̄ is
denoted by | j〉 with j ∈ {0, 1, . . . , d − 1} — in particular, |0〉
is the ground state of gsz whenever g > 0.

For simplicity, throughout this work we consider input
states of the system ρ = ∑

j p j | j〉〈 j| that are diagonal in the
eigenbasis of HS . The qudits of the reservoir are prepared in
the thermal state at the local temperature: τR = ⊗

r τr with
τr = e−βr gr sz/Zr .

The inhomogeneous reservoir is described by a configu-
ration δN = (δ1, . . . , δN ), where δr is the inhomogeneity per-
ceived by the rth qudit of the reservoir. As random variables,
we assume that the δr are independent and identically dis-
tributed (i.i.d.) with a distribution G(δ) centered at δ = 0. We
consider two cases: that of the inhomogeneous Hamiltonian
defined by

gr = g0(1 + δr ) and βr = β ∀r (4)

and that of the inhomogeneous temperature defined by

βr = β(1 + δr ) and gr = g0 ∀r . (5)

In the language of resource theories, Eq. (4) allows
for resource operations which violate Eq. (1); while
Eq. (5) amounts to considering resource states arising
from having multiple temperatures. We also note that both
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inhomogeneities have a clear physical flavor. For instance, if
the qudits are magnetic moments, conditions (4) may describe
the inhomogeneity of the intensity of the local magnetic field,
or of the gyromagnetic factor (e.g., through the chemical
environment).

Either way, the thermal state τr of each reservoir qudit is

τ (δr ) = e−βg0 (1+δr )sz

Tr(e−βg0 (1+δr )sz )
=

∑
j

q j (δr )| j〉〈 j|, (6)

where q j (δ) = 1−a(δ)
1−a(δ)d a(δ) j with a(δ) = e−β h̄g0(1+δ). Clearly

τ (δ = 0) = e−βg0 sz

Tr(e−βg0 sz ) ≡ τS the thermal state of the system
for β.

B. Interaction: Collisional model

Now we discuss the interaction U . With the aim of bringing
out local inhomogeneities, it is convenient to have the system
interact sequentially with each reservoir qudit. In other words,
U = US,NUS,N−1 . . .US,1 is going to be the product of succes-
sive two-body interactions, each between the system and one
of the reservoir qudits. Such collisional models have been used
as toy models in several studies of quantum dynamics and
thermodynamics, see, e.g., [8,12–16], although not all thermal
operations can be written in this form [17]. In this paper we
assume that all two-body interactions US,r are given by the
partial swap with mixing angle θ :

US,r = cos θ I + i sin θ S, (7)

with S the swap operator for two qudits. If gr = g0 for all r,
then U couples only degenerate eigenstates of H and Eq. (1)
holds.

C. Dynamics of the system

In the absence of inhomogeneities (τr = τS for all r, that is
δN = 0), the dynamics (2) can be solved analytically for our
model. For diagonal input states, the state of the system after
interaction with the first r qudits of the reservoir is given by

ρS|r = ρS|r−1 cos2 θ + τS sin2 θ = τS − (τS − ρ0) cos2r θ. (8)

In particular, the state remains diagonal and converges to the
thermal state τS in the limit N → ∞.

Each configuration δN of the inhomogeneities induces a
new map on the system. If the inhomogeneities are frozen,
the dynamics (2) defines a contractive map whose fixed point
ρS|∞ is determined by the specific δN , and there is little
more to say. The model is more interesting if δN is drawn
independently for each use of the channel: then we can study
the ensemble average over G(δ). The dynamics commutes
with this average: for i.i.d. inhomogeneities, the reservoir
qudits are all prepared in the ensemble-averaged thermal state

τ =
∫ ∞

−∞
G(δ)τ (δ) dδ . (9)

Thus the similarly defined ensemble-averaged state of the
system at step r is

ρS|r = τ − (τ − ρ0) cos2r θ . (10)

For d > 2, τ will not be thermal in general. For qubits, τ

can be seen as a thermal state for an effective temperature
larger than T as a convex combination of density matrices
necessarily increases the entropy and hence decreases the
purity of the state. Since the occupation of the ground state
is smaller in τ than it is in τS , not unexpectedly the evolution
violates majorization.

III. WORK, HEAT, AND FIRST LAW:
INHOMOGENEOUS HAMILTONIAN

For each two-body interaction between the system and
a single-reservoir qudit, any change to energy of the com-
bined system and reservoir qudit will be construed as work
input due to the presence of the interaction W = �Tr[ρH].
Here ρ refers to the density matrix of the combined system
and reservoir qudit. Since the degrees of freedom of the
reservoir are generally inaccessible to us, we can identify
any changes of energy of the reservoir alone as heat output,
Q = −�Tr[ρRHR]. The net change in the energy of the sys-
tem alone then obeys the first law by construction, �U =
�Tr[ρSHS] = Q + W .

In the following two sections, we look at the statistics
of work and heat for both cases of inhomogeneites. While
W = 0 in the case of inhomogeneous temperature (5), both
heat and work are generated in the case of an inhomogeneous
Hamiltonian (4). Recalling that both cases of inhomogeneity
return us the exact same ensemble-averaged dynamics (10),
we note here that their thermodynamical behavior is, in fact,
significantly different.

A. Work

1. Work generated in a single collision

We consider first a single collision between the system
and the rth reservoir qudit. The work generated during this
collision is [18]

Wr = Tr[{US,rρr−1U
†
S,r − ρr−1}Hδr ], (11)

where ρr−1 = ρS|r−1 ⊗ τ (δ) and Hδr = g0[s(S)
z + (1 + δr )s(r)

z ].
The calculation eventually yields

Wr = h̄g0 δr sin2 θ
∑

j

j[p j (δr−1) − q j (δr )]. (12)

For qubits, Eq. (12) becomes

Wr = h̄g0 δr sin2 θ [q0(δr ) − p0(δr−1)] . (13)

Figure 1(left) shows how Wr varies with δr for various values
of p0 for qubits. From Eq. (13) and the knowledge of G(δ), we
can find the statistical distribution of single-collision work for
qubits. This is easily derived by rewriting Eq. (13) as

y = δ [q0(δ) − p0], (14)

with y ≡ W
h̄g0 sin2 θ

. We then invert this function to find the
distribution of work GW (y) induced by the distribution of
the inhomogeneity G(δ). It is clear that the function cannot
be inverted analytically. However, we can resort to the Tay-
lor expansion q0(δ) = q0(0) + q′

0(0)δ + O(δ2) where q0(0) =
1

1+a , q′
0(0) = β h̄g0

a
(1+a)2 , with a = e−β h̄g0 . This reduces
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FIG. 1. Single-interaction work and its distribution for qubits, assuming a diagonal input state for the system and an inhomogeneous
Hamiltonian. In the left graph, the blue solid, red dashed, and green dotted lines are single-interaction work Wr/h̄g0 sin2 θ according to Eq. (13)
as a function of the inhomogeneity δr , for various values of p0. The thin magenta line with dot markers shows the distribution Gaussian G(δ)

with
√

δ2 = 0.02 that was used for the right plot. The right figure plots the distribution of work GW (y), with y = W/h̄g0 sin2 θ , normalized
according to

∫
GW (y)dy = 1, for the same values of p0. Both plots use β h̄g0 = 1, (where a = e−1, i.e., 1

1+a ≈ 0.73).

Eq. (14) to a quadratic equation

q′
0δ

2 + (q0 − p0)δ − y = 0, (15)

where the notation q0(0) and the like has been shortened to
q0 for simplicity. From Eq. (15), the expression of δ(y) can be
easily obtained.

The distribution of W is then given by

GW (y) =
∑
s=±

G(xs(y))

∣∣∣∣dδs

dy′ (y′ = y)

∣∣∣∣
= 1√

D

∑
s=±

G(δs(y)) , (16)

where D = q′2
0 + 4y(q0 − p0) is the discriminant of Eq. (15).

Figure 1 (right) illustrates this distribution for a Gaussian
distribution of inhomogeneities G(δ) and a few values of p0.
For p0 = 1/(1 + a), that is for ρS|r−1 = τS , the distribution
is the narrowest and diverges as 1/

√
W at W = 0. While the

spread of the distribution depends on the input state, the peaks
(which coincide with the ensemble averaged work, discussed
in the next subsection) do not.

2. Ensemble average of single-collision work

Now we compute the ensemble average Wr of Eq. (12).
One could think that [HS + HR,U ] = 0 implies Wr = 0. But
this is not the case because the reservoir states also depend on
δN . The actual expression is

Wr = −h̄g0 sin2 θ
∑

j

j δr q j (δr ), (17)

having noticed that δr−1 and δr are not correlated and recalling
that our distribution G(δ) is centered at δ = 0.

Narrowing our focus to a symmetrical distribution [G(δ) =
G(−δ)], for small δr , we can make the following Taylor ap-
proximation q j (δr ) = q j (0) + q′

j (0)δr + q′′
j (0)δ2

r + O(δ3
r ) to

find

Wr = −δ2 h̄g0 sin2 θ
∑

j

jq′
j (0) + O(δ4) . (18)

Thus we can conclude that at every step the ensemble average
of single-collision work is identical as it is independent of r.

3. Accumulated work and dynamics

The work accumulated during the N collisions is

W N = −
∑

r

Wr ≈ Nh̄g0δ2 sin2 θ
∑

j

jq′
j (0) . (19)

This may be kept bounded for all N by choosing a suitable
scaling of θ with N . However, the value of θ affects also the
dynamics (10): in particular,

D(ρS|N , τ ) = cos2N θ D(ρ0, τ ) , (20)

where D(ρ, ρ ′) = 1
2 Tr(|ρ − ρ ′|) is the trace distance.

Let us then look at the scaling sin2 θ = cN−ξ . If ξ > 1, in
the limit of large N one has W N → 0, but also D(ρN , τ ) ≈
D(ρ0, τ ): no work is produced because the dynamics is
frozen. If ξ < 1, then in the limit of large N one has
D(ρN , τ ) → 0 but W N → ∞. A good compromise is

sin2 θ = c

N
⇒

{
W N ≈ h̄g0 δ2 c

∑
j jq′

j (0),

D(ρN , τ ) ≈ e−c D(ρ0, τ ).
(21)
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FIG. 2. Single-interaction heat and its distribution for qubits, assuming a diagonal input state for the system and inhomogeneous
Hamiltonian. In the left graph, the blue solid, red dashed, and green dotted lines are heat generated from a single-interaction Q/h̄g0 sin2 θ

according to Eq. (24) as a function of the inhomogeneity δr , for various values of p0. The thin magenta line with dot markers shows the

Gaussian distribution G(δ) with
√

δ2 = 0.02 used for the right plot. The right figure plots the distribution of heat GQ(y), with y = Q/h̄g0 sin2 θ ,
normalized according to

∫
GQ(y)dy = 1, for the same values of p0. Both plots use β h̄g0 = 1, (where a = e−1, i.e., 1

1+a ≈ 0.73).

The trace distance with the steady state decreases exponen-
tially with c, while the total accumulated work increases
linearly with c but remains bounded.

B. Heat

1. Heat generation in a single collision

We first limit our attention to one single collision between
the system and the rth reservoir qudit. The heat generated in
this collision is

Qr = Tr
[{τ (δr ) − ρR|r} g0(1 + δr )s(r)

z

]
, (22)

where ρR|r = TrS[US,r{ρS|r−1 ⊗ τ (δr )}U †
S,r] is the partial state

of the rth reservoir qudit after one application of the unitary
interaction US,r on the system and the reservoir. This calcula-
tion returns

Qr = h̄g0(1 + δr ) sin2 θ
∑

j

(
j − d − 1

2

)
[q j (δr )−p j (δr−1)].

(23)

For qubits, Eq. (23) reduces to

Qr = h̄g0(1 + δr ) sin2 θ [p0(δr−1) − q0(δr )], (24)

for which, like the case for work, we can calculate the statis-
tics of single-collision heat (see Fig. 2).

With the Taylor expansion, we will obtain the following
quadratic equation for Eq. (24):

q′
0δ

2 + (q′
0 + q0 − p0)δ + (y − p0 + q0) = 0 , (25)

with y = Qr

h̄g0 sin2 θ
and as previously, q0 is shorthand for q0(0).

From this, we can again obtain δ in terms of y, and the
statistics of heat is then given by Eq. (16).

Unlike the case of work, however, the distribution (Fig. 2
[right]) is not the narrowest for a state that is close to the
thermal state p0 = 1/(1 + a), but is, in general, narrower for
input states that have lower energy. We find also that the
peak of these distributions depend on the state of the system
which is sensible as heat is the amount of energy the reservoir
dumps into the system. Therefore the average Qr (peak of the
distribution) in this partial swap model necessarily depends on
the energy of the system interacting with the reservoir.

2. Ensemble average of single-collision heat

Turning now to the ensemble average Qr of
Eq. (23), we obtain the actual expression for Qr =
h̄g0 sin2 θ

∑
j ( j − d−1

2 )[q j (δr ) + δrq j (δr ) − p j (δr−1)]. Note
again the independence of δr and δr−1 that allows us to split
the averages, and the chosen distribution allows us to drop
terms proportional to δ.

In a similar fashion to the case of work, we consider the
Taylor expansion of q j (δ) to find

Qr = h̄g0 sin2 θ	Qr (δ2) + O(δ4), (26)

where

	Qr (δ2) =
∑

j

(
j − d − 1

2

)

× [q j (0) − p j (δr−1) + {q′
j (0) + q′′

j (0)}δ2].

Unlike the expression of work, however, we notice that Qr

depends on r.
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FIG. 3. Single-interaction heat and its distribution for qubits, assuming a diagonal input state for the system and inhomogeneous
temperature. In the left graph, the blue solid, red dashed, and green dotted lines are heat generated from a single-interaction Q/h̄g0 sin2 θ

according to Eq. (29) as a function of the inhomogeneity δr , for various values of p0. The thin magenta line with dot markers shows the

Gaussian distribution G(δ) with
√

δ2 = 0.02 used for the right plot. The right figure plots the distribution of heat GQ(y), with y = Q/h̄g0 sin2 θ ,
normalized according to

∫
GQ(y)dy = 1, for the same values of p0. Both plots use β h̄g0 = 1, (where a = e−1, i.e., 1

1+a ≈ 0.73).

A quick calculation for the energy of the system returns us

�Ur = h̄g0 sin2 θ
∑

j

(
j − d − 1

2

)
[q j (δr ) − p j (δr−1)]

(27)

for the single collision, and for the ensemble average utilizing
Taylor expansion we have

�Ur = h̄g0 sin2 θ
∑

j

(
j − d − 1

2

)

× [q j (0) − p j (δr−1) + q′′
j (0)δ2] + O(δ4). (28)

Recalling that the probability is normalized, and
∑

i q′
i(0) = 0

for the first order as well as all higher-order derivatives, one
obtains the first law, as expected.

IV. WORK, HEAT, AND FIRST LAW:
INHOMOGENEOUS TEMPERATURE

For the inhomogeneous temperature (5), it holds that [HS +
HR,U ] = 0 and no work is generated during any collision,
therefore we only have heat Q. Since W = 0, the first law in
the present case of Eq. (5) is merely �U = Q.

Note further that �U is the same regardless of whether
the inhomogeneity is due to fluctuations in the Hamiltonian
or the temperature, as �U depends only on the Hamiltonian
of the system and the dynamics of the reduced system, which
are identical in both cases. Therefore, we already know that
�U in this scenario is exactly Eq. (27). A quick calculation of
Qr for returns us Eq. (27) as well, as expected. For qubits,

Qr = h̄g0 sin2 θ [p0(δr−1) − q0(δr )]. (29)

As in the case of of inhomogeneous Hamiltonian, we can
determine the statistics of heat as well (Fig. 3). By the Taylor
expansion, we will obtain

q′′
0δ

2 + q′
0δ + (q0 − p0 + y) = 0 , (30)

for Eq. (29), where q′′
0 ≡ q′′

0 (0) = (β h̄g0)2 a(a−1)
(1+a)3 and y =

Qr

h̄g0 sin2 θ
. As usual, the distribution of GQr will be given by

Eq. (16)
We note that unlike the statistics of heat for an inhomoge-

neous Hamiltonian, the spreads of the distribution here does
not depend on the input state.

V. “SECOND LAWS OF THERMAL OPERATIONS”
AND INHOMOGENEOUS RESERVOIRS

The set of criteria under which a target state ρ ′ can be
obtained from ρ by free evolution can be seen as the analog
of the second law of thermodynamics. The transformation
ρ −→ ρ ′ under free operation does not define a total order:
as a result, it cannot be characterized by a single criterion [4].
Brandão and coworkers [19] wrote the second laws of thermal
operations as the monotonical decrease

�Fα = Fα (E[ρ]||τS ) − Fα (ρ||τS ) � 0, α ∈ R (31)

of a continuous family of generalized free energies

Fα (ρ||τS ) = kBT [Dα (ρ||τS ) − ln ZS], (32)

defined from the α-Rényi divergence Dα (ρ||τS ). If ρ and τS

are diagonal in the same basis, as we are assuming since the
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beginning, it holds

Dα (ρ||τS ) = sgn(α)

α − 1
ln

∑
j

pα
j q

1−α
j , (33)

with q j = e−βEj /ZS the eigenvalues of τS .
The conditions (31) are necessary and sufficient for free

evolution. Since inhomogeneous reservoirs deviate from free
dynamics, they should violate these conditions in some cases.
The following protocol leads to a violation for all α: prepare
the system in the state τS and let it evolve to τ̄ according to
Eq. (10). In this case, β�Fα = Dα (ρ̄S|N ||τS ) − Dα (τS||τS ) is
strictly positive since Dα (ρ||τS ) � 0 with equality if and only
if ρ = τS .

Updating the laws (31) to take into account any devia-
tion from free evolution is an open challenge. Our study of
inhomogeneous reservoirs may serve as a starting point for
this task. We first stress that, in our model, the possible state
transformations are given by Eq. (10) for both inhomogeneous
temperature and Hamiltonian. The generalized laws that sin-
gle out these transformations must therefore be independent
of the type of inhomogeneity [20].

However, their thermodynamical meaning will have to be
different. When work is generated and β is unique, thermo-
dynamics requires �F1 � W , which was indeed proved for
collisional models [15], and holds true for our model as well.
Our model of inhomogeneous Hamiltonian (4) shows that a
generalization �Fα � W will not hold for α > 1 [21], see
Fig. 4. In the case of inhomogeneous temperature (5), work is
not generated; and in fact, in this narrative, the laws should not
even involve free energies since the second law of thermody-
namics can be cast in terms of free energy only if the system
is in contact with a bath at a single temperature. One could

-0.2 -0.1 0 0.1 0.2
-2

-1.5

-1

-0.5

0

0.5

1

1.5
10-4

FIG. 4. Comparison of βW and β�Fα after a single interaction
(mixing angle θ = 0.1 rads) as a function of δ, for h̄g0 = 1 and
input state characterized by p0 = 0.75. The expected violation of
conditions (31) happens for δ > 0. β�F1 (blue dashed) is upper
bounded by βW (red solid), as it should; but for larger values of
α, this upper bound is also violated (plotted for α = 3 [black dash-
dotted]).

opt for reading Eq. (5) in the narrative of resource theories,
where there is still a single reference temperature β, the τ (δr )
playing the role of nonthermal (i.e., resource) states. In this
context, the authors of [6] defined approximate second laws
with free energies F ε

α where ε is the maximal distance between
a target state reachable with free operation and one reachable
with the resource operation. In our case ε = D(τS, τ ). For an
analytical estimate for qubits, we compute the upper bound

ε � D[τS, τ (δ)] = √
2/πβg0 h̄ a

(1+a)2

√
δ2 + O(δ2).

There are indeed other alternatives to the second law
[22,23], and it can be easily verified that the entropy produc-
tion �Sr = D[ρr ||ρS|r ⊗ τ (δr )] in [22] is always positive, and
hence, this alternative second law is always obeyed. ρr here is
the combined state of the system and one reservoir qudit after
one interaction. Here, however, one can no longer speak of a
family of necessary and sufficient conditions for a particular
evolution. In the interest of understanding how these family
of necessary and sufficient conditions relax in the presence
of small inhomogeneities, updating the laws (31) remains an
open challenge.
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FIG. 5. Comparison of the Rényi divergences for α = 1 and
α = ∞. The black dash-dotted plots are values of Dα (ρS|r ||τS ) over a
frozen ensemble and the red solid plots are the free energy calculated
for the ensemble averaged state Dα (ρS|r ||τS ) for each step. For both

plots, β h̄g0 = 1,
√

δ2 = 0.05, and input state characterized by p0 =
0.735.
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VI. LONG-TERM BEHAVIOR

In the preceding sections, we only discussed the ther-
modynamic behavior for a single step. One could also be
interested in the thermodynamic behavior of the system over
many steps as the system thermalizes. The pertinent point
of query here is as follows: In the long run, how robust are
these second laws with respect to small inhomogeneities in
the reservoir? Do they deviate significantly in the presence of
small inhomogeneities?

We note that while the free energies for lower α values
are relatively robust, the free energies for high α are indeed
very unstable in the presence of small inhomogeneities. In
Fig. 5, we plot our numerical simulations of both the Rényi
divergence over a frozen ensemble Dα (ρS|r ||τS ) as well as that
of the ensemble average state Dα (ρS|r ||τS ). The plots are of
the Rényi divergence instead of the free energies as the shape
of the graph is unaffected by this choice.

VII. CONCLUSION

Extending the resource theory of thermal operations to
nonideal reservoirs is not trivial [9–11]. In this paper, we
introduce the notion of inhomogeneous reservoirs. Using the
most standard collisional model, which fits well the definition
of free dynamics in the absence of inhomogeneity, we study
the two simplest cases of i.i.d. inhomogeneities: either in local
temperature (which can be interpreted as having “resource

states”) or in the local Hamiltonian (which is an instance of
“resource operations”). These two notions of inhomogeneity
have a clear physical flavor and both predict the exact same
dynamics. However, we note that the thermodynamic behavior
of the system differs significantly. Furthermore, we note that
while the lower α free energies are somewhat more robust,
the higher α free energies are very sensitive to these inhomo-
geneities.

There are clearly many ways in which this study can be
extended. Here we restrict our attention to states of the system
that are diagonal in the energy eigenbasis, and it will be
worth considering general states of the systems and the role of
coherence. Also, even staying within the family of collisional
models, one can study different parameters. A standing open
problem is the formulation of the rules for state transformation
(“second laws”) for inhomogeneous reservoirs: this paper
provides only an initial insight on this question.
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