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Macroscopicity of quantum mechanical superposition tests via hypothesis falsification
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We establish an objective scheme to determine the macroscopicity of quantum superposition tests with
mechanical degrees of freedom. It is based on the Bayesian hypothesis falsification of a class of macrorealist
modifications of quantum theory, such as the model of continuous spontaneous localization. The measure uses
the raw data gathered in an experiment, taking into account all measurement uncertainties, and can be used to
directly assess any conceivable quantum mechanical test. We determine the resulting macroscopicity for three
recent tests of quantum physics: double-well interference of Bose-Einstein condensates, Leggett-Garg tests with
atomic random walks, and entanglement generation and read-out of nanomechanical oscillators.
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I. INTRODUCTION

Any experiment witnessing or exploiting quantum coher-
ent phenomena may be viewed as a test of whether quantum
theory is complete at a fundamental level. While quantum
mechanics is supported by all empirical observations up to
date, all these observations are equally compatible with a
number of alternative theories restoring macroscopic realism
and resolving the measurement problem [1,2].

In recent years, various experiments demonstrated quan-
tum superpositions or entanglement with mechanical objects
of increasingly high masses and particle number, involving
ever larger spatial delocalizations and coherence times. They
include setups as diverse as counterpropagating superconduct-
ing loop currents [3,4], large path-separation atom interfer-
ometers [5,6], high-mass molecular near-field interferometers
[7,8], trapped and freely falling Bose-Einstein condensates
[9,10], delocalized states and Leggett-Garg tests in optical lat-
tices [11,12], entangled ion chains [13,14], and nanomechan-
ical oscillators [15–17]. While all these experiments establish
variants of a Schrödinger-cat-like state, an obvious question is
the degree of macroscopicity reached.

There are many ways to assess the macroscopicity of a
Schrödinger cat state realized in a quantum experiment [18].
Most measures quantify the complexity of the quantum state
based on information- or resource-theoretic concepts [19–23],
or introduce suitable distance measures in Hilbert space
[24,25]. While such abstract state vector ranking schemes
may be used to compare experimental setups of similar kind,
none can cover the entire variety of present-day superposition
experiments [3–17].

A viable alternative is to regard a Schrödinger cat state as
more macroscopic than others if its demonstration is more at
odds with the classical expectations shaped by our every-day
experiences. In Ref. [26] this was cast into a macroscopicity
measure by quantifying the extent to which a superposition
experiment rules out a natural class of objective modifica-
tions of quantum theory that predict classical behavior on
the macroscale. A prominent example of such classicaliz-

ing modifications is the model of continuous spontaneous
localization (CSL) [2]. Recent tests of nonlocality and macro-
realism, demonstrating the violation of Bell and Leggett-Garg
inequalities at unprecedented mass and timescales, call for a
generalization of this measure for arbitrary quantum tests with
mechanical degrees of freedom.

In this article we present the most general framework for
assigning the macroscopicity reached in quantum mechanical
superposition experiments, based on noninformative Bayesian
hypothesis testing, see Fig. 1. As the natural generalization of
the measure presented in [26], it relies only on the empirical
evidence (i.e., the raw measurement outcomes) delivered by a
given superposition test. It thus accounts for the measurement
imperfections independently of the chosen experimental fig-
ure of merit, such as the fringe visibility or an entanglement
witness.

This measure of macroscopicity can be applied to assess
any mechanical superposition experiment. It is unbiased by
construction and it accounts naturally for experimental uncer-
tainties and statistical fluctuations. These advantages come at
the expense of a certain theoretical effort required for calculat-
ing the macroscopicity of a given experiment. Specifically, the
time evolution of the quantum system must be calculated in
the presence of classicalizing modifications to obtain the prob-
ability distribution for all possible measurement outcomes. In
the second part of this article we demonstrate how this task
is accomplished for three superposition tests at the cutting
edge of quantum physics: double-well interference of number-
squeezed Bose-Einstein condensates (BECs) [9], Leggett-
Garg inequality tests with atomic quantum random walks [12],
and generation and witnessing of entanglement between two
spatially separated nanomechanical oscillators [15].

II. MACROSCOPICITY OF THREE RECENT
SUPERPOSITION TESTS

Before presenting the formal framework of the proposed
measure of macroscopicity, we illustrate its application to
three recent superposition tests [9,12,15]. As a common
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FIG. 1. Scheme to compare the macroscopicity of two different
quantum superposition tests: The experiments deliver raw data sets
d1 and d2, which may be of arbitrary type and structure. They can
be used to rule out modifications of standard quantum theory which
classicalize the dynamics. Combining the data with the theoretical
expectation yields a probability distribution for the classicalization
timescale τe, given the modification parameters σ and the back-
ground information I . A quantum experiment is considered more
macroscopic if the data rule out greater values of τe, as inferred from
the 5% quantile τm.

theme, these experiments use derived quantities, such as
visibilities, correlation functions, and entanglement witnesses,
to certify the quantumness of their observations. One impor-
tant advantage of the Bayesian approach advocated here is
that it is independent of such data processing (and thus of
secondary observables) and based exclusively on likelihoods
associated with elementary measurement events. A theoretical
derivation of the likelihoods required to assess the three
mentioned experiments is presented in Secs. IV–VI.

The measure uses the experimental data d to determine
the posterior probability distribution p(τe|d, σ, I ) of
classicalization timescales τe, given the modification
parameters σ , and any background information I required
to model the experiment. To ensure that each experiment
is rated without bias, the least informative prior is used for
Bayesian updating to yield the final posterior distribution.
Figures 2–4 show how disparate experimental measurement
protocols and data sets [9,12,15] yield comparable posterior
distributions, narrowly peaked around a definite modification
timescale. As an increasing number of data points is included
in the Bayesian updating procedure, the distributions shift to
higher modification timescales, while their widths decrease.
The lowest 5% quantile τm(σ ) of the posterior distribution
determines the macroscopicity as

μm = max
σ

[
log10

(
τm(σ )

1 s

)]
.

The value μm thus quantifies the degree to which the quantum
measurement data rules out a natural class of classicalizing
modifications of quantum theory.

The resulting macroscopicities of the experiments are:
μm = 8.5 for the BEC interferometer [9], μm = 7.1 for
the atomic Leggett-Garg test [12], and μm = 7.8 for the
entangled nanobeams. That the BEC and the atomic random
walk experiments exhibit comparable macroscopicities is due
to the fact that they both witness single atom interference
at a similar product of squared mass and coherence time.
The macroscopicity associated with the entangled nanobeam
experiment is roughly on the same order of magnitude on
the logarithmic scale, despite the high mass and the large
separation between the two beams and as well as coherence
times of microseconds. This surprising result can be explained
by the fact that the probed superposition state is delocalized
merely by a few femtometers, and thus probes quantum
theory only on subatomic scales.

Comparison of the three experiments also reveals that
the convergence rate of the posterior distribution can vary
strongly. In case of the Leggett-Garg test with an atomic
quantum random walk [12], the data set consists of 627 walks
which all end in one of five final lattice sites. Since the likeli-
hood of two of those outcomes is independent of the modifica-
tion they include no information for the hypothesis test, which
slows the convergence of the Bayesian updating procedure. In
contrast, the double-well BEC interferometer [9] provides a
distribution of measurement outcomes over a practically con-
tinuous range of values, so that each experimental run yields a
high degree of information gain, implying that 1457 measured
population imbalances lead to a relatively narrow posterior
distribution. In the case of nanobeams only two of four
possible coincidence outcomes have different likelihoods,
and thus several thousand repetitions of the measurement
protocol are required to make the posterior converge.

III. MACROSCOPICITY VIA HYPOTHESIS
FALSIFICATION

A. Empirical measure of macroscopicity

Classicalizing modifications of quantum theory propose
an alternative (stochastic) evolution equation for the wave
function. The observable consequences of these alternative
theories are then encoded in the dynamics of the state
operator ρt , which evolves according to a modified von
Neumann equation

∂tρt = Lρt + 1

τe
Mσ ρt . (1)

Here Lρt denotes the time evolution according to standard
quantum theory (including possible decoherence) and
Mσ ρt/τe describes the effect of the proposed modification,
characterized by the timescale τe and the set of modification
parameters σ .

Indeed, a generic class of modification theories are compat-
ible with all observations up to date, and they restore realism
on the macroscale. This class can be parametrized by impos-
ing a few natural consistency requirements, such as Galilean
invariance and exchange symmetry [26]. The parameters σ =
(σq, σs) with the dimensions of momentum and length, respec-
tively, then specify the length and momentum scale on which
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FIG. 2. (a) Schematic illustration of the double-well BEC interference experiment [9]. The BEC is initially split into a superposition
between slightly detuned left and right double-well states, then number squeezed, then let to freely evolve for a delay time, before a final
π/2-pulse (recombiner) converts the phase difference between the states into an occupation difference. (b) Time-of-flight measurement data
of the occupation imbalance versus delay time (from Ref. [9]). (c) Posterior distribution of the classicalization timescale (red solid line) as
obtained via Bayesian updating of Jeffreys’ prior (black dashed line) with the measurement data. The blue line is the intermediate distribution
obtained by using only the blue data points up to 1 ms in (b). The shaded areas indicate the lowest 5% quantiles and all distributions are
normalized to the same maximum value.
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FIG. 3. (a) Schematic illustration of the quantum random walk consisting of four consecutive steps. In each step the atom is coherently
split into a left- and right-moving state, and the final populations are read-out after the fourth step. (b) Experimental data from Ref. [12]. The
blue solid line is the data from the total quantum random walk, while the red lines are conditioned on the first step being either left (dashed)
or right (dotted). (c) Posterior distribution of the classicalization timescale (red solid line) as obtained via Bayesian updating of Jeffreys’ prior
(black dashed line) with the measurement data. The blue line is the intermediate distribution obtained by using only the blue measurement runs
in (b). The shaded areas indicate the lowest 5% quantiles and all distributions are normalized to the same maximum value.
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FIG. 4. (a) Stoke’s scattering of a pump photon, prepared in a spatial superposition by the entrance beam splitter, generates entanglement
between two nanomechanical oscillators, which is then read-out by anti-Stoke’s scattering of a read photon. Entanglement is certified by a
coincidence measurement of the scattered photons in the upper (+) or lower (−) detector behind the exit beam splitter. (b) Measurement
data [15] as a function of the tunable relative phase θ between the two interferometer arms (phase sweep). (c) Posterior distribution of the
classicalization timescale (red solid line) as obtained via Bayesian updating of Jeffreys’ prior (black dashed line) with the measurement data.
The blue line is the posterior obtained by taking only phase sweep data points into account, while the red line also accounts for measurements
with variable time delay between pump and read [time sweep; not shown in (b)]. The shaded areas indicate the lowest 5% quantiles and all
distributions are normalized to the same maximum value.
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the modification acts by means of the distribution function
gσ (q, s) with zero mean and widths σq, σs,

Mσ ρt =
∫

d3qd3s gσ (q, s)

[
L(q, s)ρt L†(q, s)

− 1

2

{
L†(q, s)L(q, s), ρt

}]
. (2)

The Lindblad operators in second quantization,

L(q, s) =
∑

α

mα

me

∫
d3p eip·mes/mα h̄c†

α (p)cα (p − q) , (3)

induce displacements in phase space by means of the annihila-
tion operator cα (p) for momentum p. They involve a sum over
the different particle species α with mass mα , whose ratio over
the electron mass me effectively amplifies the strength of the
modification for heavy particles, ensuring that macrorealism
is restored [26].

Roughly speaking, phase-space superpositions of a particle
of mass mα will decohere at the maximal amplified rate
(mα/me)2/τe if they extend over spatial distances greater than
h̄/σq or momentum distances greater than mα h̄/meσs. We
take gσ to be Gaussian in the following. The modification
(2) then reduces to the model of CSL [2] for fixed σq and
σs = 0. As explained in Ref. [26], the bounds h̄/σq � 10 fm
and σs � 20 pm ensure that the modification does not drive
the system into the regime of relativistic quantum mechanics.
In what follows, we will define the empirical measure of
macroscopicity as the extent to which a quantum experiment
rules out such classicalizing modifications.

Since the modified evolution (1) predicts deviations from
standard quantum mechanics at some scale these modifica-
tion theories are empirically falsifiable. Thus, any quantum
experiment gathering measurement data d can be considered
as testing the hypothesis Hτ ∗

e
:

Given a classicalizing modification (2) with parameters σ , the
dynamics of the system state ρt are determined by Eq. (1) with
a modification timescale τe � τ ∗

e .

Note that greater values of τe imply weaker modifications.
The empirical data d determine the Bayesian probability

P(Hτ ∗
e
|d, σ, I ) that Hτ ∗

e
is true, given the background informa-

tion I . The latter includes all knowledge required for describ-
ing the experiment, such as the Hamiltonian, environmental
decoherence processes, and the measurement protocol.

In order to compare Hτ ∗
e

with the complementary hypoth-
esis H τ ∗

e
that the modification time scale τe is larger than τ ∗

e
(including unmodified quantum mechanics as τe = ∞), one
defines the odds ratio [27]

o(τ ∗
e |d, σ, I ) = P

(
Hτ ∗

e

∣∣d, σ, I
)

P
(
H τ ∗

e

∣∣d, σ, I
) . (4)

If the data implies that the odds ratio is less than a certain
maximally acceptable value om we can favor H τ ∗

e
over Hτ ∗

e
.

Modifications of quantum theory with τe � τ ∗
e are then ruled

out by the data at odds om.
In order to evaluate the odds ratio (4) we use Bayes’

theorem and exploit that for the hypothesis test to be unbiased
by earlier experiments, Hτ ∗

e
and H τ ∗

e
must be a priori equally

probable. Further using that the hypothesis Hτ ∗
e

implies τe �

τ ∗
e yields

o(τ ∗
e |d, σ, I ) =

∫ τ ∗
e

0 dτe P(d|τe, σ, I )p(τe|σ, I )∫∞
τ ∗

e
dτe P(d|τe, σ, I )p(τe|σ, I )

, (5)

where p(τe|σ, I ) is the prior distribution of τe, whose choice
will be discussed in Sec. III B. The probabilities P(d|τe, σ, I )
are independent of the hypothesis Hτ ∗

e
; they can be calculated

for any experiment by solving the modified evolution equation
(1) with classicalization timescale τe and parameters σ .

The data d is usually gathered in N consecutive indepen-
dent runs, d = {d1, d2, . . . , dN }, where dk denotes the set of
(possibly correlated) measurement outcomes of round k. The
likelihood for the entire data set d is then given by

P(d|τe, σ, I ) =
∏

k

P(dk|τe, σ, I ). (6)

Every additional experimental run thus refines the posterior
probability density, according to Bayes’ theorem

p(τe|d, σ, I ) = P(d|τe, σ, I )p(τe|σ, I )

P(d|σ, I )
, (7)

where the normalization constant P(d|σ, I ) plays no role
for the odds ratio. For sufficiently large data sets and for
well behaved priors the posterior is independent of the prior
distribution p(τe|σ, I ) [28,29].

For what follows, we choose the threshold odds om = 1 :
19, corresponding to the posterior probability

P(τe � τm|d, σ, I ) ≡
∫ τm

0
dτe p(τe|d, σ, I ) = 5%. (8)

This determines the greatest excluded modification timescale
τm (at odds om) so that for all τ ∗

e � τm the odds ratio (5) is
smaller than om for given modification parameters σ .

Given the greatest excluded modification timescale τm(σ )
as a function of the modification parameters σ , one defines the
empirical measure of macroscopicity as

μm = max
σ

[
log10

(
τm(σ )

1 s

)]
, (9)

where τm(σ ) [Eq. (8)] is the extent to which the measurement
data d of a given quantum experiment rules out the class of
modifications (2). The value of μm thus ranks superposition
experiments against each other according to the degree to
which they are at odds with our classical expectation.

We emphasize that this definition must only be used for
experiments that undeniably show genuine quantum signa-
tures. It cannot be used to certify whether a given experiment
observes a superposition state. This is due to the fact that
the absence of modification-induced heating and momentum
diffusion can be observed also in classical experiments. Even
though quantum coherence plays no role in such setups,
they can serve to exclude combinations of classicalization
timescales and modification parameters [30–38].

Even in genuine quantum superposition experiments the
observed absence of modification-induced heating may dom-
inate the range of excluded modification parameters. In this
case it is necessary to recombine the observables in such a
way that they separate into a subset of random variables D
providing information about quantum coherence and a subset
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Dheat yielding only information about the energy gain. (For
example, in the case of the double-well BEC interference ex-
periment, where one measures the particle numbers in the two
different wells, their difference shows interference based on
quantum coherence, while their sum constraints particle loss
due to heating.) For a fair assessment of the macroscopicity,
the likelihood P(D, dheat|τe, σ, I ) must be conditioned on the
realized data dheat restricting modification induced heating,

P(D|τe, σ, I, dheat ) = P(D, dheat|τe, σ, I )

P(dheat|τe, σ, I )
, (10)

with P(dheat|τe, σ, I ) =∑D P(D, dheat|τe, σ, I ). This way the
witnessed lack of heating is effectively added to the back-
ground information I . (It also shows how to formally take
into account the observation that the experiment could
be executed at all, i.e., that the setup did not disintegrate due
to modification-induced heating.) In Sec. IV we demonstrate
how the conditioning on quantum observables works in prac-
tice by means of a nontrivial example.

B. Jeffreys’ prior

If the data set is not sufficiently large, the measure (9)
will in general depend on the prior distribution chosen to
evaluate the odds ratio (5). It is therefore necessary to specify
which prior distribution p(τe|σ, I ) must be used to calculate
the macroscopicity (9).

In order to ensure that the macroscopicity μm does not have
a bias towards a selected class of quantum superposition tests,
the prior must be chosen in the most uninformative way, i.e.,
without including any a priori beliefs. For instance, this im-
plies that it must not play a role whether we use the timescale
τe or the rate 1/τe to parametrize the class of modifications,
which already excludes a uniform or piecewise-constant prior.
Therefore, the natural choice is Jeffreys’ prior [39]. Given the
likelihood P(d|τe, σ, I ) associated with a random variable d ,
it is defined as the square root of the Fisher information,

p(τe|σ, I ) ∝
√
I (τe|σ, I )

=
√√√√〈( ∂

∂τe
log[P(D|τe, σ, I )]

)2
〉

D

. (11)

The ensemble average 〈·〉D is performed over the entire
range of possible measurement outcomes D with probability
P(D|τe, σ, I ).

This prior coincides with the so-called reference prior, so
that it maximizes the Kullback-Leibler divergence between
prior and posterior and thus the average information gain
in the Bayesian updating process (7) [40,41]. In this sense,
Jeffreys’ prior can be considered as the least informative prior
[42]. In addition, it is invariant under reparametrizations of the
model [39], implying that it is irrelevant whether we use the
timescale τe or the rate λ = 1/τe (as employed in the model of
continuous spontaneous localization [2]) or any other power
of τe as the fundamental parameter of our model. We demon-
strate in Appendix A that for all practical purposes Eq. (11)
yields a normalizable posterior distribution (7) because the
master equation (1) and thus the likelihood P(d|τe, σ, I ) are
smooth functions of τe.

If different measurement protocols are implemented, in-
dicated here by the index k (typical scenarios are different
waiting times in a time integrated interferometer), Jeffreys’
prior is weighted as

p(τe|σ, I ) ∝
√∑

k

Nk I (τe|σ, Ik ). (12)

Here Nk is the number of experimental runs with the respective
P(Dk|τe, σ, Ik ). The simple form of Jeffreys’ prior (12) can
be obtained by noting that 〈∂τe log[P(Dk|τe, σ, Ik )]〉Dk = 0 in
any case since the normalization of the probability distribution
P(Dk|τe, σ, Ik ) must be preserved for all τe.

C. General scheme for assigning macroscopicities

The formal framework of how to assess the macroscopicity
of arbitrary quantum mechanical superposition tests is now
complete:

(1) Determine the Hamiltonian, environmental decoher-
ence channels, and quantum measurement protocol, and use
these to calculate the likelihood P(D|τe, σ, I ) in the presence
of the modification (2). If appropriate use Eq. (10) to focus on
data demonstrating quantum coherence.

(2) Calculate Jeffreys’ prior (12).
(3) Determine the posterior distribution via Bayesian up-

dating (7) to extract τm(σ ) via (8).
(4) Find the maximum of the function τm(σ ), which deter-

mines the macroscopicity (9).
This recipe prescribes how to calculate the macroscopicity

based on the empirical evidence of a quantum experiment. It
formalizes and generalizes the notion of macroscopicity in-
troduced in Ref. [26]. The approximate expressions derived in
Ref. [26] intrinsically assume that imperfections of a given ex-
periment yield a definite value of τe < ∞, corresponding to a
delta-peaked posterior distribution. The Bayesian framework
put forward here extends this to measurement schemes and
data sets yielding a finite posterior distribution p(τe|d, σ, I ).
It is thus the natural extension for noisy data and arbitrary
measurement strategies.

In practice, the most complicated part of the above scheme
is calculating the likelihoods in step 1. This requires finding
an appropriate and quantitative description of the quantum dy-
namics in the presence of decoherence and the modification.
Note that the macroscopicity is underestimated if relevant
decoherence channels are neglected in the calculation of the
likelihoods. The remainder of this article demonstrates how
the likelihoods can be calculated for the three superposition
tests discussed in Sec. II.

IV. RAMSEY INTERFEROMETRY WITH A
NUMBER-SQUEEZED BEC

A. Experimental setting and basics

In the experiment reported in Ref. [9] a 87Rb BEC is
trapped in a double-well potential and made to interfere, see
Fig. 2(a). The two involved modes a, b form an effective
two-level system described by the annihilation operators ca,
cb. The state of the BEC can thus be represented by a col-
lective pseudospin, defined by means of the (dimensionless)
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FIG. 5. (a)–(c) The dynamics of large collective spin states close to the equator of a generalized Bloch sphere can be effectively described
by first evolving the state in the local tangent plane and then wrapping it back around the sphere. (d)–(f) Exact simulations of the BEC number
differences (red histograms) are in very good agreement with the analytical approximation (25) (black lines). The simulation was performed
for N = 100 particles and an initial variance of 
J2

z = N/5, reached by means of one-axis squeezing [44]. The snapshots are taken at times
(d) t0 = 0, (e) t1 = 5.25π h̄/ε, and (f) t2 = 400π h̄/ε with �P = ζ = 0.002ε/h̄. At time t2 the distributions have practically converged towards
the fully dephased steady state. (g) In the absence of phase diffusion the distribution exhibits (partial) revivals, as illustrated in (g) for time t2.
[A complete revival to the state shown in (a) would first be observed at t = 1000π h̄/ε.]

quasiangular momentum operators [43]

Jx = 1

2
(c†

acb + c†
bca),

Jy = 1

2i
(c†

acb − c†
bca),

Jz = 1

2
(c†

aca − c†
bcb). (13)

They fulfill the angular momentum commutation relations
[Jλ, Jμ] = iελ,μ,νJν . The simultaneous eigenstates of J2 with
eigenvalue J (J + 1) and Jz with eigenvalue m are denoted by
|J, m〉 (Dicke state), where J = N/2.

The product of N bosons being in a superposition state
(coherent spin state, CSS) can be represented on a generalized
Bloch sphere (see Fig. 5), whose polar angle θ indicates the
relative population in a and b, while the azimuth φ is the
relative phase of the superposition state. Such a product state
|θ, φ〉 can be expanded in terms of Dicke states as

|θ, φ〉 ≡ 1√
(2J )!

[
cos

(
θ

2

)
c†

a + eiφ sin

(
θ

2

)
c†

b

]2J

|vac〉

=
J∑

m=−J

(
2J

J + m

)
cos

(
θ

2

)J−m

sin

(
θ

2

)J+m

× e−i(J+m)φ |J, m〉. (14)

It has minimal and symmetric uncertainties, e.g., 
J2
z =


J2
y = |〈Jx〉/2| = J/2 for θ = π/2 and φ = 0.
Applying a nonlinear squeezing operator turns the CSS

into a squeezed spin state (SSS) [44,45], which can be

useful for metrology [46–48] or robust against dephasing
processes [9,49]. In addition, it has been demonstrated that
the depth of entanglement increases with squeezing [50–52],
as quantified by the squeezing parameter ξ 2 = 2(
Jmin)2/J .
We note that according to the information-theoretic measure
from Ref. [21] already the existence of such a state yields a
large macroscopicity since squeezing increases the quantum
Fisher information.

In terms of the depth of entanglement [51,52] the non-
classicality of SSS lies between a product state (CSS) and
the maximally entangled NOON state |ψ〉 ∝ |N, 0〉 + |0, N〉,
a superposition of all particles being either in mode a or
mode b. Applying the modification on this NOON state
yields a decoherence rate proportional to N2, while that of
a product state is proportional to N . It is thus easy to see
that a NOON state with stable phase could serve to exclude
a large range of classicalization timescales [53], but they
have not been generated experimentally thus far. In contrast,
the modification-induced dynamics of SSS, which are fre-
quently realized in experiments, is much more intricate, as
discussed in the following.

The free time evolution Lρ = −i[H, ρ]/h̄ of the BEC is
characterized by the energy difference ε between the two
modes and by the interaction between the particles. Approxi-
mating the latter to leading order in Jz, yields the Hamiltonian
[49]

H = εJz + h̄ζJ2
z , (15)

where ζ = dμ̃/d (h̄m)|m=0 is the change of chemical potential
with the occupation difference m. Thus, the first term of the
Hamiltonian describes rotations around the z axis with angular
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frequency ε/h̄ on the generalized Bloch sphere, while the
second term leads to dispersion.

The experiment starts with the BEC in the state |θ =
π/2, φ = 0〉, which is then squeezed in z direction and freely
evolved for up to 20 ms. Finally, a π/2 rotation around the x
axis converts the phase distribution into mode occupation dif-
ferences, which are read-out by time-of-flight measurements,
see Fig. 2.

The likelihood required for the hypothesis test is the prob-
ability of observing a number difference of m between the two
modes,

P(m|τe, σ, I ) =
∞∑

J=0

〈J, m|e−iπJx/2ρt e
iπJx/2|J, m〉,

=
∞∑

J=0

P(J|τe, σ, I )PJ (m|τe, σ, I ) (16)

where the sum over J accounts for the possibility of
modification-induced particle loss from the BEC during the
experiment [30]. The modification parameters τe and σ enter
through the modified time evolution of the state ρt , which will
be discussed next.

B. Double-well potential: Phase flips

Expanding the momentum annihilation operators c(p) in
Eq. (3) in the single-particle eigenmodes in the presence of the
potential, and neglecting particle loss for the moment (c†

aca +
c†

bcb = 2J), yields

Mσ ρ = 4m2
Rb

τem2
e

∫
d3q fσ (q)

×
[
A(q)ρA†(q) − 1

2
{A†(q)A(q), ρ}

]
. (17)

Here we used that spatial displacements are negligible on the
length scale of the experiment and thus fσ (q) = ∫ dsgσ (q, s)
depends only on σq. The Lindblad operators are given by

A(q) = ax(q)Jx + az(q)Jz , (18)

with

ax(q) = 〈ψa|W(q)|ψb〉,

az(q) = i〈ψa|W(q)|ψa〉 sin

(

xqx

2h̄

)
ei
xqx/2h̄. (19)

Here |ψa〉 and |ψb〉 are the single-atom eigenstates of the
two level system with real wave functions ψb(r) = ψa(r −

xex ) ∈ R and W(q) = exp(iq · r/h̄) is the momentum trans-
fer operator.

The first part of the Lindblad operator describes rotations
around the x axis, or spin flips, while the second one induces
rotations around the z axis, or phase flips. Such flip operators
are frequently used to describe disturbance channels in col-
lective spin states [45,54]. Since the spatial overlap between
the two modes is negligible, ax(q) 
 az(q), the spin-flip
contribution will be neglected in the following, implying that
〈J2

z 〉t remains constant.

The expectation value of the perpendicular spin compo-
nents decays as 〈Jy〉t = e−�Pt/2〈Jy〉f,t with phase-flip rate (or
dephasing rate)

�P = 4m2
Rb

τem2
e

∫
d3q fσ (q)|az(q)|2. (20)

Here 〈Jy〉f,t denotes the free time evolution of the expectation
value due to Eq. (15); the same relation holds for 〈Jx〉t . Note
that the phase-flip decay rate �P is independent of the degree
of squeezing.

The phase-flip operators induce diffusion in the azimuthal
plane of the generalized Bloch sphere. The second moment of
Jy thus evolves as

〈
J2

y

〉
t
= 1

2

〈
J2

x + J2
y

〉
f,t

− e−2�Pt

2

〈
J2

x − J2
y

〉
f,t

, (21)

and similar for J2
x . For sufficiently large N the squeezing

loss rate is again independent of the initial squeezing since
〈J2

x〉f,t ≈ J2 (as long as oversqueezing is avoided).
Equations (20) and (21) show that squeezing has no direct

implications for the sensitivity on modification-induced deco-
herence. In contrast to what might be expected intuitively, an
increased depth of entanglement does therefore not improve
substantially the macroscopicity of experiments that measure
only the first two moments of the collective spin observables.

C. Continuum approximation

In order to calculate the likelihood (16), we will uti-
lize a continuum approximation on the tangent plane of
the generalized Bloch sphere, replacing the discrete prob-
ability P(m|τe, σ, I ) by the continuous probability density
p(m|τe, σ, I ) for real m. For this sake, we use that the initial
state is aligned with the x axis, 〈Jx〉 ≈ J , so that

[Jy, Jz] ≈ iJ, (22)

which is approximately constant (and not operator valued).
Thus we locally replace the sphere by its flat tangent plane
and may interpret Jy as a position and Jz as a momentum
operator, see Fig. 5. The Wigner function of the initial state
is then approximated by a Gaussian distribution,

w0( jy, jz ) = 1√
4π2

〈
J2

y

〉
0

〈
J2

z

〉
0

× exp

[
−1

2

j2
y〈

J2
y

〉
0

− 1

2

j2
z〈

J2
z

〉
0

]
, (23)

where ( jy, jz ) ∈ R2 are continuous variables in the flat tangent
plane.

The time evolution of the initial state (23) contains the
free rotation and dispersion described by Eq. (15), as well as
modification-induced dephasing. Representing the dynamics
in quantum phase space, the quadratic term in the Hamiltonian
(15) induces shearing in jy, while the linear term leads to
a translation in jy with constant velocity. The phase flips
induce diffusion in jy, which increases the variance linearly
with time. The corresponding time evolved state can thus be
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written as

wt ( jy, jz ) = 1√
4π2

(〈
J2

y

〉
0
+ �PJ2t

)〈
J2

z

〉
0

× exp

[
−1

2

( jy − εt/h̄ − 2ζ jzt )2〈
J2

y

〉
0
+ �PJ2t

− 1

2

j2
z〈

J2
z

〉
0

]
,

(24)

implying that the marginal distribution of jz remains unaf-
fected by the dynamics.

In order to calculate the likelihood PJ (m|τe, σ, I ) =
〈J, m|e−iπJx/2ρt eiπJx/2|J, m〉/P(J|τe, σ, I ) at fixed J , we first
perform the π/2-rotation around the x axis, which exchanges
jy and jz in Eq. (24). The resulting distribution is then inte-
grated over jy, and jz is wrapped back onto the sphere by using
sin( jz ) = m/J and the summation

∫
d jy
∑

k wt ( jz + 2πk, jy).
This way one obtains the continuous probability density
approximating PJ ,

pJ (m|τe, σ, I )

= �(J2 − m2)

2π
√

J2 − m2

[
ϑ3

(
arcsin(m/J ) − εt/h̄

2
, g(t )

)
+ϑ3

(
π − arcsin(m/J ) − εt/h̄

2
, g(t )

)]
, (25)

where �(x) is the Heaviside function, ϑ3 denotes the Jacobi-
theta functions of the third kind

ϑ3(u, q) =
∞∑

n=−∞
qn2

e2inu , (26)

and the dependence on the initial state is expressed by

g(t ) = exp

[
−
〈
J2

y

〉
0

2J2
− �Pt

2
− 2ζ 2t2

〈
J2

z

〉
0

]
. (27)

This analytic result captures the generic dephasing effect
of random phase flips on a two-mode BEC. The comparison
of Eq. (25) with exact numerical calculations shows very good
agreement, as demonstrated in Fig. 5.

At this stage it might be tempting to use Eq. (25) for
Bayesian updating to calculate the macroscopicity. However,
since the spatial distance between the two wells of the po-
tential is not much greater than the extension of the modes,
the resulting maximizing modification parameters σ imply a
moderate heating of the BEC. This must be taken into account
for a consistent description. A brief discussion of the role of
spin flips in single-well potentials will prepare this.

D. Single-well potentials: Spin flips

The dynamics of a BEC in the two lowest eigenstates of
a single-well potential, as studied in Ref. [55], is strongly
affected by spin flips. This marked difference to the double
well is due to the spatial overlap between the two modes, see
Eq. (19). The resulting Lindblad operators do not commute
with Jz, but induce additional diffusion in z direction. In com-
bination with the Hamiltonian (15) this leads to an enhanced
dispersion.

If the free rotation frequency ε/h̄ exceeds the spin-flip
diffusion rate

�S = 4m2
Rb

τem2
e

∫
d3q fσ (q)|ax(q)|2 , (28)

the average gain in the second moment of Jz can be easily
calculated. For times much greater than the rotation period
one obtains〈

J2
z

〉
t ≈

〈
J2

z

〉
0 + J2

3
+ 2

〈
J2

z

〉
0 − J2

3
e−3�St/2 . (29)

For single wells, spin flips will typically dominate the in-
fluence of the modification, and phase flips can safely be
neglected.

Expanding Eq. (29) for small �St and exploiting that J2 �
〈J2

z 〉, yields in the continuum approximation (see Appendix B)


 j2
y (t ) ≈ 
 j2

y (0) + 4ζ 2J2t2

[〈
J2

z

〉
0 + �SJ2t

6

]
. (30)

Thus the random spin flips enhance dispersion so that the
variance of jy increases with t3. This results in the probability
distribution (25) with

g(t ) = exp

[
−
〈
J2

y

〉
0

2J2
− 2ζ 2t2

(〈
J2

z

〉
0 + �SJ2t

6

)]
. (31)

In single-well BEC interferometers the modification thus
strongly influences the final occupation difference, rendering
them attractive for future superposition tests. As explained
next, diffusion in the orthogonal z direction is also caused by
modification-induced particle loss. The above results can be
directly transferred.

E. Heating-induced particle loss

In order to include modification-induced particle loss from
the BEC, we assume that atoms leaving the two ground
modes will never return. This assumption is well justified for
a large modification parameter σq, where the particles have
a negligible probability of being scattered back to the two
lowest modes.

In this simplified scenario their populations decay expo-
nentially,

〈c†
aca〉t = e−�at 〈c†

aca〉0, 〈c†
bcb〉t = e−�bt 〈c†

bcb〉0, (32)

with loss rates

�a,b = m2
Rb

τem2
e

∫
d3q fσ (q)[1−|〈ψa,b|W(q)|ψa,b〉|2]. (33)

The radius of the generalized Bloch sphere thus decreases
with time, and for �a 
= �b the state is shifted towards one
of the poles.

Also the coherences decay exponentially,

〈c†
acb〉t = e−�Ct 〈c†

acb〉0, 〈c†
bca〉t = e−�Ct 〈c†

bca〉0 , (34)

with

�C = m2
Rb

τem2
e

∫
d3q fσ (q)[1−〈ψa|W(q)|ψa〉〈ψb|W†(q)|ψb〉].

(35)
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In order to evaluate the effect of particle loss on the
likelihood (25) we use the result of Ref. [45] to determine how
the variance of Jn, i.e., the angular momentum component in
direction n, changes due to particle loss. Using J0, J � 1 one
obtains 〈

J2
n

〉
J

J2
≈
〈
J2

n

〉
J0

J2
0

+ J0 − J

2J0J
, (36)

where J (J0) is the current (initial) collective spin after the
loss of 2(J0 − J ) particles, and angular brackets 〈· · · 〉J denote
expectation values after tracing out the lost particles. The
second term shows that the rescaled second moment 〈J2

n〉J/J2

increases due to the particle loss.
Combining Eq. (36) with Eq. (32), using that in the double-

well �a = �b ≡ �L, expanding the result to linear order in
�Lt , and finally repeating the steps carried out in the previous
section to account for simultaneous shearing and diffusion,
yields the distribution (25) with

g(t )=exp

[
−
〈
J2

y

〉
0

2J2
0

− �Pt

2
− �Lt

4J0
−2ζ 2t2

(〈
J2

z

〉
0+

�LJ0t

6

)]
.

(37)

The enhancement of the dispersion looks similar to the
single-well case (31), but it is weaker by the (significant)
factor 1/J0. Note that the dispersion rate ζ decreases with
decreasing J0, and the linear approximation of the chemical
potential leading to the free Hamiltonian (15) will fail if too
many particles are lost.

The distribution of the remaining particles turns out to be
binomial [56] given that �a = �b ≡ �L(τe, σ, I ). The proba-
bility density for m ∈ R, i.e., the continuous approximation of
Eq. (16), therefore takes the final form

p(m|τe, σ, I ) =
J0∑

J=0

(
J0

J

)
(1 − e−�Lt )J (e−�Lt )J0−J

× pJ (m|τe, σ, I ), (38)

where pJ (m|τe, σ, I ) is given by Eqs. (25) and (37) and
p0(m|τe, σ, I ) = δ(m). This equation can now be used for
the Bayesian updating procedure (6) and for evaluating the
macroscopicity (9).

F. Experimental parameters

The BEC reported in Ref. [9] consists of N = 2J0 ≈
1200 87Rb atoms in a double-well configuration with a spatial
separation of 
x ≈ 2 μm in x direction and an initial num-
ber squeezing of 
J2

z = 0.412J0/2. The trapping frequencies
are ωx/2π = 1.44 kHz, ωy/2π = 1.84 kHz, and ωz/2π =
13.2 Hz, so that the motion in z direction is quasifree. The
two lowest energy levels of this potential have a gap of
ε/h̄ = 2.19 kHz and the first order corrections of the chemical
potential are characterized by ζ = 4 Hz.

Approximating the ground states harmonically with the
widths σx,y = √h̄/2mRbωx,y yields the phase-flip and loss
rates

�P = 2m2
Rb

τem2
e

1 − exp
[−
2

xσ
2
q /
(
4σ 2

q σ 2
x + 2h̄2

)]√(
1 + 2σ 2

q σ 2
x /h̄2

)(
1 + 2σ 2

q σ 2
y /h̄2

) , (39)

�L = m2
Rb

τem2
e

⎛⎝1− 1√(
1 + 2σ 2

q σ 2
x /h̄2

)(
1 + 2σ 2

q σ 2
y /h̄2

)
⎞⎠.

(40)

For the experimental parameters given above, the particle
loss rate �L cannot be neglected compared to the phase-flip
rate �P in the entire parameter regime of σ . This is due to the
fact that the widths of the ground state modes σx,y are compa-
rable to the spatial separation of the wells 
x. Consequently,
it cannot be excluded that the observed lack of particle loss
due to modification-induced heating may significantly affect
the hypothesis test, even though confirming the conservation
of particle number does not verify quantum coherence.

As a remedy, we condition the likelihood (38) on the
observed particle number, as explained at the end of Sec. III A.
This makes the overall atom number part of the experimental
background information, and we can separately assess the
modification-induced loss of interference visibility given that
a certain particle number was detected. The conditioned like-
lihood (10) is obtained by dividing the likelihood (38) by the
probability

P(dheat|τe, σ, I ) =
J0∑

J=�0.9J0�

(
J0

J

)
(e�Lt − 1)Je−J0�Lt (41)

that not more than 10% of the particles are lost, dheat := {J �
0.9 J0}. This threshold value is taken as a conservative esti-
mate given that the number of the trapped particles fluctuates
by at most 10% between the individual experimental runs.

All information is now available to perform the Bayesian
hypothesis test, as described in Sec. III using the 1438 data
points presented in Fig. 2(b). Numerical maximization of
τm(σ ) yields a macroscopicity value of μm = 8.5. The maxi-
mum of τm(σ ) is attained for the modification parameter σq �
h̄/0.77 mm. As one would expect, this roughly corresponds to
the parameter value where the phase-flip rate is maximized (at
�P = 1.7/τe), implying that dephasing is most pronounced.
The corresponding particle loss rate is an order of magnitude
lower (�L = 0.11/τe).

The macroscopicity attained in the double-well BEC in-
terferometer is comparable to the value expected for an atom
interferometer operating single rubidium atoms on the same
timescale. For instance, using the estimate in [26] with an
interference visibility f = 0.2 after t = 20 ms, one would
also obtain μ = 8.5. This close match might be expected for
an unsqueezed BEC, where all atoms are uncorrelated. That
the number squeezed BEC discussed here does not reach an
appreciably higher macroscopicity, despite its large depth of
entanglement, can be attributed to the fact that single-particle
observables are measured. They are not sensitive to many-
particle correlations that are potentially destroyed by the clas-
sicalizing modification. In contrast, if the modification had
induced spin flips, as in a single-well interferometer scenario
[55], the resulting destruction of number squeezing could be
observed due to the interplay between the modification effect
and the intrinsic dispersion caused by atom-atom interactions,
see Eq. (31).
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V. LEGGETT-GARG TEST WITH AN ATOMIC
QUANTUM RANDOM WALK

A. Setup

Reference [12] describes a test of the Leggett-Garg in-
equality with single atoms performing a quantum random
walk in an optical lattice formed by two circularly polarized
laser beams. The form of the lattice potential depends on the
hyperfine state of the atoms, so that by preparing single 133Cs
atoms in a superposition of two hyperfine states and displacing
the two lattices in opposite directions, one can prepare the
atom in a superposition of left- and right-directed movements.
We denote the displacement length of a single step by d , and
the associated time required to displace the lattices by Td.

The quantum random walk (Fig. 3) is performed by first
applying a π/2 pulse over the duration Tr , which prepares
the atom in a superposition of the hyperfine states and
then transforming this into a spatial superposition by displac-
ing the lattices for the duration Td. This scheme is iterated
four times and finally a position measurement of the atom is
performed, collapsing its position into a definite lattice site.
Since no π/2 pulse is applied after the fourth step, atoms
which do not end up in the same hyperfine state are excluded
by the measurement protocol. This means that all paths which
contribute to the interference must recombine after the third
step.

Representing the two-level internal degree of freedom by a
spinor, the action of a single step in the quantum random walk
is given by the unitary operator

S = 1√
2

(
Ud −Ud

U†
d U†

d

)
, (42)

with the translation operator Ud = exp(−ipd/2h̄). A straight-
forward calculation shows that in addition to the classical
random-walk trajectories, involving no coherences, there are
only two classes of trajectories contributing to the interference
pattern, see Fig. 6: (i) the atomic wave function is split and
recombines immediately in the following step; (ii) the atomic
wave function is split in the first step, then both parts are
displaced either to the left or the right in the second step, and
they recombine in the third step. To model the experimental
outcome, one has to determine the likelihood

P(�|τe, σ, I ) = trspin(〈�|ρ|�〉), (43)

where � ∈ {−2,−1, 0, 1, 2} labels the lattice sites that can be
reached in four steps and ρ is the final state evolved under
influence of the modification (2) with parameters τe and σ .

B. Impact of the modification

Since the separation between neighboring lattice sides is
d = 433 nm, spatial displacements can be neglected in the
modification (2), i.e., we can set σs = 0. The influence of
the modification on a superposition of momentum states can
be calculated by drawing on the results in Ref. [56], where
the momentum superposition of a noninteracting BEC in
the limit of a high number of atoms was approximated by
a macroscopic wave function (obeying the single particle

FIG. 6. (a) Examples of the two classes of coherently split tra-
jectories contributing to the quantum random walk: (i) the atomic
wave function splits in the first or second step and recombines
afterwards; (ii) the atomic wave function splits in the first step, then
both parts move one step in parallel, and recombine in the third
step. (b) Quantum-to-classical transition of the quantum random
walk with decreasing classicalization timescale τe. The diagrams
depict the final-site probabilities (45) for modification parameters
h̄/σq = d/10 and τem2

e/m2
Cs = 1 μs, 50 μs, 100 μs, and 10 ms from

left to right.

Schrödinger equation). One can directly carry over these
results to the present case of a single cesium atom. As a
result, the likelihood (43) can be calculated with the help of
the dimensionless coherence reduction factor

R(t ) = exp

{
−2Tdm2

Cs

τem2
e

[
1 −

√
π h̄√

2dσq

erf

(
dσq√

2h̄

)]}

× exp

{
− tm2

Cs

τem2
e

[
1 − exp

(
−d2σ 2

q

2h̄2

)]}
, (44)

where t is the time over which the superposition state is
maintained at a constant distance of d . Thus, in the case of
the path (i) t = Tr , and in case of path (ii) t = Td + 2Tr .

Initializing the random walk in the upper hyperfine state,
one can identify all contributing trajectories by applying
Eq. (42) four times. After weighting these with the appropriate
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reduction factors (44), the trace (43) finally yields the proba-
bility distribution1

P(−2|τe, σ, I ) = 1
16 , (45a)

P(−1|τe, σ, I ) = 1
4 + 1

4 R(Tr ) + 1
8 R(Td + 2Tr ), (45b)

P(0|τe, σ, I ) = 3
8 − 1

4 R(Tr ), (45c)

P(1|τe, σ, I ) = 1
4 − 1

8 R(Td + 2Tr ), (45d)

P(2|τe, σ, I ) = 1
16 . (45e)

These results reflect what is to be expected from a clas-
sicalizing modification applied to the quantum random walk:
The classical random walk probabilities are retrieved in the
limit τe → 0, where R(t ) = 0, while the opposite limit τe →
∞, i.e., R(t ) = 1, yields the ideal quantum random walk
probabilities. The gradual transition between classical and
quantum behavior is depicted in Fig. 6.

In the Leggett-Garg test of Ref. [12] additional measure-
ment results were post selected conditioned on whether the
walker moves in the first step to the left or to the right. In this
case the random walk effectively starts one step later, and thus
only trajectories of type (i) contribute to the interference. The
resulting probabilities can be determined as above,

PL(−2|τe, σ, I ) = PR(2|τe, σ, I ) = 1
8 , (46a)

PL(−1|τe, σ, I ) = PR(1|τe, σ, I ) = 3
8 + 1

4 R(Tr ), (46b)

PL(0|τe, σ, I ) = PR(0|τe, σ, I ) = 3
8 − 1

4 R(Tr ), (46c)

PL(1|τe, σ, I ) = PR(−1|τe, σ, I ) = 1
8 , (46d)

PL(2|τe, σ, I ) = PR(−2|τe, σ, I ) = 0. (46e)

The subscripts L or R denote that the first step was per-
formed to the left or right.

For completeness, we note that the Leggett-Garg inequality
studied in [12] reads as

2∑
�=−2

sgn(�)

(
P(�) − 1

2
[PL(�) + PR(�)]

)
� 0, (47)

where we dropped the parameters τe, σ, I for brevity. This
Leggett-Garg inequality can be rewritten in terms of the
modification parameters through the reduction factor (44) by
inserting Eqs. (45) and (46),

R(Tr ) + R(Td + 2Tr ) � 0. (48)

This inequality is always violated unless τe vanishes, but the
left-hand side approaches zero exponentially with decreasing
τe. Note that our assessment of macroscopicity is not based
on such a derived quantity, but on the raw data of detection
clicks.

C. Experimental parameters

In the experiment the displacement and resting time are
Td = 21 μs and Tr = 5 μs and the distance between each

1Starting with the lower hyperfine state one obtains the mirrored
version of the distribution (45).

lattice site is d = 433 nm. Maximizing the effect of the
modification we note that the reduction factor (44) decreases
with increasing σq and that the 5% quantile τm(σ ) saturates
for h̄/σq 
 d . To assess the macroscopicity, we take the value
h̄/σq ≈ d/10, where τm(σ ) already takes the saturated value,
yielding μm = 7.1.

Finally, since we neglected possible effects of
modification-induced heating so far, we have to verify
that this is justified here, i.e., at the stated value of σq and
for the relevant range of classicalization timescales τe. This
can be done conservatively by calculating the heating rate
with the 5% quantile of Jeffreys’ prior (τe � 106 s). It serves
as an upper bound (see Fig. 3) due to Bayesian updating.
The resulting temperature increase of 
T ≈ 6 μK over the
duration of the whole experiment is moderate, amounting to
less than 1/13 of the potential depth. It thus renders particle
loss negligible, so that no explicit conditioning on a likelihood
which accounts for heating is required to arrive at (45) and
(46).

In summary, the macroscopicity of the atomic Leggett-
Garg test is dominated by the timescale on which the ex-
periment was performed, i.e., the ramp and waiting time be-
tween random walk steps. Since only neighboring trajectories
contribute to interference, the relevant length scale of the
superposition state is given by the lattice spacing d rather
than by the spatial extension of the final state. This could be
enhanced by implementing a π/2 pulse after the fourth step,
or by performing more steps, so that also trajectories separated
by more distant sites contribute to the interference pattern.

VI. MECHANICAL ENTANGLEMENT OF
PHOTONIC CRYSTALS

A. Measurement protocol

The observation of entanglement between two nanome-
chanical oscillators reported in Ref. [15] is based on a co-
incidence measurement of Stokes and anti-Stokes photons
created in photonic crystal nanobeams placed in the two arms
of a Mach-Zehnder interferometer, see Fig. 4. In the first
step (pump), a photon is sent through the entrance beam
splitter, excites a single phonon in one of the two nanobeams,
thereby creating entanglement in their mechanical excitation.
The Stokes-scattered photon is detected behind the exit beam
splitter. In the second step (read), a further photon enters
the interferometer through the entrance beam splitter, leading
to stimulated emission in the photonic crystal. The resulting
anti-Stokes scattered photon, which serves to read out the
entanglement, is also detected behind the exit beam splitter.

We denote the measurement outcomes of the Stokes
and the anti-Stokes photon detectors by ±1,2, where + (−)
refers to the upper (lower) detector behind the exit beam
splitter and the index refers to the pump and read photon,
respectively. The likelihood for a certain coincidence mea-
surement is

P(±1,±2|τe, σ, I ) = tr(|±1,±2〉〈±1,±2|ρfin), (49)

where ρfin is the total final state of both oscillators and both
photons. The modification parameters τe and σ only enter
through their influence on the dynamics of the nanomechani-
cal oscillators.
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In each nanobeam a single mechanical mode con-
tributes to the measurement signal of the experiment. Even
though the pump photon can excite this mode only once, we
will in the following allow for arbitrary phonon occupations
|k, �〉 of the two oscillators to account for modification-
induced heating.

Given that the two relevant oscillator modes are initially in
the ground state, the total wave function of the system after
the pump photon traversed the exit beam splitter reads

|ψ〉t=0 = 1
2 [|+〉1(|1, 0〉 + eiφ|0, 1〉)

+ |−〉1(|1, 0〉 − eiφ|0, 1〉)]|vac〉2, (50)

where φ is the initial relative phase. The state (50) now
evolves freely according to the modified master equation
(1) into the mixed state ρt until the read photon passes the
interferometer.

The measurement with the read photon can be de-
scribed through application of the read operator R, as ρfin =
Rρt R†/N . Here the factor N = tr(R†Rρt ) accounts for the
conditioning on coincident detections of Stokes and anti-
Stokes photons. The read operator R first annihilates a phonon
in one of the two oscillators and simultaneously creates a
read photon in the corresponding interferometer arm, with
the relative phase θ between the two arms determined by the
experimental setup. In a second step, the thus created photon
traverses again the beam splitter, yielding in total

R|±〉1|k, �〉|vac〉2 = |±〉1√
2k + 2�

[
√

k|k − 1, �〉(|+〉2 + |−〉2)

+ eiθ
√

�|k, �−1〉(|+〉2−|−〉2)] (51)

for (k, �) 
= (0, 0). By in addition setting R|±〉1|0, 0〉|vac〉2 =
0 we account for the fact that the phonon ground state (which
may be populated by modification-induced transitions) can-
not lead to a coincidence detection involving an anti-Stokes
photon.

The probability (49) can be written as due to a generalized
measurement P(±1,±2|τe, σ, I ) = tr(F±2ρ

(±1 )
t )/N . Here the

oscillator state

ρ
(±1 )
t = 〈±|1〈vac|2ρt |vac〉2|±〉1 (52)

is conditioned on the detection of the Stokes photon, and
F±2 = tr1(〈vac|2R†|±〉2〈±|2R|vac〉2) describes the measure-
ment of the anti-Stokes photon,

F±2 = 1

2

⎛⎝ ∞∑
k=1,�=0

k

k + �
|k, �〉〈k, �|+

∞∑
k=0,�=1

�

k+�
|k, �〉〈k, �|

+
∞∑

k=1,�=0

eiθ

√
k(� + 1)

k + �
|k, �〉〈k − 1, � + 1|

+
∞∑

k=0,�=1

e−iθ

√
(k + 1)�

k + �
|k, �〉〈k + 1, � − 1|

⎞⎠. (53)

To prepare the calculation of the likelihoods, we now
determine the influence of the modification on the initial
oscillator state (52).

B. Impact of the modification

To handle the elastic deformation of a single nanomechan-
ical beam, we first note that all atoms in the solid can be
treated as distinguishable. One can therefore use the Lindblad
operators (3) in first quantization,

L(q, s) =
∑

n

mn

me
exp

[
−i

rn · q − pn · s
h̄

]
. (54)

To express this in terms of the mode variables, we expand
the position operator rn of each individual atom around its
equilibrium position r(0)

n ,

rn = r(0)
n + w

(
r(0)

n

)
Q, (55)

in terms of the classical mode function [57,58] of the relevant
displacement mode w(r) and its operator-valued amplitude Q.
The latter can also be written using the mode creation and
annihilation operators a† and a,

Q =
√

h̄

2�Vmω
(a + a†), (56)

where � is the mass density of the material, ω is the mechani-
cal frequency, and Vm is the mode volume, see Appendix C.

Accordingly, the momentum operator in (54) takes the
form

pn = mn

�Vm
w
(
r(0)

n

)
P = i

√
h̄ωkm2

n

2�Vm
w
(
r(0)

n

)
(a† − a). (57)

This equation implies that the modification-induced spatial
displacement s in (54) scales with the mass of the atom di-
vided by the effective mass of the mechanical mode, which is
on the order of the nanobeam mass. The spatial displacement
is therefore negligible for all scenarios that lead to observ-
able decoherence, allowing us to approximate the Lindblad
operators as

L(q) �
∑

n

mn

me
exp

[
− i

h̄

(
r(0)

n +
∑

k

wk (r(0)
n )Qk

)
· q

]

= 1

me

∫
d3r �(r)

× exp

[
− i

h̄

(
r +

∑
k

wk (r)Qk

)
· q

]
, (58)

where k is a mode index, and �(r) =∑n mnδ(r − r(0)
n ) de-

notes the mass density of the oscillator. The latter can be re-
placed by a continuous, homogeneous mass density provided
the characteristic length scale h̄/σq is much greater than the
lattice spacing of the crystal structure.

The Lindblad operators (58) may be expanded to first order
in the relevant mode amplitude Q as long as σq 
 √

2�Vmωh̄.
This decouples the different modes and we have

L(q) = − i

h̄
[w̃�(q) · q]Q, (59)

where we introduced

w̃�(q) = 1

me

∫
d3r �(r)w(r)e−ir·q/h̄. (60)
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The total master equation including the free harmonic
Hamiltonian and the Lindblad operators (59) of both oscil-
lators can be solved analytically with the help of the charac-
teristic function

χt (Q, P) =
∫

d2Q′ eiP·Q′/h̄

〈
Q′ + Q

2

∣∣∣∣ρt

∣∣∣∣Q′ − Q
2

〉
, (61)

where Q = (Q1, Q2) and P = (P1, P2) are the joint position
and momentum coordinates of both oscillators. The evolution
equation for the characteristic function reads

∂tχt (Q, P) =
(

− 1

�Vm
P · ∇Q + �VmQ · �2∇P − U (σ )Q2

τe

)
× χt (Q, P), (62)

where � is the diagonal matrix containing the two slightly
detuned frequencies of both oscillators and

U (σ ) = 1

2h̄2

∫
d3q fσ (q)|w̃�(q) · q|2. (63)

Here we exploited that the separation of the two oscillators is
much greater than h̄/σq.

The time evolved characteristic function is given by

χt (Q, P) = exp

[
−U (σ )

τe

∫ t

0
dt ′Q2

t ′

]
χ0(Qt , Pt ), (64)

with

Qt = cos(�t)Q + 1

�Vm
�−1 sin(�t)P,

Pt = cos(�t)P − �Vm� sin(�t)Q. (65)

Calculating the initial characteristic function of the state
(52) and evaluating (63) for a given mode function w(r)
allows one to determine analytically the likelihoods (49).

C. Particle loss

For increasing σq the energy gain induced by momentum
translations due to the Lindblad operators (54) can exceed
the binding energy of the silicon atoms in the crystal. Thus,
the modification may induce particle loss already deep in the
diffusive regime. The solution (64) of the mode dynamics
cannot capture this because the mode expansion assumes the
atoms to reside in infinitely extended harmonic potentials.
Due to the finiteness of the real binding potential there is a
critical momentum transfer qc beyond which the sole effect
of the modification is a reduction of the atom number in the
crystal.

To account for this particle loss, we split Eq. (2) into a part
M<

σ with momentum transfers |q| < qc that will most likely
leave the atoms in the crystal, and into the part M>

σ with |q| >

qc removing them into the vacuum,

Mσ ρt =
∫

q<qc

d3q fσ (q)

[
L(q)ρL†(q)− 1

2
{L†(q)L(q), ρ}

]
+
∫

q>qc

d3q fσ (q)

[
L(q)ρL†(q)− 1

2
{L†(q)L(q), ρ}

]
.

(66)

A Dyson expansion shows that the final state can be written as
a sum

ρt = exp

[
t

ih̄
H + t

τe
M<

σ

]
ρ0 + ρ̃, (67)

where only the first term is consistent with the coincidence
measurement (49). Its reduced trace can be absorbed in the
normalization N reflecting the conditioning on the coinci-
dence measurements.

The time evolution under the modification M<
σ /τe can now

be treated as in the previous section, yielding Eq. (64) with
U (σ ) replaced by

U<(σ ) = 1

2h̄2

∫
q<qc

d3q fσ (q)|w̃�(q) · q|2. (68)

D. Experimentally achieved macroscopicity

The two oscillators in Ref. [15] are characterized by the
effective mass �Vm ≈ 9 × 10−17 kg [59] and the mechanical
frequency ω ≈ 2π × 5 GHz. The exact displacement field
depends on the precise geometry of the photonic crystal, and
is only numerically accessible. Since the details of the mode
function are expected to be of minor relevance, we approxi-
mate the shape of the oscillator by an elastic silicon cuboid
containing only those atoms of the nanobeam that contribute
to the elastic deformation. The resulting displacement field of
the simplest longitudinal mode has the form

w(r) = ez sin

(
πz

Lz

)
, (69)

for −Lz/2 � z � Lz/2. The dimension of the cuboid is set by
the effective mass and frequency of the oscillator, yielding for
its ground mode Lx × Ly × Lz ≈ 0.31 × 0.31 × 0.84 μm3,
using the speed of sound v = 8433 m/s and density � =
2300 kg/m3 of silicon.

This can now be used to calculate the Lindblad
operators (58).

The likelihood (49) can be calculated with the characteris-
tic function (64) of the state (52) as a phase space integral

P(±1,±2|τe, σ, I ) =
∫

d2Qd2Pχ±1
t (Q, P)η±2 (Q, P), (70)

where η±2 (Q, P) is the characteristic symbol of the
operator (53).

This expression can now be simplified by noting that
the oscillator frequency is large on the timescale of the
experiment ωt � 1, so that the time-averaged phase space
coordinates (65) can be used in the exponent of (64),

χt (Q, P) ≈ exp

[
−U<(σ )t

2τe

[
Q2 + �2V 2

m(�−1P)2
]]

× χ0(Qt , Pt ). (71)

Moreover, the modification cannot create coherences between
the oscillator states. In Eq. (53) one can therefore keep only
the diagonal terms and the initial coherences between ground
state and first excited states,

F±2 = 1
2 (1 − |0, 0〉〈0, 0| + eiθ |1, 0〉〈0, 1| + e−iθ |0, 1〉〈1, 0|).

(72)
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FIG. 7. The maximally excluded time parameter τm as defined by
the 5% quantile obtained via Bayesian updating with Eq. (73). The
local maximum to the right is assumed for values of h̄/σq roughly
equal to the spatial extension of the crystal mode Lx,z. The global
maximum is achieved at h̄/σq �

√
h̄2/2mSiEb where the momentum

transfers become sufficiently strong to remove particles from the
crystal. The fading of the graph indicates where the analytical
descriptions derived in Appendix C fail: First, when h̄/σq is on the
order of several Ångström so that the mass density can no longer be
approximated as continuous, and second, when h̄/σq is on the order
of femtometers where the diffusive regime ceases to be valid.

The corresponding characteristic symbol is given in
Appendix C, together with the characteristic function of
the state (52).

The integral Eq. (70) yields the likelihood in its final form,

P(±1,±2|τe, σ, I )

= 1

4N + (±1)(±2)4 cos(θ − 
�t ) − 2ξ t/τe − ξ 2t2/τ 2
e

N (2 + ξ t/τe)4
,

(73)

where 
� = 2π × 45 MHz is the frequency mismatch be-
tween the oscillators, and we defined the dimensionless pa-
rameter ξ = 2U<(σ )h̄/�Vmω characterizing the sensitivity of
the relevant nanobeam mode to the modification parameter σq.
The geometric factor U<, as defined in Eq. (63), is evaluated
in Appendix C.

The phase- or time-sweep measurement protocols per-
formed in [15] are described by varying θ and t , respectively.
The (unreported) initial phase is deduced to be φ ≈ 1.8 rad −

� × 123 ns by optimization. In order to obtain the achieved
macroscopicity, we perform Bayesian updating to determine
the posterior (7) and maximize over σq. The resulting τm is
plotted in Fig. 7 for qc = √

2mSiEb with Eb = 4.6 eV [60].
It exhibits a global maximum of τm = 6.6 × 107 s at h̄/σq �√

h̄2/2mSiEb, yielding a macroscopicity value of μm = 7.8.
Given the relatively high mass of the nanomechanical

oscillators and the fairly long coherence time achieved, one
might expect the entangled nanobeams to be characterized by
a higher degree of macroscopicity. That this is not the case
can be traced back to the fact that the superposition state is
delocalized only on the scale of femtometers. For such small

spatial delocalizations, the sole influence of the modification
is to add momentum diffusion to the nanobeam dynamics,
leading to weakest possible form of spatial decoherence.

VII. CONCLUSION

The empirical measure discussed in this article serves to
quantify the macroscopicity reached in quantum mechani-
cal superposition experiments by the degree to which they
rule out classicalizing modifications of quantum theory. We
showed how the framework of Bayesian hypothesis testing
allows one to assess diverse experiments based on their raw
data, thus accounting appropriately for all measurement un-
certainties. The fact that measurement errors are fundamen-
tally unavoidable, ensures that the macroscopicity μm will
always converge to a finite value, even if quantum mechanics
holds on all scales. For sufficiently large data sets, when
statistical errors tend to be negligible, the here presented
measure will approach the one given in Ref. [26] for inter-
ferometric superposition tests. Equation (9) is thus the natural
generalization of the latter.

A great benefit of the formalism is that it allows one
to straightforwardly combine independent parts of an ex-
periment, e.g., quantum random walks of different lengths
(Sec. V) or different measurement protocols for entangled
nanobeams (Sec. VI). Moreover, the Bayesian updating pro-
cess naturally allows for correlated observables to be taken
into account, as for instance the total atom number and the
population imbalance in BEC interferometers (see Sec. IV).
Finally, the use of Jeffreys’ prior ensures that the macroscop-
icity measure is solely determined by the experimental data
at hand, irrespective of prior beliefs. In particular, using this
least informative prior prevents the macroscopicity measure to
favor any one type of quantum test against others. We showed
that Jeffreys’ prior exists for all physically relevant situations,
where the likelihood is a smooth function of the modification
parameters.

These advantages come at the cost that the required likeli-
hoods are in general considerably more difficult to determine
than, e.g., specific coherences of the statistical operator. It re-
quires one to capture appropriately how the relevant quantum
degrees of freedom are affected by the master equation (1)
describing the impact of the modification on the many-particle
system state. We explained in Secs. IV–VI how this works in
practice for three rather different quantum superposition tests.

We reemphasize that a naive application of the macroscop-
icity measure may yield a finite value even for experiments
demonstrating no quantum superposition, because already the
absence of observed heating can constrain the classicalization
parameters. To be on the safe side, one must identify those
observations that yield information only about modification-
induced heating and use this data to condition the likelihoods
as described at the end of Sec. III A. In most quantum tests
this is not necessary because the conditioning is already
implemented in the measurement protocol.

The measure of macroscopicity put forward in this article
can be used for any superposition test, provided a mechanical
degree of freedom is involved, be it the electronic excitation
of an atom or the motion of a kilogram-scale mirror. As such
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it does not apply to quantum tests involving only spins or
photons. It seems natural to generalize the macroscopicity
measure to pure photon experiments by drawing on a minimal
class of classicalizing modifications of QED, but it is still
an open problem on how to get hold of the latter. Beyond
the assessment of macroscopicity, the Bayesian hypothesis
testing presented in Sec. III, can also be used for a proper
statistical description of tests of specific modification models,
e.g., the various extensions of the continuous spontaneous
localization model [2], but also of environmental decoherence
mechanisms.

Finally, it goes without saying that the macroscopicity μm

attributed to a given superposition test serves to highlight a
single aspect of the experiment, albeit an important one. It
must not be taken as a proxy for the overall significance of an
experimental finding.
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APPENDIX A: INTEGRABILITY OF THE
POSTERIOR DISTRIBUTION

To see that Jeffreys’ prior (11) always yields a normalizable
posterior distribution (7), we first consider the limit τe →
∞, where the modification becomes arbitrarily weak. In this
case the general solution of the master equation (1) can be
expanded to first order in 1/τe by its Dyson series. Calculating
the likelihood then yields

P(D|τe, σ, I ) � P∞(D|I ) + 1

τe
q(D|σ, I ) for τe → ∞,

(A1)

where q is independent of τe. Inserting the expansion (A1) into
Jeffreys’ prior (11) yields

p(τe|σ, I )
τe→∞∼

{
τ−3/2

e ∃ d0 : P∞(d0|I ) = 0,

τ−2
e else,

(A2)

implying that the posterior (7) decays at least as τ−3/2
e for

τe → ∞.
Second, for τe → 0, where modification-induced deco-

herence and heating get stronger and stronger, we use that
the likelihood P(D|τe, σ, I ) will continuously approach some
limiting classical probability,

P(D|τe, σ, I ) � P0(D|σ, I ) + τα
e q̃(D|σ, I ) for τe → 0,

(A3)

where α > 0 may depend on D. Using this to evaluate Jef-
freys’ prior (11) yields that

p(τe|σ, I )
τe→0∼

{
τ−(1−αmin/2)

e ∃ d0 : P0(d0|σ, I ) = 0,

τ−(1−αmin )
e else,

(A4)

where αmin > 0 is the minimal α. Physically speaking, this
means that no quantum superposition test will support a
classical model of infinitely strong heating. Equation (A4)
implies that the posterior always diverges weaker than 1/τe

for τe → 0.
Finally, to rule out that the posterior diverges at a finite

τe ∈ (0,∞), we note that the likelihood P(D|τe, σ, I ) stays
non-negative for all τe. Thus, whenever it vanishes for some
value of τe, its first derivative must also be zero and its second
derivative must be non-negative. Application of L’Hospital’s
rule then shows that the posterior stays finite for all inter-
mediate values of τe. This completes the argument why the
choice of Jeffrey’s prior (11) always leads to a normaliz-
able posterior (7) and thus yields a well-defined value of
macroscopicity (9).

APPENDIX B: SIMULTANEOUS SHEARING AND
DIFFUSION OF NUMBER SQUEEZED BECs

For simultaneous phase diffusion and shearing the time
evolution of the tangent space Wigner function wt ( jy, jz ) is
given by the equation

∂twt ( jy, jz ) = −
( ε

h̄
+ 2ζ jz

)
∂ jywt ( jy, jz ) + �P

2
∂2

jywt ( jy, jz ),

(B1)

which is solved by (24). If diffusion takes place perpendicular
to the shearing, the time evolution is given by the equation

∂twt ( jy, jz ) = −2ζ jz∂ jywt ( jy, jz ) + �S

4
∂2

jzwt ( jy, jz ), (B2)

without the free rotation around the general Bloch sphere that
can be executed subsequently. Its general solution is

wt ( jy, jz ) = 1

4π2

∫
d pyd pzd j′yd j′zw0( j′y, j′z )

× ei( jy−2ζ jzt )py−izpz−ipy j′y+ipz j′z

× exp

[
−J2�S

(
p2

z

4
t − ζ py pz

2
t2 − ζ 2 p2

y

3
t3

)]
.

(B3)

We take the initial distribution w0( jy, jz ) to be a Gaussian with
widths σy and σz. Integrating jz preserves the Gaussian form,
yielding the marginal distribution

wt ( jy) =
∫

d jz wt ( jy, jz ) = 1√
2πσ 2

y (t )
exp

[
j2
y

2σ 2
y (t )

]
,

(B4)

with variance

σ 2
y (t ) = σ 2

y + 4ζ 2t2

(
σ 2

z + J2�Lt

6

)
. (B5)
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APPENDIX C: CALCULATIONAL DETAILS FOR THE ENTANGLED NANOBEAMS EXPERIMENT

1. Normalization of displacement fields

The equation of motion of a classical displacement field in an isotropic elastic medium can be derived from the Lagrangian
density [58]

L = �

2
u̇2(r, t ) − V [u(r, t )]

= �

2
u̇2 − 1

4

3∑
klmn=1

(
λ

2
δklδmn + μδkmδln

)(
∂uk

∂xl
+ ∂ul

∂xk

)(
∂um

∂xn
+ ∂un

∂xm

)
, (C1)

where λ and μ are the Lamé coefficients. Thus, the dynamics of u(r, t ) are given by

�
∂2u
∂t2

= μ∇2u + (λ + μ)∇(∇ · u). (C2)

This equation can be solved by introducing the mode functions uk (r, t ) as the eigenfunctions of the differential operator
on the left-hand side with eigenvalues −ω2

k�. The total displacement field can then be written as

u(r, t ) =
∑

k

√
h̄

2ρVkωk
wk (r)(e−iωkt ak + eiωkt a∗

k ), (C3)

so that its mean energy is

〈E〉t =
〈∫

d3r
[�

2
u̇2(r, t ) + V [u(r, t )]

]〉
t

=
∑

k

h̄ωk

Vk

∫
d3r w2

k (r)a∗
k ak . (C4)

Demanding that 〈E〉t =∑k h̄ωka∗
k ak yields the normalization condition

∫
d3r w2

k (r) = Vk .

2. Characteristic functions of mechanical oscillator states

The characteristic function of the initial oscillator state in (52) for φ = 0 can be calculated as

χ±1 (Q, P) = 1

2
exp

[
− 1

4h̄�Vm

(
P · �−1P + �2V 2

mQ · �Q
)]

×
⎛⎝1 − 1

4h̄�Vm

[∑
λ=1,2

(±1)λ(�−1/2P)λ

]2

− �Vm

4h̄

[∑
λ=1,2

(±1)λ(�1/2Q)λ

]2
⎞⎠, (C5)

where � = diag(�1,�2). In a similar fashion, one obtains the characteristic symbols of the effect (72) as

η±2 (Q, P) = 1

2
δ(Q)δ(P) −

[
1 ±2 cos θ

(
P1P2

h̄�Vm
√

�1�2
+ Q1Q2

�Vm
√

�1�2

h̄

)
±2 sin θ

(
P1Q2

√
�2

h̄2�1
− P2Q1

√
�1

h̄2�2

)]

× 1

8π2h̄2 exp

[
− 1

4h̄�Vm

(
P · �−1P + �2V 2

mQ · �Q
)]

. (C6)

3. The geometric factor U<(σ )

Assuming a continuous mass density, valid if h̄/σq � 5 Å, the geometric factor (68) can be evaluated for the longitudinal
mode (69) as

U<(σ ) � U (σ ) = 2�2h̄7

m2
eσ

7
q L3

z

(
1 − e−L2

x σ 2
q /2h̄2 +

√
πLxσq√

2h̄
erf

[
Lxσq√

2h̄

])2

×
[√

2π

(
h

[
Lzσq

h̄
, 0

]
+ e−L2

z σ 2
q /2h̄2

Re

{
h

[
Lzσq

h̄
,

Lzσq

h̄

]})
− (1 + e−L2

z σ 2
q /2h̄2

)
Lzσq

h̄

(
π2 − 2

L2
z σ

2
q

h̄2

)]
,

(C7)

with

h[a, b] =
√

π

2
(i3a2 + πb2 − iπ2) exp

[
(π/a − ib)2

2

]
erf

[
iπ/a + b√

2

]
. (C8)
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If h̄/σq is on the order of the lattice constant, the approximation of a continuous mass density fails. For even smaller h̄/σq the
Gaussian in (63) suppresses all contributions involving more than a single atom, so that the modification acts on each of the N
atoms individually. The geometric factor then reads as

U<(σ ) = N
m2

Si

4h̄2m2
e

erf

(
qc√
2σq

)2
⎡⎣σ 2

q erf

(
qc√
2σq

)2

−
√

2

π
σqqce−q2

c /2σ 2
q

⎤⎦. (C9)

Here we averaged the mode function (69) over the whole crystal
∑

n w2(rn) ≈ N/2. As a result, the diffusion increases
quadratically with σq until the momentum displacements are strong enough to remove the particles from the crystal. In the
limit that σq 
 qc one obtains U<(σ ) � Nm2

Siσ
2
q /4h̄2m2

e .
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[17] I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M.
Aspelmeyer, and S. Gröblacher, Phys. Rev. Lett. 121, 220404
(2018).

[18] F. Fröwis, P. Sekatski, W. Dür, N. Gisin, and N. Sangouard, Rev.
Mod. Phys. 90, 025004 (2018).

[19] J. I. Korsbakken, K. B. Whaley, J. Dubois, and J. I. Cirac, Phys.
Rev. A 75, 042106 (2007).

[20] F. Marquardt, B. Abel, and J. von Delft, Phys. Rev. A 78,
012109 (2008).

[21] F. Fröwis and W. Dür, New J. Phys. 14, 093039 (2012).
[22] B. Yadin and V. Vedral, Phys. Rev. A 93, 022122 (2016).
[23] B. Yadin, F. C. Binder, J. Thompson, V. Narasimhachar, M. Gu,

and M. S. Kim, Phys. Rev. X 8, 041038 (2018).
[24] G. Björk and P. G. L. Mana, J. Opt. B 6, 429 (2004).
[25] C.-W. Lee and H. Jeong, Phys. Rev. Lett. 106, 220401 (2011).
[26] S. Nimmrichter and K. Hornberger, Phys. Rev. Lett. 110,

160403 (2013).
[27] W. Von der Linden, V. Dose, and U. Von Toussaint, Bayesian

Probability Theory: Applications in the Physical Sciences (Cam-
bridge University Press, Cambridge, 2014).

[28] L. Schwartz, Z. Wahrscheinlichkeitstheorie verw. Gebiete 4, 10
(1965).

[29] J. Ghosh and R. Ramamoorthi, Springer Series in Statistics.
Bayesian Nonparametrics (Springer, New York, 2003).

[30] F. Laloë, W. J. Mullin, and P. Pearle, Phys. Rev. A 90, 052119
(2014).

[31] S. Nimmrichter, K. Hornberger, and K. Hammerer, Phys. Rev.
Lett. 113, 020405 (2014).

[32] M. Carlesso, A. Bassi, P. Falferi, and A. Vinante, Phys. Rev. D
94, 124036 (2016).

[33] J. Li, S. Zippilli, J. Zhang, and D. Vitali, Phys. Rev. A 93,
050102(R) (2016).

[34] D. Goldwater, M. Paternostro, and P. F. Barker, Phys. Rev. A
94, 010104(R) (2016).

[35] A. Vinante, R. Mezzena, P. Falferi, M. Carlesso, and A. Bassi,
Phys. Rev. Lett. 119, 110401 (2017).

[36] B. Schrinski, B. A. Stickler, and K. Hornberger, J. Opt. Soc.
Am. B 34, C1 (2017).

[37] S. L. Adler and A. Vinante, Phys. Rev. A 97, 052119 (2018).
[38] M. Bahrami, Phys. Rev. A 97, 052118 (2018).
[39] H. Jeffreys, The Theory of Probability (Oxford University Press,

Oxford, 1998).
[40] J. M. Bernardo, J. Royal Stat. Soc. B 41, 113 (1979).
[41] M. Ghosh et al., Stat. Sci. 26, 187 (2011).
[42] J. O. Berger, J. M. Bernardo, D. Sun et al., Ann. Stat. 37, 905

(2009).
[43] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.

Rev. A 6, 2211 (1972).
[44] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[45] J. Ma, X. Wang, C. P. Sun, and F. Nori, Phys. Rep. 509, 89

(2011).

032111-17

https://doi.org/10.1088/0953-8984/14/15/201
https://doi.org/10.1088/0953-8984/14/15/201
https://doi.org/10.1088/0953-8984/14/15/201
https://doi.org/10.1088/0953-8984/14/15/201
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1038/35017505
https://doi.org/10.1038/35017505
https://doi.org/10.1038/35017505
https://doi.org/10.1038/35017505
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1038/23655
https://doi.org/10.1038/23655
https://doi.org/10.1038/23655
https://doi.org/10.1038/23655
https://doi.org/10.1103/PhysRevLett.98.111102
https://doi.org/10.1103/PhysRevLett.98.111102
https://doi.org/10.1103/PhysRevLett.98.111102
https://doi.org/10.1103/PhysRevLett.98.111102
https://doi.org/10.1038/ncomms1263
https://doi.org/10.1038/ncomms1263
https://doi.org/10.1038/ncomms1263
https://doi.org/10.1038/ncomms1263
https://doi.org/10.1039/c3cp51500a
https://doi.org/10.1039/c3cp51500a
https://doi.org/10.1039/c3cp51500a
https://doi.org/10.1039/c3cp51500a
https://doi.org/10.1038/ncomms3077
https://doi.org/10.1038/ncomms3077
https://doi.org/10.1038/ncomms3077
https://doi.org/10.1038/ncomms3077
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nphys1310
https://doi.org/10.1038/nphys1310
https://doi.org/10.1038/nphys1310
https://doi.org/10.1038/nphys1310
https://doi.org/10.1103/PhysRevX.5.011003
https://doi.org/10.1103/PhysRevX.5.011003
https://doi.org/10.1103/PhysRevX.5.011003
https://doi.org/10.1103/PhysRevX.5.011003
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/PhysRevA.75.042106
https://doi.org/10.1103/PhysRevA.75.042106
https://doi.org/10.1103/PhysRevA.75.042106
https://doi.org/10.1103/PhysRevA.75.042106
https://doi.org/10.1103/PhysRevA.78.012109
https://doi.org/10.1103/PhysRevA.78.012109
https://doi.org/10.1103/PhysRevA.78.012109
https://doi.org/10.1103/PhysRevA.78.012109
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1103/PhysRevX.8.041038
https://doi.org/10.1103/PhysRevX.8.041038
https://doi.org/10.1103/PhysRevX.8.041038
https://doi.org/10.1103/PhysRevX.8.041038
https://doi.org/10.1088/1464-4266/6/11/001
https://doi.org/10.1088/1464-4266/6/11/001
https://doi.org/10.1088/1464-4266/6/11/001
https://doi.org/10.1088/1464-4266/6/11/001
https://doi.org/10.1103/PhysRevLett.106.220401
https://doi.org/10.1103/PhysRevLett.106.220401
https://doi.org/10.1103/PhysRevLett.106.220401
https://doi.org/10.1103/PhysRevLett.106.220401
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1007/BF00535479
https://doi.org/10.1007/BF00535479
https://doi.org/10.1007/BF00535479
https://doi.org/10.1007/BF00535479
https://doi.org/10.1103/PhysRevA.90.052119
https://doi.org/10.1103/PhysRevA.90.052119
https://doi.org/10.1103/PhysRevA.90.052119
https://doi.org/10.1103/PhysRevA.90.052119
https://doi.org/10.1103/PhysRevLett.113.020405
https://doi.org/10.1103/PhysRevLett.113.020405
https://doi.org/10.1103/PhysRevLett.113.020405
https://doi.org/10.1103/PhysRevLett.113.020405
https://doi.org/10.1103/PhysRevD.94.124036
https://doi.org/10.1103/PhysRevD.94.124036
https://doi.org/10.1103/PhysRevD.94.124036
https://doi.org/10.1103/PhysRevD.94.124036
https://doi.org/10.1103/PhysRevA.93.050102
https://doi.org/10.1103/PhysRevA.93.050102
https://doi.org/10.1103/PhysRevA.93.050102
https://doi.org/10.1103/PhysRevA.93.050102
https://doi.org/10.1103/PhysRevA.94.010104
https://doi.org/10.1103/PhysRevA.94.010104
https://doi.org/10.1103/PhysRevA.94.010104
https://doi.org/10.1103/PhysRevA.94.010104
https://doi.org/10.1103/PhysRevLett.119.110401
https://doi.org/10.1103/PhysRevLett.119.110401
https://doi.org/10.1103/PhysRevLett.119.110401
https://doi.org/10.1103/PhysRevLett.119.110401
https://doi.org/10.1364/JOSAB.34.0000C1
https://doi.org/10.1364/JOSAB.34.0000C1
https://doi.org/10.1364/JOSAB.34.0000C1
https://doi.org/10.1364/JOSAB.34.0000C1
https://doi.org/10.1103/PhysRevA.97.052119
https://doi.org/10.1103/PhysRevA.97.052119
https://doi.org/10.1103/PhysRevA.97.052119
https://doi.org/10.1103/PhysRevA.97.052119
https://doi.org/10.1103/PhysRevA.97.052118
https://doi.org/10.1103/PhysRevA.97.052118
https://doi.org/10.1103/PhysRevA.97.052118
https://doi.org/10.1103/PhysRevA.97.052118
https://doi.org/10.1214/10-STS338
https://doi.org/10.1214/10-STS338
https://doi.org/10.1214/10-STS338
https://doi.org/10.1214/10-STS338
https://doi.org/10.1214/07-AOS587
https://doi.org/10.1214/07-AOS587
https://doi.org/10.1214/07-AOS587
https://doi.org/10.1214/07-AOS587
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003


BJÖRN SCHRINSKI et al. PHYSICAL REVIEW A 100, 032111 (2019)

[46] G. Tóth, Phys. Rev. A 85, 022322 (2012).
[47] G. Tóth and I. Apellaniz, J. Phys. A 47, 424006 (2014).
[48] O. Hosten, R. Krishnakumar, N. Engelsen, and M. Kasevich,

Science 352, 1552 (2016).
[49] J. Javanainen and M. Wilkens, Phys. Rev. Lett. 78, 4675

(1997).
[50] A. Sørensen, L.-M. Duan, J. Cirac, and P. Zoller, Nature

(London) 409, 63 (2001).
[51] A. S. Sørensen and K. Mølmer, Phys. Rev. Lett. 86, 4431

(2001).
[52] B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth,

and C. Klempt, Phys. Rev. Lett. 112, 155304 (2014).
[53] M. Bilardello, A. Trombettoni, and A. Bassi, Phys. Rev. A 95,

032134 (2017).

[54] X. Wang, A. Miranowicz, Y. x. Liu, C. P. Sun, and F. Nori, Phys.
Rev. A 81, 022106 (2010).

[55] S. van Frank, A. Negretti, T. Berrada, R. Bücker, S.
Montangero, J.-F. Schaff, T. Schumm, T. Calarco, and J.
Schmiedmayer, Nat. Commun. 5, 4009 (2014).

[56] B. Schrinski, K. Hornberger, and S. Nimmrichter, Quantum Sci.
Technol. 2, 044010 (2017).

[57] O. Madelung, Introduction to Solid-State Theory (Springer
Science & Business Media, New York, 2012), Vol. 2.

[58] A. L. Fetter and J. D. Walecka, Theoretical Mechanics of Par-
ticles and Continua (Courier Corporation, North Chelmsford,
MA, 2003).

[59] R. Riedinger (private communication).
[60] B. Farid and R. W. Godby, Phys. Rev. B 43, 14248 (1991).

032111-18

https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1126/science.aaf3397
https://doi.org/10.1126/science.aaf3397
https://doi.org/10.1126/science.aaf3397
https://doi.org/10.1126/science.aaf3397
https://doi.org/10.1103/PhysRevLett.78.4675
https://doi.org/10.1103/PhysRevLett.78.4675
https://doi.org/10.1103/PhysRevLett.78.4675
https://doi.org/10.1103/PhysRevLett.78.4675
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1103/PhysRevA.95.032134
https://doi.org/10.1103/PhysRevA.95.032134
https://doi.org/10.1103/PhysRevA.95.032134
https://doi.org/10.1103/PhysRevA.95.032134
https://doi.org/10.1103/PhysRevA.81.022106
https://doi.org/10.1103/PhysRevA.81.022106
https://doi.org/10.1103/PhysRevA.81.022106
https://doi.org/10.1103/PhysRevA.81.022106
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1088/2058-9565/aa8682
https://doi.org/10.1088/2058-9565/aa8682
https://doi.org/10.1088/2058-9565/aa8682
https://doi.org/10.1088/2058-9565/aa8682
https://doi.org/10.1103/PhysRevB.43.14248
https://doi.org/10.1103/PhysRevB.43.14248
https://doi.org/10.1103/PhysRevB.43.14248
https://doi.org/10.1103/PhysRevB.43.14248

