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Ton beams generated with ultra-intense lasers-plasma accelerators hold promises to provide
compact and affordable beams of relativistic ions. One of the most efficient acceleration
setups was demonstrated to be direct acceleration by the laser’s radiation pressure. Due to
plasma instabilities developing in the ultra-thin foils required for radiation pressure acceler-
ation, however, it is challenging to maintain stable acceleration over long distances. Recent
studies demonstrated, on the other hand, that specially tailored laser pulses can shorten the
required acceleration distance suppressing the onset of plasma instabilities. Here we extend
the concept of specific laser pulse shapes to the experimentally accessible parameter of a
frequency chirp. We present a novel analysis of how a laser pulse chirp may be used to drive
a foil target constantly maintaining optimal radiation pressure acceleration conditions for
in dependence on the target’s areal density and the laser’s local field strength. Our results
indicate that an appropriately frequency chirped laser pulse yields a significantly enhanced
acceleration to higher energies and over longer distances suppressing the onset of plasma
instabilities.
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I. INTRODUCTION

Beams of relativistic ions serve a wide range of ap-
plications from technical material science, over medical
applications to even fundamental studies of high energy
physics. Some of these applications particularly benefit
from short, dense ion beams, not necessarily of ultra-high
energy'. Relativistic ion beams with the necessary high
fluxes can be accelerated by high power lasers?, which
have undergone considerable development over the past
decades®, with several facilities breaking the Petawatt
(PW) barrier already operational*®, or in planning®®.
Consequently, the acceleration of ions to relativistic en-
ergies by high-power lasers is among the most intensely
studied applications of such laser systems!® 13,

As a result of this deep interest in laser-ion accelera-
tion, there were several technical approaches proposed,
to overcome the challenges of this application, such
as the experimentally most widely studied target nor-
mal sheath acceleration (TNSA)!4 18 Coulomb explo-
sion (CE)'25, hole boring (HB)26:27, relativistic trans-
parency (RT)?30 shock wave acceleration (SWA)3!,
magnetic vortex acceleration (MVA)32:33 standing wave
schemes®*35, and several others to the highly efficient ra-
diation pressure acceleration (RPA),2639. In this latter
regime, a thin solid density foil target is quickly ionized
by the laser pulse to form a plasma, which reflects the in-
coming radiation and is consequently accelerated by the
laser’s radiation pressure. Furthermore, in the foil’s rest
frame the laser’s frequency will appear down-shifted by a
factor 2, where v = €/m; is the foil’s relativistic factor,
with € and m; being the energy and mass of a single ion
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of the foil, respectively. It is thus apparent, that for rela-
tivistic foil energies (v > 1) the laser light’s frequency is
strongly reduced leading to almost complete transfer of
laser energy to the foil. In this regime, due to the rela-
tivistic time dilation, the acceleration is maintained over
a long time during which the foil almost co-propagates
with the laser and constantly experiences its radiation
pressure. It was shown that in an ideal setting this leads
to the foil reaching an energy proportional to that of the
accelerating laser pulse. We note that the development of
instabilities?® and the presence of other limiting factors,
for example, laser group velocity and transverse target
expansion®*2, limit the effectiveness of the RPA. How-
ever, it was shown recently, that the laser pulse tailoring
and special target engineering might compensate these
limiting factors.

The RPA was never experimentally tested in the ultra-
relativistic regime due to the lack of necessary laser facili-
ties, however there are experimental indications that this
scheme also works in the nonrelativistic regime38:39:43:44,
It is less stable and less effective than in the ultra-
relativistic regime, mainly because the foil reflectivity
is no longer perfect, but depends complicatedly on the
target areal density, as well as the laser’s intensity, and
frequency*® 4°. Including this non-trivial parameter de-
pendence of the foil reflectivity in a one-dimensional
model of its dynamics, it was demonstrated that the
ion energies are optimized if for a foil of density and
thickness n. and [, respectively, moving with a momen-
tum po(t) at position xy(t), corresponding to the single-
particle energy £(t), by the radiation pressure of a laser
pulse with electric field envelope E(¢,x) and frequency
wo(t,x) = 27/ Ao (¢, ), are related via the following opti-
mum condition

ao(t, ®o(t)) = y(t)eo(t; o(t)), (1)
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where ag(t,z) = |eE(t,x)| /(mewo(t,x)) is the laser’s
dimensionless amplitude, the parameter ¢o(t,x) =
7(Ine)/(Ao(t, ®)ne:(t, z)), introduced in??, is the target’s
areal density normalized to the product of the laser’s
wavelength A\g and the critical plasma density ne.(t, ) =
mews(t, )/ (4me?), where e < 0 and m,. are the elec-
tron charge and mass, respectively, and units with ¢ =1
are used throughout. These equations are obtained for a
monochromatic laser field, whence we have to assume the
pulse chirp not to be too strong, such that the frequency
change can be assumed to be adiabatic. The above con-
dition’s physical meaning states that the foil should be
opaque to the laser radiation at all times, in order for
the required reflection to be facilitated. On the other
hand, the foil density must not be too high, in order to
distribute the laser energy on as few particles as possible,
ensuring each individual particle experiences the largest
possible energy gain. The condition (1) ensures the op-
timum compromise between these two trends. On the
other hand, upon acceleration the foil becomes more and
more opaque, as argued above, and hence the condition
(1) changes over time. It was shown recently, however,
how it can still be satisfied nonetheless throughout the
whole acceleration process, if the laser is given an opti-
mally tailored intensity profile*”.

In this paper, we study how the optimum condition
(1) can be optimized through a tailored frequency profile,
instead. We are going to demonstrate that the changes
of the reflectivity can be counteracted by a complicated
frequency chirp of the driving laser pulse and derive a
closed analytical form of the laser’s required frequency
dependence. We note that the problem of the laser chirp
influence on the ion acceleration was addressed in a num-
ber of papers®® ?3, however a systematic analytical treat-
ment of this problem in the case of a thin foil RPA was
missing.

Il. THEORY

We begin by reformulating the optimum condition in
terms of basic quantities as

€t @o)| = (1), (2)

where we introduced the scaled electric field E(¢, zg) =
E(t,x0)/FEroil, where Er := 2m|e|ln, is the static, one-
dimensional charge separation field of the foil. Next, we
note that eq. (2) is independent of the laser’s frequency
and thus infer that if the laser’s electric field and fre-
quency are independent the laser’s frequency cancels out
of the optimum condition and, provided the field am-
plitude is varied appropriately, eq. (2) is fulfilled for all
frequencies. The same conclusion can be drawn from
eq. (23) of*?) which is independent of the laser’s fre-
quency.

On the other hand, the frequency still does impact
the acceleration process heavily, despite the fact that the
optimum condition is independent of it. To demonstrate
this, we turn to the foil’s equation of motion?3®

dpo _ K|B(t,20)” /mZ +p3(8) — po(t)

dt— dwlne\/m? 4 pf(0) + polt)

dig _ po(t)

dt m? + py(t)
K =2p]" +af?,

where m; is the mass of a single ion in the foil and p and
« are the foil’s its reflection and absorption coefficient,
respectively. We rewrite these equations to be expressed
in the Lorentz invariant laser phase n = w(t — 2l(t)),
where again z/l(t) is the foil’s position, to read

dpy _ dpo dt _ |p(n)eE(y)”
dn dt dn eFron

m? + pi(n)

VmZ =+ pg(n) + po(n)

(4)

dt

dt m? + p5(t)
dn '

m; + pg(t) — po(t)

Separating the variables in this equation its general so-
lution was found to be given by3°

i) =5 (ho+ D= 255 )
ho = po(10) + 1/ Pg(100) +m7 (6)
Die [ ayECDL (”le)zi i”lﬂz. (7)

We continue by rewriting condition (2) as a function of
the phase-dependent momentum. We find that maintain-
ing the optimum acceleration condition is ensured by the
momentum fulfilling the condition

PPt () = min/E2(n) — 1. (8)

We immediately conclude that this condition can only
be satisfied for |£(n)| > 1, whence we have to focus on
this parameter regime in the following. We do so by
having our analysis only start at the time instant g
defined by [E(no)| = 1, where we assumed the foil to
be at position z(ny) = 0. In the following we assume
the laser’s intensity envelope to be given by a Gaus-
sian of FWHM 77, modeled by a field envelope of the
form E(n) = Emaxexp [—21log(2)(n/72)?], independently
of the pulse chirp. We choose to fix the pulse envelope in
accordance with the above reasoning, rather than, e.g.,
assuming a constant value of ag or laser intensity, as we
wish to model a pulsed laser field of a given intensity
profile, in agreement to experimental setups. Following
this model, the threshold condition can be analytically
solved to give the phase at which the laser reaches the
threshold of the foil transparency

log [gmax]
21og(2) ’

such that the acceleration can only be optimized in the
interval 7 € [—n0,no]. For all numerical examples studied
below we are going to consider the acceleration only in
interval n € [—np, 0], however, as only during this interval
the pulse envelope is rising allowing for an optimization
of the acceleration through a pulse chirp, as argued be-
low. Furthermore, here we consider a long laser pulse
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FIG. 1. Comparison of the foil’s momentum in units of an
accelerated ion’s mass as a function of its position in units
of wavelength in the general as well as the optimized case for
the parameters given in the text.

with 77, = 10% /wp. In order to test the improved ion ac-
celeration regime, we numerically integrate eq. (8) and
compare it to a full numerical solution of the system (4).
Furthermore, as we additionally wish to highlight the
enhancement in the accelerated foil’s position xo(n), we
additionally solve its equation of motion

dIO dIO dt -
dn — dt dn

po(t)
mZ + p3(t) — po(t)’ 1o

where we made use of the relativistic velocity relation
dzo/dt = po(t)//m? + p3(t). In order to analyze the so-
lutions of the respective equations of motion for the foil’s
momentum and position in the general as well as the op-
timized case we study a foil of density n, = 10**cm ™3 ~
574n., for radiation of 800 nm wavelength, and thickness
I = 10 nm accelerated by a moderately relativistic laser
with intensity I = 1.5 x 102'W /cm?. Furthermore, as we
wish to analyze the efficiency enhancement as a function
of space-time, we plot the foil’s momentum in the labo-
ratory frame as a function of its position by means of a
parametric plot with the coordinates (po(n)/mi, woxo(n))
(s. fig. 1). We find a significant enhancement of the foil’s
momentum, when accelerated according to the optimum
condition piP*, derived from eq. (8). We furthermore
note that while we only consider the acceleration up to
the phase value n = 0, the physical time extends to val-
ues larger than 0, for the simple reason that the non-
trivial foil displacement xo(t) leads to a non-trivial re-
lation between phase n and time ¢ = 1 + zo(¢). In this
respect, we also note that since piP'(t) > po(t) it will
be P (t) > wo(t) as reflected in the fact that n = 0
is reached at larger displacements $8pt(n) in the opti-
mized regime. We note that this can be interpreted as
the optimized case leading to a reduction of the accel-
eration length, i.e., the same ion energy can be reached
over smaller distance. This effect is clearly inferable from
the fact that in the optimized case the ion momentum
at any given foil position is is higher than in the unop-
timized case, indicating that the optimized pulse chirp
needs significantly less distance to accelerate ions to a
certain energy. Usually the acceleration length is limited

by either the Rayleigh length or the transverse expansion
of the target, or both. In the case of transversely flat-top
(e.g., super-Gaussian) laser pulses, which are often sug-
gested to be employed to produce quasi-mono energetic
ion beams, the acceleration length is limited by the fact
that such pulses do not propagate without changing their
transverse shape. Thus, any technique that allows for
reaching some ion energy over shorter distance is bound
to optimize the acceleration process.

Having established the improved performance of eq. (8)
we continue to discuss how a frequency chirp can be used
to maintain the optimum condition eq. (1). To this end,
we require the reflection coefficient entering eq. (4). A
foil’s reflection coefficient depends on the laser’s and foil’s
parameters in its rest frame (y ~ 1) according to*®

1
2 2 2 z 2 :
_50(77) ([A —1] +4a0) + Ac—1
P(n) - a ( ) 1 ’
oAl ([A2—1]2+4a3)2 +A2 41

(11)

where we defined the difference A%(n) := a2(n) — €3(n).
Transforming this relation back into the laboratory frame
amounts to the replacement €y(n) — v(n)eo(n). Hence,
from eq. (1) we read off that both in the foil’s rest frame
and the laboratory frame the optimum condition can be
used to simplify the reflection coefficient. Consequently,
in this work we can always use

2

N[

p(n) = % ) (12)
(1+4a2)® +1

[N

Assuming then properties of a typical foil of 10 nm thick-
ness and a density of n, = 10%/cm?, approximately cor-
responding to 50 times the critical density for an optical
laser beam of 800 nm wavelength, driven by a laser with
the above assumed Gaussian temporal profile and peak
intensity I = 102! W/cm? we find a decisive dependency
of the reflection coefficient on the incident frequency (s.
fig. 2). We can also read off that this dependency is
more pronounced the in the laser’s rising edge where ag is
lower, indicating that the laser frequency gives the finest
tunability during the starting phase of RPA. Based on
these results, it is apparent that even though eq. (8) is
formally independent of the laser’s frequency, an appro-
priate pulse chirp can still be used to tailor the reflection
coefficient and hence the overall acceleration. This ap-
proach is complementary to the tuning through an op-
timized intensity profile*®, which is aimed at the ultra-
relativistic regime. In contrast, the here presented fre-
quency optimization is most apt to steer and stabilize
the commonly highly unstable initial phase of radiation
pressure acceleration. To find an optimal pulse chirp, a
differential approach is favorable: Provided we can match
the foil’s momentum to its ideal value at a given time in-
stant, from that time on the optimum condition can be
enforced on its differential equation of motion (8). The
optimum momentum, fulfilling eq. (2) perpetually, on the
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FIG. 2. Reflection coefficient as a function of the laser’s

frequency at various phases of the driving laser pulse for
a foil of 10 nm thickness and a density of n. = 1023/010{13
(= 50nc (wo = 1.55eV)).

other hand, changes as

dpopt

_ . EmEm)
dn !

£2(n) -1

(13)

This differential change can be matched to eq. (4) pro-
vided the reflection coefficient is given by

B 1 1\ m&(n)
p(n) = <W+5(n)> leE(n)]”’ "

where we additionally assumed eq. (8) to be fulfilled
and the foil to be initially at rest p(ng) = 0. Equating
eqs. (12,14) and solving for the laser frequency numeri-
cally will be a benchmark for our analytical results. We
note that provided the optimal reflection coefficient (14)
is maintained throughout the acceleration process, the
foil ions’ momentum will develop according to eq. (13)
and be given by eq. (8). Additionally, we see that eq. (14)
is only meaningfully defined in the regime &'(n) > 0,
i.e., on the pulse’s rising edge. This is physically due
to the fact that according to eq. (2) on the field enve-
lope’s decreasing edge a decreasing ~(n) would be re-
quired to maintain the optimum condition, which would
correspond to deceleration instead of the desired accel-
eration. We thus have to limit our analysis to the first
half of the pulse, discriminated by £'(n) > 0. We note
that the results of Ref.%” indicate that the optimal pulse
profile has only the rising edge.

In accordance with the technical development we are
going to consider high-intensity laser pulses defined by
the condition ag > 1 and remind ourselves that the foil
will be driven in a parameter regime close to the opti-
mum condition (1), indicating that ag(n) =~ v(n)eo(n),
where we did not yet assume eq. (1) to hold exactly. We
can then study the acceleration process for the case of an
ultra-relativistic foil p; > m;, as is common in investi-
gations of the RPA scheme, and in addition in the foil’s
not commonly considered beginning, still non-relativistic
acceleration phase p; ~ m;.

A. Non-relativistic foil motion

We begin studying the motion of a non-relativistic foil
1 —~(n) < 1, which, according to eq. (2) translates to
the condition |E(n)| ~ 1. From egs. (1) we deduce that in
this case close to the optimum drive regime the foil’s and
laser’s parameters are linked by €y ~ ag. Furthermore,
from eq. (9) we see that in the regime £ ~ 1 the accel-
eration will be confined to phases 1y < 7z, such that
the field will not be strongly changing &'(n) < £(0)/7y,.
From eq. (14) we thus see that the optimal reflection coef-
ficient has to be rather small, which is achievable for large
laser frequencies (compare fig. 2). This in turn, however,
implies small values of ag, even for high laser powers. In
order to corroborate this conjecture, we need to find an
analytic expression for the laser’s frequency structure en-
suring that the foil’s reflection coefficient from eq. (12)
is matched to its optimal reflection derived in eq. (14).
To find such a solution for the optimized laser frequency,
we again solve the foil’s equation of motion (4) through
separation of variables and find that, when neglecting
absorption in the foil, in the non-relativistic regime the
momentum of a foil initially at rest is given by

i = [[a DB

The same result can be found expanding solution (5) to
lowest order in po/m;. From eq. (8) we deduce that the
phase dependent reflection coefficient required to meet
the optimum condition is given by

p(n) = \/ € )
leB(n)] /€2(n) =1

which is equivalent to approximating the solution of
eq. (14) in the regime /&2(n) — 1 <« &(n). Equating
this to the approximation (12) we find that an appropri-
ate laser frequency chirp can ensure condition (1) to be
satisfied in the regime £ ~ 1 provided it holds

leEMm)|E2(n) =1 —m;&'(n)
Me \ \Jma€' () leE(n)] /&) — 1

(17)

(16)

W) = <)

Comparing this analytical expression to the numerically

consistent solution of eqs. (12,14) for a foil of 10 pm thick-
ness and n, = 9 x 1023 ecm?® ~ 520 ne; accelerated by a
laser pulse of intensity I = 102 W /cm? and 7, = 103 /wq
we find good agreement with the outlined derivation (s.
fig. 3). We also find our conjecture confirmed that the
required laser frequencies are several hundreds of eV, as
issued above.

B. Ultra-relativistic foil motion

We now turn to studying the motion of an ultra-
relativistic foil v(n) > 1, which, according to eq. (2)
translates to the condition |E(n)| > 1. In this regime,
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FIG. 3. Optimal laser frequency in the non-relativistic model
case (parameters in the text) according to the analytical so-
lution eq. (17) (solid red) in comparison to the numerical so-
lution of eqgs. (12,14) (blue crosses).

as can be deduced from eq. (9) we see that the accel-
eration will be occurring over the whole phase interval
n € [—71r,71]. Consequently, in contrast to the previ-
ously studied non-relativistic case, the field’s derivative
can be estimated to be of the order £'(n) ~ E(n)/TL.
Hence, we can estimate from eq. (14) that in this regime
the optimal reflection coefficient will be of the order
p S /2m;/|eE(n)|tr. This indicates that for ultra-
relativistic foil motion in the pulse center, i.e., for largest
field strengths, the optimally matched reflection coefhi-
cient again has to be small, which in the present scheme
is achievable by large frequencies. On the other hand,
from eq. (12) one infers that the maximal reflection coef-
ficient p — 1 is reached for ay — oo, corresponding to the
low-frequency limit w — 0. As a result, in the beginning
phase of the acceleration the reflection coefficient can still
be small, facilitating the use of optical laser frequencies.
From this result, however, we infer a further restriction:
The optimum condition (2) can only be maintained up to
the phase instant, where the value of the required opti-
mally matched reflection coefficient from eq. (14) exceeds
the maximum achievable value ppnax. This phase instant
is implicitly defined by the condition

/ < |6 f011. 1
&/n) < G (1)

Assuming again the Gaussian field shape E(n) =
Ermaxexp [—2log(2)(n/71)?], in the pulse’s rising edge the
scaled field’s derivative is maximal at the phase instant
71 = —71,/24/10g(2), whence for the specified pulse shape
we can rewrite eq. (18) as a maximal condition for the
pulse duration in the form

4m“/1og(2)g 1 (19)

TL = |€Efoil| max®© )

which ensures that the optimally matched reflection co-
efficient can always be matched by eq. (12). Since we fix
the intensity profile, the change in laser frequency leads
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FIG. 4. Optimal laser frequency in the ultra-relativistic model
case (parameters in the text) according to the analytical so-
lution eq. (21) (solid red) in comparison to the numerical so-
lution of eqs. (12,14) (blue crosses).

to ap changing its value accordingly by a couple of orders
of magnitude. Consequently, for ultra-relativistic foil mo-
tion, the matching between eq. (12) and the foil’s opti-
mal reflection coefficient eq. (14) requires to again solve
eq. (4) by separating the variables and integration. The
result is formally the same expression for the foil’s mo-
mentum as in the non-relativistic case but, from eq. (8)
we deduce that in the case v > 1 the phase dependent
reflection coefficient required to meet condition (13) is

given by
ol = | (20)

which is equivalent to approximating eq. (14) in the
regime £(n) > 1. Equating this to the approximation
(12) we arrive at an equation which is very similar to
the one obtained in the non-relativistic case. We find the
appropriate laser frequency chirp, ensuring condition (1)
to be satisfied in the regime v > 1 to be given by

eE(n) [ |eE*(n)| — 2miE’(77)> )
me(ﬂwEmMWW' (21)

By virtue of the condition £(n) < 1 established subse-
quent to eq. (8) we can rewrite condition (18) to read
2m;E'(n) < ’eEQ(n)‘ and conclude that latter condition
(18) to be required for w%‘};(n) to have positive, i.e., phys-
ical solutions. We can hence interpret that condition as
the physical prerequisite of the optimally matched reflec-
tion coefficient to be reachable through tuning the fre-
quency. Comparing the analytical expression (21) to the
numerically consistent solution of egs. (12,14) for a foil
of 1 nm thickness and density n, = 10%* cm® ~ 60 neit
accelerated by a laser pulse of intensity I = 10! W/cm?
and duration 77, = 3 x 10*/w we find our analytical ap-
proximation very well confirmed (s. fig. 4). We also find
the required laser frequencies to lie in significantly lower
energy ranges as compared to the nonrelativistic case.

t
wyr(m) =



This behavior can be explained by the observation that
the equality between egs. (12,20) in the regime £(n) > 1
is achieved for larger values of ap than the equality be-
tween egs. (12,16) in the regime £(n) ~ 1. Physically, this
translates to the observation that an ultra-relativistic foil
can withstand stronger laser acceleration, as experienced
in lower frequency fields. Also the divergence of the op-
timum frequencies for later phases n — 0 is readily ex-
plainable as the field derivative E'(n) goes to zero in this
regime, indicating that the optimum reflection coefficient
(20) vanishes as well, which is achieved for very large fre-
quencies, only. We furthermore note that at the time
instant 7 = 0 in the above example the foil has already
been accelerated to y(n = 0) = £(n = 0) ~ 10, while con-
stantly maintaining the optimum condition (1). This ex-
ample indicates that indeed the suggested method is also
applicable to ultra-relativistic foil motion, provided one
can supply the required high-frequency photon beams.

C. Conclusion

In summary, we have presented a systematic study of
how an appropriately chosen frequency chirp serves to
maintain an optimum condition in the radiation pressure
acceleration of a thin foil. We presented analytical ex-
pressions for the required pulse chirp in two limiting cases
of nonrelativistic as well as ultra-relativistic foil motion.
Comparing these limiting cases to exact numerical solu-
tions of the defining equations of the pulse’s frequency
structure required to maintain optimal acceleration con-
ditions we found excellent agreement between the exact
and approximate solutions. While we found the required
frequencies to be beyond the capabilities of nowadays
available technology, the presented conceptual analysis
may still prove useful for an improved understanding of
the overall acceleration process.
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