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ABSTRACT: We investigate system-size effects on the rotational diffusion of
membrane proteins and other membrane-embedded molecules in molecular
dynamics simulations. We find that the rotational diffusion coefficient slows down
relative to the infinite-system value by a factor of one minus the ratio of protein and
box areas. This correction factor follows from the hydrodynamics of rotational
flows under periodic boundary conditions and is rationalized in terms of Taylor−
Couette flow. For membrane proteins like transporters, channels, or receptors in
typical simulation setups, the protein-covered area tends to be relatively large,
requiring a significant finite-size correction. Molecular dynamics simulations of the
protein adenine nucleotide translocase (ANT1) and of a carbon nanotube porin in lipid membranes show that the
hydrodynamic finite-size correction for rotational diffusion is accurate in standard-use cases. The dependence of the rotational
diffusion on box size can be used to determine the membrane viscosity.

■ INTRODUCTION

Diffusion in molecular dynamics (MD) simulations under
periodic boundary conditions (PBC) depends on the size and
shape of the simulation box due to hydrodynamic self-
interactions with the periodic images.1−3 In cubic boxes of
increasing size, both the translational3 and the rotational
diffusion coefficients4,5 converge with increasing box volume as
predicted by hydrodynamic theory. However, for asymmetri-
cally increased box volumes, translational diffusion becomes
anisotropic and either does not converge or converges to
values different from the correct infinite-system limit.6−10 This
problem especially affects membrane simulations for which
practicable corrections have been provided.9,11,12 In contrast to
translational diffusion, the finite-size behavior of rotational
diffusion in the membrane has remained largely unstudied,
even though corrections may be required for meaningful
comparisons to experiment.13,14

Here, we investigate the influence of the simulation box
width on the rotational diffusion coefficient of membrane
proteins and other membrane-embedded macromolecules. In
the Theory section, we present three different hydrodynamic
models that give consistent expressions for the finite-size
correction of the rotational diffusion coefficient. The first
model extends the original derivation of Saffman and
Delbrück15 to two-dimensional (2D) rotational flow under
PBC. The second model considers the 2+1 dimensional
hydrodynamic problem of the membrane and the water layers
by constructing a periodic “rotlet” using the Oseen tensor of
Camley et al.8 The third model is an approximate hydro-

dynamic description in terms of the Taylor−Couette flow
model that rationalizes the finite-size correction. The hydro-
dynamic theory suggests a significant dependence of the
apparent rotational diffusion coefficient on the box width and a
negligible dependence on the box height. By performing MD
simulations of the protein adenine nucleotide translocase
(ANT1) and by reanalyzing earlier simulations of ANT112 and
carbon nanotube porins,16 we show that the hydrodynamic
description quantitatively captures the finite-size effects. The
rotational diffusion coefficient is shown to converge to the
infinite-system limit as the reciprocal 1/A of the membrane
area A. This explicit functional dependence makes it possible
to estimate a box size at which size effects drop below a certain
threshold for molecules of a given size.

■ THEORY
Diffusion in Membranes. The thermally induced random

rotation θ(t) of an ideal cylindrical inclusion in a membrane as
a function of time t is described by the rotational diffusion
coefficient D around the main axis normal to the membrane.
At long times t, we expect that the mean squared displacement
(MSD) grows as ⟨(θ(t + t0) − θ(t0))

2⟩t0 ≈ a + 2Dt for a

continuous trajectory of the angle θ(t), with ⟨···⟩t0 denoting the
average over all possible starting times and a as a constant
offset that accounts for local molecular dynamics at short
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times. The expression for the MSD in rotational diffusion is
thus much simpler in 2D than in 3D because a 2D rotation
unfolds on a line, whereas a 3D rotation requires more
involved representations, for example, in terms of quaternions.4

For membrane proteins of nearly cylindrical shape, the
Saffman−Delbrück model15,17 predicts a rotational diffusion
coefficient

πη πη
= =D

k T
R

k T
hR4 4

B

m H
2

B

H
2

(1)

where kB is the Boltzmann constant, T the absolute
temperature, η the viscosity of the membrane, h its height,
and RH the hydrodynamic radius of the protein. For later use,
we also define the membrane surface viscosity as ηm = ηh
because, here, η and h always appear as a product.
The Saffman−Delbrück law is valid for radii RH that are

small compared to the Saffman−Delbrück length

η
η

=L
2SD

m

f (2)

which is usually the case for membrane proteins. ηf is the
viscosity of the fluid surrounding the membrane. For larger
membrane inclusions or solid domains, an extended version18

and a useful interpolation19 are available.
Periodic Saffman−Delbrück Model for Rotational

Diffusion. Following Saffman and Delbrück’s original
derivation,15 we first model the rotational diffusion of a
membrane protein in the plane of the membrane by assuming
that the friction contributions of the highly viscous membrane
dominate, exceeding those of the more fluid water layers above
and below. As for rotational diffusion in three dimensions
(3D),5 we concentrate on the lowest-order correction and
ignore protein shape effects. Under these assumptions, we can
treat the problem as the rotational diffusion of a 2D periodic
array of infinite cylinders in the Stokes limit of hydrodynamics,
combining the linearized Navier−Stokes equation

η∇ = ∇pv r r( ) ( )2
(3)

with the condition of incompressibility

∇· =v 0 (4)

where η is the viscosity of the membrane, p(r) is the pressure
as a function of position r = (x, y)T, v(r) is the periodic fluid
velocity field, and ∇ = ∂/∂r. On the surface of the cylinder with
radius RH, the boundary condition is a flow with a constant
angular velocity Ω
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We simplify this hydrodynamic problem by writing the 2D
velocity field in the membrane in terms of the stream function
ψ(x, y)20

ψ
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(6)

which ensures that the condition of incompressibility is
satisfied. Substitution of eq 6 into eq 3 and multiplication
from the left with the row vector (∂/∂y, − ∂/∂x) eliminates the
pressure field and reduces the hydrodynamic problem to
finding a periodic solution of the biharmonic equation

ψ∇ =x y( , ) 04
(7)

Because lines of constant ψ are streamlines,20 the boundary
condition on the rotating cylinder is ψ(x, y) = const for

+ =x y R2 2
H

2, which we combine with the condition of
periodicity of ψ in the domain outside the rotating cylinder.
For cylinder radii RH ≪ L that are small compared to the

(characteristic) box dimension L = A1/2 defined in terms of the
2D box area A, the hydrodynamic problem of flow in an
infinite lattice of periodic rotating cylinders can be solved by
mapping it onto the problem of 2D electrostatics under PBC.
The Green’s function in 2D electrostatics under PBC is the
periodic solution to

φ π δ∇ = − −x y x y
A

( , ) 2 ( , )
12

Ä

Ç
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where the term −1/A is subtracted from the delta source to
ensure overall charge neutrality. Without neutrality in each
box, the overall potential would be infinite. As in 3D
electrostatics,21 we can write the 2D Green’s function as a
sum of (i) the direct Coulomb interaction in 2D, −ln r, and
(ii) the potential created by the neutralizing background, πr2/
2A, and an infinite sum of harmonic functions

∑φ π= − + +
≥

x y r
r
A

a p x y( , ) ln
2

( , )
k

k k

2

4 (9)

where r2 = x2 + y2. Here, the origin is at the center of the
simulation box, which has a 2D inversion symmetry about this
point. The pk(x, y) are harmonic polynomials in x and y of
order k that satisfy the 2D symmetry of the periodic simulation
box and are solutions to the Laplace equation, ∇2pk(x, y) = 0.
In the Supporting Information, we list the first four “square
harmonic functions”, which satisfy the symmetry of the square,
together with their coefficients ak, as determined by rapidly
converging lattice sums22 for square-shaped boxes.
For RH ≪ L, the 2D electrostatic Green’s function φ(x, y)

defines our hydrodynamic stream function ψ(x, y) up to a
constant factor. By construction, φ(x, y) is periodic, ∇2φ =
const for r > 0, and φ(x, y) ≈ const for + =x y R2 2

H
2 and RH

≪ L. Therefore, ∇4φ(x, y) = 0 and deviations from the
boundary condition φ = const on the cylinder, r = RH, are of
order RH

4/A2 and thus negligible for RH ≪ L. We determine
the constant factor by matching the rotational velocity, vy(x =
RH, y = 0) = − ∂ψ/∂x = ΩRH. In this way, we obtain

ψ
π

π≈
Ω
−

−x y
AR

A R
r
A

r
R

( , )
2

lnH
2

H
2

2

H

i
k
jjjjj

y
{
zzzzz (10)

for r2 = x2 + y2 ≪ A. Figure 1 shows the flow field around a
rotating cylinder in a square-shaped simulation box under PBC
calculated according to the full 2D ψ(x, y) evaluated with
rapidly converging lattice sums.22

From the corresponding velocity field, we calculate the
friction on the rotating cylinder by following the derivation in
ref 20 (par. 18). In the limit of r2 ≪ A, we ignore deviations of
the flow field from the axial symmetry and write the relevant
stress tensor element in cylindrical coordinates in terms of the
circumferential velocity vθ(r) ≡ v(r) as a function of the
distance r from the cylinder axis

σ η η
π
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− = − Ω
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where
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We obtain the torque τ required to drive the rotation of a
cylinder of height h by integrating the negative stress times the
axial distance over the cylinder surface. This integral
corresponds to multiplying the negative stress by the
circumference 2πRH, the “lever arm” RH, and the height h,

τ π σ
πη
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By the Stokes-Einstein relation, the torque and the angular
velocity are related via the rotational diffusion coefficient D,

τΩ = D
k TB (14)

In this way, we arrive at an expression for the apparent
rotational diffusion coefficient DPBC in a periodic simulation
box
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where A is the box area, and h is the cylinder height and thus
typically the membrane thickness. D0 is the infinite-system
rotational diffusion coefficient, which is given by the Saffman−
Delbrück expression (eq 1), and the second term in
parentheses is the lowest-order correction for periodic
boundary conditions. In the limit of an infinite box, A → ∞,
our hydrodynamic model therefore leads directly to the
Saffman−Delbrück rotational diffusion coefficient, eq 1.

For finite simulation boxes, eq 15 predicts that the apparent
rotational diffusion coefficient decreases linearly with the ratio
of the areas of the molecule, πRH

2, and the box, A. This lowest-
order correction of the rotational diffusion coefficient is
independent of the shape of the simulation box, as was found
previously for 3D rotation.2 However, for odd-shaped boxes,
we expect that higher-order terms gain in importance as the
radius RH is increased.

Hydrodynamic Correction from the Periodic Rotlet.
We now extend our hydrodynamic analysis from the quasi-2D
description to the 2 + 1 dimensional system of the membrane
and water layers. To construct a periodic rotational flow in a
membrane under 3D PBC, we use the Oseen tensor of Camley
et al.8

∑
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where the sum is over the nonzero vectors k of the 2D
reciprocal lattice corresponding to the PBC in the membrane
plane of the simulation system, and H is the height of the water
layer, with 2H + h = Lz as the height of the simulation box. A
rotational periodic flow is generated by adding two orthogonal
“dipolar” flow fields
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with c being a constant that will later be defined to match the
boundary condition on the surface of the rotating cylindrical
molecule in the membrane. This rotlet form of the hydro-
dynamic flow eliminates the “stresslet” associated with a single
dipolar flow field. In the first step, we recognize that typical
simulation boxes are much smaller than the Saffman−Delbrück
length, L ≪ LSD and H ≪ LSD. We can then ignore the second
term in the denominator of the Oseen tensor because
tanh(kH) ≤ 1 ≪ 2πLSD/L ≤ kLSD. In the second step, we
approximate the 2D lattice sums in eq 17 by 2D integrals,
which we write in polar coordinates

∫
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where π π=k A(2 ) /0
2 2 is the area corresponding to the k = 0

term left out from the lattice sums. The integrals over the polar
angle θ of the k vector give a rotational flow of
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The integral over the Bessel function of the first kind and
order 1 evaluates to

∫ = ≈ −
∞

− −kJ kr r J k r r rkd ( ) ( ) /4
k 1

1
0 0

1
0

2

0 (20)

where the approximation is valid for small k0. We obtain the
circumferential velocity by projecting (vx, vy) in eq 19 onto the

Figure 1. Hydrodynamic flow around a rotating cylinder of radius
L/ 10 under periodic boundary conditions. The stream function was
obtained by Lekner summation.22 A top-down view on four
equivalent periodic boxes is shown. Periodicity requires the flow to
stall at the points of symmetry between two periodic images.
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unit vector (−y, x)/r. Using the approximation eq 20 for the
integral and π π=k A(2 ) /0

2 2 , we find

π≡ ∝ −θv r v r
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We determine the proportionality factor by matching v(r =
R) to the rotational velocity ΩR. In this way, we recover
exactly the circumferential velocity profile (eq 12) derived
above. Consequently, if we determine the friction by
integrating the stress over the outer surface of the cylindrical
particle, as in the preceding derivation, we also recover the
correction term in eq 15. To the leading order, the derivation
for 2+1 dimensions in the limits of RH ≪ L ≪ LSD and H ≪
LSD thus gives the same correction for rotational diffusion as
the above derivation for a strictly 2D periodic flow under the
Saffman−Delbrück approximation. In addition, we find that for
L ≪ LSD, the finite-size correction for the rotational diffusion
coefficient does not depend significantly on the height H of the
water layer because tanh(kH) ≪ 2πLSD/L in this case. For
large boxes, L > LSD, the small height dependences could be
estimated numerically or perturbatively by using the full
denominator in the 2D lattice sums and their integral
approximations or by performing a series expansion.
Hydrodynamic Correction from the Taylor−Couette

Model. In the following, we motivate the finite-size correction
derived above for the rotational diffusion coefficient using the
simpler model of the Taylor−Couette flow between two
rotating cylinders. The primary effect of PBC is that, by
symmetry, the lipid rotational flow around a protein centered
in the membrane stalls at the points of symmetry on the box
boundaries (see Figure 1). Following earlier descriptions for
translation23 and rotation in three dimensions,5 we therefore
approximate the boundary where the rotational flow stalls by a
cylinder whose cross-sectional area matches that of the box.
The inclusion and the box then correspond to the two coaxial
cylinders in the theory of Taylor−Couette flow (Figure 2).

The radii of the two cylinders are R1 = RH and π=R A/2 . In
the laminar regime for angular velocities Ω1 = Ω and Ω2 = 0 of
the inner and outer cylinders of length h, respectively, the
required torque on the inner cylinder is20

τ
πη

π
=

Ω
−

hR
R A

4
1 /

H
2

H
2

(22)

consistent with eq 13. For A → ∞, we again recover the
Saffman−Delbrück formula (eq 1) by using the Stokes-
Einstein relation (eq 14). For simulation boxes of finite area
A, we recover eq 15
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which relates the rotational diffusion coefficient DPBC in
periodic boundary conditions to its counterpart D0 in an
infinite system in terms of the effective areas π=A Rprot H

2 and
A = L2 of the protein and the box, respectively.
We can use eq 1 for D0 to obtain another formulation of the

size correction
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which can be used even when the exact value of the
hydrodynamic radius RH is unknown.

Choice of Box Size. Our correction, eq 15 (eq 23), allows
us to estimate how large a box should be chosen to limit the
finite-size effects to an upper bound. We recommend using a
box edge with

π
ε

>L RH (25)

when the relative error (DPBC − D0)/D0 is desired to be
smaller than ε. As an example, consider a small inclusion (RH =
1 nm) and a large one (RH = 3 nm). For the small one, the
relative error drops below 10% already at L = 5.6 nm.
However, for the large inclusion, it drops below 10% only at a
box width of 16.8 nm. At a typical box width (2RH + 3 nm),
the error would be 12% for the small inclusion and 35% for the
large one. The effects are thus substantial in typical simulations
of large membrane proteins such as transporters, channels, and
receptors.

■ SIMULATION METHODS
Molecular Dynamics Simulations. To test the hydro-

dynamic theory of rotational diffusion, we simulated single
ANT1 proteins in model mitochondrial membranes of
different areas using the MARTINI coarse-grained force
field24 following the setup and simulation protocols of earlier
such simulations.12,25 The initial box size was varied from 7 to
28 nm at a constant initial box height of 10 nm by adding lipids
and water, approaching the limit of ANT1 at infinite dilution
(Figure 3A). Additionally, we varied the initial box height from
7.5 to 20 nm for boxes of width L = 7 nm. We set up six
replicas of each simulation and ran them for 2 μs each.
We also reanalyzed earlier simulations of multiple ANT1

proteins diffusing in the membrane,12 simulated in boxes of
varying widths at a fixed height and a constant protein area
density (Figure 3B). This setup has the advantage of a constant
membrane viscosity but imposes an upper limit to the smallest
box size. The setups of the two studies coincide for a box width
of L = 12 nm. Only one simulation per box size was available
here, but we could average over the several proteins in the box.
We complemented this study by simulations with an initial box
height from 7.5 to 15 nm for a box width of 48 nm and 16
ANT1 proteins in the membrane.
In addition, we extended and reanalyzed trajectories from an

earlier study on atomistic molecular dynamics simulations of a
carbon nanotube (CNT) porin in a POPC membrane in boxes
of varying widths.16

The details on all individual simulations can be found in the
Supporting Information. Parameter files, analysis scripts, and

Figure 2. Taylor−Couette flow20 between rotating coaxial cylinders
separated by a viscous fluid. The inner and outer cylinders have radii
R1 and R2 and rotate around the central axis with angular velocities Ω1
and Ω2, respectively.
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raw diffusion data are available at https://github.com/bio-
phys/rotmemdiff.
Diffusion Analysis. We calculated diffusion coefficients for

the rotation θ(t) in the membrane plane. The lateral rotation
angle δθτ between two subsequent frames at times τ − δτ and τ
was calculated from the rotation matrix of a root-mean-square
distance (RMSD) fit of the backbone bead coordinates from
the latter frame to those in the previous frame, projected to the
membrane plane. The total rotation θ(t) was then calculated as
the cumulative sum over δθτ with θ(0) ≡ 0 as

∑θ δθ=
τ

τ
≤

t( )
t (26)

The rotational diffusion coefficient D was determined from
least-squares fits of linear functions a + 2Dt to the MSD in a
time window from t0 to t1. The intercept a is a fitting constant
accounting for the initial regime where local molecular events
dominate the dynamics, before entering into a long-time
diffusive regime. The MSD was calculated using an efficient
Fourier-based algorithm.26 The fitting range for all ANT1
simulations is 3 to 6 ns. We chose the fitting region as a
compromise between small noise in the MSD and small
systematic errors from its nonlinear initial behavior. A model
for harmonically coupled diffusion rationalizes this initial

regime. Comparisons for fits at a later interval show that our
choice of fitting range does not change the results significantly.
See the Supporting Information for details.
Uncertainties were estimated as standard errors (SE) over

the six runs of each box size for the new simulations of ANT1.
For the dilute-limit simulations of ANT1, we used block
averaging over 10 blocks to estimate errors. For the CNT
porin, we chose the fitting range as 3 to 7 ns and estimated
uncertainties using a variable number of blocks of lengths 60 to
80 ns, depending on the length of each simulation.

■ RESULTS AND DISCUSSION

Coarse-Grained Simulations of ANT1. In both simu-
lation setups, the rotational diffusion of the ANT1 protein
follows the hydrodynamic prediction (Figure 3). A fit of eq 15
with D0 and the hydrodynamic radius RH of the protein as free
parameters gives RH = 2.3(2) nm for the constant-density
simulations and RH = 2.5(2) nm for the dilute-limit simulations
(where numbers in parentheses indicate the SE of the last digit
or digits). These values are within one SE of the hydrodynamic
radius of 2.1(4) nm obtained for ANT1 translational diffusion
and consistent with the value of 2.3 nm obtained from the
convex hull in the xy plane.12

Figure 3. Rotational diffusion of ANT1 proteins in lipid membranes. (A) Diffusion coefficients from MD simulations of systems containing one
protein per simulation box (symbols) with fit (dashed line) to hydrodynamic theory (eq 15) and the infinite-system value D0 (dotted line) obtained
from this fit. The inset shows a top view on the system at L = 29.3 nm with the cylindrical approximations of the protein and simulation box. (B)
Diffusion coefficients from MD simulations of systems containing ANT1 proteins at a constant area density with the corresponding fit. The inset
shows a top view on the system at L = 36.1 nm. Error bars denote 1 SE. (C, D) MSD curves corresponding to (A) and (B), respectively. Gray
regions indicate the fitting range.
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Additional simulations at varying box heights show no
dependence on the height of the simulation box (Figure 4),

consistent with the prediction obtained for the 2+1 dimen-
sional hydrodynamic model for L≪ LSD. In both narrow boxes
with only one protein and in wider boxes with 16 proteins, we
find no significant change in the diffusion coefficient. For
translational diffusion,12 we found earlier a height dependence
in wide boxes, L > LSD.
Even though the deviation of D from the infinite-system

limit D0 caused by finite-size effects decreases with increasing
box width in a well-behaved manner, it is still substantial for
typical simulation-box sizes. A typical box width for a
simulation of a membrane protein of the size of ANT1
would be 7 to 10 nm, amounting to a 20 to 30% reduction in
rotational diffusivity. With our model, one can correct for these
effects or give an estimate on how large a box should be chosen
to avoid significant size effects (using eq 25).
The box-size dependence of rotational diffusion can be used

to obtain the effective membrane viscosity. In the constant-
density case, we obtain via eq 1 a membrane surface viscosity
of ηm = ηh = 4.28 × 10−11 Pa·s·m, close to the value of ηm =
4.36 × 10−11 Pa·s·m obtained from the translational diffusion
coefficient.12 This agreement further corroborates the con-
sistency of the Saffman−Delbrück model of rotational diffusion
with its translational version.15 In the dilute case, we obtain in
the same way a lower membrane surface viscosity (ηm = 3.28 ×
10−11 Pa·s·m). Using eq 2 with the fluid viscosity ηf = 8.4 ×
10−4 Pa·s of MARTINI water at 310 K,12 we obtain Saffman−
Delbrück lengths of 26 and 20 nm for the constant-density and
dilute systems, respectively. These are an order of magnitude
larger than the radius of ANT1, justifying the use of the
Saffman−Delbrück model. For atomistic simulations, the
Saffman−Delbrück length is usually much larger, extending
the range of applicability even further.
The result for the membrane viscosity in the constant-

density case is 30% larger than that in the dilute case. To
compare to theoretical predictions for the dependence of the
membrane viscosity on the area fraction ϕ occupied by
membrane proteins,27,28 we calculate ϕ assuming a hydro-
dynamic radius of RH = 2.3(2) nm and LSD = 20(2) nm. The
theory by Henle and Levine27 predicts an increase of [3 +
8RH/(πLSD)] ϕ, for which we obtain 37(7)%, whereas the
expression used by Oppenheimer and Diamant,28 2ϕ, predicts
23(4)% (uncertainties, signifying 1 SE, were calculated with
Monte Carlo error propagation). The observed increase is
between the two predictions and within 2 SE of both values,
precluding a simple decision between the models. Both models

have been derived for very small area fractions, but earlier
simulations by Camley and Brown29 indicate that this
approximation works surprisingly well up to ∼10%. Thus,
even though a decision on the exact functional dependence on
the protein area fraction is not possible, the apparent
membrane viscosity evidently decreases with increasing box
width in single-protein simulations, approaching the pure-lipid
value in the limit.
The limiting value of the diffusion coefficient in our

simulations differs significantly between the study with a
constant area density (D0 = 1.4 rad2·μs−1) and the dilute-limit
study with only one protein in the box (D0 = 1.63 rad2·μs−1).
This difference can be explained by the difference in viscosities
in the limiting case of an infinite system, as discussed above.
We note that the proteins in the constant-density simulations
do not form clusters during the time of our simulation.
Nevertheless, the presence of the ANT1 proteins increases the
apparent membrane viscosity ηm = ηh. The possibility to
describe the observed effects by a single value of an effective
viscosity shows that rotational diffusion is not only determined
by the local surrounding of the protein but also by long-ranged
hydrodynamic effects.

Atomistic Simulations of a CNT Porin. Rotational
diffusion of the CNT porin in atomistic simulations shows a
very quick convergence to the infinite-system value, as
predicted by our theory (Figure 5). The slightly lower value

at 4 nm is in accordance with the prediction. The CNT has a
small radius (0.72 nm), and therefore a strong finite-size effect
is only predicted for unreasonably small boxes. Much longer
simulations would be necessary to reach the precision that is
required to detect them, as can be seen from the noisy
behavior of the MSD (Figure 5B). At boxes smaller than 5 nm,
the periodic images would be separated by less than 3.5 nm,
and it is likely that effects other than hydrodynamics would
dominate, for example, lipid ordering.16 This quick con-

Figure 4. Box-height dependence of the rotational diffusion
coefficient of coarse-grained ANT1 proteins in lipid membranes.

Figure 5. Rotational diffusion of a CNT porin in a POPC membrane.
(A) Diffusion coefficients from MD simulations (symbols) and a fit
(dashed line) to hydrodynamic theory eq 15 with D0 (dotted line) as
the only free parameter and the hydrodynamic radius fixed at RH =
0.72 nm. (B) MSD curves. The gray region indicates the fitting range.
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vergence shows that at least for small membrane inclusions
(such as single transmembrane helices) in typical simulations,
rotation is only slightly affected by the box size. However, one
has to keep in mind that the relative effect grows with the
square of the hydrodynamic radius.

■ CONCLUSIONS

We showed that hydrodynamic theory for 2D periodic flows in
membranes describes the finite-size effects on rotational
diffusion in membranes. In contrast to lateral membrane
diffusion, the rotational diffusion coefficient converges as the
box width is increased. The relative size of the effect depends
on the ratio of the protein area and the box area and is
substantial for small to medium-sized boxes or medium-sized
to large membrane proteins. From the corresponding
correction, we derive an estimate for how large boxes should
be to keep size effects below a chosen limit. In our analysis, we
assume that the boxes are small relative to the Saffman−
Delbrück length, L ≪ LSD, as is typically the case in membrane
simulations. Moreover, we use the Saffman−Delbrück rota-
tional diffusion coefficient15 in eq 1 as the infinite-system
reference value, valid for RH ≪ LSD, and not the extended
version of Hughes, Pailthorpe, and White.18 The finite-size
analysis of rotational diffusion also leads to an estimate of the
membrane viscosity by fitting eq 24, which is difficult to
calculate otherwise.12,30 For both dense and dilute ANT1
membrane proteins in cardiolipin-containing mitochondrial
membranes,12,25 we found the corrected rotational diffusion
coefficients to be consistent with the Saffman−Delbrück
model15,17 using values for the membrane viscosity and
hydrodynamic radius determined previously from ANT1
translational diffusion data.12
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