
Received: 7 July 2018 Revised: 19 October 2018 Accepted: 15 December 2018

DOI: 10.1002/bdm.2116

R E S E A R C H A R T I C L E

Too good to be true? Psychological responses to uncommon
options in risk–reward environments

Christina Leuker1 Thorsten Pachur1 Ralph Hertwig1 Timothy J. Pleskac1,2

1Center for Adaptive Rationality, Max Planck

Institute for Human Development, Berlin,

Germany
2Department of Psychology, University of

Kansas

Correspondence

Christina Leuker, Center for Adaptive

Rationality, Max Planck Institute for Human

Development, Berlin, Germany.

Email: leuker@mpib-berlin.mpg.de

Risks and rewards, or payoffs and probabilities, are inversely related in many choice environ-

ments. We investigated people's psychological responses to uncommon combinations of risk

and reward that deviate from learned regularities (e.g., options that offer a high payoff with

an unusually high probability) as they evaluated risky options. In two experiments (N = 183),

participants first priced monetary gambles drawn from environments in which risks and rewards

were negatively correlated, positively correlated, or uncorrelated. In later trials, they evaluated

gambles with uncommon combinations of risk and reward—that is, options that deviated from

the respective environment's risk–reward structure. Pricing, response times, and (in Experi-

ment 2) pupil dilation were recorded. In both experiments, participants took more time when

responding to uncommon compared to foreseeable options or when the same options were

presented in an uncorrelated risk–reward environment. This result was most pronounced when

the uncommon gambles offered higher expected values compared to the other gambles in the

set. Moreover, these uncommon, high-value options were associated with an increase in pupil

size. These results suggest that people's evaluations of risky options are based not only on

the options' payoffs and probabilities but also on the extent to which they fit the risk–reward

structure of the environment.
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1 INTRODUCTION

On December 25, 2017, Nicole Coggins and her mother-in-law bought

100 lottery tickets for the South Carolina Holiday Cash Add-A-Play

lottery for $1 each. Astonishingly, every ticket was a winner, giving

them a total of $18,000 in winnings. Wade Crenshaw, who was

working behind the cash register at a convenience store that day,

noticed that more and more people were asking to buy Add-A-Play

tickets. He later said, ‘‘It was weird, everybody winning so much. I

didn't know if they were doing some kind of Christmas special’’ (Fortin,

2017). If you think this sounds too good to be true, you are right.

Except for a select few individuals who were able to collect a total

windfall of about $1.7 million, when most of the lucky winners went to

cash in their prizes, the machine deemed their tickets invalid (Fortin,

2018; Harrington, 2017). As it later emerged, the many winning lottery

tickets were not a Christmas special; they were due to a computer

glitch.

As the cashier's reaction illustrates, people are usually aware that

higher rewards are more unlikely than smaller rewards, a regularity

present across many monetary and nonmonetary choice environments

(Pleskac & Hertwig, 2014). This link between risks and rewards (or

probabilities and payoffs) affords people an ecological structure that

they may use when making decisions (Brunswik, 1943), including

decisions under uncertainty, when they know the possible payoffs of

an option but not their probabilities. In decisions under uncertainty,

people exploit the risk–reward relationship to infer the probabilities

from the magnitude of the payoffs (Leuker, Pachur, Hertwig, & Pleskac,

2018; Pleskac & Hertwig, 2014). They may also use the relationship

to infer payoffs from probabilities (Skylark & Prabhu-Naik, 2018) or to

decide how often they sample in decisions from experience (Hoffart,

Rieskamp, & Dutilh, 2018). In contrast to earlier research, our focus in

the present article is on decisions under risk—that is, decisions in which

both payoffs and probabilities are explicitly stated. Specifically, we

examine if and how an environmental relationship between risks and

rewards results in options being perceived as uncommon in decisions

under risk.

Studying people's sensitivity to the ecological structure in decisions

under risk is interesting for several reasons. In risky choice, an option is
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characterized by two attributes, risks and rewards. Detecting uncom-

mon combinations of risk and reward in these environments may be

harder than, for instance, detecting uncommon risky options based on

only one dimension (e.g., uncommon, higher-than-usual payoff mag-

nitudes). In risk–reward environments, many different combinations

of probabilities and payoffs are possible and consistent within a par-

ticular risk–reward structure. For instance, $10 with p = 0.9, $50

with p = 0.5, and $90 with p = 0.1 are all in line with a nega-

tive risk–reward structure—that is, an environment in which risks and

rewards are inversely related. Conversely, $10 with p = 0.1; $50

with p = 0.5 and $90 with p = 0.9 are all in line with a (fairly

nonrepresentative) positive risk–reward structure—that is, an environ-

ment in which risks and rewards are positively related. An option is

uncommon if the payoff–probability combination mismatches a given

environment. This also means that an option that is uncommon in one

environment can be foreseeable in another environment (e.g., $90

with p = 0.9 is uncommon in a negative risk–reward environment but

foreseeable in a positive one). Furthermore, since risky choice options

have an expected value (EV), options that deviate from a risk–reward

structure can either offer an uncommon, high-value combination of

risks and rewards (e.g., $90 with p = 0.9 in a negative risk–reward

environment) or an uncommon, low-value one (e.g., $10 with p = 0.1,

in the same environment). Lastly, as these examples show, detecting

an uncommon option in risk–reward environments does not require

feedback about whether or not an outcome is obtained (as is the

case for surprise in, e.g., reward–prediction or risk–prediction errors;

see; Bossaerts, 2010; O'Neill & Schultz, 2013; Preuschoff, Quartz, &

Bossaerts, 2008; Schultz, Dayan, & Montague, 1997).

It is currently unclear whether the combination of risks and rewards

leaks into how people make decisions under risk in a given choice

environment. One reason for this is the way in which risky decisions

from description are typically studied: In studies of risky choice,

probabilities and payoffs across gambles and gambling problems are

typically factorially combined (risks and rewards are usually only

inversely related within a gamble problem; Pleskac & Hertwig, 2014).

Another, related, reason is that prominent theories of risky choice tend

to assume that risks and rewards are treated as independent attributes

that determine the subjective value of an option and ultimately choice

(von Neumann & Morgenstern, 1944; Tversky & Kahneman, 1992).

Yet there is a growing body of evidence that people are sensitive to the

choice ecologies in which they make decisions (Birnbaum, 1992; Ludvig

et al., 2014, 2018; Walasek & Stewart, 2015). Relatedly, people's

evaluations of payoffs or probabilities can depend on the marginal

distributions of payoffs or probabilities they experienced (Stewart,

Chater, & Brown, 2006). It is unclear whether the joint distribution of

payoffs and probabilities (i.e., the risk–reward relationship) affects how

subsequent risky options are evaluated—and if so, what the traces of

this influence are. Whereas previous research has found that people

exploit risk–reward structures in decisions under uncertainty (Leuker,

Pachur, Hertwig, & Pleskac, 2018), in what ways do such structures

leave traces when people make decisions under risk?

2 OVERVIEW OF EXPERIMENTS AND
HYPOTHESES

Here, we present two experiments in which we investigated how par-

ticipants responded to uncommon combinations of risk and reward.

Between participants, the structure of the environment was manipu-

lated to be negatively correlated, positively correlated, or uncorrelated

(Figure 1). In both experiments, participants indicated the price at

which they would be willing to sell a monetary gamble of the form ‘‘p

chance of winning x, otherwise nothing.’’

There were two classes of gambles. Environment gambles, denoted

as black circles in Figure 1, defined the structure of the environment in

FIGURE 1 Prototypical gambles used in the two experiments. Environment gambles (black circles) were drawn from one of the three
risk–reward environments. A set of test gambles, which was common to all three conditions, was randomly interspersed after two thirds
(Experiment 1) or one third (Experiment 2) of the trials. Test gambles are color coded by gamble type: Test gambles shown in blue downward
triangles were consistent with the risk–reward relationships in a condition and could therefore be foreseen (‘‘foreseeable gambles’’). Test
gambles shown in red upward triangles were inconsistent with risk–reward relationships in a condition and were therefore uncommon
(‘‘uncommon gambles’’). Test gambles shown in light gray (Panel C) served as ‘‘reference gambles.’’ Here, participants were unlikely to have any
expectations about particular risk–reward relationships. Test gambles shown in green squares (all panels) fit each condition equally well and
were therefore used as a control (‘‘average gambles’’) [Colour figure can be viewed at wileyonlinelibrary.com]
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a given condition. Test gambles, denoted as filled symbols in Figure 1,

were common to all conditions and used to test our hypotheses.

Depending on the environment in which they were interspersed, the

test gambles belonged to one of four groups. A first subset of the

test gambles were uncommon gambles (red triangles). These gambles

were inconsistent with the risk–reward structure when it was present.

A second subset of gambles were foreseeable gambles (blue trian-

gles). These gambles were not only consistent with the risk–reward

structure when it was present (in negative or positive risk–reward envi-

ronments) but they could, in principle, even be foreseen or expected.

Third, test gambles that were neither uncommon nor foreseeable (in

the uncorrelated condition) are referred to as reference gambles (gray

circles). Fourth, average gambles appeared in each environment and

were in the mid-range of the payoffs and probabilities. Because these

gambles fit all risk–reward environments equally well and had exactly

the same characteristics (EV distributions, payoff magnitudes, and

risk–reward relationship), they were used as control stimuli to exam-

ine condition-dependent differences. Participants were not explicitly

instructed to pay attention to the underlying risk–reward structure in

either experiment. We examined how pricing and response times (RTs)

varied as a function of gambles being uncommon, relative to fore-

seeable gambles in the positively and negatively correlated conditions

and to reference gambles in the uncorrelated condition. In Experiment

2, in addition to the behavioral responses, we tracked pupil size in

response to uncommon gambles.

All three outcome measures—pricing, RT, and pupil size—may dif-

fer depending on whether a gamble is common or foreseeable in

an experimental context. First, prices may deviate from gambles'

EVs in the direction of the learned risk–reward structure: If high

payoffs commonly co-occur with low probabilities, prices given for

high-payoff/high-probability options may undershoot the gambles'

EVs. Conversely, when high payoffs commonly co-occur with high

probabilities, prices given to high-payoff/low-probability options may

overshoot the gambles' EVs.

Second, increasing familiarity with an environment's risk–reward

structure should accelerate the processing of subsequent foresee-

able options and decelerate the processing of subsequent uncommon

options. This pattern is consistent with findings in the domain of event

sequence learning (i.e., responses to stimuli in different locations that

follow a sequence, e.g., 4–3–2–1–4–3–2–1). Here, longer RTs for

stimuli inconsistent with a learned sequence are taken as direct evi-

dence that a sequential stimulus structure has been learned (Rüsseler

& Rösler, 2000). Moreover, prior research found that people may have

a mechanism in place that ‘‘prevent[s] impulsive responding due to the

presence of high value options’’ (Cavanagh, Wiecki, Kochar, & Frank,

2014, p. 2; see also; Frank, Samanta, Moustafa, & Sherman, 2007).

By extension, participants may respond more slowly to uncommon,

high-value options than to uncommon, low-value ones. Note that such

a mechanism would also lead to RTs increasing as a function of abso-

lute value, rather than as a function of gambles being uncommon (i.e.,

across conditions).

Third, pupil size may increase in response to uncommon options.

Paradigms investigating feedback-based ‘‘risk-prediction errors’’

(Preuschoff, 't Hart, & Einhäuser, 2011) showed that pupil dilation

increases in response to surprise in risky choice (an a priori unlikely

option that was eventually obtained or an a priori likely option that was

eventually not obtained). Pupil dilation has also been found to increase

in response to high-value options (‘‘win-win trials’’ in; Cavanagh et al.,

2014) in general. Here, the EV of an option may increase pupil dilation

in addition to an option being uncommon or independent of an option

being uncommon.

3 EXPERIMENT 1: BEHAVIORAL RESPONSES
TO UNCOMMON RISK–REWARD
COMBINATIONS

Experiment 1 was a behavioral experiment in which risks and rewards

were presented simultaneously. This experiment is a reanalysis of the

training data of an earlier experiment (Leuker et al., 2018, Experiment

2). In earlier analyses, our focus was on decisions under uncertainty

(test data); here, we consider the impact of risk–reward structures

on decisions under risk when combinations of risk and reward are

uncommon.

3.1 Method

3.1.1 Participants

The sample included 90 participants (53 females, age 24.7 years,

SD = 4.1 years, proportion students = 0.72) from the participant

pool maintained at the Max Planck Institute for Human Develop-

ment. Each participant completed the experiment (duration 65 min) in

exchange for a show-up fee of €10 and a performance-based bonus

(€1.99–€7.82).

3.1.2 Stimuli

Participants priced monetary gambles of the form ‘‘p chance of winning

x, otherwise nothing.’’ All payoffs were expressed using an experimen-

tal currency, E$, with a disclosed conversion rate of 2,500E$ = €1.

We used an experimental currency to minimize the impact of outside

norms associated with specific currencies on the experiments. For

the condition with a negative correlation between risk and reward,

the gambles were constructed as follows: 150 random payoffs were

drawn from a uniform distribution with the range 1.01–2,500. The

probabilities for each payoff were set such that they were inversely

related to the payoff x (p = 1 − x∕2,500). We jittered payoffs and

probabilities by adding normally distributed noise with a standard devi-

ation of 0.1 to both the logit transformation of the probabilities and

the logit transformation of normalized payoffs. We then transformed

those perturbed values back to the scales used in the experiment.

For the condition with a positive correlation between risk and reward,

we used the same gambles as in the negative condition but reversed

the order of the probabilities. For the uncorrelated condition, we ran-

domly linked probabilities and payoffs. This approach controlled for

the marginal distribution of payoffs and probabilities across conditions

(as marginal distributions of payoffs and probabilities may influence

choice; see Birnbaum, 1992; Stewart et al., 2006).

In addition to these 150 condition-dependent environment gam-

bles, participants also priced 22 gambles that were identical across all
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three conditions, yielding 172 gamble stimuli per condition. Specif-

ically, we included 12 test gambles at the extreme ends of the

payoff–probability distribution space. These consisted of three high

payoff/high probability, three high payoff/low probability, three low

payoff/high probability, and three low payoff/low probability gam-

bles; see triangles in Figure 1. Payoffs were random draws between

1E$ − 500E$ (low) and 2,000E$ − 2,500E$ (high). Probabilities were

random draws between 0.01 − 0.2 (low) and 0.8 − 1.0 (high). Pay-

offs and probabilities were factorially combined to obtain the four

payoff/probability combinations. The test gambles were interspersed

after 100 environment-only trials (i.e., in the last third of the trials).

We also included 10 average (mid-range payoff/mid-range probabil-

ity) gambles (payoffs around 1,250E$, probabilities around 0.5). These

gambles were equally consistent with all conditions because they

were not linked to either high or low (i.e., extreme) payoffs (squares

in Figure 1). We added them to control for EV differences and to be

able to study condition-dependent differences beyond gambles being

uncommon, foreseeable, or reference gambles.

3.1.3 Procedure

Participants indicated their willingness to sell for one gamble at a

time (Figure 2), taking self-paced breaks between five blocks. The task

was presented in the form of a game show called ‘‘Keep or sell?’’

(‘‘Behalten oder Verkaufen?’’). We used selling rather than buying

prices because the former have been shown to deviate less from

gambles' EVs than the latter (however, both paradigms elicit responses

strongly linked to EVs; see Yechiam et al., 2017); in general, both

formats are suitable for exposing participants to different risk–reward

structures. To motivate participants to indicate their true valuations

of the gambles, we implemented a Becker-DeGroot-Marschak auction

(Becker et al., 1964) as follows: Participants entered a price at which

they would be willing to sell each gamble by moving the mouse along

a rating scale (0E$ − 2,500E$) and confirming the value with a click.

To incentivize the task, the experimenter informed participants that

10 gambles would be randomly selected at the end of the experiment.

For those 10 gambles, the experimenter then offered a randomly

generated buying price between 0 and the absolute payoff in that

gamble. If the experimenter's buying price exceeded the participant's

selling price, participants sold the gamble and earned the buying

price. If the participant's selling price exceeded the experimenter's

buying price, the gamble was played out (e.g., 50% chance of 380E$).

The dominant strategy in this task is to price a gamble based on its

subjective value: Setting higher prices can prevent participants from

selling unattractive gambles; setting lower prices can lead to them

selling attractive gambles under value. In other words, the prices should

approximate participants' certainty equivalents for the gambles.

3.2 Statistical analyses

We used Bayesian estimation techniques in our analyses (Kruschke,

2015). Specifically, we applied Bayesian generalized linear mixed mod-

els using Stan in R for regression analyses with the rstanarm package

(RStanArm, Version 2.9.0, Version 2.9.0). We ran three chains using

Markov Chain Monte Carlo sampling to draw from posterior distri-

butions of the parameters. Depending on model complexity, we ran

10,000 − 30,000 samples per chain (to ensure an effective sample

size of >10,000 for each coefficient) and set a burn-in of 500 sam-

ples. We investigated convergence of our posteriors through visual

inspection and the Gelman–Rubin statistic (Gelman & Rubin, 1992).

In general, we report the mean of the posterior distribution of the

parameter or statistic of interest and two-sided 95% equal tail credible

intervals (CI) around each value.

In all analyses, we examined how the risk–reward context modu-

lated the behavioral measure of interest (i.e., deviations from prices,

deviations from individual median RTs, or pupil dilation). For better

interpretability of the RT data, we report and plot parameters and

CIs from regression models using untransformed RT data. As the RT

data were slightly right-skewed, we reran the key RT analyses using

a log transformation. Qualitatively, the conclusions were identical for

log-transformed and untransformed data.

Our models were specified as follows. All analyses included a

random participant intercept to control for individual variability in

responses, and controlled for EV by including it as a predictor. We

tested our hypotheses using the following recipe: In the base effects

models, we modeled all test gambles simultaneously and tested

whether responses to uncommon gambles differed from responses

to foreseeable and reference gambles as baselines—as a main effect.

Thus, the regressions were set up as follows:

prices/RTs/pupil ∼ (1 | participant) + uncommon

+ EV, data = test gambles

In the interaction models, we allowed for an interaction

between gamble type (uncommon/foreseeable/reference) and

FIGURE 2 Task. In Experiment 1, participants saw a gamble and priced it in their own time. The price was set by moving an arrow along a rating
scale and confirming the price by clicking on it [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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payoff–probability combination (high pay/high probability, high

pay/low probability, low pay/high probability, and low pay/low prob-

ability). Low-payoff/low-probability gambles were set as the baseline.

In pseudocode,

prices/RTs/pupil ∼ (1 | participant) + uncommon

* pay-prob combn + EV, data = test gambles

This analysis also revealed the extent to which responses to uncom-

mon combinations of risk and reward depended on the gambles'

EV (e.g., high pay/high probability). The results of this analysis are

depicted as posterior predictive distributions in the figures. In the

by-type models, we repeated the same analyses by subsetting the data

for each payoff–probability combination (high pay/high probability,

high pay/low probability, low pay/high probability, and low pay/low

probability) and modeling differences in responses as simple effects.

In pseudocode,

prices/RTs/pupil ∼ (1 | participant) + uncommon

+ EV, data = high pay/high prob

In reporting the results, we first examined how participants

responded across all trials including the environment gambles, then

using the average gambles that were equally consistent with all

risk–reward environments. Second, we tested for differences between

uncommon and foreseeable or reference gambles using base effects

models. Third, we reported results from the interaction models and

by-type, simple models to characterize how responses varied with dif-

ferent payoff–probability combinations. For model code, see the Open

Science Framework. The complete set of coefficients for all by-type

models for both baseline comparisons (foreseeable and reference

gambles) is reported in the Supplementary Materials.

We excluded trials in which participants indicated prices that

exceeded the payoff offered in the gamble by more than 100E$, as this

suggests lack of attention to the task (we did the same in Experiment

2). We used this rather liberal exclusion criterion for two reasons: First,

as a recent meta–analysis shows, selling prices frequently exceed gam-

bles' EVs ( Yechiam et al., 2017, Table 2). Second, the EV of a gamble

FIGURE 3 Behavioral results for the average gambles interspersed in
Experiment 1. (a) Pricing. Prices deviated more in the positive
condition compared to the uncorrelated condition. (b) Response
times (RTs). We found little to no difference in RTs across conditions
for the average gambles. RTs are expressed as deviations from
individual median RTs across trials (RTtrial − RTind.Md). Symbols and
error bars represent the mean and the 95% credible interval of the
posterior predictive distribution [Colour figure can be viewed at
wileyonlinelibrary.com]

becomes harder to compute given four–digit payoffs (0 − 2,500E$),

compared with smaller payoff ranges. We also removed trials in which

RTs deviated by +∕ − 3SD from an individual's median (before log

transforms), assuming that these RTs are unlikely to reflect cogni-

tive processing in a specific trial. We tested our hypotheses with and

without these excluded trials and note when these exclusions led to

qualitatively different results.

3.3 Results

Based on our exclusion criteria, we removed 4.6% (718∕15,480) of

the trials across all participants in Experiment 1.

3.3.1 Prices

We expressed prices as deviations from the respective gamble's EV

(deviation = gambleprice − gambleEV). Thus, deviations could range

from −2,500E$ to 2,500E$; with 0 indicating perfect alignment

between price and the gamble's EV. Across all trials and conditions,

prices were closely aligned to gambles' EVs (all CIs included 0) but

in general participants' prices exceeded EVs (bunc = 30.77E$, CI =
[−18.93E$,81.10E$], bneg = 56.45E$, CI = [−64.60E$,177.68E$],
bpos = 83.16E$, CI = [−37.43E$,204.14E$]; deviations across all

trials; risk–reward condition as a predictor, controlling for EV). As

Figure 3a shows, participants in the positive condition seemed to

overprice average gambles by a greater amount compared to par-

ticipants in the uncorrelated condition (bpos. > unc. = 71.06E$, CI =
[9.32E$,133.11E$]; using risk–reward condition × gamble type as pre-

dictors, controlling for EV). Because this difference was not reliable

across the environment trials, we do not follow up on it further.

Focusing on the test gambles, we tested whether participants

provided prices deviating from the gambles' EVs when risk–reward

combinations were uncommon. As Figure 4 shows, there were no

reliable pricing differences as a function of whether the gamble was

uncommon or not (buncom. > fores. = 2.52E$, CI = [−26.03E$,30.89E$],
buncom. > ref. = −11.59E$, CI = [−49.15E$,26.20E$], base effects mod-

els using foreseeable and reference gambles as a baseline, respectively;

controlling for EV). Moreover, prices were not drawn towards partici-

pants' expectations in a given environment (e.g., prices for uncommon,

high-pay/high-probability gambles could have been lower than prices

for foreseeable high-pay/high-probability gambles): As a comparison

between panels in Figure 4 shows, prices did not vary as a function

of different payoff–probability combinations across conditions (all CIs

included 0 in the interaction model; the same holds for by-type, simple

models; see Supplementary Material).

3.3.2 Response times

The mean RT across all gamble types was 14.17s per trial in the

uncorrelated condition (CI = [12.40s,15.91s]) and credibly lower in

the negative (M = 10.3s, bneg. > unc. = −3.74s, CI = [−6.22s, −1.20s])
but not in the positive condition (M = 13.0s, bpos. > unc. = −1.30s, CI

= [−3.78s,1.17s], both models using the uncorrelated condition as a

baseline, controlling for EV). Next, to examine changes in RTs for the

test gambles and to control for individual differences in baseline RTs,

we computed the difference between the observed RT and the median

http://wileyonlinelibrary.com
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FIGURE 4 Behavioral results for the test gambles interspersed in Experiment 1. (a–d) Pricing. We found no difference in how well prices were
adjusted to the expected values when gambles were uncommon. (e–h) Response times (RTs). Participants slowed down when gambles were
uncommon. RTs are expressed as deviations from individual median RTs across trials (RTtrial − RTind.Md). Symbols and error bars represent the
mean and the 95% credible interval of the posterior predictive distribution [Colour figure can be viewed at wileyonlinelibrary.com]

RT as an indicator of change in processing time (RTtrial − RTind.Md).

RTs should be similar for average gambles that fit each risk–reward

condition equally well; they should also deviate very little from median

RTs. As Figure 3b shows, this was indeed the case: Participants' RTs

for the average gambles were similar across conditions and all CIs

included 0.

How did RTs change when gambles were uncommon? As Pan-

els e–h in Figure 4 show, participants slowed down in response

to uncommon gambles (red bars). On average, they spent around

3.5 s longer on uncommon gambles than on foreseeable gambles

(buncom. > fores. = 3.40s, CI= [1.49s,5.32s], controlled for EV and individ-

ual variation). The RTs to the reference gambles from the uncorrelated

environment were statistically indistinguishable from those to foresee-

able gambles. Consequently, the effects involving uncommon gambles

were qualitatively the same as when using these gambles as a base-

line (see Supplementary Materials 1.3). The results were comparable

when all trials are maintained in the analyses (buncom. > fores. = 3.63s,

CI = [2.56s,4.98s], no exclusions, controlled for EV and indi-

vidual variation) and when using normalized, log-transformed RTs

(buncom. > fores. = 0.32, CI = [0.25,0.39].
Lastly, we examined the extent to which RTs—either generally or for

uncommon gambles—depended on particular payoff–probability com-

binations. In general, as the mostly negative values in Figure 4g and

the mostly positive values in Figure 4f show, participants responded

faster to low-value gambles compared with high-value gambles, rela-

tive to their median RT per gamble. This result is captured by a main

effect of EV on RTs (bEV = 0.004s, CI = [0.000s,0.008]; interaction

model gamble type × uncommon, main effect of EV).

Responses to uncommon gambles (compared to foreseeable gam-

bles) were most pronounced when they involved high payoffs

(Figure 4f,h). However, there were no reliable interactions between

these payoff–probability combinations and gambles being uncom-

mon for either high-pay/high-probability (buncom. > fores. = 0.37s, CI =
[−2.33s,3.07s]) or high-pay/low-probability gambles (buncom. > fores. =
1.57s, CI = [−1.19s,4.35s]; interaction uncommon × pay–prob comb

uncommon; baseline low pay/low probability; controlling for EV). All

results were qualitatively the same in a model using the reference

gambles as a baseline (see Supplementary Material).

3.4 Summary of Experiment 1

Experiment 1 suggests that people form expectations about

risk–reward structures that reflect the experienced environments.

This was evident in participants' RTs for options that did not match

these expectations: They slowed down in response to uncommon

options for all payoff–probability combinations. Participants slowed

down most for uncommon high-payoff gambles—where indicating an

accurate price seems more important. We note that the differences

between payoff–probability combinations were not reliable, and the

value-dependent variation in RTs is best captured as a main effect.

The finding that participants took longer in responding to uncom-

mon, high-payoff/high-probability gambles is consistent with earlier

research showing that participants are sensitive to the range of pos-

sible rewards in a given experiment (for a related result, see Ludvig

et al., 2014, 2018): Such gambles were uncommon in the negative

condition, which was characterized by otherwise similar and smaller

EVs (all below 700E$). At the same time, prices were equally adjusted

to the gambles' EVs, regardless of whether gambles were uncommon

or not. Notably, participants were sensitive to uncommon combina-

tions of risk and reward irrespective of any feedback on whether or
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FIGURE 5 In Experiment 2, participants priced gambles after seeing the payoff and probability of each gamble in a fixed sequence. After 4 s in
total, the gamble disappeared from the screen. We added a blank screen to achieve sufficient spacing between the critical stimuli (i.e., a gamble's
risk–reward relationship) and the participant's manual response. Participants then had as much time as they wanted to indicate a price for the
gamble on a rating scale. We measured pupil dilation as a response to a gamble's payoff alone (t1) and as a response to its payoff and probability
combined (t2) [Colour figure can be viewed at wileyonlinelibrary.com]

not an outcome was obtained and even though they had experienced

the entire range of probabilities and payoffs before being exposed to

uncommon combinations of risk and reward.

4 EXPERIMENT 2: PUPILLARY AND
BEHAVIORAL RESPONSES TO UNCOMMON
RISK–REWARD COMBINATIONS

In Experiment 2, we adapted the methodology from Experiment 1

to include an eye-tracking component that allowed us to measure

pupillary responses to uncommon options. We outline key differences

below.1

4.1 Methods

4.1.1 Participants

Ninety-three (55 female) participants (age M = 25.6 years, SD = 3.7

years) from the participant pool at the Max Planck Institute for Human

Development, Berlin, completed the experiment (duration 75 min). All

participants were paid a fixed rate of €12 plus a bonus based on their

performance (€3.53–€11.67).

4.1.2 Stimuli

We reduced the number of stimuli to 90 condition-dependent gam-

bles and increased the number of gambles common to each of the

three conditions. We reduced the number of trials to ensure that all

participants could complete the experiment in a reasonable time (pre-

senting payoffs and probabilities in a fixed sequence takes more time

than presenting gambles in full). At the same time, we aimed at a

larger set of test gambles per participant. To that end, we created six

gambles for each payoff–probability combination. Overall, these pro-

cedures resulted in 120 gambles. The test gambles were interspersed

after 40 environment-only trials. As in Experiment 1, we also added

six average-payoff/average-probability gambles.

1 After the pricing task, participants completed a two-alternative forced choice task reported
in a proceedings paper (Leuker et al., 2017).

4.1.3 Procedure

Experiment 2 differed from Experiment 1 in that the payoff and prob-

ability information appeared sequentially: After a fixation cross, the

payoff appeared for 2 s, followed by the probability for another 2 s.

After a blank screen (2 s), the screen automatically switched to a rating

scale. Participants entered the prices they were willing to sell the gam-

ble for by moving the mouse along the rating scale (0E$ − 2500E$)

and clicking on the value to confirm (free RT). This sequential presen-

tation of only payoffs and then payoffs and probabilities combined

allowed us to analyze pupillary responses to payoffs only and pupil-

lary responses to the joint presentation of payoffs and probabilities

(Figure 5). To control for the pupillary light reflex, we matched the

gambles' luminance to the background of the screen by defining stim-

uli colors in the Derrington, Krauskopf, and Lennie color space (see

Derrington, Krauskopf, & Lennie, 1984; MacLeod & Boynton, 1979).

Gambles were presented in orange on a gray background with the

same luminance. For clarity, these colors are not shown in the figure.

4.1.4 Eye tracking

We collected binocular eye tracking data with an EyeTribe tracker,

sampled at 60Hz. The experiment was implemented in PsychoPy

1.83.01 (Peirce, 2007) and the eye-tracking interface PyTribe

(Dalmaijer, Mathôt, & Van der Stigchel, 2014). Before the task, each

participant's eye movements were calibrated using the EyeTribe UI

with a nine-point grid (<0.7◦ of visual angle). Participants were seated

approximately 60 cm from the screen with their chin on a chinrest

affixed to a table, in a room with negligible ambient light. We obtained

pupil size from the left and the right eye (arbitrary units, measured at

every hertz).

4.1.5 Eye tracking analyses

Pupillary data were preprocessed as follows. We used EyeTribe's

default settings to detect fixations and removed saccade data, because

pupillary responses during (and even before) saccades differ system-

atically from those during fixations (Mathôt, van der Linden, Grainger,

& Vitu, 2016). Trials were discarded if pupil size deviated more than

3SDs from a participant's median pupil size and if it was outside plau-
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sible values (range [10,40] in arbitrary units given by Eyetribe). This

procedure removed blinks (rows with values [0,0]) and measurement

error. We smoothed the data using a lowess filter, and we averaged

the pupil size of the left and the right eye. We removed trials with

fewer than 15 samples, which indicates extremely poor eye tracking

(one would expect 240 samples, minus a few blinks, per 2s period).

This applied to a small proportion of all trials: 0.07 of all trials at t1

(when reward was shown) and 0.05 of all trials at t2 (when reward and

probability were shown).

To facilitate comparisons across participants and control for differ-

ences in pupil size that were nonspecific to our conditions, (Preuschoff

et al., 2008; Cavanagh et al., 2014; Fiedler & Glöckner, 2012), we ana-

lyzed pupillary signals aligned to a baseline pupil size. This is consistent

with the literature. As our baseline pupil size, we stimulus presenta-

tion offset. Specifically, we used the median value in the first 0.1 s at

t1 (after the reward was shown) and at t2 (after reward and probabil-

ity were shown). We used this baseline to obtain a similar measure

of pupil changes for both t1 and t2. Often the fixation cross time is

used as a baseline; in our paradigm, however, the fixation cross only

preceded stimulus appearance at t1 (Figure 5). We obtained the nor-

malized pupil size by subtracting the signal at each time point from

the baseline signal and then dividing by the baseline signal, resulting

in a percentage change relative to the stimulus onset.

Pupillary responses to psychologically relevant stimuli are assumed

to occur after approximately 1s and are therefore conceptually differ-

ent from the pupillary light reflex that occurs after milliseconds (Gagl,

Hawelka, & Hutzler, 2011; van Steenbergen & Band, 2013). As in

previous research using pupillary responses in the context of choice

(Cavanagh et al., 2014), we therefore set an a priori region of interest

from 1 to 2s poststimulus at t1 (payoff visible on screen) and t2 (payoff

and probability visible together on screen) for our statistical analyses

(Figure 1). We obtained the median percentage change in pupil dila-

tion within this a priori region of interest. We compared the results

of this analysis with results using the mean dilation (e.g., as in Mathôt

et al., 2016) and peak dilation (e.g., as in Fiedler & Glöckner, 2012),

which were qualitatively very similar (see Supplementary Materials

for results using the other two indicators). We would like to stress

that our focus was not on the time course of pupil dilation because

we introduced a fixed lag between payoffs, probabilities, and partici-

pants' ability to respond (however, for completeness, we plot the time

course of pupillary responses in the Supplementary Material). While

some research has studied pupil dilation shortly before a decision is

made (Fiedler & Glöckner, 2012, finding that pupil dilation increases

while the participant is deciding), in our setup, we could not determine

a unique time point at which participants made their choice, as they

could have reached a decision prior to being able to enter it on the

rating scale.

4.2 Results

On the basis of our exclusion criteria, we removed 9.2%

(1,027∕11,160) of the trials across all participants in Experiment 2.

FIGURE 6 Behavioral results for the average gambles in Experiment
2. (a) Pricing. Prices exceeded gambles' expected values in all
conditions. (b) Response times (RTs). We found little to no difference
in RTs across conditions. RTs are expressed as deviations from
individual median RTs across trials (RTtrial − RTind.Md). Symbols and
error bars represent the mean and the 95% credible interval of the
posterior predictive distribution [Colour figure can be viewed at
wileyonlinelibrary.com]

4.2.1 Pricing

As in Experiment 1, we expressed prices as deviations from a gam-

ble's EV (gambleprice − gambleEV), with 0 indicating perfect alignment

between price and the EV. Across all trials and conditions, prices

were closely aligned to gambles' EVs but in general participants'

prices exceeded EVs (bunc = 94.96E$, CI = [−27.74E$,217.75E$],
bneg. = 24.17E$, CI = [−110.93E$,256.93E$], bpos. = 121.44E$,

CI = [−110.93E$,354.35E$], main effects of condition; controlling

for EV). Figure 6a plots the extent to which participants' prices devi-

ated from EVs for the average gambles and shows that there were no

reliable differences between conditions for these gambles (bpos. > unc. =
26.69E$, CI = [−79.31E$,134.68E$], bneg. > unc. = −69.23E$, CI =
[−175.88E$,37.79E$]; using risk–reward condition as a predictor,

controlling for EV). The result that participants tended to over-

price gambles in the willingness-to-sell paradigm is consistent with

Experiment 1.

As in Experiment 1, we analyzed the extent to which prices

differed when gambles were uncommon versus foreseeable or ref-

erence gambles. Across all gamble types, uncommon gambles were

priced slightly—but not reliably—higher than foreseeable gambles

(buncom. > fores. = 28.16E$, CI = [−2.74;58.52]) and reference gam-

bles (buncom. > ref. = 12.61E$, CI = [−62.28;87.53], deviations across

all trials; risk–reward condition as a predictor, controlling for EV). As

panels b and d in Figure 7 show, participants' evaluation of uncom-

mon gambles depended on payoff–probability combinations as well

as payoff magnitudes. Specifically, prices were lower for uncom-

mon high-payoff/high-probability gambles (buncom. > fores. = −101.84E$,

CI = [−234.88E$,29.88$], by-type model, controlling for EV). Con-

versely, prices were higher for uncommon high-payoff/low-probability

gambles (buncom. > fores. = 208.20E$, CI= [−1.36E$,418.71E$], by-type

model, controlling for EV). This pattern of results was similar when

using reference gambles as a baseline (see gray bars in Figure 7 and

Supplementary Material), but note that all CIs included 0.

Taken together, these pricing patterns are consistent with the

payoff–probability combinations that participants could expect in a
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given environment: The negative condition prompts the expectation

that a high payoff will be accompanied by a low probability; the positive

condition prompts the expectation that a high payoff will be accompa-

nied by a high probability. However, participants adjusted their prices

to the environment-dependent expectations for high-payoff, but not

low-payoff, gambles. Note that these results differ from those in Exper-

iment 1, where prices did not vary depending on whether a gamble

was uncommon or foreseeable. One reason for this discrepancy could

be the limited presentation duration of the gambles in Experiment 2.

Having less time to process a gamble while it was on screen (4 s in

total) may have led participants to only partially price the gambles

based on experiences in a given environment.

4.2.2 Response times

Participants took 4.33s on average per trial from seeing the empty

screen (2s enforced) to entering a response on the rating scale. The

mean RT in the uncorrelated condition was 4.02 s (CI = [3.44s,4.62s])
and not reliably different in the negative (M = 4.39s, bneg. > unc. = 0.37s,

CI = [−0.46s,1.19s]) or the positive condition (M = 3.99s, bpos. > unc. =
−0.03s, CI = [−0.88s,0.80s], both models using the uncorrelated con-

dition as a baseline, controlling for EV). The range of RTs was smaller in

Experiment 2 than in Experiment 1 due to the experimental design, in

which a price could not be entered before seeing payoff and probability

information for 2s each.

As in Experiment 1, to examine changes in RTs for the test gambles

and to control for individual differences in baseline RTs, we computed

the difference between the observed RT and the median RT as an

indicator of change in processing time (RTtrial − RTind.Md). RTs should be

similar for average gambles that fit each risk–reward condition equally

well; they should also deviate very little from median RTs. As Figure 6b

shows, this was indeed the case: Participants' RTs for average gambles

were similar across conditions and all CIs included 0.

Like Experiment 1, our focus was on changes in RTs for

uncommon gambles. Again, participants spent more time evaluating

uncommon gambles than foreseeable gambles (buncom. > fores. = 0.28s;

CI = [0.03s,0.53s], control for EV). They also spent more time eval-

uating uncommon versus reference gambles, but the CI included 0

(buncom. > ref. = 0.26s; CI = [−0.29s,0.80s]; control for EV). Over-

all, the effect sizes were smaller and the differences in RTs less

pronounced—likely a result of the fixed presentation durations of

payoffs and probabilities. The results were comparable when all

trials are maintained in the analyses (buncom. > fores. = 0.55s, CI =
[0.27s,0.84s], no exclusions, controlled for EV and individual variation),

and when using normalized, log-transformed RTs (buncom. > fores. = 0.28,

CI = [0.03,0.53], same model but log-transformed RTs).

We again examined the extent to which RTs varied by different

payoff–probability combinations: In general, as the mostly negative

values in Figure 4g and the mostly positive values in Figure 4f show,

participants responded slightly faster to low-value gambles compared

to high-value gambles relative to their median RT per gamble. How-

ever, most CIs in Panels g and f include 0, and there was no reliable

effect of EV on RTs (bEV = 0.0005s, CI = [−0.0002s,0.00012s];
interaction model gamble type × uncommon, main effect of EV).

As Figure 7f shows, RTs between uncommon and foresee-

able gambles only differed for high-payoff/high-probability gambles

(buncom. > fores. = 0.76s; CI = [0.08s,1.45s], interaction pay–prob combn

× uncommon, controlling for EV, baseline low payoff/low probabil-

FIGURE 7 Behavioral results for the test gambles interspersed in Experiment 2. (a–d) Pricing. For low payoffs, there was little to no difference in
how well prices of uncommon gambles were aligned with the expected values of the gambles (a, c). For high payoffs, prices of uncommon
options differed from prices of foreseeable options (b, d). (e–h) Response times (RTs). Participants slowed down when options were uncommon.
This effect was driven by the uncommon, high-value options (Panel f). RTs are expressed as deviations from individual median RTs across trials
(RTtrial − RTind.Md). Symbols and error bars represent the mean and the 95% credible interval of the posterior predictive distribution [Colour figure
can be viewed at wileyonlinelibrary.com]
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ity). In other words, the effect for the uncommon gambles was driven

by high-payoff/high-probability gambles. These results are reliable for

both baseline conditions (buncom. > fores. = 0.94s; CI = [0.03s,1.84s];
buncom. > ref. = 1.06s; CI = [0.15s,1.97s]) and more pronounced when

no trials were excluded (buncom. > fores. = 1.15s; CI = [0.01s,2.29s];
buncom. > ref. = 1.52s; CI = [0.37s,2.67s], by-type models, controlling for

EV). As Figure 7, Panels e, g, and h show, there were no reliable dif-

ferences in responses to uncommon versus foreseeable or expected

gambles for the other three payoff–probability combinations (all CIs

include 0; see Supplementary Material). Note that this result deviates

from Experiment 1, where all uncommon combinations of risk and

reward were evaluated more conservatively. Across both experiments,

the most pronounced change in RTs was observed when gambles

were both uncommon and of high value. This finding is consistent with

uncommon, high-value options redefining the range of possible EVs:

High-payoff/high-probability gambles were uncommon in the nega-

tive condition (all other EVs below 600E$), where such high-value

gambles had not been experienced in the environment gambles.

4.2.3 Pupil dilation

We analyzed pupil responses at two time points. Pupillary responses

to payoffs only (t1) were used to test the influence of payoff mag-

nitude: We expected that pupil size would not vary between high

and low payoffs at t1. This was indeed the case across all conditions

(bunc = −0.07, CI = [−0.91,0.76], using the uncorrelated condition

as baseline; bneg = −0.40, CI = [−1.59,0.71], bpos = −0.33, CI =
[−1.52,0.88], all comparisons high payoff > low payoff. Results were

qualitatively the same with and without excluded trials; see Supple-

mentary Materials). We expected pupil dilation to change as a function

of whether or not a gamble had an uncommon payoff–probability

combination. Figure 8 shows mean changes in pupil dilation after both

payoff and probability information were presented (t2). Panels a–d

suggest that pupil size was not associated with gambles being uncom-

mon (buncom. > fores. = 0.06, CI = [−0.60,0.73], buncom. > ref. = 0.05, CI

= [−0.98,1.09], base effects model across gamble types; controlled

for EV).

Rather, as for the RTs, there was an interaction between gambles

with an uncommon payoff–probability combination and the gambles'

value (buncom. > fores. = 3.24; CI = [1.44,5.07], buncom. > ref. = 1.63; CI =
[−0.22,3.48], interaction pay–prob combn × uncommon, controlling

for EV). Note that in Figure 8b, the pupil size was reliably different

from 0 but not from gambles being foreseeable (buncom. > fores. = 1.16;

CI = [−0.38,2.17], by-type model for the high-pay/high-probability

gamble, controlling for EV). Panels a, c, and d show that the change

in pupil dilation for the other gamble types was statistically indistin-

guishable from a 0% change, regardless of whether these gambles

were uncommon or not.

In sum, both RTs and pupil dilation differed as a function of gam-

bles being uncommon and of high value. In an exploratory analysis,

we found that these two indicators were also correlated with each

other for the high value but not low-value gambles (brt = 0.51;

CI = [0.06,0.96], interaction RT × payoff–probability combination

using low-pay/low-probability gambles as a baseline). Across all

gambles, RTs and pupil dilation were even anticorrelated (brt = −0.08;

FIGURE 8 Pupil dilation after gambles were presented (with both
payoff and probability information on the screen). Pupil dilation was
computed as the median percentage change from 1,000–2,000 ms
after the stimulus. Black dots and error bars represent the mean and
the 95% posterior predictive distribution [Colour figure can be
viewed at wileyonlinelibrary.com]

CI = [−0.13, −0.33], predicting pupil dilation from RTs as a main

effect, controlling for participant variation and EV).

4.3 Summary of Experiment 2

Experiment 2 corroborates the finding that people develop expecta-

tions about options appearing in a particular risk–reward environment.

As in Experiment 1, this was evident in longer RTs for uncommon gam-

bles. This effect was driven by high-payoff/high-probability gambles

that were of higher value than the other gambles in the set. More-

over, there were some differences in pricing, such that prices partially

reflected participants' expectations in a given environment. This result,

however, was not robust across payoff magnitudes or across baseline

comparisons, so we do not elaborate on it further. Lastly, like RTs,

uncommon high-value options were associated with a reliable increase

in pupil dilation. However, pupil dilation was not sensitive to whether

a risk–reward combination was foreseeable or uncommon per se.

5 GENERAL DISCUSSION

Decision makers often face environments in which risks and rewards

are systematically related (Pleskac & Hertwig, 2014). We found evi-

dence that such regularities leak into people's evaluations of risky

options—especially if these options represent an uncommon com-

bination of risk and reward. We investigated the extent to which
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uncommon options were linked to three indicators: prices, RTs, and

pupil dilation and found that some, but not all, of these indicators were

linked to whether a gamble matched or mismatched the learned envi-

ronmental structure. Next, we discuss these three indicators in detail

and consider their broader implications for preferential choice.

Do people evaluate uncommon options differently from foresee-

able options? Across experiments and gamble types, we did not find

robust evidence for this as indicated by the selling prices participants

provided. This suggests that risk–reward structures may play only a

tangential role (if any) in shaping preferences in decisions under risk,

when both payoffs and probabilities are known. Earlier research sug-

gested that risk–reward structures do shape preferences in decisions

under uncertainty—decisions in which probabilities are unknown or

difficult to ascertain (Pleskac & Hertwig, 2014). It has been shown

that people infer the unknown probability directly from the payoff in

decisions under uncertainty and adapt their inferences to previously

learned risk–reward structures. As the inferred probability, together

with the payoff, determines the subjective value of the option, differ-

ent choice ecologies can lead to different choices (Leuker et al., 2018).

In decisions under risk, by contrast, such inferences are not necessary

and apparently are not made.

How do people process uncommon options? Our data show that

people take more time when evaluating an option when it is uncommon

rather than foreseeable. How much longer people take to evalu-

ate an uncommon option also depends on whether the option is of

high value (high payoff/high probability) or of low value (low pay-

off/low probability). Specifically, high-payoff/high-probability options

were uncommon in the negative condition, which was characterized

by otherwise similar and smaller EVs (all below 700E$), suggesting

that participants were sensitive to the range of possible rewards in

the given experiment (see Ludvig et al., 2014, 2018, for a similar find-

ing in decisions from experience). These results are consistent with

range–frequency theory (Parducci, 1965). This uncommon high-value

effect was also present in pupil dilation. The differences between

high-value and low-value gambles are consistent with a ‘‘hold your

horses’’ mechanism by which people behave less impulsively in the

presence of high-value options (Cavanagh et al., 2014; Frank et al.,

2007). That is, more scrutiny is required when high payoffs are at stake.

We note that processing differences in response to these uncom-

mon combinations of risk and reward (that is, ‘‘risk–reward novelty’’)

can be dissociated from pure novelty. While participants' RTs for novel

gambles (first five trials) were substantially longer than RTs for any

of the test gambles, differences between uncommon and foresee-

able/reference gambles persisted (see Supplementary Materials S1.4

and 2.5 for these analyses).

More generally, our data bring a new perspective to the growing

body of research on how the environmental distribution of monetary

payoffs and probabilities influences how otherwise identical options

are evaluated (Birnbaum, 1992; Ludvig et al., 2014, 2018; Stewart et al.,

2006; Stewart et al., 2015; Walasek & Stewart, 2015). Here we show

that people go beyond evaluating options from the given information.

Instead, our results point to a mixture of evaluations from given

information and evaluations from the environment. For instance, prices

for uncommon options approximated the options' EVs but sometimes

shifted in the direction of environmental expectations. What is more,

we observed systematic shifts in the way that uncommon options were

processed. Such environment-based evaluations are not anticipated by

prominent theories of choice, which conceptualize risks and rewards

as independent attributes that determine the expected utility of an

option (von Neumann & Morgenstern, 1944) or its subjective value

(Tversky & Kahneman, 1992).

In addition, our results bring a novel dimension to studies of surprise.

We show that feedback is not a prerequisite for the mind to detect

uncommon options in risk–reward environments, as is the case for

‘‘risk-prediction errors’’ (Bossaerts, 2010; O'Neill & Schultz, 2013;

Preuschoff et al., 2008) or ‘‘reward-prediction errors’’ (Schultz, 2002;

Schultz et al., 1997). Instead, it is necessary for the mind to have

a representation of the risk–reward structure of the environment.

Similar to feedback–based paradigms, in our experiments, it also

mattered whether an option was of high or low value.

What is the function of detecting uncommon options in risk–reward

environments? In value-based choice, reward–prediction errors are

thought to aid reward-based learning–for example, after obtaining an

unexpected reward, a person may expect similar rewards to occur

again. A similar mechanism would be plausible in risky choice if par-

ticipants anticipated the uncommon high-value option being added

to their bonus at the end of the study (without feedback after each

choice). Paying attention to risk–reward combinations is crucial to

maintaining an accurate model of the world, as risk–reward relation-

ships may vary across environments. For instance, the relationship

is stronger in monetary domains than in nonmonetary domains, see

(Pleskac & Hertwig, 2014). However, the amount of evidence needed

before a model is adjusted remains an open question. Our previous

experiments suggested that the risk–reward regularity people extract

largely reflects the structure of the environment trials (Leuker et al.,

2018). Maintaining a representation of the risk–reward relationship

even after seeing uncommon risk–reward combinations would be con-

sistent with a ‘‘rule-plus-exception model,’’ according to which people

may learn exceptions to a rule instead of updating that rule if they

are unable to identify the rule that would account for the excep-

tions (Nosofsky et al., 1994). For instance, a person ‘‘might regard a

single-dimension rule as tentatively acceptable as long as it correctly

classifies 60% of the incoming exemplars’’ (p. 56).

In value-based decision making, extracting a rule from the

overall environment and forming expectations may serve a very

particular function: to help people identify and correctly respond to

better-than-average options. Forming expectations in this way may

translate to nonlaboratory environments in which risks and rewards

are inversely related, for instance when playing the lottery, betting

at the horsetrack (Pleskac & Hertwig, 2014), or investing in the

stock market. In these environments, people know that there is

usually ‘‘no free lunch,’’ in that the larger rewards they desire occur

only rarely—and if they are lucky enough to get a ‘‘free lunch’’ once,

it does not mean that their model of risk–reward environments will

change.

6 CONCLUSION

When making decisions under risk, people take into account the

degree to which an option matches or deviates from the general
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risk–reward regularities in an environment. Although this does not

impact their evaluations of the option's value, they inspect uncommon

options more carefully; this holds primarily when uncommon options

offer a high EV. Forming expectations about risk–reward relationships

may help people to identify above-average options and channel

limited attentional resources there. Doing so can be adaptive in many

environments in which risks and rewards are inversely related.
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