
1 

 

Numerical study on nonlinear growth of m/n=3/1 double tearing mode in high Lundquist 

number regime 

 

W. Guo1, J. Ma1, Q. Yu2 

 

1Institute of Plasma Physics, Chinese Academy of sciences, Hefei 230031, People’s Republic of China 

2Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany 

 

E-mail: wfguo@ipp.ac.cn and junma@ipp.ac.cn 

 

Abstract 

The nonlinear growth of the m/n=3/1 double tearing mode (DTM) is numerically investigated in 

cylinder geometry with non-monotonic radial profiles of the equilibrium safety factor, having two q=3 

surfaces. The formation of plasmoids is found in high Lundquist number regime in such configurations 

for the first time. During the nonlinear growth of DTM, long and thin Sweet-Parker (SP) current sheets 

are formed near the original inner and outer rational surfaces and become tearing unstable for a large 

enough Lundquist number, leading to secondary and tertiary magnetic islands which accelerate the 

magnetic reconnection. The plasmoids also affect the magnetic topology at nonlinear mode saturation. 

The system can eventually saturate at a quasi-stationary state with small island pairs. The simulation 

results show that the Lundquist number and the distance between two rational surfaces have important 

effects on plasmoids formation.  

 

1. Introduction 

 

In tokamak experiments, non-monotonic radial profiles of the safety factor q with centrally 

reversed magnetic shear[1] can lead to the formation of the internal transport barrier and higher 

bootstrap current fraction than that in standard H-mode plasmas [2]-[4], being attractive for steady 

operation of a fusion reactor. However, as there are two rational surfaces with the same safety factor for 

such magnetic configurations, it is well known to be subject to resistive double tearing mode [5][6] 

(DTM), which can result in confinement degradation or even disruptions. Understanding of the 
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nonlinear evolution of DTM is therefore an important issue in fusion research. In addition to tokamak 

experiments, the DTM is also of great interest in the multiple current sheet system in space plasmas [7]. 

Many theoretical efforts have been devoted to investigate the DTM physics before, including the 

studies on both the linear and nonlinear growth of DTM. In the linear regime, it has been found [8][9] 

from the reduced MHD model that the resistivity dependence of the growth rate 𝛾 varies between 

𝛾~𝜂ଵ/ଷ and 𝛾~𝜂ଷ/ହ, depending on the distance between the two rational surfaces. In nonlinear regime 

the DTM growth is also strongly affected by the separation of two rational surfaces. For a large enough 

separation, the magnetic islands grow and saturate more like two single tearing modes. When the two 

rational surfaces are closer, the coupling of inner and outer islands is enhanced. The inner magnetic 

islands expands toward the X points of outer ones, while the outer islands expands toward the X points 

of inner ones, leading to Sweet-Parker (SP) current sheets and flow-driven type magnetic reconnection 

process [9]-[13]. For rather closed rational surfaces, there could be broad linear spectra [14] with larger 

growth rate for the high mode numbers [15]. If the distance between the two resonant surfaces is too 

small, however, two resistive layers are merged into a single one, and the mode becomes stable [16]. 

Other effects on DTM, such as anomalous electron viscosity [17], Hall effect [18], shear flow [19][20], 

and guiding field [21][22], have also been studied 

 Most of the studies on DTM were carried out with relatively low Lundquist number (usually 

below 106). In existing tokamak experiments, however, the Lundquist number is much higher (107~109) 

[23]. In the high Lundquist number regime, recent results [24]-[30] indicate that the magnetic 

reconnection can be quite different from that in low Lundquist number regime. The SP current sheet 

may become tearing unstable and break up into plasmoids, leading to much faster reconnection than 

that predicted by the Sweet–Parker reconnection model. In slab geometry the SP current sheets become 

unstable for Lundquist number 𝑆∗ ൐ 10ସ (defined by characteristic length of SP current sheet) 

[31]-[37], and in toroidal geometry when poloidal magnetic field alone has been used for the definition 

of the local Lundquist number[38][39]. It is of great interest to learn if similar physics exists in the 

reversed magnetic shear configuration of tokamak plasmas, and how the nonlinear dynamics of DTM is 

affected by the Lundquist number and the q-profile.  

For this purpose, a non-reduced conservative resistive MHD model [40][41] is extended to 

cylindrical geometry, which corresponds to the large aspect ratio approximation of tokamak plasmas, 

and a 5th order Weighted Essentially Non-Oscillatory (WENO) scheme is applied to build up a new 

numerical code. Using this new code, the nonlinear evolution of the m/n=3/1 DTM is numerically 

studied with the Lundquist number up to 107, where m and n are poloidal and toroidal mode numbers, 

respectively. This paper reports the major findings of our numerical calculations. Plasmoids formation 

is found for a sufficiently high Lundquist number, which accelerates the magnetic reconnection and 

affects the topology at nonlinear mode saturation. The distance between two 𝑞 ൌ 3 rational surfaces is 

also found to have an important effect on plasmoids formation.  
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In the next section the conservative resistive MHD model in cylindrical geometry and the 

numerical approaches for solving the nonlinear MHD equations are described. In Section 3, our 

numerical results are presented, followed by the discussion and summary in Section 4. 

 

2. Physical Model 

 

A straight cylindrical tokamak geometry with the plasma minor radius a  and major radius 𝑅଴ is 

considered, in which the space coordinates are ሺ𝑟, 𝜃, 𝜑ሻ with periodicity along the poloidal angle 𝜃 

and toroidal angle 𝜑. The non-reduced compressible MHD equations in conservative form of mass, 

momentum, energy and magnetic field are[41] 

  0t    V   (1) 
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 t eq       B VB BV B B   (4) 

In addition, the divergence-free constraint of magnetic field, 0  B , is also applied. In above 

equations the subscript eq stands for equilibrium. 5 / 3  .  , V , p , B , J ,  ,   are 

plasma density, velocity, pressure, magnetic field, current density, viscosity and resistivity, respectively. 

Following normalizations have been applied: 00/   , 2
00 0// ( )p B p  , / AV V V , 

00/ B B B , 00 0/ ( / )B a J J , 00/ ( )AaV   , 2
0 // ( )Aa    , /r a r , 

0 0/R a R , / At t  , in which 00 , 00B  are constant, 2
00 0 00/AV B    is Alfvén speed, 

and /A Aa V   is Alfvénic time. The Lundquist number is defined as /AS aV  . The general 

form of equation (1)-(4) can be written as 
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   ꞏt eqU S  F                                    (5) 

where 
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BV            (6) 

is an array of mass, momentum, energy and magnetic field, 𝐅 is the corresponding flux, and 𝑆௘௤ is 

source. In equation (6) the quantities are expressed in a Cartesian coordinate, being related to that in 

cylindrical geometry by the relations  
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The helical symmetry of scalar variables, 𝜌ሺ𝑟, 𝜃, 𝜑ሻ ൌ 𝜌ሺ𝑟, 𝜁 ൌ 𝜃 െ ሺ𝑛/𝑚ሻ𝜑ሻ is utilized. In the 

coordinates ሺ𝑟,ζ, 𝜑ሻ equation (5) becomes  

    
0 0

ꞏ ꞏ ꞏt r r eq

nr r
rU r rS

mR R    
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            

    
e F e e F e F           (8) 

 To solve equation (8) numerically, a 5th order accuracy of WENO method [42] based finite 

difference discretization and a flux-difference-splitting (FDS) approach [43] for generalized hyperbolic 

conservative system in smooth curvilinear grids are applied in the ሺ𝑟, 𝜁ሻ computation domain. The 

divergence free condition on the magnetic field in computation is ensured by using the hyperbolic 

divergence cleaning (HDC) method proposed by Dedner[44]. In practical works we solve the perturbed 

form of (8). A new initial value code has been built up using above mentioned methods.  

In order to check our initial value code, an eigenvalue code has also been built up. The 

comparison of the numerical results from the initial value code and eigenvalue code are given in the 

Appendix, indicating that they agree with each other. 

 The equilibrium condition in our work is basically ∇𝑝 ൌ 𝐉 ൈ 𝐁. In addition the source terms are 

added in equations (3) and (4) to satisfy energy and magnetic field balance in the absence of 

perturbations. A non-monotonic radial profile for the original equilibrium safety factor is assumed for 

our calculations, 
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      (9) 

with 𝜆 ൌ 1, 𝑟଴ ൌ 0.412, 𝛿 ൌ 0.273, 𝑟ఋ ൌ 0, and 𝑐 ൌ 3. The value of 𝑞௖ is varied to have different 

radial positions of 𝑞 ൌ 3  resonant surfaces at r = 𝑟ଵ and 𝑟ଶ, as shown in figure 1, where 𝛥𝑟 ൌ

ሺ𝑟ଶ െ 𝑟ଵሻ is the distance between the two resonant surfaces.  

 

Figure 1 Radial profiles of the safety factor 𝑞ሺ𝑟ሻ with different separations between two rational surfaces. 

 

Other input parameters used in our simulations are 𝑅଴ ൌ 4𝑎 and 𝜈 ൌ 1 ൈ 10ିଵ଴. The plasma 

resistivity 𝜂 is assumed to be a constant in space. Different Lundquist number S is used in calculations 

by varying the 𝜂 value. The radial computation domain is from 0 to a. We have used different number 

of grids to test the numerical convergence. The radial grid number varies from 1000 up to 2400 and 

poloidal grid number from 192 to 768. It was found that comparing the results from 1500×384 grids to 

that from more grids, the difference in the linear growth rate is less than 1%, and the nonlinear results 

are quite similar. The time step is determined though the CFL condition with a fixed CFL number 0.8. 

In addition to the m/n=3/1 component, high harmonics of m/n=3/1 component, such as m/n=6/2, 

9/3, … as well as the 0/0 component are also taken into account in our calculations. 

 

3. Numerical Results 

 

We first look into the nonlinear growth of DTM in low Lundquist number regime (𝑆 ൏ 10଺). One 

important feature of the nonlinear evolution of DTM is the formation of Sweet-Parker type current 
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sheets (with a smaller ∆𝑟) or even sharp current points (with a larger ∆𝑟) as reported in previous 

works [10]. These results are reproduced using our initial value code. One example is displayed in 

figure 2 with 𝑆 ൌ 2 ൈ 10ହ and ∆𝑟=0.182. Figures 2 (a) to (d) show the magnetic surfaces at different 

times. It is seen that during the DTM growth, the inner magnetic islands grows outwards toward the X 

points of outer ones, while the outer islands grows inwards toward the X points of inner ones, 

indicating the strong coupling between the inner and outer magnetic islands and a flow-driven type 

magnetic reconnection process.  

Figure 2 (e) and (f) shows the corresponding radial profiles of the safety factor and plasma current 

density at the beginning (t=0) and at nonlinear mode saturation (t=1370). The q-profile flattens to about 

q=3 in the region between the original two q=3 surfaces, as also seen from existing publications 

[6][9][13]. The current density profile significantly changes around two q=3 surfaces and in the region  

between them, while the total current remains the same as the initial one due to the source electric field 

in Ohm’s law. In this example intensive SP currents sheets near X points are observed, while current 

points have been found in other examples, e.g. ∆𝑟 ൌ 0.286. These results are in agreement with 

previous findings [9]-[13], and no plasmoids are found. 

  

(a)                  (b)                  (c)                 (d) 

 

(e)                                          (f) 

Figure 2 Nonlinear evolution of DTM with 𝑆 ൌ 2 ൈ 10ହ and ∆𝑟 ൌ 0.182. The poloidal magnetic surfaces at (a) 

t = 700, (b) t = 900, (c) t = 1100, and (d) t = 1370. The safety factor and current density profiles at t = 0 and t = 
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1370 are plotted in (e) and (f). 

 

 For higher Lundquist numbers, the nonlinear evolution of DTM has a big difference from that for 

lower ones, and plasmoids are observed frequently. The critical value of Lundquist number [34][35] for 

plasmoid instability defined by 𝑆∗ ൌ 𝑙𝑉஺/𝜂 ൌ 𝑆 ∙ 𝑙/𝑎, where l is half-length of SP current sheet, is also 

given below. An example with 𝑆 ൌ 5 ൈ 10଺ and ∆𝑟 ൌ 0.182 is shown in Figure 3. The contour lines 

show the poloidal magnetic surfaces, and the color maps indicate the toroidal current density 𝐽ఝ at 

different time. During the nonlinear growth of DTM, long and thin SP current sheets are formed near 

the X points of the inner and outer islands at 𝑟 ൌ 0.563 and 𝑟 ൌ 0.270, respectively, as shown in the 

figure (a). The outer current sheets become unstable first, and m/n=3/1 secondary islands arise from the 

central part of the outer current sheets at the poloidal angle 0, 2𝜋/3 and 4𝜋/3, separating the outer 

SP current sheets into equal ribbons, as displayed in figure (b). The maximum length-to-thickness 

aspect ratio of outer current sheet reaches 𝛼୭୳୲ ൎ 45.1 (at t ൌ 3020) with 𝑆௢௨௧
∗ ൎ 9.7 ൈ 10ହ before 

breaking up, meanwhile the aspect ratio of the inner current sheets reaches 𝛼௜௡ ൎ 28.9. As the outer 

secondary islands grow, the inner current sheets develop with increasing aspect ratio, and the inner 

secondary islands appear until 𝛼௜௡ reaches 39.3 with 𝑆௜௡
∗ ൎ 7.1 ൈ 10ହ, as seen from figure 3 (c). 

Afterwards the outer secondary islands expand slowly inward and the inner secondary islands expand 

outward, thus the outer and inner main islands are squeezed to form new current sheets and become 

unstable, which give rise to tertiary islands, as shown in (d) and (e). When the tertiary islands grows, 

the secondary islands start to shrink until they are about equal in size, forming quasi-stationary m/n=3/1 

island pairs that only decay at the current diffusion time scale, as shown in (e). An interesting fact is 

that the outer plasmoids can reach larger size than the inner ones. This is also true in the final 

quasi-stationary state. The time evolution of kinetic energy and magnetic energy is shown in figure (f), 

covering both the linear (t൏1100) and nonlinear stage, and the time spots of outer and inner plasmoids 

formation are pointed out by arrows. 

 This novel quasi-stationary state with multiple island pairs is formed mainly due to two reasons. 

The first one is the formation of tertiary islands as a consequence of secondary islands evolution. Since 

the secondary and tertiary islands have inverse magnetic flux, they cannot merge, so that the island 

pairs are maintained. Without this tertiary island the secondary island will keep reconnecting until it 

disappears, leading to a conventional quasi-stationary state as reported in previous works. The second 

reason is the poloidal symmetry of magnetic flux in each m/n=3/1 sector is exactly preserved in our 

simulations. A very slight poloidal asymmetry induced either by initial setup or during simulation by 

numerical error will not lead to visible effect before the generation of tertiary islands. When a tertiary 

island grows, however, the poloidal asymmetry leads to poloidal shift of the tertiary island, and then 

the secondary and tertiary islands will escape from each other and quickly shrink, and the system 

decays to a conventional state. 
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A sufficiently high Lundquist number S is always found to be required for the generation of 

plasmoids in our calculations, since the SP current sheets become thinner with decreasing resistivity. In 

general a current sheet becomes unstable only when a sufficiently large aspect ratio is reached. In 

above example, both inner and outer plasmoids are formed. In other cases inner plasmoids are not 

generated even if there are outer ones. This is due to the radial asymmetry of inner and outer current 

sheets, to be addressed in the following.  

  

(a)                                           (b) 

  

(c)                                           (d) 
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(e)                                           (f) 

 

(g) 

Figure 3 Plasmoids formation and evolution in high Lundquist number regime with 𝑆 ൌ 5 ൈ 10଺ and ∆𝑟 ൌ

0.182. The poloidal magnetic surface (contour lines) and the toroidal current density 𝐽ఝ  (color maps) are 

displayed at different time, (a) t=3000, (b) t=3330, (c) t=3500, (d) t=3680, (e) t=3750, and (f) t=4500. The time 

evolution of kinetic energy (EK) and magnetic energy (EM) is plotted in (g). 

In addition to the Lundquist number, the distance between two resonant surfaces also significantly 

affects the results. Plasmoids formation has been observed only for an intermediate range of ∆𝑟. For a 

too small ∆𝑟, e.g. ∆𝑟 ൌ 0.114, the minimum value of the safety factor, 𝑞௠௜௡ ൌ 2.93, is close to 

𝑞 ൌ 3 and the fraction of the 𝑞 ൏ 3 part is too small, so there is no enough free energy to drive the 

flow-driven reconnecting SP current sheets. For a too large ∆𝑟, e.g. ∆𝑟 ൌ0.310, the SP current sheets 

formed near X points are too short, and the aspect ratio is not high enough similar to that of a single 

tearing mode.  

Furthermore, the effect of ∆𝑟 upon the inner and outer plasmoids is different. The generation of 

outer plasmoids is robust for 𝑆 ൒ 10଺ and 0.151 ൑ ∆𝑟 ൑ 0.286. However, the generation of inner 

0 1000 2000 3000 4000 5000

10
-8

10
-6

10
-4

 t

 

 

    E
K

    E
M

Linear Stage

Outer Plasmoid

Inner Plasmoid



10 

 

plasmoids requires higher Lundquist number and a narrower range of ∆𝑟. For 𝑆 ൌ 2 ൈ 10଺, inner 

plasmoids are found for relatively small ∆𝑟, e.g. ∆𝑟 ൌ 0.151 and ∆𝑟 ൌ 0.182. Locating at a smaller 

minor radius, the inner SP current sheets are usually shorter than outer ones. When ∆𝑟 is further 

increased, the inner rational surface is located closer to r=0, thus the length of inner SP current sheets 

are shorter, resulting in a lower aspect ratio of the current sheet. With ∆𝑟 ൌ 0.224, inner secondary 

island is observed for 𝑆 ൒ 5 ൈ 10଺. For an even larger value of ∆𝑟, ∆𝑟 ൌ 0.249, the poloidal 

elongation of inner SP current sheets is severely restricted, as shown in figure 4 for 𝑆 = 5 ൈ 10଺. The 

inner SP current sheets form near 𝑟 ൌ 0.17 as seen from figure (a), and later they move inward during 

nonlinear mode growth as shown in figure (b). The maximum aspect ratio during DTM evolution is 

𝛼௜௡ ൎ 26. No inner plasmoids form in this case, while the outer plasmoids are generated and a 

quasi-stationary state with outer island pairs is reached. For such a value of ∆𝑟, inner plasmoids are 

absent even for 𝑆 ൌ 10଻. This indicates that the minor radius of the inner resonant surface, which 

changes during the nonlinear mode growth, also affects the local plasmoids formation.  

Similarly, the difference in the birth time of outer and inner secondary islands is also affected by 

∆𝑟. The inner secondary islands always form later than outer ones, with a time delay ∆𝑡௜௢. When ∆𝑟 

is increased, ∆𝑡௜௢  becomes larger. For example, in the cases with 𝑆 ൌ 5 ൈ 10଺ , ∆𝑡௜௢ ≅ 70 for 

∆𝑟 ൌ 0.151, ∆𝑡௜௢ ≅ 330 for ∆𝑟 ൌ 0.182 and ∆𝑡௜௢ ≅ 460 for ∆𝑟 ൌ 0.224. 

 

(a)                                          (b) 

Figure 4 Poloidal magnetic surfaces at (a) t=7400 and (b) t=7800 for ∆𝑟 ൌ 0.249 and 𝑆 ൌ 5 ൈ 10଺. The inner 

SP current sheets move inward and become shorter during mode growth.  



11 

 

 

Figure 5 Plasmoids generation during nonlinear growth of DTM shown in the 𝑆 െ ∆𝑟 plane. Three different types 

of results are marked: With only outer plasmoids (circles), with both inner and outer plasmoids (squares), and no 

plasmoids (crosses). 

 

The plasmoids generation mentioned above is summarized in a 𝑆 െ ∆𝑟 plane in Figure 5. A high 

enough Lundquist number, 𝑆 ൌ 10଺, is required for outer plasmoids generation and 𝑆 ൌ 2 ൈ 10଺ for 

inner ones. The corresponding critical values of 𝑆∗ ሺൌ 𝑆 ∙ 𝑙/𝑎ሻ are 𝑆∗ ൎ 1.9 ൈ 10ହ and 𝑆∗ ൎ 2.8 ൈ

10ହ for the outer and inner plasmoids generation. Both values are higher than the critical value 

𝑆∗~10ସ in slab geometry. The amplitude of poloidal field around the current sheet is about 4%~5% of 

the toroidal filed. Using the poloidal field in the definition of the minimum local Lundquist number 

lead to the value 4 ൈ 10ସ~5 ൈ 10ସ for plasmoids generation, and the value is about 10ସ when 

further taking into account the length of current sheet. 

To study the reconnection rate related to plasmoids in high Lundquist number regime, the outer 

secondary island width, w, at different time is measured, and its growth speed 
ௗ௪

ௗ௧
 is calculated when w 

grows from 0.02 𝑎 to 0.1 𝑎. The reconnection rate related to plasmoids is defined as 

𝑅𝑎𝑡𝑒 ൌ 𝑎 ቀ
ௗ௪

ௗ௧
ቁ

ିଵ
                                    (10) 

and displayed by the curve with crosses in figure 6 for different Lundquist numbers. The reconnection 

rates predicted from other models are also plotted for comparison. The dot dash line and dashed line 

show the classical tearing mode scaling (~𝑆ିଷ/ହ) and Sweet-Parker reconnection scaling (~𝑆ିଵ/ଶ), 

respectively, with the assumption that they have the same value as the numerical results for S = 106, in 

order to illustrate the different slope of the curves.  It is seen that with increasing Lundquist number, 

the reconnection rate is larger than that given by the tearing mode and Sweet-Parker scaling, indicating 

that the formation of plasmoids accelerates the reconnection. 
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Figure 6 Reconnection rate versus S. The curve with crosses represents the reconnection rate of m/n=3/1 outer 

secondary islands obtained numerically. The dot dash line and dashed line show the classical tearing mode scaling 

(~𝑆ିଷ/ହ) and Sweet-Parker reconnection scaling (~𝑆ିଵ/ଶ), respectively, with the assumption that they have the 

same value as the numerical results for S = 106. 

 

4. Discussion and Summary 

 

In recent simulations of the resistive internal kink mode instability of tokamak plasmas, plasmoids 

were found to appear during sawtooth crashes for 𝑆 ൐ 10଺, as seen from figure 4 of reference [45]. 

This S value is close to that of our results found in the nonlinear growth of DTM. Differing from the 

slow growth of a single resistive tearing mode, both the internal kink mode and the DTM have a 

common feature, the accelerated mode growth and resulting thin current sheet in the nonlinear phase. 

These indicate that plasmoids formation is a fundamental phenomenon for the fast growing nonlinear 

MHD instabilities in tokamak plasmas, in which the S value is usually larger than 10଻ except in the 

region being very close to the plasma edge. High Lundquist number S required for the generation of 

plasmoids is as expected, since a large plasma resistivity causes a fast resistive diffusion of a current 

sheet, increasing its width and decreasing its aspect ratio, and the critical aspect ratio for plasmoids 

formation cannot be reached. 

Previous numerical works [32]-[37] have revealed that in slab geometry, when the Lundquist 

number is high enough (𝑆∗~ 104), the length-to-thickness aspect ratio 𝛼 ൌ 𝐿/𝛿ௌ௉ of the SP current 

sheets rises to the level 102. Then the SP current sheets break up, leading to plasmoids. This threshold 

value of S for plasmoids formation in slab geometry is much lower than that in cylinder geometry. If 

we use poloidal magnetic field and length of SP current sheet in the definition, the critical Lundquist 

number is about 104 similar to the previous definitions in tokamaks[38][39]. Another difference 

between the cylinder and slab geometry is the asymmetry of the plasmoids formation at two resonant 
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surfaces in cylinder geometry. The inner SP current sheets are usually shorter than outer ones when the 

plasma resistivity is assumed to be a constant in space. Considering that the electron temperature is 

higher in the central region of tokamak plasmas, the plasma resistivity is smaller at the inner resonant 

surface. This suggests that inner plasmoids can be generated more easily in experiments than the results 

shown in this paper, depending on the radial profiles of the safety factor and plasma resistivity.  

The distance between two resonant surfaces (∆r) affects plasmoids formation as shown in figure 5. 

It is worth to point out that the amplitude of equilibrium magnetic shear on both q = 3 rational surfaces 

reduces monotonically with reducing ∆r, so that the effect of ∆r upon plasmoids formation and 

evolution also includes the contribution of the change in magnetic shear. A further investigation of 

shear effect alone is still required. 

Our study is limited to the m/n=3/1 DTM with two q = 3 rational surfaces in a cylindrical 

geometry. For different mode numbers and q-profiles, the nonlinear dynamics might be different, since 

the mode growth rate and the poloidal elongation of current sheets are different. The m/n=3/1 DTM in 

cylinder geometry has helical symmetry, and only components with the same helicity, such as the 

m/n=6/2, 9/3, ... are coupled together (in addition to the 0/0 component) during the nonlinear mode 

growth. The growth of these high harmonics due to nonlinear mode coupling leads to the plasmoids. In 

a realistic toroidal geometry, mode coupling between modes with different helicity is inevitable, which 

might lead to different dynamics of plasmoids. 

In summary, a new initial value code has been developed in cylinder geometry based on the 

conservative perturbed resistive MHD model and a conservative finite difference method of 5th order of 

accuracy. Using this new code, the nonlinear evolution of m/n=3/1 DTM is studied numerically in the 

configuration with centrally reversed magnetic shear, and plasmoids formations are observed in such a 

configuration for the first time. The nonlinear dynamics in the low and high Lundquist number regimes 

are found to be quite different. For 𝑆 ൒ 10଺, the aspect ratio of SP current sheets reaches the critical 

value, and plasmoids near outer and inner rational surfaces are formed with appropriate distance 

between two resonant surfaces. A quasi-stationary state with m/n=3/1 island pairs are reached. The 

magnetic reconnections related with plasmoids formation are accelerated in high Lundquist number 

regime. 
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Appendix  Benchmark between the initial value and eigenvalue codes 

For linear analysis, the eigenvalue method is also used. Linearizing equations (1)-(4) and applying 

Fourier transform upon linear terms like 𝜌෤ ൌ 𝜌௠,௡ሺ𝑟ሻ𝑒ఊ௧ି௜ሺ௠ఏି௡ఝሻ, where 𝛾 is linear growth rate, one 

has 𝜕௧ → 𝛾, 𝜕ఏ → െ𝑖𝑚 and 𝜕ఝ → 𝑖𝑛. In radial direction a 4th order finite difference discretization of 

the operators 𝜕௥ is applied, forming the following eigenvalue problem 

      , ,m n m nAX X                                 (A1)   

in which A is a matrix containing given parameters and discretized radial differential operators, and 

𝑋௠,௡ ൌ ሺ𝜌, 𝑉௥, 𝑉ఏ, 𝑉ఝ, 𝑝, 𝐵௥, 𝐵ఏ, 𝐵ఝሻ௠,௡
்  is a vector of variables. Solving equation (A1) the linear growth 

rate and corresponding radial eigenmode structures are obtained. An eigenvalue code has been built up 

to benchmark the result of initial value code in the linear regime. For the initial value code, a 

sufficiently small initial perturbation is taken in order to obtain the linear results [40].  

The results obtained from both codes are presented in Figure A1, showing the linear growth rates 

as a function of Lundquist number (Figure A1(a)) and 𝛥𝑟 (Figure A1(b)). It is seen that the results 

from these two approaches are very close. The eigenmode structures of 𝑉௥ and 𝐵௥ from both codes 

are also quite close. An example with 𝑆 ൌ 5 ൈ 10଺ and ∆𝑟 ൌ 0.286 is displayed in Figure A1(c) and 

(d). 
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 (a)                                       (b) 

  

 (c)                                      (d) 

Figure A1 Comparisons of linear results from eigenvalue code (EV code) and initial value code (IV code). (a) 

Linear growth rate versus S with 𝛥𝑟 ൌ 0.286. (b) Linear growth rates versus 𝛥𝑟 with 𝑆 ൌ 5 ൈ 10଺. (c) Radial 

profiles of radial plasma velocity 𝑉௥ and (d) Radial profiles of radial magnetic field 𝐵௥, with 𝑆 ൌ 5 ൈ 10଺ and 

∆𝑟 ൌ 0.286. 
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