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ABSTRACT

Direct simulation Monte Carlo (DSMC) models have been successfully adopted and adapted to
describe gas flows in a wide range of environments since the method was first introduced by Bird in
the 1960s. We propose a new approach to modelling collisions between gas-phase particles in this
work — operating in a similar way to the DSMC model, but with one key difference. Particles move
in a mean field, generated by all previously propagated particles, which removes the requirement
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that all particles be propagated simultaneously. This yields a significant reduction in computation cell
effort and lends itself to applications for which DSMC becomes intractable, such as when a species

of interest is only a minor component of a large gas mixture.

1. Introduction

The direct simulation Monte Carlo (DSMC) method has
successfully been applied to describe a plethora of gas-
phase systems in the decades since it was first introduced
[1,2]. Indeed, DSMC is the typical method adopted for
simulating rarefied gas flows that are not accessible to
molecular dynamics simulations (due to the high number
of particles in the system) or the Navier-Stokes equation
(because of the break down of the transport term [2]).
With DSMC, a collection of simulated particles is taken
to represent the properties of a large number of physical
particles. All simulated particles are propagated simulta-
neously. The simulation volume is divided into a series
of subcells, and the probability of a collision between a

pair of simulated particles during interval ¢ is calculated
by establishing the ratio of the volume swept out by the
cross sections of the particles to the volume of the subcell.
The position of each simulated particle is subsequently
updated, taking energy transfer into account if a collision
is deemed to have occurred, and the next timestep of the
calculation is performed. There are several key assump-
tions that underlie the DSMC method that have to be
satisfied for the approach to yield meaningful results. In
particular, a relatively small number of simulated parti-
cles (each representing f, physical particles) must be able
to represent the behaviour of the whole system. These
simulated particles are propagated ballistically and col-
lisions are performed stochastically, with the collision
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probability adjusted by f,, to reflect the properties of the
physical system.

We have previously developed a DSMC model incor-
porating rotational state-changing cross sections, and
this model has been shown to accurately reproduce
the rotational and translational cooling of ammonia
molecules seeded in a helium supersonic expansion [3],
in addition to successfully describing the thermalisation
of ammonia molecules colliding with helium atoms in
a buffer gas cell [4]. While we have demonstrated that
a DSMC model can represent these important collision
environments very well, it can be computationally expen-
sive to implement; a DSMC model becomes unfeasible
for systems with high numbers of particles, or where
there are mixtures of gases with a wide concentration
range. As such, there are limitations on the collision envi-
ronments that DSMC methods can simulate. For exam-
ple, our DSMC model cannot be easily applied to buffer
gas cells longer than approximately 0.5 cm, whereas many
experimental buffer gas cells are 1-2 cm in length [5].

In this paper, we propose a self-consistent mean field
DSMC (SCMFD) method as an alternative approach to
Bird’s DSMC method, for modelling collisions between
particles in certain gas-phase environments. This new
SCMEFD method relies on two key assumptions. Firstly,
the trajectory of a single particle is determined by the
mean field, but does not influence the mean field - it is
one particle in an ensemble of trillions (or more) par-
ticles. Secondly, the combination of a limited number
of trajectories is sufficient to reconstruct the mean field,
which consists of the density and velocity fields. The
probability of a collision between two particles is calcu-
lated a priori, in a similar way to the DSMC approach —
but without the need to convert the simulated particles
back to the real particles each simulated particle repre-
sents (i.e. removing the need for the f, correction factor).
There are three main benefits to this SCMFD approach:

(i) There is no need to distinguish between simulated
particles and physical particles.

(ii) Itis not necessary to recalculate the collision prob-
ability at timesteps where no collisions occur (as
the system has not changed and thus does not
need to be updated). This significantly improves
the speed of the calculation.

(iii) Individual particles can be followed - meaning
that one need not explicitly consider the same rela-
tive number of particles of each type as exist in the
physical system. This extends the applicability of
SCMED to systems where the species of interestisa
minor component of the gas mixture, which is one
of the reasons that the DSMC method can become
intractable. It removes the requirement that all
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particles be propagated simultaneously, enabling
resources to be focused on the collisions of interest,
as there is no need to explicitly consider collisions
between particles that are not of interest.

While the SCMFD method is currently only valid for
stationary flows (i.e. time-independent mean fields), it
reduces the number of interactions that need to be calcu-
lated between particles (which scales as N2), leading to a
significant decrease in the memory and time required to
perform the simulations. Collisions within a gas mixture
with many orders of magnitude difference in the concen-
tration of each species can be easily treated. This would
be especially advantageous for understanding the colli-
sion dynamics where there are low concentration ‘seed’
gases, or where there are complex cooling mechanisms at
play, as frequently occurs in supersonic expansions and
buffer gas cooling cells.

2. Method

The principles underlying the SCMFD method are
described — and demonstrated, in the subsequent sec-
tions — using two well-known scenarios. A homogeneous
gas and the ‘one-dimensional’ systems introduced by
Bird are considered, with the latter referring to systems
which are only confined in the x direction, and are oth-
erwise translationally invariant [2]. See the Appendix for
a derivation of the underlying principles of SCMFD and
several of the key equations in this section.

There are three main scenarios where the SCMFD
method can be readily applied:

(1) A closed system, where the number of particles is
finite and cannot change. In such cases, a particle is
tracked for a fixed number of steps and the number
density — the quantity of interest — is given by

B 1 NN;

Vi ng '

ni (1)
The total volume of the system, V, is divided into
subcells — as occurs in the DSMC method [2] - and
V; is the volume of subcell i. N is the number of
particles in the system, N is the number of simu-
lated particles, N; is the number of times a particle
is located in subcell i and g is the number of steps a
particle is propagated for.

(2) A steady flow. Given an inflow flux J (expressed as
the number of particles entering a subcell per unit of
time), N will increase with time. As the increase is
linear, the density is given by

1 11
i=—J-T{dt;) = —]—Ndt, 2
mi = o) - Tidh) v/ N, d @
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where T is the temperature of the system.

(3) When N goes to infinity, for example an ideal gas in
infinite space. In this case, the total volume must also
go to infinity. Assuming there is an average density
Pgas and the total volume V' = oo, then

1

\4
n = T * Pgas E(dtﬁ (3)

The value of (V/V;)(dt;) must be finite, and this can
be achieved by either taking V; — oo (as we do here)
or (dt;) — 0.

The above-mentioned cases do not provide an exhaus-
tive list, but simply outline a few of the possible imple-
mentations of our SCMFD approach. As each particle is
treated independently, it is possible to calculate as many
trajectories as one wishes for each particle type once the
mean field conditions have been satisfied.

2.1. Calculation of the collision probability

To illustrate how collision probabilities are calculated we
consider two particles, 1 and 2, with velocities v, and v;.
The particles are transformed into a frame of reference
where particle 2 is stationary, v, = v] = v; — v, and
vy = 0. The probability that particle 1 does not collide
with any of the particles in volume V is given by

P, = 1_[(1 - P(Ur,i)) ~ exp <_ ZP(vr,i)> > (4)

where the index i runs over all particles and P is defined in
appendix A3. We can evaluate the sum in the exponential

as
1
ZPMﬂzvgmwt

N1
= o D lvildt = nst(vio).  (5)
VN =

2.2. Variable hard sphere collisions

From the law of conservation of momentum, it can be
established that V; = V. Conservation of energy dictates
that the absolute value of the relative velocity of two col-
liding particles must also be constant. This means that the
relative velocity can only change in direction following a
collision. Using a variable hard sphere model, we define
an impact parameter b and consider the angle the impact
parameter makes with an arbitrarily chosen ‘origin’ plane,

b= (r1 + r2) cos(x/2), (6)

where x is the angle of the final relative velocity with
respect to the initial relative velocity. In the simulation

procedure, a random impact parameter is chosen. In the
frame where the initial relative velocity is in the z direc-
tion, the relative velocity is rotated around the y axis
by the angle x and then rotated around the z axis by
the angle ¢. (The angle ¢ is conserved due to angular
momentum conservation.) This gives the final relative
velocity, from which one can calculate the final velocity
of both particles.

The diameter of each species in the variable hard
sphere collision model is established using Bird’s
approach [2],

2yj0—1/2
d— dref\/ [2kTref/(mrvr)] ’ )

sG/2 —w)

were dr is the reference diameter, Ty.r is the reference
temperature, w is the reference viscosity index, v, is the
relative velocity, m, is the reduced mass, and k is the
Boltzmann constant.

2.3. Trajectory calculations

In order to calculate the trajectory of a single particle
through the mean field, we follow a conceptually simi-
lar approach to that taken by the DSMC method [2,3].
A single particle is generated with position x and veloc-
ity v. This particle is propagated for a timestep of §t,
after which the probability a collision occurred is cal-
culated using the procedure outlined above. If and only
if a collision is accepted, then the DSMC-like collision
probabilities (see the Appendix) between the single parti-
cle of interest and the mean field particles are calculated.
The probabilities are normalised and a collision partner
is chosen. The collision is executed by adjusting the rel-
ative velocity of the particles, as described above using a
random impact parameter and angle ¢.

3. Simulation algorithm
3.1. Initialisation

The SCMFD method introduced in this work relies on
the accurate description of the mean field, or the prop-
erties of the background gas, through which selected
particles are propagated and tracked. The background gas
is described using two arrays: one containing the number
density of each species within each subcell, and one con-
taining a distribution of velocities for each species. An
initial configuration is then chosen - which, in the first
example simulating argon in a one-dimensional box, isan
ideal gas at temperature T; = T - (dist — x) /dist + T -
x/dist (i.e. a linear approximation of the wall tempera-
tures, T1 and T5).



3.2. Propagation

A particle is initially placed at one of the walls. The cho-
sen particle is propagated by timestep dt (or adt for the
first timestep, with « € [0, 1] uniformly distributed and
different for every particle). After the propagation step,
it is determined whether the particle is still within the
confines of the simulated volume. If it has exited, then
the particle is diffusely reflected from the correspond-
ing wall. Then, using the protocol outlined above, it is
established if a collision occurs and Equation (4) is eval-
uated against all entries in the background gas array. If
no collision occurs, the particle is propagated for another
timestep and the loop is repeated.

If a collision occurs, a routine randomly selects a
number of particles from the background gas array and
evaluates P(v,). A cumulative distribution function is
subsequently calculated (and normalised, if necessary)
and a collision partner is selected. A random impact
parameter is chosen along with a random angle in [0, 277],
with the resulting velocity rotated accordingly. A check
on momentum and energy ensures that both are con-
served. The particle is then assigned a new post-collision
velocity. Only in the case where the particle being prop-
agated collides with another particle of the same species
(in the background gas) is the background gas velocity
also adjusted. The reason for this is twofold; it improves
convergence and enables us to preferentially follow only
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the particles of interest. If we were to adjust the properties
of the background gas following collisions between two
different species, then we would need to reproduce the
physical number ratio of all species in the system in the
trajectory calculations - else we would overestimate the
energy exchange between the species of interest and the
background gas. Finally, when propagating a trajectory,

temperature / K

1000 1500 2000 2500
number of checkpoints

Figure 1. The temperature of the mean field gas is plotted as
a function of iteration steps. Argon gas at an initial tempera-
ture of 600K is cooled down through collisions with the 300K
walls of a box, with convergence achieved after approximately 400
checkpoints.

Table 1. Parameters adopted for the simulation of argon gas in a 1 m box.

Parameter Value Description
np 1 Number of different particles
Nbackground 1000 Number of velocities used to describe the
background gas per subcell
100,000 Total number of trajectories
100,000,000 Number of timesteps per trajectory
St 5% 10785 Timestep
a 5 After every a trajectories a checkpoint is
written and the background gas is updated
0.1 Relative amount of the background gas
information (density and velocity distribution)
that is updated
Wall specifications
dist m Distance between walls (x direction)
Neell 100 Number of subcells
v}l Oms™! Velocity in y direction of left wall
v} oms™! Velocity in z direction of left wall
T 300K Temperature of left wall
v oms™! Velocity in y direction of right wall
v2 Oms™! Velocity in z direction of right wall
T 300K Temperature of right wall
Particle parameters
1 Number of particles per trajectory
of this particle type
ref 417x10710 Reference diameter
Tref 273K Reference temperature
w 0.8 Reference viscosity index
m 39.948u Mass of particle

np 1020 m—3

Number density of particle
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Figure 2. Argon gas, initially at 600K, is cooled down via collisions with the 300 K walls of a 1 m box. The average local density and
temperature of the gas established from the SCMFD model are plotted (averaged over the last 200 checkpoints). The error bars indicate
one standard deviation. It can be seen that argon is uniformly distributed throughout the box, and that the gas has successfully been
cooled to 300 K through collisions with the walls, as expected.

Table 2. Parameters adopted for the simulation of a gas mixture in a 1 cm box.

Parameter Value Description
np 3 Number of different particles
Nbackground 1000 Number of velocities used to describe the
background gas per subcell
100,000 Total number of trajectories
5,000,000 Number of timesteps per trajectory
st 1%x1078s Timestep
a 5 After every a trajectories a checkpoint is
written and the background gas is updated
0.1 Relative amount of the background gas

information (density and velocity distribution)
that is updated

Wall specifications
dist 0.01m Distance between walls (x direction)
Neell 100 Number of subcells
vy oms™! Velocity in y direction of left wall
v) Oms™! Velocity in z direction of left wall
T 300K Temperature of left wall
vf Oms™! Velocity in y direction of right wall
v2 Oms™’ Velocity in z direction of right wall
) 300K Temperature of right wall
Particle parameters
1 Number of particles per trajectory
of this particle type
dref 417x10710 Reference diameter
Tref 273K Reference temperature
w 0.5 Reference viscosity index
m 39.948u Mass of Ar
np 100 m~3 Number density of Ar
1 Number of particles per trajectory
of this particle type
dref 417x10710 Reference diameter
Tref 273K Reference temperature
w 0.5 Reference viscosity index
m 4u Mass of He
np 10" m=3 Number density of He
1 Number of particles per trajectory
of this particle type
def 417x10710 Reference diameter
Tref 273K Reference temperature
w 0.5 Reference viscosity index
m 28u Mass of N

np 10" m~3 Number density of N




the subcell and velocity of the particle are saved period-
ically. Every a trajectories, a selected percentage of the
velocity entries in the background gas array are replaced
(the ‘oldest’ k entries are replaced by k ‘new’ entries).
Finally, a checkpoint file is created, enabling one to restart
the simulation from this point and generating a complete
description of the background gas.

4. Results

To evaluate the performance of the SCMFD method, we
investigate the properties of different gas phase environ-
ments and compare the output of SCMFD simulations
with data available in the literature or obtained from the-
oretical models. Each of the systems considered is either
found in Bird’s book [2], facilitating a direct compari-
son of our SCMFD approach with the results obtained
from Bird’s DSMC method, or lend themselves to direct

-3

= 1.002

density / m
density / m
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quantitative assessment from other well-established the-
oretical models.

4.1. Single component homogeneous gas

The first example selected is intentionally unrealistic —
in terms of both size and initial conditions - in order to
demonstrate the stability, convergence, accuracy and efhi-
ciency of the SCMFD method. Argon gas is simulated in
a box of length 1 m. The mean-field gas, which fills the
box initially, has a temperature of 600 K and the temper-
ature of the walls is 300 K. The parameters utilised in the
simulation are presented in Table 1.

Adopting the simulation procedure outlined above,
we can follow the trajectories of gas particles as they
move through the box and establish an approximate tem-
perature from the variance at each checkpoint. While
convergence is slow — as expected, given the large size
of the system and the low frequency with which particles
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Figure 3. The density (top panel), average velocity (middle panel) and temperature (bottom panel) of each of the three gases in the
mixture (Ar, He and N, respectively) are plotted across the length of the 1 cm box (averaged over the last 300 checkpoints). The error

bars indicate one standard deviation.
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collide with the walls - the gas does indeed cool and equi-
librate with the walls (see Figure 1). The density of the gas
in the box is found to be uniform when accounting for
statistical scatter (which is below 1%), and the tempera-
ture of the gas also reaches the expected value of 300 K
(see Figure 2). While it was not deemed appropriate for
a test system of this size, one could increase the num-
ber of trajectories propagated to improve the sampling of
the background gas and decrease the uncertainty in the
resulting output.

4.2. Gas mixtures

One powerful and important feature of the SCMFD
method is the ability to efficiently model systems where
there are several species present in very different con-
centrations. A mixture of three gases, Ar, He and Ny, is
chosen and these gases are simulated at vastly different
densities — spanning six orders of magnitude. A 1 cm box
is chosen to contain the gases, to obtain fast convergence.
All gases are initially at 300 K, with all other input param-
eters as set out in Table 2. This model gas mixture system
is especially well suited for benchmarking how accurately
SCMFD can reproduce quantities such as mean free path,

mean free time and collision rate, as the resulting val-
ues can be directly compared to those derived analytically
(see [2] for details on the derivation).
The mean free path for particle p is established from
-1

-1
"p Pq p
(quvr ) my
ol D3kl Bl DBl
g=1 g=1 r
(8)

with the mean free time given by
Ap Ap

IMFT = .
(lvpl) [ 8kT
mpn

The number of collisions that occur per unit time and
unit volume is dependent on the type of collision part-
ner; when the collision partners are of the same species
(i.e. both particle type p),

(9)

1

When the collision involves two different species (i.e.
between particle types p and g), then

Vpg = npnqapq(lquw. (11)

The density of all three gases in the box is found to
be uniform, with the temperature and velocity of each

Ar with Ar He with Ar N, with Ar

= o™ = 0.682
‘E 3.095 . 1.45 ‘E
7 3.09 i n
<7 o? <7 0.68
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g 3.075 3 1 a4 3
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Figure 4. The calculated frequency of collisions between the different collision partner combinations is plotted. The horizontal line in

each plot indicates the collision frequency predicted by theory.



species converged and stable (see Figure 3). A numeri-
cal estimate of how well the simulation reproduces the
properties expected from a quantitative theoretical treat-
ment of the system can be derived from considering the
mean free path, mean free time and collision frequency
per unit volume. This information can be straightfor-
wardly obtained from the simulation, although it is worth
commenting on the collision frequency calculations. The
frequency of collisions between two different species can
be obtained in two ways - by following the trajectories of
species 1 and monitoring interactions with the mean field
gas of species 2, or by following species 2 and tracking its
interactions with the mean field gas of species 1. While
either approach will yield the same result, it is much more
efficient to follow the lower density particle, species 2
(He), as it propagates through the high-density field of
species 1 (Ar), as far more collisions of interest occur
per trajectory than would take place in the reverse situ-
ation. The collision frequency between each of the gases
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is shown in Figure 4, with the exception of N, -N, colli-
sions (species 3 colliding with species 3). This is because
no N; -N; collisions took place over the length of the
simulation - as expected, given that the mean free time
for such collisions is approximately 13s. The simulated
collision frequencies between all other collision partners,
Ar-Ar, Ar-He, Ar-N,, He-He, and He-Nj, are in excel-
lent agreement with theoretical values (within 0.5%). As
Table 3 shows, the mean free path and mean free time
established from the simulations are also in line with the
expected theoretical values.

4.3. Couette flow

The flow of a gas between two parallel surfaces, where one
surface is stationary and the other is moving with a fixed
velocity, can be described as a Couette flow. To demon-
strate the versatility and robustness of the SCMFD model,
we simulate the Couette flow of Ar gas and compare

Table 3. The mean free path and mean free time between collisions for all three types of

particles in the gas mixture.

Particle type Theoretical value SCMFD value Relative deviation
Mean free path

1. Ar 6323103 m 6.334+0.06x10"3 m —4.67 x 10~*
2.He 8.609x10~3 m 8.6240.05x10"3 m —6.82 x 10~*
3.N; 6.868x1073 m 6.8740.06x1073 m —824 x 107*
Mean free time

1. Ar 1.5857%x 107 s 1.586+0.014x107° s —4.66 x 10~*
2.He 6.832x107% s 6.8440.05x1076 s —8.54 x 10~*
3.N, 1.442x107° s 1.44340.012x107° s —725x 107

Table 4. Input parameters adopted to simulate the Couette flow of ar gas.

Parameter Value Description
np 1 Number of different particles
Nbackground 2000 Number of velocities used to describe the
background gas per subcell
100,000 Total number of trajectories
200,000,000 Number of timesteps per trajectory
St 5% 10785 Timestep
a 10 After every a trajectories a checkpoint is
written and the background gas is updated
0.1 Relative amount of the background gas
information (density and velocity distribution)
that is updated
Wall specifications
dist m Distance between walls (x direction)
Neell 200 Number of subcells
v}l Oms™! Velocity in y direction of left wall
v} oms™! Velocity in z direction of left wall
T 273K Temperature of left wall
v 300ms™! Velocity in y direction of right wall
v2 Oms™! Velocity in z direction of right wall
T 273K Temperature of right wall
Particle parameters
1 Number of particles per trajectory
of this particle type
dref 417x10710 Reference diameter
Tref 273K Reference temperature
w 0.81 Reference viscosity index
m 39.948u Mass of particle

np 100 m—3

Number density of particle
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Figure 5. The density, velocity, temperature, sheer stress and heat flux profiles calculated for a Couette flow of Ar gas, using the SCMFD
model introduced in this work and Bird’s DSMC model [2]. The error bars represent one standard deviation.

the results to existing measurements for this well-studied
system. The input parameters and properties of the sim-
ulated system are set out in Table 4.

The ability of our SCMFD model to describe the Cou-
ette flow of Ar can be assessed in a number of ways. In
the first instance, the density, velocity, temperature, sheer
stress and heat flux profiles are directly compared to those
generated by Bird’s DSMC model [2] in Figure 5. In all
cases, the distribution calculated by SCMEFD is in close
agreement with the reference data generated by Bird’s
DSMC approach. There is a quantitative agreement in the
heat flux profiles generated by the two models, and this is
a property which DSMC is acknowledged to describe well

[2]. Thereis a very close agreement in the density, velocity
and temperature profiles generated by the two methods.
Furthermore, the SCMFD model yields profiles that are
more symmetric across the distance between the two sur-
faces — and thus, it could be argued, achieves a more phys-
ically accurate description of the system. The trend in
the sheer stress profile for the DSMC and SCMFD mod-
els is in agreement, but the SCMFD value is consistently
approximately 15% lower. The DSMC sheer stress distri-
bution corresponds to a coefficient of viscosity for Ar of
2.13x107> N'sm~2, which is somewhat higher than the
nominal value of 2.117x10™> Nsm™? (at 273 K) but
lower than the 2.18x10™> N's m~2 value expected under



these conditions (as the average temperature across the
flow is 283 K). Bird himself notes that the discrepancy
between the DSMC model and the observed viscosity of
Ar is ‘rather larger than would be expected’ [2].

To evaluate the performance of the SCMFD model
in calculating the viscosity coeflicient of argon, we must
first consider the conditions of the system in more detail.
Chapman-Enskog theory allows the viscosity of a gas
to be derived from the Boltzmann equation, providing
a continuum model of the system as a perturbed ideal
flow [6]. Chapman-Enskog theory is best applied to ideal
gas systems at high densities; the further a system is
from such a state, the less reliable the predicted viscos-
ity becomes. The Knudsen number for the conditions in
the simulated Couette flow is 0.00925 [2], corresponding
to a density where Chapman’s continuum model begins
to break down. Lowering the density of the gas increases
the Knudsen number, and the system transitions into
a regime where the principles of free molecular flow
apply: collisions occur far more frequently with the wall
than with other gas particles, leading to the limiting case
where the properties of the system are fully determined
by the properties of the wall. Under the conditions of
molecular free flow, the viscosity coefficient is propor-
tional to the number density. As such, we expect the
viscosity of argon in the Couette flow simulation to be
directly proportional to the number of gas particles in
the system at low densities. When the density of the sys-
tem becomes sufficiently high, we expect the viscosity to
transition from the molecular free flow behaviour to fol-
low the Chapman-Enskog trend line. As Figure 6 shows,
the viscosity coefficient of argon as calculated from the
SCMED simulation follows the molecular free flow pre-
diction at low densities, and exhibits Chapman-Enskog
behaviour at high densities. In the transition region, cor-
responding to densities of approximately 1020-10%! par-
ticles per m~ in this system, the viscosity calculated by
SCMFD is lower than that predicted by both molecu-
lar free flow and Chapman-Enskog. However, it is not
immediately clear whether either model (molecular free
flow or Chapman-Enskog) can be accurately applied in
this regime. It is possible that SCMFD might underesti-
mate correlations between velocity components, because
these correlations are calculated by following the col-
lisions of single particles. Alternatively, the traditional
DSMC approach might overcorrelate these quantities,
as the collisions of relatively few particles are taken as
being representative of the whole system. Further work
is needed to establish what the expected behaviour is in
this transition region before we can quantitatively assess
the performance of SCMFD for simulating Couette flow
over a vast range of densities. For the moment, we can
confidently assert that SCMFD accurately simulates the
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Figure 6. The viscosity coefficient of argon is plotted against the
density of the system, calculated using the SCMFD approach with
a 1cm box divided into 50 (blue) and 100 (red) subcells. The
behaviour expected from the molecular free flow (purple) and
Chapman-Enskog (yellow) theories is also shown. The error bars
indicate the standard error of the mean (colour online).

Couette flow of argon at both low densities and high
densities.

5. Discussion and conclusion

The benefits and potential applications of an SCMFD
model have been clearly demonstrated for several impor-
tant systems. In particular, the use of a mean field approx-
imation means that gas systems where there are vast
differences in the densities of the components can be effi-
ciently - and accurately - modelled. This will facilitate
the simulation of, for example, the collisions of a seed
gas in a buffer gas cell, where treatment with traditional
DSMC methods is unfeasible for all but the smallest cell
sizes.

There are several improvements that we will seek to
address in the future. At present, the initial configura-
tion and parameters of the system must be guessed such
that convergence is achieved; if the initial inputs are too
far from the physical properties of the system, conver-
gence can be slow. It is also possible for the system to
get ‘trapped’ in a stationary solution that is not, in fact,
an equilibrium configuration, owing to the cancellation
of certain terms. (For example, if there is an equal and
opposite transfer of energy from collisions between the
particles and the walls during the updating procedure,
this can mimic the zero change in energy expected from
a converged system.) A more involved check for conver-
gence is being developed to avoid such situations. One
key requirement of the current SCMFD model is that the
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system is stationary. This means considering only closed,
equilibrated systems or systems with an equal influx and
outflux of particles. While it should be possible to gen-
eralise our approach to treat time-dependent systems, a
sophisticated procedure will be required to manage the
large amount of data generated at every timestep (on the
order of 100 MB).

Acknowledgments

The authors wish to dedicate this paper to Professor Tim Soft-
ley, to thank him for his ongoing support and guidance. O.S.
thanks H. Antila and M. Miettinen for their helpful discussions.
Supporting data can be obtained from the Oxford Research
Archive.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

B.R.H. acknowledges funding provided by the Engineering
and Physical Sciences Research Council (EPSRC) (projects
EP/N004647/1 and EP/N032950/1) and the Christ Church
Research Fund.

References

[1] G.A.Bird, Phys. Fluids 6, 1518 (1963).

[2] G.A. Bird, Molecular Gas Dynamics and the Direct Simu-
lation of Gas Flows (Clarendon Press, Oxford, 1994).

[3] O. Schullian, J. Loreau, N. Vaeck, A. van der Avoird, B.R.
Heazlewood, C.J. Rennick and T.P. Softley, Mol. Phys. 113,
3972 (2015).

[4] M.]. Doppelbauer, O. Schullian, J. Loreau, N. Vaeck, A.
van der Avoird, C.J. Rennick, T.P. Softley and B.R. Hea-
zlewood, J. Chem. Phys. 146, 044302 (2017).

[5] N.R. Hutzler, H.-I Lu and J.M. Doyle, Chem. Rev. 112,
4803 (2012).

[6] S.Chapman and T.G. Cowling, The Mathematical Theory
of Non-Uniform Gases: An Account of the Kinetic Theory
of Viscosity, Thermal Conduction and Diffusion in Gases,
3rd ed. (Cambridge University Press, Cambridge, 1970).

Appendix

A.1 Basic principles of self-consistent mean field
DSMC (SCMFD)

Let p(x, v) be the density distribution function of a stationary
system. An initial distribution is chosen, and trajectories are
subsequently calculated, from which a new density arises. This
process is repeated as long as the density changes - that is, until
a stationary state is reached.

A system (propagated in time) is the set of trajectories
{qi()}. From a set of initial parameters, (x?, v?), a particle is
propagated through the mean field, giving rise to a new set
of trajectories. Taking the average of an observable, such as
the density, with respect to these trajectories yields a set of

distribution functions,

, 1
o (x,v) = T/dtZi:(S(q—Ptp(x?,v?))

B <u — %Pf(x?, u?)> . (A1)

When a sufficient number of trajectories have been calculated,
and the system reaches a stationary state, then o’ = p. By calcu-
lating a series of fields, where p' is established from p'~!, one
can arrive at a stationary point such that the series converges
towards p. As with the DSMC approach, achieving conver-
gence with the SCMFD method implies that a solution to the
Boltzmann equation has been found.

A.2 Calculation of the density

The calculation of p using Equation (A1) can be tedious. A
more straightforward approach can be taken if one assumes
that we can express the distribution function as the product of
the number density n(x) and a velocity distribution function,

o, v) = n(x) - p¥(v; x), (A2)

normalised such that [}, p”dvp(v;x) = 1. In a given simula-
tion, pV is easily obtained by saving the velocity of a trajectory
at regular intervals. (One could also use a functional form for
p? instead of a long list of velocities. We opted not to take this
approach, as we did not wish to make assumptions about what
functional form would best reproduce the velocity distribution
under a given set of conditions. However, using a functional
form to describe p” would depend on fewer parameters; it
would save a lot of memory space and potentially be beneficial
for higher dimensional systems.)

The estimation of n(x) is more challenging, because it
depends both on the way trajectories are calculated and on the
boundary conditions. As the number of particles in a given
volume is a time-average, we introduce the function

1 if particle jis in subcell i at time ¢,
03(t) = parnee) (A3)
0 otherwise.
In this way,
Vini(t) =y 05(0) (A4)
j

gives the instantaneous density. We are interested in the time-
averaged density given by

1 T
Vinj = T ; /0 dtg; (1), (A5)

where the summands are the average time a particle spends
in a given subcell. Given N particles, and defining the aver-
age time a particle spends in subcell i as (dt;), then Vin; can
be expressed as

1
Vin; = ?N(dti). (A6)

Finally, the value of (df;) is approximated as

1
(dt;) = ﬁSN,-dt. (A7)
Recalling that N is the number of particles that must be simu-
lated to accurately reproduce the properties of the system, with



Nj is the number of times a particle is located in subcell i, one
arrives at an expression for the number density
NN;dt

= . A8
ViTN; (48)

n;

A.3 Establishing the collision probability

Two particles, labelled 1 and 2, are transformed into the frame
where v, = v] = v; — v; and v}, = 0 (i.e. particle 2 is station-
ary). In this frame of reference, after timestep df particle 1 flies
out a volume

V(vy) = dt|vr|o (vr). (A9)
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A collision is deemed to have occurred if particle 2 (which is
stationary in this frame) was located in the flown out volume.
The ratio of the flown out volume to the total volume gives
the overall probability of a collision having occurred. For small
values of V(v,) this can be approximated by

Pc(vri) = V(v)/V, (A10)

or, conversely, the probability of no collision occurring can be
expressed as

P(v;) =1 — Pc(vy,). (A11)
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