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Introduction: Previous work in the language domain has shown that 10 Hz rTMS of the left or right
posterior inferior frontal gyrus (pIFG) in the prefrontal cortex impaired phonological decision-making,
arguing for a causal contribution of the bilateral pIFG to phonological processing. However, the neuro-
physiological correlates of these effects are unclear. The present study addressed the question whether
neural activity in the prefrontal cortex could be modulated by 10 Hz tACS and how this would affect
phonological decisions.
Methods: In three sessions, 24 healthy participants received tACS at 10 Hz or 16.18 Hz (control frequency)
or sham stimulation over the bilateral prefrontal cortex before task processing. Resting state EEG was
recorded before and after tACS. We also recorded EEG during task processing.
Results: Relative to sham stimulation, 10 Hz tACS significantly facilitated phonological response speed.
This effect was task-specific as tACS did not affect a simple control task. Moreover, 10 Hz tACS signifi-
cantly increased theta power during phonological decisions. The individual increase in theta power was
positively correlated with the behavioral facilitation after 10 Hz tACS.
Conclusion: Our results show a facilitation of phonological decisions after 10 Hz tACS over the bilateral
prefrontal cortex. This might indicate that 10 Hz tACS increased task-related activity in the stimulated
area to a level that was optimal for phonological performance. The significant correlation with the in-
dividual increase in theta power suggests that the behavioral facilitation might be related to increased
theta power during language processing.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

inferior frontal gyrus (pIFG), located in the prefrontal cortex. The
pIFG shows increased task-related activation during phonological

Some of the most thoroughly investigated neural networks for
cognitive functions are language networks. Functional neuro-
imaging has provided a relatively sound understanding of the
structures involved in certain language functions. This holds true
especially for the processing of the sound of written and spoken
words (i.e., phonological processing) [1,2]. One structure of excep-
tional importance for phonological processing is the left posterior
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decisions compared to decisions on the meaning of words (i.e.,
semantic decisions) [1—3]. The functional relevance of the left pIFG
in phonological decisions was demonstrated by “virtual lesions”
induced by online (repetitive) transcranial magnetic stimulation
(TMS) applied during task-processing [4,5]. While most studies
focused on the left-hemisphere, Hartwigsen et al. [6] showed that
the left and the right pIFG essentially contribute to phonological
decision-making.

At the neurophysiological level, phonological processing has
been associated with modulations of several early and late com-
ponents at the sublexical and lexical phonological level, including
the N100, P200, P300 and N400 [7—10]. A growing body of
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evidence further associates language processing with the under-
lying oscillatory neural dynamics. Correlative studies emphasize a
decrease of alpha activity and an increase in gamma and theta
activity in key language areas during different language tasks
[11—14]. Other studies found a higher event-related desynchroni-
zation of alpha activity in the IFG after challenging relative to easy
word listening conditions [15] and for low-frequent compared to
high-frequent words [11]. These findings suggest an association
between the magnitude of reduction in alpha activity and task-
difficulty, speaking in favour of a functional role of alpha-
oscillations in cognitive tasks.

A major limitation of most of the available studies is their purely
correlative nature. While many studies observed a relationship be-
tween alpha activity and the (dis-)inhibition of brain areas, one can
hardly draw causal conclusions on the relevance of these oscillatory
changes for certain cognitive functions. Recently, rhythmic neuro-
stimulation by means of rTMS or transcranial alternating current
stimulation (tACS) has been shown to modulate the ongoing oscil-
latory activity [16—22]. Behavioral and neurophysiological effects of
both techniques have been reported to outlast the stimulation
period for several minutes [23—28]. For tACS, lasting after-effects on
the oscillatory activity have been reported for up to 70 min after
stimulation [24]. Such “offline” effects allow for a combination of
tACS and EEG without having to deal with the strong artifacts
caused by the electrical stimulation. Importantly, the after-effects of
tACS likely differ from the immediate online effects observed during
stimulation. Specifically, it was argued that offline effects reflect
short-term synaptic plasticity in response to the stimulation rather
than entrained activity as observed during online tACS [22,28,29].
The results by Vossen et al. [28] suggested that online tACS
entrainment effects may not be strong enough to outlast the stim-
ulation, while offline tACS plasticity effects may be present in the
absence of entrainment echoes. Notably, only few studies consid-
ered both behavioral and oscillatory after-effects simultaneously
[27], although a better understanding of the after-effects of tACS
would be mandatory to validate the efficacy of this approach and its
potential for therapeutic purposes.

The present study aimed at investigating offline effects of 10 Hz
tACS on phonological language processing. Motivated by our pre-
vious study [6], we combined offline tACS to modulate alpha ac-
tivity in the bilateral prefrontal cortex before subsequent
phonological decision-making with simultaneous EEG measure-
ments to map changes in oscillatory dynamics. Our study addressed
the following questions. First, we aimed at determining whether
offline 10 Hz tACS would affect behavior in a language task and how
this might be reflected in the underlying neural dynamics. Specif-
ically, we were interested in tACS-induced changes in the alpha
power during phonological processing. Based on the above-
discussed studies, we expected to find behavioral disruption with
10 Hz tACS. The disruptive after-effect of our tACS protocol should
be reflected in a change in the oscillatory power during rest and
task processing.

Materials and methods

The study was in accordance with the latest revision of the
Declaration of Helsinki. Experimental procedures were approved by
the local ethics committee of the Medical Faculty at Kiel University.
Prior to the experiment, subjects gave their written informed
consent.

Subjects

Twenty four healthy, native German-speaking students (12 fe-
male, 12 male participants) aged between 18 and 30 years

(M = 22.0, SD = 3.36) participated in the study. To calculate our
sample size, we used g*Power [31] with the following settings:
effect size f=0.25, o level = 0.05, power = 0.9, correlation among
repeated measures = 0.7. The minimum sample size was found to
be 22, which we increased to 24 to fully counterbalance the order of
stimulation conditions across participants. All participants were
right-handed according to the Edinburgh Handedness Inventory
[32]. None of them took any medication, or had a history of
neurological diseases, or metallic head implants. Subjects were
recruited via social media and flyers at Kiel University. They
received either course credit or one cinema voucher for each
session.

Experimental design

Participants underwent three sessions with three different
stimulation conditions. tACS was applied before task processing. To
control for learning effects, the order of stimulation frequencies
was counterbalanced across subjects. During tACS application,
participants were asked to sit still with eyes open in a silent room.
We included an inter-session interval of 2 weeks to prevent carry-
over effects of tACS and minimize task-related learning effects.

Fig. 1 provides a schematic overview of our experimental ses-
sion. At the beginning of each session, participants performed a
short training of the phonological task. Thereafter, EEG and tACS
electrodes were mounted. Five minutes of resting state EEG were
recorded with open eyes, followed by 20 min of tACS and another
5 min of resting state EEG. Subjects were then placed in front of a
22" screen (16:9 aspect ratio) at a distance of 60 cm. They per-
formed 1 min of a non-linguistic control task and 15 min of the
phonological task (Fig. 1A). At the end of each session, subjects
completed a questionnaire on potential side-effects of the stimu-
lation (adapted from Ref. [33]).

Experimental tasks and stimuli

Both tasks were programmed in PsychoPy 1.8.5.1 [34,35].
Stimulus onset, responses and type of stimulus (left/right or 2/3
syllables, respectively) were registered via LabJack U3 LV in the
EEG.

The phonological decision task was adapted from our previous
studies [6,30]. A total of 300 words (150 two- and three-syllable
words each) were presented in random order and subjects were
asked to decide via button press whether the respective words
consisted of two or three syllables. The original data set in the
previous studies consisted of 120 high-frequent non-ambiguous
German nouns from the CELEX lexical database [36]. An additional
set of 180 German nouns were selected based on the same inclusion
criteria (i.e., highly frequent, unambiguous nouns, 50% 2-syllable
and 50% 3-syllable words, respectively, matched for the number
of letters) to increase the power for the EEG analyses. An additional
set of 50 words was selected for task practice before the main
experiment. During each trial, stimuli were presented for 800 ms
and responses were counted from stimulus onset. After stimulus
offset, a fixation cross was shown for 1166 + 166 ms, resulting in an
average inter-trial interval of 3000 ms (Fig. 1B). We used a simple
decision making task to test task specificity. For more details, see SI
Methods.

Transcranial alternating current stimulation

tACS was applied via two round rubber electrodes (9 cm?), using
a battery-operated stimulator system (neuroConn, llmenau, Ger-
many). Electrodes were attached to the head underneath an EEG
Recording Cap (EasyCap GmbH, Herrsching, Germany) using
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Fig. 1. Experimental Design. (A) Time-course of the experiment. At the beginning of each session, participants performed a short training of the phonological task. Five minutes of
resting state EEG were recorded with open eyes, followed by 20 min of tACS and another 5 min of resting state EEG. Subjects performed 1 min of a non-linguistic control task and
15 min of the phonological task. (B) Tasks. Phonological decision task. Stimuli were presented visually for 800 ms and subjects had to decide via button press whether the respective
word consisted of two or three syllables. Control task. Directional arrows were presented visually and subjects had to indicate their direction by pressing the corresponding button.
(C) Electrode setup. tACS was applied via two round rubber electrodes (9 cm?) that were placed bilaterally over the prefrontal cortex. The prefrontal cortex was located based on the
crossing-point of T3-Fz x F7-Cz (right prefrontal cortex) and T4-Fz x F8-Cz (left prefrontal cortex). (D) Simulation of the electric field of the stimulation.

conductive Ten20 EEG paste (Ten20, Weaver and Company, Aurora,
CO, USA). They were placed bilaterally over the prefrontal cortex
(Fig. 1C). Stimulation sites were located based on the crossing-point
of T3-Fz x F7-Cz (right prefrontal cortex) and T4-Fz x F8-Cz (left
prefrontal cortex) [25,37,38]. To allow for placement of the tACS
electrodes between the EEG electrodes, we slightly adapted the
montage such that the final position was located between F1, F5
and FC3 (left hemisphere) and F2, F6 and FC4 (right hemisphere),
respectively. The impedances were kept below 10 kQ2. We applied
oscillating currents at 10 Hz (frequency of interest), 16.18 Hz (con-
trol frequency) or sham stimulation for 20 min with an intensity of
1 mA. The current was ramped up and down over the first and last
15s of stimulation. During sham stimulation, the current was
ramped up for 15 s, followed by 30 s of 1 mA stimulation (at either
10 Hz or 16.18 Hz) and then ramped down for 15s.

We chose 16.18 Hz as control frequency since the ratio of
16.18 Hz and 10 Hz minimizes the probability of synchronization
[39] and the sensations of tACS in the beta range are similar to those
of tACS in the alpha range (compared to tACS in theta or gamma
range) [40].

Electroencephalography (EEG) recordings

The Experiment was conducted in a dimly lit room. EEG was
measured from 64 sintered Ag—AgCl electrodes mounted in an
elastic cap (FMS, Munich, Germany). The electrodes were arranged
in an equidistant 64-channel montage with Cz, C3, and C4 corre-
sponding to the international 10—20 system. Reference and ground
electrode were positioned between Fp1 and Fp2. Additionally, a
vertical Electrooculogram (EOG) was recorded underneath the
right eye to monitor eye-movements during the experiment. All
impedances were kept below 10 kQ with some tolerance to avoid
delaying the experiment. EEG was recorded using two 32-channel

BrainAmp (Brain Products GmbH, Gilching, Germany) amplifiers
and the BrainVision Recorder Software (Brain Products GmbH,
Gilching, Germany). The signal was registered at a rate of 1000 Hz
and low-pass filtered at 250 Hz.

Signal preprocessing

EEG signal pre-processing was performed in BrainVisionAna-
lyzer 2 (Brain Products GmbH, Gilching, Germany). First, resting
state data before and after stimulation were preprocessed. All data
were re-referenced to the common average reference (CAR). A
fourth order IIR Butterworth filter was then applied. Data were low-
pass filtered at 40 Hz and high-pass filtered at 1 Hz (filter borders
indicate the half-power cutoff). The data were segmented into 1-s-
intervals. The segmented data underwent a gross artifact removal,
which automatically removed segments included voltage jumps
greater than 125 pV in a period of 500 ms or less. On average, 266
(SD: 44) of originally 300 segments remained after this procedure.
The remaining data were corrected for ocular artifacts, using the
“fast ICA” algorithm implemented in Analyzer 2. On average, 88
(SD: 71) segments contained ocular artifacts. For task related EEG
data, instead of using segmentation into 1-s intervals, trials were
formed relative to the stimulus onset, 800 ms before and 1000 ms
after stimulus.

After preprocessing, signal processing was continued using the
Fieldtrip toolbox (http://fieldtrip.fcdonders.nl/). A fast Fourier
transform (FFT) with a Hanning taper was applied and the fre-
quency range was defined to be within the interval from 1 to 30 Hz
with steps of 1 Hz. For resting state data, FFT transformations with
estimation of power-spectra were performed across 1s segments
before and after stimulation. The power-spectra were averaged
over the segments before and after stimulation in every subject.
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For task related EEG data, the first interval was selected 800 ms
before stimulus until stimulus onset (i.e. 0 ms); the second interval
ranged from stimulus onset to 800 ms after stimulus.

Statistical analyses

Behavioral data

Statistical analyses for behavioral data were performed in R 3.4
[41] (URL https://www.R-project.org/). The effects of the factors
tACS (10 Hz, 16.18 Hz or sham) and session order (first, second or
third) were analyzed separately for each task with linear mixed
effects models (LME) including fixed slopes and random intercept.
Degrees of freedom analogous to repeated measures ANOVAs were
approximated using the Kenward-Rogers method [42]. Prior to
analysis, response time data was inversely transformed to avoid
potential problems associated with skewed data [43] and response
times for invalid trials were removed. For the error analysis, hier-
archical LME models with a Poisson distributed error were fitted to
the data and compared with likelihood ratio tests. While task ac-
curacy is easy to interpret, ANOVAs are not well suited to compare
this data [43]. Using the absolute error count (which, due to the
constant trial count is equivalent to the error rate) enabled us to
adequately compare errors with common analysis models [44].

EEG data

Statistical analysis was performed on FFT-transformed data us-
ing 2-way within-subject cluster-based permutation ANOVA
[45—47] based on non-parametric statistics in the FieldTrip toolbox
(http://fieldtrip.fcdonders.nl/). The significance probability was
estimated based on a Monte-Carlo Permutation test with a cluster-
based approach. The Permutation test avoids assumptions on
normal distribution of data and solves the problem of multiple
comparisons by cluster correction. First, for observed data, the
method calculates statistics (t-values) for each sample point and
thresholds them by critical t-values corresponding to a probability
level of 0.05. In a second step, a cluster-based correction method
[48] was used. With this approach, a sample point is included in the
cluster, if it has at least one neighboring point with a t-value greater
than the critical value. The sum of t-values is then assigned to its
respectively built cluster. This procedure was repeated for 1000
permuted data. After that, for permuted data, significance proba-
bility was estimated as a proportion between the number of cases
with a larger test statistic than the observed one to the number of
permutations. A p-value below 0.05 (i.e.>95% of the permuted
datasets did not show clusters with larger sums of t-values) was
considered significant.

Frequency analyses of resting state and task related EEG

Using the magnitude of the FFT-transformed resting state data, a
2-way cluster-based permutation ANOVA with the within-subjects
factors tACS (10 Hz, 16.18 Hz, sham) and time (before or after tACS)
was performed separately for different frequency bands (theta:
4—7 Hz, alpha: 8—12 Hz and beta: 13—30 Hz). Analyses of potential
tACS-induced changes in the beta and theta band were exploratory.
These analyses were motivated by the fact that we chose a control
condition (16.18 Hz) in the beta band and, for the theta band, that
previous work associated modulation in the theta band with
working memory processes. Since our phonological task (syllable
counting) relies on (phonological) working memory processes [49],
potential behavioural tACS effects might be related to the modu-
lation of working memory processes.

The same procedure was performed for task related EEG, with
the cluster-based permutation ANOVA including the within-subject
factors tACS (10 Hz, 16.18 Hz, sham) and time window (pre- or post-
stimulus presentation). Time windows were defined on averaged

power spectra in the time intervals before and after the stimulus.
For FFT of resting state and task related EEG, time intervals were
defined as described above.

ROI analyses

To further explore tACS induced changes under the stimulation
electrodes and directly contrast the effects in both hemispheres,
region of interest (ROI) analyses were computed for the EEG elec-
trodes located in the left (F1; F5; FC3) and right (F2; F6; FC4) pre-
frontal cortex separately for resting state and task related EEG. We
used cluster-based permutation ANOVAs including the within-
subjects factors tACS (10 Hz, 16.18 Hz, sham) and region (left pre-
frontal cortex: F1; F5; FC3 and right prefrontal cortex: F2; F6; FC4)
for each frequency band (theta: 4—7 Hz, alpha: 8—12 Hz and beta:
13—30 Hz). Conditional on significant F-values, post-hoc paired t-
tests were used to further characterize differences among
conditions.

Task related EEG analyses for the control task are reported in the
SI Methods section.

Results

None of the subjects requested to terminate stimulation or
asked for any medical intervention during or after the end of tACS
(For more details about side effects, see SI Results).

Behavioral data

Effects of tACS on phonological response speed

Statistical analysis of response speed showed significant main
effects of tACS (F(2, 40)=3.69, p=0.034) and session order (F(2,
40)=172, p<0.001), but no significant interaction (F(4,
42)=0.327, p=0.858). Post-hoc tests revealed significantly faster
decisions reflected in higher response speed values (inverse
response time: responses per second [1/s]) after 10 Hz compared to
sham stimulation, independent of the session order (t= —2.66,
p=0.029; Fig. 2A) and a significant learning effect between ses-
sions (Table 1).

For the error analysis, hierarchical linear mixed effect models
with a Poisson distributed error were fitted to the data and
compared with likelihood ratio tests. Both session order (xz (2)=23,
p<0.001) and the interaction of tACS and session order (y?
(4)=12.2, p=0.016) were significant, but there was no main effect
of tACS (¢* (2) = 1.83, p=0.4; Table 1). The interaction was driven
by an increase in the mean error rates for 10 Hz relative to sham
tACS in the first session (z=—2.40; p =0.044), which was not
significant for 16.18 Hz relative to sham tACS (z = —-2.3; p=0.055)
or 10 Hz relative to 16.18 Hz (z=0.20; p =0.98). There were no
significant effects in the following sessions (all p-values > 0.1).

There was no significant correlation between errors and mean
inverse response time (10 Hz tACS: Spearman's r=-0.1, p = 0.63;
16.18 Hz tACS: r = 0.03, p = 0.90; sham tACS: r = — 0.1, p = 0.63; see
Fig. 2B—D), precluding a strong influence of a speed-accuracy
tradeoff.

For behavioral effects of tACS on the control task, see SI Results.

Neurophysiological data

Resting state EEG

A 2 x 3 cluster-based permutation ANOVA revealed no main
effect of tACS, but a significant main effect of time in all frequency
bands (Fig. 3A and Table 2). The interaction between tACS and time
was not significant in either frequency band. Analysis of power
spectra of segments after active or sham stimulation revealed an

Stimulation, https://doi.org/10.1016/j.brs.2019.06.021

Please cite this article as: Moliadze V et al., After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions, Brain



https://www.r-project.org/
http://fieldtrip.fcdonders.nl/

=

S
3

sham tACS

v
=]

Number of Errors
(e}
(e}

V. Moliadze et al. / Brain Stimulation xxx (XXxX) XXX

Effects of tACS on behavior

40

g
30 B
[sa)
5 &
20 E H
£
=
Z
. ] sham tACS
10 Hz tACS
0 O3 16.18 tACS

Mean Inverse Response Time [1/s]

tACS condition tACS condition

Correlation between Response speed and Errors for each tACS condition

1.0

1.5

2.0

Mean Inverse Response Time [1/s]

100

10 HztACS 10016.18 Hz tACS
° o
IS o
o
o 50 ° & o
o o
o o o
o ©o 5 5 (9} o
o 00 o)
oo o & > Og o o ® OoO o
1.0 1.5 2.0 0 1.0 1.5 2.0

Mean Inverse Response Time [1/s]

Mean Inverse Response Time [1/s]
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Table 1
Behavioral results.

Phonological Task (mean + SEM)

sham tACS 10 Hz tACS 16.18 tACS
Inverse response time [1/s] 1.28 +0.05 1.33+0.05 1.30 +0.05
Errors 2533 +3.68 28.58 +5.06 27.04 +3.67
Post-hoc comparisons of conditions
Inverse response time
Post-hoc test estimate SE df t P
sham tACS - 16.18 Hz tACS —-0.0156 0.0182 40 —-0.857 0.67
sham tACS - 10 Hz tACS —0.0484 0.0182 40 —2.66 0.029
16.18 Hz tACS - 10 Hz tACS —-0.0328 0.0182 40 -1.8 0.181
S1-S2 —-0.0621 0.0182 40 -341 0.004
S1-S3 —-0.106 0.0182 40 —5.84 <.001
S2-83 —0.0441 0.0182 40 -243 0.051
Errors
s1
Post-hoc test estimate SE df t P
sham tACS - 16.18 Hz tACS —-0.3028 0.1315 Inf —2.304 0.055
sham tACS - 10 Hz tACS —-0.2785 0.1163 Inf -2.395 0.044
16.18 Hz tACS - 10 Hz tACS 0.0243 0.1236 Inf 0.197 0.978
s2
sham tACS - 16.18 Hz tACS 0.0803 0.1293 Inf 0.621 0.809
sham tACS -10 Hz tACS —-0.1746 0.1244 Inf —1.403 0339
16.18 Hz tACS - 10 Hz tACS -0.2549 0.1289 Inf -1.977 0.118
s3
sham tACS - 16.18 Hz tACS 0.0094 0.1168 Inf 0.080 0.997
sham tACS - 10 Hz tACS 0.2606 0.1391 Inf 1.873 0.147
16.18 Hz tACS - 10 Hz tACS 0.2512 0.1325 Inf 1.896 0.140

S1-S3= Session 1-3.
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increase in the theta (p =0.03), alpha (p=0.04) and beta power
(p =0.006) (for significant channel topography see SI Fig. 1).

In the ROI analyses, cluster-based permutation ANOVAs
revealed no main effect of tACS in either frequency band, but a
significant main effect of region in the theta band (p = 0.01), indi-
cating that theta power differences were significantly lower in the
right prefrontal cortex (Fig. 3C). The interaction between tACS and
region was significant in the alpha band only (p = 0.02). Post-hoc
analyses of power values showed that compared to sham stimu-
lation, both active tACS conditions led to a significant increase in
alpha power in the left prefrontal cortex (Fig. 3D, Tables 2 and 3 for
all comparisons).

Task related EEG

A 2 x 3 cluster-based permutation ANOVA revealed no main
effect of tACS, however, the main effect of time window was sig-
nificant for all frequency bands (Fig. 4A and Tables 2 and 3). Most
importantly, we found a significant interaction between tACS and
time window for theta power (p = 0.04). Analysis of power spectra
from pre- and post-stimulus intervals after active or sham stimu-
lation revealed an overall increase in the theta and decrease in the
alpha and beta power after the stimulus (Fig. 4B, for significant
channel topography, see SI Fig. 2).

The significant interaction between tACS and time window in the
theta band was driven by the difference between 10 Hz tACS and
sham tACS (Fig. 5A). Post-hoc tests showed a significant increase in
theta power after the stimulus for 10 Hz tACS compared to sham
tACS (p = 0.02) that was not significant for 16.18 Hz relative to sham
tACS (p=0.1) or 10Hz relative to 16.18 Hz (p=0.1) (Fig. 5B).
Moreover, the individual increase in theta power after 10 Hz tACS
was positively correlated with the phonological response speed
(Spearman's r = 0.55; p = 0.005; Fig. 5C), indicating faster response
speed with increased theta power. This correlation was specific for
10Hz and not significant for 16.18 Hz (Spearman's r=0.33,

p=0.12) or sham tACS (Spearman's r = 0.35, p = 0.2). Additionally,
we compared the correlations between response speed and theta
power between all three tACS conditions (using Pearson & Filon's z
[50]) and found a significantly stronger correlation for 10 Hz tACS
relative to 16.18 Hz tACS (z = 1.82, p = 0.034) and a trend towards a
stronger correlation for 10Hz relative to sham tACS (z=1.57,
p = 0.05). The difference between 16.18 Hz and sham tACS was not
significant (z = 0.372, p = 0.355).

In the ROI analyses, cluster-based permutation ANOVAs
revealed no main effect of tACS, but a significant main effect of
region (p = 0.02). There was a significant decrease in theta power
after the stimulus compared to before the stimulus in the right
prefrontal cortex. The interaction between tACS and region was also
significant in the theta band only (p = 0.01). Post-hoc analysis of
power values showed that compared to sham stimulation, both
active tACS conditions led to a significant increase in theta power
differences in the right prefrontal cortex (Fig. 4C and D, Tables 2 and
3 for all comparisons). For neurophysiological effects of tACS on the
control task, see SI Results.

Discussion

Here, we combined 10 Hz offline tACS over the bilateral pre-
frontal cortex with a phonological decision task and simultaneous
EEG measurements to investigate the after-effects of rhythmic non-
invasive brain stimulation on language processing. As a main
finding, phonological response speed was significantly facilitated
after 10 Hz tACS relative to sham stimulation. This effect was task-
specific, as tACS did not modulate response speed in an easy control
task (decision making). However, we cannot draw conclusions on
the frequency specificity of the observed behavioural facilitation
since phonological response speed was not significantly different
between 10 Hz tACS and the control frequency (16.18 Hz).
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Table 2
Neurophysiological effects.

Table 3
Post-hoc comparisons for neurophysiological effects.

Measurement Factor p Resting state EEG: Effect of time (after vs. before tACS)
Resting state EEG Theta Alpha Beta
Theta ACS 02 after vs. before tACS 0.03 0.004 0.006
time 0.03 Task related EEG: Effect of time window (post- vs. pre-stimulus
tACS x time no clusters presentation)
Alpha tACS 0.2 Theta Alpha Beta
time 0.004 - ]
tACS X time 02 post- vs. pre-stimulus presentation 0.02 0.001 0.001
Beta tACS 0.2 Task related EEG: Interaction: tACS x time window (post- vs. pre-stimulus
time 0.006 presentation)
tACS x time no clusters Theta Alpha Beta
Task related EEG sham tACS vs. 10 Hz tACS 0.02 — —
sham tACS vs. 16.18 Hz tACS 0.1 — —
Theta ACS no clusters 10 Hz tACS vs. 16.18 Hz tACS 01 - -
time window 0.02
tACS x time window 0.04 ROI analyses: Effect of region: Comparison between left and right prefrontal
Alpha tACS no clusters regions
time window 0.001 Resting state EEG
tACS x time window no clusters Theta Alpha Beta
Beta tACS no clusters - -
time window 0.001 left vs. right prefrontal region 0.01 — —
tACS x time window no clusters Task related EEG
ROI analyses resting state EEG Theta Alpha Beta
Theta tACS 0.2 left vs. right prefrontal region 0.02 — -
region 0.01 ROI analyses: Interaction: region x tACS
tACS X region 0.7 Resting state EEG
Alpha tACS 0.1 Theta Alpha Beta
region 0.6
tACS X region 0.02 sham tACS vs. 10 Hz tACS - 0.02 -
Beta tACS 0.8 sham tACS vs. 16.18 Hz tACS — 0.007 —
region 0.7 10 Hz tACS vs. 16.18 tACS — 0.5 -
tACS X region 0.2 Task related EEG
ROI analyses task related EEG Theta Alpha Beta
Theta ACS 04 sham tACS vs. 10 Hz tACS 0.02 - -
region 0.02 sham tACS vs. 16.18 Hz tACS 0.02 - —
£ACS x region 0.02 10 Hz tACS vs. 16.18 tACS 05 - -
Alpha tACS 0.1 Paired t-tests were used in case of significant p-values (cluster-based permutation
region 1 tests). Region: left prefrontal region comprised electrodes F1; F5; FC3; right pre-
tACS x region 0.2 frontal cortex comprised electrodes F2; F6; FC4.
Beta tACS 0.8
region 0.5
tACS x region 0.8

All p-values are derived from cluster-based permutation tests.

We further observed a significant interaction between tACS and
session on phonological error rates that was driven by increased
errors after 10 Hz relative to sham tACS in the first session only.
However, we did not find a significant correlation between the
individual increase in errors and the facilitation in response speed.
Consequently, there is no evidence for a speed-accuracy tradeoff in
our data. While the effect of 10 Hz tACS on errors was only signif-
icant in the first session, the observed facilitation in response speed
was significant across all sessions. The divergent effects of 10 Hz
tACS on speed and error rates are difficult to explain. These findings
might indicate an early disinhibition of behavior induced by 10 Hz
tACS over the prefrontal cortex that might have been disguised by a
learning effect in the following sessions.

As another finding of our study, we observed a significant in-
crease in task-related theta power after the word stimulus
following 10 Hz tACS relative to sham tACS. A significant (but
moderate) positive correlation between individual increase in theta
power and the individual behavioral facilitation that was specific
for 10 Hz tACS suggests that increased theta power might represent
the neurophysiological correlate of the observed behavioral

facilitation. As an alternative explanation, one may assume that the
observed increase in theta power could reflect the tACS-induced
modulation of an underlying task-evoked electrophysiological
response that might have disguised as an oscillation [51]. Indeed,
several event-related potentials, some of which are also observed
during phonological processing and working memory processes,
have been associated with an increase in the alpha or theta power
[51—54]. Even if we cannot dissociate the two explanations with
our data, our findings suggest that the significant improvement in
task performance was related to an increase in the underlying task-
related neurophysiological signal.

Since task-related alpha power was not affected by 10 Hz tACS in
our study, the observed after-effects seem to be unrelated to online
entrainment in the stimulation frequency and may rather occur due
to plastic alterations within the stimulated area or network [55].
While the absence of a tACS effect in the alpha band was unex-
pected, several previous studies have shown that after-effects of
tACS are not restricted to the stimulation frequency, but can also
occur in other frequency bands ([56,57] see Ref. [27] for review).
Pahor and JauSovec [57] showed that behavioral after-effects of
theta-tACS on fluid intelligence correlated with changes in the
theta and alpha band, suggesting that there might be functional
cross-frequency modulation of those bands. In line with our find-
ings, some previous studies found no after-effects in the stimula-
tion frequency, but selectively in different frequency bands after
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was positively correlated with the phonological response speed.

tACS [55,58] or oscillatory tDCS [59]. The absence of any modula-
tory effect during rest might indicate that the modulatory effects on
short-term plasticity depended on the current brain state and
interacted with the task (see below for discussion).

Notably, the observed tACS-induced facilitation of phonological
response speed was unexpected as we initially hypothesized to find
a significant disruption of phonological task performance. This

assumption was based on previous studies that reported behavioral
impairment when 10 Hz rTMS was applied over key language areas
during different language tasks, including phonological processing
[4,5,30,49,60,62]. As a main difference to the present study, the
previous studies used online rTMS to interfere with task perfor-
mance directly during processing. We refrained from online
application here since the side effects induced by tACS (i.e.,
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flickering sensations) and the tACS induced artifacts in the EEG
signal might have interfered with the processes of interest.
Consequently, our study design differs from the previous studies,
which might explain the unexpected direction of the behavioral
effect. It should be noted that the direction of the effects of many
non-invasive brain stimulation protocols on performance in
cognitive tasks is rather unclear. For instance, several studies re-
ported faster response times with different online or offline rTMS
protocols over temporal or frontal language areas [63—65], while
other studies found delays in response speed during language tasks
with these protocols [66,67]. However, only very few studies used
10 Hz protocols in an offline fashion in previous studies of cognition
[64,68] and the expected effects on performance therefore remain
unclear.

We believe that a likely explanation of the observed facilitation
effects is related to the concept of state dependency [69]. Within
this framework, it is argued that the direction of the behavioural
outcome of TMS (i.e. facilitation or disruption) depends on the
interaction of the current brain state and the stimulation intensity
[70,71]. Crucially, changes in the brain state may result in a shift of
the observed behavioral TMS pattern such that intensities, which
normally impair perception, can have a facilitatory effect if the
initial brain state has changed [71]. While these previous studies
relied on TMS applied during task processing, effects of state de-
pendency have also been suggested for transcranial electrical
stimulation techniques [72]. It is plausible to assume that such ef-
fects might not only affect task processing directly during stimu-
lation but might also prime the neural activity pattern in the
stimulated area when given before the task by inducing neuro-
plasticity [29]. Hence, one might argue that offline tACS at 10 Hz
could have primed neural activity in the stimulated area such that it
was optimal for task performance in previous offline TMS studies
[64,68] and in the present study.

The topographic changes after tACS should also be considered
when interpreting the present results. Interestingly, task related
theta-increase was confined to the left prefrontal cortex (Fig. 4A),
while the modulatory effect of 10 Hz tACS on language performance
increase was located in the right prefrontal cortex (Fig. 5A). This
may point to a network effect, that is, a release of contralateral,
right frontal activity from suppression of left frontal task-related
theta activity. Indeed, ROI analyses revealed an increase in the
theta frequency difference in the right prefrontal cortex after active
stimulation at both frequencies. However, these changes were
found for both active tACS conditions and were not correlated with
the observed behavioural tACS effects. Consequently, it remains
unclear whether this finding is behaviourally relevant.

Notably, the observed facilitatory effect of our 10 Hz tACS pro-
tocol is well in line with previous (online) tACS studies in the motor
[23,73] and auditory spatial attentional system [74] as well as
during working memory and inhibition tasks in the elderly [75].
These studies reported significant improvements in performance
when 10 Hz tACS was given directly during task processing. To date,
only a few studies used tACS to modulate language functions.
Beneficial effects were reported for higher frequencies (35—40 Hz)
during phonetic categorization in older subjects [76] or pitch
memory in patients with congenital amusia [77] and for theta-tACS
when applied during implicit language learning in the young and
aging brain [78]. With respect to beneficial after-effects of tACS in
the study of cognition, a few studies found increased working
memory performance after tACS in the gamma or theta frequency
[57,79—82]. To the best of our knowledge, the after-effects of
(alpha-) tACS have not been explored in the language domain so far.

At the neurophysiological level, we found that 10Hz tACS
significantly modulated the task-induced event-related desynch-
ronization in the theta band during phonological decisions. The

observed increase in the post-stimulus theta power might indicate
increased working memory efficiency that facilitated phonological
decisions. Indeed, increased theta power was previously associated
with successful performance in visual working memory tasks [83]
and during phonological processing [84,85]. Initially, we expected a
strong tACS-induced modulation in the alpha band. However, we
only found an unspecific, general decrease in the alpha and beta
band after the stimulus and an interaction with tACS for the theta
band only. This indicates that rather than inducing a plastic after-
effect in the range of the stimulation frequency, tACS interacted
with a different frequency that was related to a facilitation in task
performance. This effect was task-specific and not reflected in the
resting state EEG. A potential explanation for the absence of a
strong tACS-induced effect in the alpha band during the task might
be related to the fact that we did not stimulate with frequencies in
the individual alpha band. It is possible that tACS may not increase
alpha activity in participants who show a high level of alpha ac-
tivity, but might rather induce improvement and alpha increase in
subjects with a specific deficit in alpha activity, as suggested pre-
viously [86]. In that study, alpha activity was selectively increased
by tACS with the individual subject's alpha frequency, when the
individual alpha power had been low before stimulation. However,
no increases in alpha activity were found if the individual alpha
power had been high before stimulation. These findings speak in
favour of an individual adjustment of the stimulation frequency to
modulate alpha power. Consequently, stimulating with the indi-
vidual alpha frequency might be used in future studies to induce
changes also in alpha band and not only cross-frequencies effects.
However, it is still unclear whether stimulation is more effective
when it matches the “eigenfrequency” of the brain [87—90] or is
slightly different [28,91].

Our findings might be also influenced by the fact that, with our
electrode montage, stimulation of the two prefrontal sites was anti-
phasic (i.e., 180° phase difference between the two stimulated sites
[92,93]. Consequently, different patterns were induced by tACS
over the left and right prefrontal cortex, which might explain the
observed differences between both sites after active tACS in our ROI
analyses.

One limitation of our behavioral findings is the absence of
specificity with respect to the stimulation frequency. The effects of
10 Hz tACS were significantly different from sham stimulation but
not from the control frequency. While the control frequency was
not significantly different from sham, the absence of a significant
difference between both frequencies precludes strong conclusions
on the frequency specificity of the observed effect. Results of the
resting-state EEG recordings showed that theta, alpha and beta
power was increased after tACS. However, this effect did not differ
significantly between active and sham tACS conditions and likely
reflects changes in general arousal [94—96].

As another limitation of our data, the control task was not
matched to the phonological task in terms of task difficulty. Conse-
quently, the observed task specificity has to be interpreted with
caution. We wish to emphasize that we refrained from including a
linguistic control task that might have been easier to match for dif-
ficulty to avoid potential interference with prefrontal language ac-
tivity due to the low focality of our stimulation electrodes.

In summary, our results show that offline tACS over the bilateral
prefrontal cortex significantly facilitated phonological decisions at
the word level. This facilitatory effect was underpinned by an in-
crease in the theta power during task processing. These results
implicate that offline tACS provides a powerful tool to modulate
task-related activity and behaviour beyond the time of stimulation.
Our results further point to the importance of the inclusion of a
control frequency to test for the frequency specificity of the
observed modulatory tACS effects.
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