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Abstract
Quantifying white matter damage in vivo is becoming increasingly important for investigating

the effects of neuroprotective and repair strategies in multiple sclerosis (MS). While various

approaches are available, the relationship between MRI-based metrics of white matter micro-

structure in the disease, that is, to what extent the metrics provide complementary versus

redundant information, remains largely unexplored. We obtained four microstructural metrics

from 123 MS patients: fractional anisotropy (FA), radial diffusivity (RD), myelin water fraction

(MWF), and magnetisation transfer ratio (MTR). Coregistration of maps of these four indices

allowed quantification of microstructural damage through voxel-wise damage scores relative to

healthy tissue, as assessed in a group of 27 controls. We considered three white matter tissue-

states, which were expected to vary in microstructural damage: normal appearing white matter

(NAWM), T2-weighted hyperintense lesional tissue without T1-weighted hypointensity (T2L),

and T1-weighted hypointense lesional tissue with corresponding T2-weighted hyperintensity

(T1L). All MRI indices suggested significant damage in all three tissue-states, the greatest dam-

age being in T1L. The correlations between indices ranged from r = 0.18 to r = 0.87. MWF was

most sensitive when differentiating T2L from NAWM, while MTR was most sensitive when dif-

ferentiating T1L from NAWM and from T2L. Combining the four metrics into one, through a

principal component analysis, did not yield a measure more sensitive to damage than any single

measure. Our findings suggest that the metrics are (at least partially) correlated with each other,

but sensitive to the different aspects of pathology. Leveraging these differences could be bene-

ficial in clinical trials testing the effects of therapeutic interventions.
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1 | INTRODUCTION

Accurate quantification of white matter damage in multiple sclerosis

(MS) is important for the development of reparative and neuroprotective

strategies (Barkhof, Calabresi, Miller, & Reingold, 2009). While the hall-

mark of white matter pathology in MS is focal demyelinating lesions, the

correlation between the volume of lesional tissue and disability is low,

representing an example of the so-called clinical-radiological paradox

(Barkhof, 1999, 2002). Instead, the severity of damage within lesions and

the diffuse microstructural damage outside lesions are factors that

appear to better explain disability and prognosis (Filippi, 2001; Giorgio

et al., 2010; Kitzler et al., 2012; S. Kolind et al., 2012; Moll et al., 2011).
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In MS, white matter microstructure can be compromised by both

demyelination and axonal loss. While axonal loss can result directly

from inflammation within lesions, it can also occur as a consequence

of demyelination outside lesions (Bitsch, Schuchardt, Bunkowski,

Kuhlmann, & Bru, 2000; Trapp et al., 1998; Trapp & Stys, 2009). There-

fore, the promotion of repair through remyelination and neuroprotection

represents the two major goals of novel therapeutic interventions in

MS. To improve the characterisation of damage and quantification of

repair, non-invasive MRI-based methods to accurately measure micro-

structural damage are crucial. A variety of MRI-based approaches that

probe various physical properties of the tissue have been shown to be

sensitive to demyelination and axonal loss in MS (Filippi, Preziosa, &

Rocca, 2017; Mallik, Samson, Wheeler-Kingshott, & Miller, 2014).

One frequently used method to probe white matter microstructure

is diffusion tensor imaging (DTI, Basser, Mattiello, and LeBihan (1994)).

Membranes and myelin sheaths of the axons collectively hinder diffu-

sion, leading to anisotropic diffusion which, in DTI, is represented by a

tensor. Parameters extracted from DTI, such as fractional anisotropy

(FA), radial diffusivity (RD), and axial diffusivity (AD), correlate with his-

tological measures of myelination as well as with axonal density (Chang

et al., 2017; Klawiter et al., 2011; Moll et al., 2011; Mottershead et al.,

2003; Schmierer et al., 2007, 2008). Even though these metrics are sen-

sitive to changes in myelination, diffusion MRI itself is an indirect

approach to measure demyelination. Water trapped in the myelin

sheaths has a very short T2 relaxation time (Mackay et al., 1994) and

does not contribute to the signal measured in diffusion-weighted

sequences because of their comparatively long echo time. Also, myelin

is not a prerequisite for diffusion anisotropy (Beaulieu, 2002).

More direct approaches to assessing myelination are myelin water

imaging and magnetisation transfer (MT) imaging. Myelin water imag-

ing exploits the signal derived from water that is trapped within mye-

lin sheaths and that has a short T2 relaxation time (between 10 and

55 ms) compared to water in other tissue compartments (Mackay

et al., 1994). By making use of a multi-echo- (Mackay et al., 1994) or

multi-flip-angle strategy (Deoni, Rutt, & Jones, 2008), the relative con-

tribution to the signal from this T2 species can be calculated and is

referred to as myelin water fraction (MWF). By contrast, MT imaging

makes use of the MT that happens between macromolecules, such as

those found in myelin, and surrounding tissue water, when the macro-

molecular protons are subjected to an off-resonance radio-frequency

(RF) pulse that selectively saturates the macromolecular pool of pro-

tons. Both MWF (Laule et al., 2008; Laule, Leung, Traboulsee, Paty, &

Mackay, 2006; Schmierer, Scaravilli, Altmann, Barker, & Miller, 2004)

and magnetisation transfer ratio (MTR) (Gareau, Rutt, Karlik, &

Mitchell, 2000; Moll et al., 2011; Mottershead et al., 2003; Schmierer

et al., 2008) correlate with the histological markers of myelin.

Although these MRI methods are considered valid approaches for

assessing microstructural integrity, the relationship between their

metrics, that is, to what extent the metrics provide complementary

versus redundant information, remains largely unexplored. In healthy

volunteers, significant correlations between diffusion-based metrics

and MWF have been reported (De Santis, Drakesmith, Bells, Assaf, &

Jones, 2014), but these depend on the brain region investigated and

the health of the tissue (Bells, Morris, & Vidarsson, 2007; Mädler,

Drabycz, Kolind, Whittall, & Mackay, 2008). Kolind et al. (2008) found

low correlations between diffusion-based metrics and MWF in MS

lesions. Also, correlations between MWF and MT-derived metrics are

low or inconsistent between various types of tissue (Underhill, Yuan, &

Yarnykh, 2009; Vavasour, Laule, Li, Traboulsee, & MacKay, 2011).

One challenge when comparing DTI-based metrics with other

metrics is that the diffusion tensor is heavily influenced by the under-

lying fibre architecture (De Santis et al., 2014; Pierpaoli, Chiro,

Basser, & Trace, 1996). For example, in two voxels with identical axo-

nal density and myelin content, DTI-derived metrics may disagree, if

one voxel lies in a region with one predominant fibre orientation,

while the other voxel lies in a region containing several crossing fibre

populations. In this study, we considered the potential spatial hetero-

geneity of the relationship between white matter MRI metrics and

pathology. We z-transformed the microstructural parameters derived

from MS patients to the average parameter of healthy controls in the

same location. The resulting voxel-wise damage scores represent the

scaled versions of the original microstructural parameters, which are

independent of the underlying fibre architecture. We aimed to explore

the relationship between four microstructural metrics (FA, RD, MTR,

and MWF) that are frequently used in clinical studies of MS patients.

Microstructural damage estimates from the four metrics were consid-

ered for three MS tissue-states: (a) normal appearing white matter

(NAWM), with the least expected damage; (b) lesional tissue that only

appears hyperintense on a T2-weighted scan; and (c) lesional tissue that

also shows T1 hypointensity and is expected to have the strongest

underlying microstructural damage (Moll et al., 2011; Sahraian, Radue,

Haller, & Kappos, 2010; Van Waesberghe et al., 1999; Van Walderveen

et al., 1998). Additionally, we investigated whether exploiting the

covariance between the metrics (Mangeat, Govindarajan, Mainero, &

Cohen-Adad, 2015) to generate a composite metric could lead to higher

sensitivity to tissue damage than any of the individual metrics.

2 | METHODS

2.1 | Participants

We collected demographic, clinical, and MRI data from self-reported

right-handed MS patients, who fulfilled the following eligibility

criteria: between 18 and 60 years of age, no relapse or change in

treatment for at least three months before study entry, and no other

neurological or psychiatric conditions. Patients with relapsing or pro-

gressive (Lublin et al., 2014) MS (Polman et al., 2011) were recruited

through the Helen Durham Centre for Neuroinflammation at the Uni-

versity Hospital of Wales. We used the Expanded Disability Status

Scale (EDSS, Kurtzke (1983)) score and measures from the MS func-

tional composite (MSFC, Cutter et al. (1999)) to characterise disease

severity. A subsequent follow-up, four weeks later, ensured that

patients had been in a period of clinical stability during the experi-

ment. We also recruited healthy controls to undergo the same MRI

protocol.

The study was approved by the NHS South-West Ethics and the

Cardiff and Vale University Health Board R&D committees. All partici-

pants provided written informed consent.
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2.2 | MRI acquisition

MRI data were acquired on a 3T General Electric HDx MRI system

(GE Medical Systems, Milwaukee, WI) using an eight channel receive-

only head RF coil (GE Medical Devices, Milwaukee, WI). The following

MRI sequences were acquired: a T2/proton-density (PD)-weighted

sequence and a fluid-attenuated inversion recovery (FLAIR) sequence for

identification and segmentation of T2-hyperintense MS lesions; a high-

resolution T1-weighted sequence for identification of T1-hypointense

MS lesions and for registration; a twice refocused diffusion-weighted

sequence (40 uniformly distributed directions, b = 1200 s/mm2), a 3D

MT sequence andmcDESPOT sequences (Deoni, Rutt, Arun, et al., 2008)

to obtain microstructure-sensitive parameter maps. The acquisition

parameters of all scan sequences are reported in Table 1.

2.3 | T2-hyperintense lesion marking

MS lesions were segmented semi-automatically using the Jim soft-

ware package (v.6, Xinapse) on the T2-weighted image, also consulting

the FLAIR and the PD-weighted images. This was done by two inde-

pendent operators (IL and ES), in order to assess inter-operator reli-

ability of the lesion maps. We assessed the reliability in two ways:

firstly, we calculated an intraclass correlation coefficient (ICC; Shrout

and Fleiss (1979)) for the lesion volumes resulting from the two opera-

tors' segmentations. Secondly, to quantify the localisation agreement

of the two operators' maps for each patient, we derived the Dice

coefficient as a similarity index (Dice, 1945). This was calculated for

each patient as twice the number of voxels marked by both operators

divided by all the voxels marked by either of the operators (Zijdenbos,

Member, Dawant, Margolin, & Palmer, 1994).

2.4 | Tissue-state segmentation

We segmented three white matter tissue-states in each patient:

(i) normal appearing white matter (NAWM); (ii) lesional tissue that

appears as T2-hyperintensity only (T2L); (iii) lesional tissue that shows

T2-hyperintensity as well as T1-hypointensity (T1L). Average micro-

structural parameters were calculated for each patient within these

three tissue-states.

We restricted our regions of interest (ROIs; i.e., NAWM, T2L and

T1L) to white matter that is more likely to show MS damage in order

to minimise differences in MRI metrics simply due to spatial bias, that

is, to systematic white matter differences related to spatial location

(subcortical vs. periventricular) rather than disease pathology. To do

this, we first created a lesion probability map from the lesion maps of

all patients. We included all patients with available lesion maps, even

if they were subsequently excluded from the analysis, in order for the

lesion probability map to be as representative as possible of the typi-

cal location of white matter lesions. This was achieved by affinely

registering the T2-weighted images and lesion maps to the high-

resolution T1-weighted images, using FSL FLIRT with 6� of freedom

and the Correlation Ratio as cost function (Jenkinson, Bannister,

Brady, & Smith, 2002). Then, the brain-extracted (FSL BET, Smith

(2002)) and lesion filled (Battaglini, Jenkinson, & Stefano, 2012)

T1-weighted images were non-linearly normalised to the Montreal

Neurological Institute (MNI) 152 template space, using ANTs SyN T
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(Avants, Epstein, Grossman, & Gee, 2008), and the obtained warp was

applied to the lesion maps. From the lesion maps in MNI space, we

computed a probability map, which was then thresholded at 5% to

identify white matter that is susceptible to lesions (see Figure 1). The

resulting mask was then registered to each patient's individual space

and used to constrain the ROIs for three segmented tissue-states,

which were constructed as explained below.

2.4.1 | NAWM ROI

We segmented the lesion filled T1-weighted images using FSL FAST

(Y. Zhang, Brady, & Smith, 2001) and thresholded the resulting white

matter probability maps at 80% to obtain a conservative white matter

mask. To create an individual map of NAWM, all voxels marked as

lesions in the semi-automated segmented lesion map produced by

one of the operators and all voxels within 5 mm of these voxels, were

removed from the individual white matter mask. This generated a

NAWM ROI that excluded white matter in close proximity to lesions,

which often shows diffuse damage (Fazekas et al., 1999; Seewann

et al., 2009). Additionally, the NAWM ROI was restricted to lesion-

susceptible regions, as described above.

2.4.2 | ROIs for T2L and T1L

We classified each T2-hyperintense voxel into either T2L or T1L, T1L

being T2-hyperintense with corresponding T1-hypointensity, and T2L

being T2-hyperintense without corresponding T1-hypointensity. The

classification of T2-lesion voxels into T2L and T1L was based on the

intensity on the T1-weighted image. For each patient, we first

corrected the T1-weighted image for potential bias fields, using FAST

(Y. Zhang et al., 2001). Then, we generated a distribution of image

intensity values for all voxels in the NAWM mask. We classified each

voxel in the T2-lesion mask as T1L if its T1 signal intensity lay at least

1.5 interquartile ranges (IQR) below the lower quartile of the NAWM

distribution. Visual inspection confirmed that these voxels were visibly

hypointense on the T1-weighted image. All T2-hyperintense voxels

that were not classified as T1L were classified as T2-hyperintense only

(T2L; Figure 2). The categories T2L and T1L are therefore mutually

exclusive within a voxel. A single lesion could consist of T2L as well as

T1L voxels. The T1L and T2L ROIs were restricted to lesion-

susceptible regions, as described above. Figure 2 shows the seg-

mented tissue map for one representative MS patient.

To make comparisons between the three tissue-states possible, in

this analysis we only included participants that had tissue in all three

segmented states. We established a threshold of a minimum threshold

of >0.4 cm3 for each of the tissue-states. This threshold roughly

equals 100 voxels in the clinical scans, providing a large number of

data points per included patient and tissue-state.

2.5 | MRI processing

2.5.1 | DTI: FA, RD and AD maps

The DTI data were preprocessed in ExploreDTI (v 4.8.3; Leemans,

Jeurissen, Sijbers, and Jones (2009)). Data were corrected for head

motion, distortions induced by the eddy currents of the diffusion-

weighted gradients and EPI-induced geometrical distortions by registering

each diffusion image to its respective (brain extracted and downsampled

to 1.5 mm) T1-weighted image (Irfanoglu, Walker, Sarlls, Marenco, & Pie-

rpaoli, 2012) using Elastix (S. Klein, Staring, Murphy, Viergever, & Pluim,

2010), with appropriate reorientation of the diffusion-encoding vectors

(Leemans & Jones, 2009). RESTORE (L.-C. Chang, Jones, & Pierpaoli,

2005) was used to account for outliers. FA and RD and axial diffusivity

(AD) maps were exported to NIFTI format and up-sampled to the high-

resolution structural image (1 mm isotropic).

2.5.2 | MTR maps

The MTR was calculated voxel by voxel with the equation MTR =

[(S0-SMT)/S0]x100, whereby S0 represents the signal without the off-

resonance pulse and SMT represents the signal with the off-resonance

pulse. The MTR images in native space were skull-stripped using FSL

BET and non-linearly registered to the respective skull-stripped

T1-weighted images using Elastix (S. Klein et al., 2010).

2.5.3 | mcDESPOT and MWF maps

Spoiled gradient recalled-echo (SPGR) and balanced steady-state free

precession (bSSFP) data sets for each participant were co-registered

to the first volume in the sequence in order to correct for inter-scan

motion using an affine (12� of freedom, mutual information) transfor-

mation (Jenkinson et al., 2002). SPGR and inversion recovery spoiled

gradient (IR-SPGR) images were used for driven equilibrium single

pulse observation of T1 (DESPOT1) processing (Deoni, 2007),

resulting in quantitative T1 maps. Furthermore, T2 maps were

FIGURE 1 Lesion probability map. The probability map of all white matter lesions detected in all scanned 135 MS patients is shown here. The

map shows voxels which were lesioned in at least 5% of the patients (the colour bar ranges from 5% to 50%). The map was used in order to
restrict our analyses to white matter regions that are sensitive to the occurrence of lesions. This was done by thresholding the map at 5% and
registering the resulting mask to each patient's native space [Color figure can be viewed at wileyonlinelibrary.com]

2920 LIPP ET AL.

http://wileyonlinelibrary.com


FIGURE 2 Overview of the image processing pipeline. The main analysis steps are outlined, on the left for the tissue-state segmentation,

on the right for the quantification of microstructural damage. Tissue segmentation in patients: Lesion segmentation was performed by two
independent operators in order to assess reliability of the lesion segmentation. T1-weighted images were lesion-filled and FAST-
segmented in order to obtain a white matter mask. To restrict white matter to lesion-susceptible regions, a lesion probability map from all
patients' individual lesion maps was created and registered to each patient's native space, creating a restricted white matter mask. NAWM
was defined as restricted white matter, at least 5 mm away from lesions in order to avoid tissue damage around lesions. White matter
lesions were further segmented into T1L and T2L, based on the intensity in the (bias field corrected) T1-weighted image. The distribution
of the intensities on the T1-weighted image in NAWM voxels is shown in green, while the distribution of the intensities on the
T1-weighted image in lesional voxels is shown in red and in blue. From the distribution of NAWM voxels, a cut-off was calculated (1.5 IQR
below the lower quartile, shown as black line) that was applied to all voxels in the lesion map. Lesional voxels with an intensity below the
cut-off were classified as T1L (red distribution), the rest as T2L (blue distribution). Microstructural damage quantification: For each patient,
we derived a parameter map for each FA, RD, MTR, and MWF. We scaled these maps to the distribution (mean and SD) of healthy controls
through z-standardisation, yielding maps of FA(z), RD(z), MTR(z), and MWF(z), respectively. From these, global estimates of damage were
obtained from the three segmented tissue-states. Additionally, voxel-wise values were considered within each patient's white matter mask
in order to (a) look at within-patient voxel-wise correlations, (b) combine the four measures through a principal component analysis, and
(c) assess sensitivity of each measure to lesional tissue, using a receiver operating characteristic (ROC) analysis. WM: white matter; NAWM:
normal appearing white matter; T2L: T2-hyperintense only lesional tissue; T1L: T2-hyperintense lesional tissue that appears also
T1-hypointense. FA: fractional anisotropy; RD: radial diffusivity; MTR: magnetisation transfer ratio; MWF: myelin water fraction [Color
figure can be viewed at wileyonlinelibrary.com]
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calculated with the two phase-cycled bSSFP data using the driven

equilibrium single pulse observation of T2 (DESPOT2) algorithm

(Deoni, Ward, Peters, & Rutt, 2004). The data from the DESPOT1 and

DESPOT2 sequences were combined according to the three-pool

multicomponent DESPOT pipeline (Deoni, Rutt, Arun, et al., 2008;

Deoni, Rutt, & Jones, 2008) that yields whole brain voxel-wise esti-

mates of the myelin water fraction (MWF), while accounting for CSF-

partial volume contamination (Deoni, Matthews, & Kolind, 2013).

MWF maps were non-linearly registered to the brain-extracted

T1-weighted image using Elastix (S. Klein et al., 2010).

2.6 | Maps of microstructural damage

To scale the microstructural measures to the healthy control distribu-

tion in a voxel-wise manner, we co-registered all participants' maps.

The brain-extracted lesion-filled T1-weighted images were first non-

linearly normalised to MNI space, using ANTs SyN (Avants et al.,

2008). We then applied the obtained warp to the four microstructural

parameter maps, which had previously been co-registered the

T1-weighted image, as described above. For each metric, voxel-wise

mean and SD maps were computed from the data sets of the healthy

controls. Then, for each patient and each metric, a map was calculated

showing the z-score from the healthy control distribution for each

voxel. For example, a z-score of −1 in a patient's voxel indicated that

the measure was 1 SD lower than the mean of the metric in healthy

controls in the same location. For all further analyses, the damage

scores (scaled metrics) are used and reported as FA(z), RD(z), AD(z),

MTR(z) and MWF(z), respectively.

2.7 | Global measures of damage for between-
patient correlations

To explore the agreement between the measures when estimating

microstructural damage, we extracted a global damage measure for

each patient and each tissue-state. We calculated the median %

z-score from each patient's three ROIs and from each of the four met-

rics. We then compared the damage scores across tissue-states using

paired t-tests. Then, for each tissue-state, we computed Pearson cor-

relation coefficients between the estimates of damage obtained from

each of the four metrics.

2.8 | Within-patient voxel-wise correlations

As between-patient correlations are affected by the variability of the

measures in the particular sample investigated, we also calculated

voxel-wise correlations between the metrics. This was done consider-

ing all voxels within the white matter maps of each patient. To report

these correlations, we calculated the mean and SD of the correlation

coefficient (applying z-transformation) across the group. Additionally,

we set up multiple linear regressions, each of which used a different

metric as the dependent variable. We calculated the spatial variance

explained in that metric by the other three metrics. This was done

using in-house software written in MATLAB (v. R2015, Mathworks).

2.9 | Principal component analysis

To test whether combining the four considered metrics can provide a

measure with increased sensitivity to lesional tissue, the covariance

between the considered metrics was exploited in a principal compo-

nent analysis (PCA). For this analysis, we included all voxels within all

patients' white matter masks. The PCA was calculated using the

MATLAB (v. R2015, Mathworks) function PCA over the damage

scores FA(z), RD(z), MTR(z) and MWF(z). Using the resulting compo-

nent weights, a component score map for the first extracted compo-

nent was calculated for each participant. This component score map

reflects microstructural damage as estimated by the weighted linear

combination of the four metrics.

2.10 | Sensitivity to tissue-states using receiver
operating characteristic (ROC)

To assess the sensitivity of the four metrics (FA(z), RD(z), MTR(z),

MWF(z)) and of the component score from PCA to lesional tissue, for

each patient, ROC analyses were conducted using the MATLAB

(v. R2015, Mathworks) function perfcurve. ROC analyses tested the

ability of the metrics to classify: (a) T2L versus NAWM; (b) T1L versus

NAWM; (c) T1L versus T2L. For each ROC analysis, the area under the

curve (AUC) was computed and AUCs of the metrics were statistically

compared across all patients using paired t-tests.

3 | RESULTS

3.1 | Participants' characteristics

Out of 135 scanned patients, 123 had FA, RD, MTR and MWF maps

available, and were considered for the analysis. All 27 recruited

healthy controls had FA, RD and MTR maps; 25 had also MWF maps.

A full set of metrics could not be collected from all participants due to

specific absorption rate (SAR)-constraints of the mcDESPOT

sequences or to logistical reasons.

From the 123 complete patient datasets, 105 patients met our crite-

rion of having at least 0.4 cm3 volume in each of the three tissue-states.

Table 2 shows the demographic and clinical characteristics of the

patients and healthy controls included in the analysis. Patients were

younger than healthy controls, had smaller whole brain and grey matter

volumes and performed significantly worse on tasks measuring dexterity,

walking ability and cognition. None of the patients experienced a relapse

or worsening of their symptoms in the four weeks after the scan.

3.2 | Lesion segmentation

The inter-operator reliability for extracted lesion volume was ICC

(3,1) = 0.79, F = 8.4, p < 0.0001. This indicates high agreement between

lesion volumes obtained from the lesion maps segmented by the two

independent operators. The mean similarity index between the two

lesion maps for each patient was 0.52 ± 0.14, indicating an average of

50% spatial overlap between the lesion maps segmented by the two

independent operators. Visual inspection showed that the operators dif-

fered in their conservativeness at the lesion boundaries, with one
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operator consistently marking more tissue than the other (t[134] = −6.8,

p < 0.0001).

Beyond the exclusion of voxels in close proximity to lesions when

creating the NAWM maps, we used also the lesion maps of the more

conservative rater in order to increase confidence in the results of our

tissue-state segmentation.

The lesion probability map is shown in Figure 1. On average,

patients had 62.9 ± 29.8 cm3 of segmented NAWM, 7.0 ± 6.4 cm3 of

segmented T2L and 3.3 ± 3.5 cm3 of segmented T1L. As indicated above,

105 participants had at least 0.4 cm3 volume in each tissue-state and

were considered for all further analyses. Across the entire sample, the

correlation between total lesion volume and disease severity (as mea-

sured by the MSIS-29; r[133] = 0.15, p = 0.08), and disease duration

(r[132] = 0.09, p = 0.33) were low and not significant.

3.3 | Microstructural damage in MS lesions

Maps of mean and SD of the parameters in healthy controls, which

were used to calculate the damage scores in patients, are shown in

Figure 3. The low variability of the measures in the white matter

TABLE 2 Demographic and clinical characteristics of the participants. Unless otherwise indicated, descriptive statistics provided are means and

SDs. For statistical comparison between the two groups, chi-square tests were computed for categorical variables, Kruskal-Wallis test for skewed
variables (9-HPT, T25-FW), and unpaired t-tests for the rest. P values for group differences are provided. RRMS: relapsing–remitting multiple
sclerosis; IQR: inter-quartile range; EDSS: expanded disability status scale; PMS: progressive MS (primary or secondary); 9-HPT: 9 hole peg test
(score averaged across two trials); T25-FW: timed 25 ft walk (score averaged across two trials), PASAT: paced auditory serial addition test (3 sec.
Version); NBV: normalised brain volume; NGMV: normalised grey matter volume. Normalised brain and grey matter volume were calculated using
SIENAX (Smith et al., 2002)

Patients Healthy controls p-value

n 105 27 -

Age (years) 44.2 ± 9.1 38.1 ± 11.0 <0.01

Sex (women/men) 64/41 15/12 0.61

Education (years) 15.6 ± 4.0 20.1 ± 4.3 <0.0001

Disease duration (years) 13.1 ± 7.6 - -

Disease course (RRMS/PMS) 83/22 - -

Median ± IQR EDSS score 4.0 ± 1.8 - -

Median ± IQR dominant (right) 9-HPT in sec. 26.1 ± 12.8 18.9 ± 2.1 <0.01

Median ± IQR T25-FW in sec. 5.6 ± 3.1 4.3 ± 1.1 <0.0001

PASAT (3 sec.), number of correct responses 40.7 ± 13.4 51.2 ± 6.2 <0.001

NBV (cm3) 1,177.8 ± 119.9 1,261.8 ± 107.0 0.0012

NGMV (cm3) 598.6 ± 63.3 656.7 ± 47.8 <0.0001

FIGURE 3 Mean and SD maps for the four parameters in the healthy controls. For each of the metrics, a mean (left) and SD (right) map is shown.

The range of displayed values is adjusted to the units of the measures (0–0.5 for FA, MTR, and MWF, and 0–0.001 10−3 mm2/s for RD). The low
values in the SD maps compared to the mean maps indicate good alignment of white matter structures across the healthy controls. The mean and
SD maps were used to compute voxel-wise tissue damage scores (z-scores) in patients. Individual maps from 27 (25 for MWF) healthy controls
contributed to the mean and SD maps. FA: fractional anisotropy; RD: radial diffusivity; MTR: magnetisation transfer ratio; MWF: myelin water
fraction
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compared to their means indicates good alignment of white matter

structures after the MNI normalisation.

Figure 4 shows the global measures of damage for all metrics and all

tissue-states. Patients presented significant differences (p < 0.05) from

healthy control tissue in NAWM, with significant decreases of FA, MTR

and MWF, and significant increases in RD. Additionally, FA(z), MTR(z),

MWF(z) were significantly lower in T2L than in NAWM, while RD(z) was

significantly higher. Differences between T1L and T2L were also signifi-

cant for all metrics. All statistical tests are reported in Table 3.

3.3.1 | Accounting for age and education differences
between patients and controls

The healthy controls were younger (on average, 6 years) and had

higher level of education (on average, 4 years) than the patients, pos-

sibly confounding the global estimates of damage, which were based

on z-scores calculated from the healthy controls. To address this, we

performed additional analyses as follows, aiming to estimate the effect

that the mean age and educational difference between patients and

controls may have on the microstructural metrics. First voxel-wise

regression coefficients were computed (using the AFNI [Cox, 1996]

function 3dTcorr1D) between the (z-standardised) metrics and age /

years of education in the 27 healthy controls (n = 25 for MWF). We

extracted the average regression coefficient from the restricted white

matter mask in MNI space and then calculated the mean change in

each metric that would be expected in a cohort 6 year older. The

expected age-driven changes in (z-standardised) metrics were −0.08

for FA(z), 0.09 for RD(z), −0.07 for MTR(z), and −0.03 for MWF(z),

the expected education-driven changes in (z-standardised) metrics

were −0.03 for FA(z), 0.02 for RD(z), −0.21 for MTR(z), and −0.10 for

MWF(z) while the observed changes in NAWM, as reported in Table 3,

were around 5 times greater (apart from for MTR): −0.30 for FA(z),

0.52 for RD(z), −0.28 for MTR(z), and −0.70 for MWF(z). This indi-

cates that although the age and educational difference between

patients and controls is likely to have had an effect on the microstruc-

tural metrics, the effect is considerably smaller when compared to

pathology-driven changes.

3.4 | Between-patient correlations for global
damage estimates

Correlation coefficients for global damage estimates were computed

for each tissue-state separately and showed medium-to-high correla-

tions coefficients ranging from 0.18 to 0.87 between the measures. At

a significance level of p < 0.05, all correlation coefficients were signifi-

cant, apart from the one between FA with MTR in NAWM (p = 0.06;

Figure 5). Applying a Bonferroni correction for multiple comparisons

(corrected p threshold = 0.0014), most correlations were still statisti-

cally significant, the exceptions being the correlations between FA and

MTR in NAWM, between RD and MTR in NAWM, between MTR and

MWF in NAWM and between FA and MTR in T2L. Example scatter

plots for three of the between-patient correlations are provided in

Figure 6.

3.5 | Within-patient voxel-wise correlations

As for the between-patient correlations within tissue-averaged esti-

mates, average (absolute) voxel-wise correlation coefficients lay

between 0.38 and 0.74, indicating medium-to-high spatial correlations

across the maps of damage (Table 4). Additionally, we computed how

FIGURE 4 Estimates of global damage. For each metric, a boxplot

across the included 105 patients is shown, comparing global damage
estimates for each tissue-state. Global damage measures were
computed as the median z-score within each tissue-state for each
patient. All differences between tissue-states are significant for all
damage scores as presented in Table 3. NAWM: normal appearing
white matter; T2L: T2-hyperintense only lesional tissue; T1L:
T2-hyperintense lesional tissue that appears also T1-hypointense;

FA(z): z-score for fractional anisotropy; RD(z): z-score for radial
diffusivity; MTR(z): z-score for magnetisation transfer ratio; MWF(z):
z-score for myelin water fraction [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Descriptive statistics for global estimates of damage. Group average (mean ± SD) for the global damage measure (average damage,

computed as z-scores, within each tissue-state) are presented for all metrics. To compare the damage estimates across tissue-states, t-tests were
calculated (t-tests against 0 for the damage scores in NAWM, and paired t-tests comparing T2L to NAWM, and T1L to T2L). Respective t and p
values are reported. NAWM: normal appearing white matter; T2L: T2-hyperintense only lesional tissue; T1L: T2-hyperintense lesional tissue that
appears also T1-hypointense; FA(z): z-score for fractional anisotropy; RD(z): z-score for radial diffusivity; MTR(z): z-score for magnetisation
transfer ratio; MWF(z): z-score for myelin water fraction

Measure NAWM T2L T1L NAWM versus 0 (t;p) T2L versus NAWM (t;p) T1L versus T2L (t;p)

FA(z) −0.31 ± 0.30 −0.99 ± 0.380 −1.92 ± 0.48 −10.60; p < 0.001 −26.38; p < 0.001 −18.16; p < 0.001

RD(z) 0.53 ± 0.54 2.12 ± 0.884 4.84 ± 1.75 10.08; p < 0.001 23.00; p < 0.001 13.75; p < 0.001

MTR(z) −0.28 ± 0.79 −1.41 ± 1.01 −4.73 ± 1.66 −3.63; p < 0.001 −22.46; p < 0.001 −13.86; p < 0.001

MWF(z) −0.70 ± 0.85 −2.90 ± 1.21 −7.31 ± 1.97 −8.49; p < 0.001 −28.19; p < 0.001 −15.15; p < 0.001
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much of each metric's spatial variance could be explained through a

linear combination of the other metrics. On average, this was between

52% and 65% (Table 4). This indicates that maps for any of the four

metrics cannot be reconstructed through a linear combination of the

three other metrics, without losing around 40% of the information.

3.6 | Combining all scores into one by capturing
their covariance

To make component scores comparable across participants, a PCA was

run for all the white matter voxels from the 105 patients by using the

z-scores from each of the four metrics as considered variables. The Kaiser-

Meyer-Olkin index (Kaiser & Rice, 1974) of the variable matrix was 0.71,

indicating that performing a PCA was reasonable. Only the first compo-

nent had an eigenvalue >1 and could explain 66% of the variance. The

component weights were 0.47 for FA(z), −0.55 for RD(z), 0.46 for MTR(z)

and 0.51 for MWF(z). We computed a component score map for the first

component, which represents microstructural damage as estimated by the

combination of the four metrics. Then, using a ROC analysis, we compared

this new measure (referred to as PCA score) to the four original measures

with regard to its sensitivity to the three tissue-states, as described below.

FIGURE 5 Between-patient correlation coefficients for global damage scores. A correlation matrix is shown for each tissue-state separately. The

absolute correlation coefficient is plotted, as RD correlates negatively with the other metrics. NAWM: normal appearing white matter;
T2L: T2-hyperintense only lesional tissue; T1L: T2-hyperintense lesional tissue that appears also T1-hypointense; FA(z): z-score for fractional
anisotropy; RD(z): z-score for radial diffusivity; MTR(z): z-score for magnetisation transfer ratio; MWF(z): z-score for myelin water fraction [Color
figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Example scatter plots for between-patient correlations. a, Relationship between average damage in NAWM as estimated by FA(z) and

RD(z). b, Relationship between average damage in T2L as estimated by MTR(z) and MWF(z). c, Relationship between damage in T1L as estimated
by MWF(z) and FA(z). NAWM: normal appearing white matter; T2L: T2-hyperintense only lesional tissue; T1L: T2-hyperintense lesional tissue that
appears also T1-hypointense; FA(z): z-score for fractional anisotropy; RD(z): z-score for radial diffusivity; MTR(z): z-score for magnetisation
transfer ratio; MWF(z): z-score for myelin water fraction [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Within-patient correlations. Correlation coefficients between the four damage scores (z-scores) across all voxels within each patient's

white matter mask were calculated. Mean and SD of the correlation coefficients across patients are presented. The spatial variance in each
measure explained by the other three measures is also reported (in %). FA(z): z-score for fractional anisotropy; RD(z): z-score for radial diffusivity;
MTR(z): z-score for magnetisation transfer ratio; MWF(z): z-score for myelin water fraction

FA(z) RD(z) MTR(z) MWF(z) % variance explained

FA(z) 1 −0.74 ± 0.08 0.38 ± 0.10 0.43 ± 0.08 56 ± 5

RD(z) 1 −0.52 ± 0.21 −0.58 ± 0.19 65 ± 7

MTR(z) 1 0.67 ± 0.23 57 ± 17

MWF(z) 1 52 ± 14
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3.7 | Comparing sensitivity of the measures to the
three tissue-states using ROC analysis

We performed a ROC analysis for each patient and metric, detecting

the accuracy of that metric to classify T2L versus NAWM, T1L versus

NAWM, and T1L versus T2L. We quantified the classification accuracy

as the area under the resulting curve (AUC). Average AUCs ranged

between 0.68 and 0.98 (Table 5), which indicates above-chance classi-

fication performance.

For the classification problem T2L versus NAWM, all pairwise com-

parisons between the metrics' classification performance were statisti-

cally significant when correcting for the number of tests (n = 10), apart

from the comparison between RD(z) and MTR(z) (p[uncorrected] = 0.93)

and between MWF(z) and the PCA score (p[uncorrected] = 0.09). The

metric that could best differentiate NAWM from T2L was MWF(z),

followed by the PCA score, MTR(z) and RD(z) and lastly FA(z) (Figure 7).

For the classification problem T1L versus NAWM, all pairwise

comparisons were significant, apart from the comparison between

MTR(z) and PCA score (p[uncorrected] = 0.20). The metrics that could

best differentiate NAWM from T1L lesions were MTR(z) and the PCA

score, followed by MWF(z), RD(z) and FA(z).

For the classification problem T1L versus T2L, all pairwise compari-

sons were significant. The metric that could best differentiate T2L from

T1L lesions was MTR(z), followed by PCA score, MWF(z), RD(z) and FA(z).

4 | DISCUSSION

Our results demonstrate that all considered metrics of white matter

microstructure (FA, RD, MTR, and MWF) are sensitive to the presence

and severity of MS damage. We found medium to high correlations

between these metrics, with none of the metrics sharing more than

65% of their variance with the other metrics. We also showed that

combining the four metrics, by capturing their covariance through a

PCA, did not yield a metric more sensitive to lesional tissue than any

of the individual metrics. These results suggest that, while there is

some agreement between the measures of microstructural damage,

they may provide complementary information on the severity of dam-

age. Therefore, optimised clinical trials testing preventative, neuro-

protective or repair intervention would benefit from the acquisition

and consideration of all of these metrics to quantify the different

aspects of white matter damage.

4.1 | All four metrics indicate microstructural
damage

Across the patient cohort, our four MRI-based metrics confirmed sig-

nificant microstructural damage in NAWM. Lesional tissue with only

T2-hyperintensity (T2L) showed greater damage than NAWM and the

estimated microstructural damage was greatest in lesional tissue with

TABLE 5 Area under the curve (AUC). For each metric and each classification problem, the mean ± SD AUC across patients are provided. The

AUC quantifies the performance of each metric when classifying T2L versus NAWM, T1L versus NAWM, and T1L versus T2L, respectively.
NAWM: normal appearing white matter; T2L: T2-hyperintense only lesional tissue; T1L: T2-hyperintense lesional tissue that appears also
T1-hypointense; FA(z): z-score for fractional anisotropy; RD(z): z-score for radial diffusivity; MTR(z): z-score for magnetisation transfer ratio;
MWF(z): z-score for myelin water fraction; PCA-score: score derived from the first principal component of our PCA analysis

FA(z) RD(z) MTR(z) MWF(z) PCA-score

T2L versus NAWM 0.68 ± 0.07 0.80 ± 0.06 0.80 ± 0.07 0.84 ± 0.05 0.83 ± 0.05

T1L versus NAWM 0.85 ± 0.06 0.94 ± 0.04 0.98 ± 0.02 0.96 ± 0.04 0.98 ± 0.02

T1L versus T2L 0.72 ± 0.06 0.80 ± 0.06 0.89 ± 0.04 0.81 ± 0.06 0.86 ± 0.04

FIGURE 7 ROC analysis. For each patient, a ROC curve was computed for each classification problem: T2L versus NAWM (left plot), T1L versus

NAWM (middle plot) and T1L versus T2L (right plot). The patient-averaged ROC curve (average true positive rate depending on the set false
positive rate) is plotted for each metric. To compare the performance of the metrics statistically, we considered each patient's area under the
curve and performed pairwise comparisons between the metrics (as described in the text). NAWM: normal appearing white matter; T2L:
T2-hyperintense only lesional tissue; T1L: T2-hyperintense lesional tissue that appears also T1-hypointense; FA(z): z-score for fractional
anisotropy; RD(z): z-score for radial diffusivity; MTR(z): z-score for magnetisation transfer ratio; MWF(z): z-score for myelin water fraction, PCA
score: score derived from the first principal component of our PCA analysis [Color figure can be viewed at wileyonlinelibrary.com]
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additional T1-hypointensity (T1L), which is consistent with histological

studies (Moll et al., 2011; Sahraian et al., 2010; Van Waesberghe

et al., 1999; Van Walderveen et al., 1998).

Differences in microstructural metrics between lesional tissue

with and without T1-hypointensity are not always found with MRI.

For example, Vavasour, Li, Traboulsee, Moore, and Mackay (2007)

reported differences between T1-hypointense and T1-isointense

lesions only for MTR, but not for MWF. The sensitivity of MWF to

different types of lesions might be influenced by the acquisition

method chosen (Faizy, Thaler, Kumar, & Sedlacik, 2016), as well as by

the method adopted to classify lesional tissue. In this study, instead of

classifying entire lesions, we objectively classified each lesional voxel

into T2L versus T1L. This maximised the contrast between the investi-

gated tissue-states, which was also reflected in the high classification

accuracy achieved in our ROC analysis, with the average area under

the curve exceeding 0.8 for all measures, apart from FA (Table 5).

4.2 | Estimates of microstructural damage correlate
between the MRI-based measures

The global estimates of damage correlated significantly between the

measures, with the lowest correlations in NAWM, in which the tissue

damage is also the lowest. Averaging damage across lesional tissue

may provide more meaningful measures than averaging across poten-

tially more heterogeneous NAWM, explaining the higher between-

measure correlations found in lesional tissue. The voxel-wise correlations

that were calculated separately within each patient's white matter sup-

port the results from the between-participant correlations of global mea-

sures of damage, also yielding medium-to-high correlations. This

indicates that the microstructural damage maps for each patient show

consistency across the metrics used.

If the covariance between the metrics were sufficiently high, this

would allow the accurate generation of synthetic maps of one metric

by just measuring the other metrics, potentially saving scanning time

(Callaghan, Helms, Lutti, Mohammadi, & Weiskopf, 2015). However,

our multiple linear regression analysis suggests that one metric cannot

simply be replaced or computed from the other metrics, as on average

only around 50–60% of the variance is shared between the metrics.

Overall, we showed that while spatial variance is shared between

the metrics and some of the between-patient correlations of global

damage scores are high, this is not uniformly true for all metrics (e.g., the

weakest between-patient correlations were found between MTR and

the other measures). This could be partly due to noise in the individual

metrics and partly to the fact that each metric is sensitive to a different

biological aspect of damage, which may show some independence and

thus potentially reflect distinct pathological mechanisms.

4.3 | The metrics may provide complementary
information

If noise were the reason for the observed discrepancies between the

metrics, then combining them into onemeasure could potentially provide

a metric more sensitive to microstructural damage. A similar concept was

implemented by Mangeat et al. (2015) with myelin-sensitive contrasts in

the cortex at 7 T: making use of the covariance structure of the metrics

MT and T2*, maps of the first component score from a principal compo-

nent analysis matched histology-based cytoarchitectonic maps better

than either of the two original maps.

In this study, we derived component maps from a PCA, consider-

ing all four maps of microstructural damage. The derived component

score was no better than individual metrics at classifying lesional tis-

sue from NAWM and T2L or classifying the two lesional tissue-states.

This suggests that the investigated metrics differ in their sensitivity to

specific aspects of microstructural damage. The metric that was best

able to discriminate between tissue-states differed according to the

classification problem. Classifying T2L lesions from NAWM was best

done by MWF, while classifying T1L from T2L lesions was best done

by MTR. This again suggests that the imperfect agreement between

the metrics is not simply a result of noise, otherwise the least noisy

metric would have the best classification power for all problems. It

has to be considered that this classification analysis relies on tradi-

tional lesion maps as the gold standard to localise areas of expected

histopathological damage. It is possible that the localisation of damage

with the microstructural metrics and our component score is actually

more accurate than operator-dependent lesion segmentation on

T1-weighted and T2-weighted images. Whether this is the case can

only be established by the combination of histopathology and

microstructural MRI.

4.4 | MTR may be particularly sensitive to
extracellular water

The particular sensitivity of MTR to T1L that we found supports the

findings by Vavasour et al. (2007). MTR is sensitive to white matter

microstructure because it quantifies the MT that happens on the sur-

face of myelin sheaths. However, Vavasour et al. (2007) suggest that

in the case of T1-hypointense lesions, MTR changes might also reflect,

to a large extent, the increase in extracellular water that follows tissue

destruction. Another explanation could be that the MTR can be

affected by T1-effects (Helms, Dathe, & Dechent, 2010). By defini-

tion, T1-hypointense lesional tissue is related to the intensity on

T1-weighted images, which could contribute to the particular sensitiv-

ity of MTR to that type of lesion. The particular sensitivity of MTR to

water and T1-effects may be the reason why it showed comparatively

low between-patient correlations with the other metrics.

4.5 | MWF may be particularly sensitive to subtle
microstructural damage in MS

MWF was significantly better than the other metrics at differentiating

T2L from NAWM. MWF reflects the signal fraction coming from mye-

lin water compared to the combined signal fraction of myelin and

extracellular water. Therefore, MWF is affected by a change in the

total myelin content in a voxel, but also by changes in extracellular

water. T1L in particular is characterised by an increase in extracellular

water that can follow severe tissue destruction. Nevertheless, our

measure of MWF did less well than MTR at differentiating between

T1L and T2L.

In the case of very severe tissue destruction, it is possible that

some of the additional water is assigned to the CSF compartment
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rather than to the extracellular water compartment of the applied

three-compartment model. If this is the case, then the microstructural

damage might be underestimated, when looking at the apparent

MWF. Additional analyses show that the estimated CSF water frac-

tion is indeed significantly increased in MS lesions, most greatly in T1L

(Supporting Information Figure S1). MWF was particularly good at

classifying lesions with less severe tissue destruction, that is, T2L. It

could be the case that MWF provides a more specific measure than

MTR in the case of less severe damage, by potentially being less

affected by T1-weighted effects. It is also possible that these two

measures differ with regard to their sensitivity to fragmented myelin,

which remains to be explored.

4.6 | FA and RD are the least specific metrics

The DTI-based measures FA and RD were the least sensitive at

detecting both types of lesions. These measures are very frequently

used to measure microstructural integrity of white matter, but lack

specificity (Beaulieu, 2014). The diffusion tensor is sensitive to a vari-

ety of factors, including myelination and axonal density, extracellular

water and fibre architecture (Beaulieu, 2014). Studies in animals sug-

gest that axonal damage mostly affects axial diffusivity and demyelin-

ation mostly affecting perpendicular diffusivity (Concha, Gross,

Wheatley, & Beaulieu, 2006; Song et al., 2003). However, in particular

in MS, demyelination and axonal damage are not two isolated pro-

cesses, but have a complex relationship (Simons, Misgeld, &

Kerschensteiner, 2014). The microstructural damage scores we calcu-

lated using FA and RD were highly correlated, which is probably due,

at least partly, to the fact that an isolated change in RD does affect

FA by its definition. Still, RD had higher sensitivity to both lesional

tissue-states than FA. One explanation is that RD could be a more

sensitive measure of myelination. Another explanation could be that

diffusivity generally increases in lesional tissue, independent of the

direction along which diffusion is measured. If this were the case, then

AD, which is independent of RD, should show similar sensitivity to

damage as RD. Additional analyses show that, in our data (Supporting

Information Figure S2), this is not the case and that AD performs sig-

nificantly worse than RD at classifying the tissue-states, although it

performs marginally better than FA. This suggests that RD may indeed

be the most sensitive of the DTI-based metrics, when estimating

microstructural damage.

From the four investigated metrics, FA was the least sensitive to

lesional tissue. FA is predominantly determined by structured axonal

membranes (Beaulieu, 2014), but is also sensitive to changes in mye-

lination. However, large changes in myelination lead to comparatively

small changes in anisotropy (Song et al., 2002). The microstructural

damage that occurs in lesional tissue is a combination of myelin and

axonal loss, and FA might preferentially reflect changes in the axonal

density. On the other hand, the other metrics are not only sensitive to

the loss of myelinated axons, but also to demyelination in intact axons,

which could explain greater estimated damage in lesional tissue.

Due to the simplicity of the diffusion tensor, DTI has limited capa-

bilities to infer specific microstructural changes. It is a method sensi-

tive to a variety of changes, however, and still frequently used in the

clinical research in MS (Barkhof et al., 2009; Enzinger et al., 2015;

Moccia, Stefano, & Barkhof, 2017; Tomassini et al., 2012). Multi-shell

diffusion acquisitions allow to apply models such as the neurite orien-

tation dispersion and density imaging (NODDI; H. Zhang, Schneider,

Wheeler-Kingshott, and Alexander (2012)) or composite hindered and

restricted model of diffusion (CHARMED; Assaf and Basser (2005)),

and infer more biologically specific microstructural measures, such as

the fibre orientation dispersion. Some of these metrics may have the

potential to provide even more specific information about pathologi-

cal processes (Tomassini et al., 2012). However, it is important to

mention that due to the complexity of these models, various assump-

tions and model constraints have to be established. While these may

be reasonable for healthy tissue, they do not necessarily hold for path-

ological tissue, which can make the interpretation of these microstruc-

tural metrics challenging (Lampinen et al., 2017).

The investigated metrics are likely to be sensitive to different

pathological processes. Therefore, the collection of several, comple-

mentary metrics could improve detection and quantification of micro-

structural pathology, with important implications for clinical trials,

whose behavioural or pharmacological interventions could interfere

with or induce microstructural changes.

4.7 | Limitations

The study is not without limitations. We used lesional tissue to assess

the sensitivity of MRI-based metrics to microstructural damage, as

pathology is most pronounced in lesions (Tomassini & Palace, 2009).

While axonal loss and demyelination are established pathological pro-

cesses in MS, lesional tissue is also characterised by inflammation,

gliosis, axonal swelling and edema (Filippi et al., 2012). The microstruc-

tural measures applied in this study are likely to be sensitive to some

of these processes. Additionally, lesional tissue can be very heteroge-

neous between and within patients, with numerous types of MS

lesions described histologically (Kuhlmann et al., 2017). As we cannot

differentiate between these lesion types using MRI, we classified the

lesions broadly into two lesional tissue-states.

In this study, we focused on T2-weighted white matter hyperintense

lesional tissue without versus with T1-weighted hypointensity. The

majority of T1-hypointense lesions are chronic black holes, that is, lesions

with severe tissue destruction (Sahraian et al., 2010; Tomassini & Palace,

2009). However, a minority of them are active lesions, which can be

distinguished on a post-contrast T1-weighted scan by their gadolinium-

enhancement. Ours were research scans, acquired without gadolinium-

contrast administration, which prevented us from making this distinction.

However, it has to be noted that the classification of enhancing versus

non-enhancing lesions is also not straightforward, since there are a num-

ber of methodological factors that determine whether lesions enhance or

not (Filippi, 2000). However, from the low proportion of active lesions

among T1-hypointense lesions reported in the literature (Ciccarelli et al.,

1999; Koudriavtseva et al., 1997; Zinadinov & Bakshi, 2004), and from

the inclusion criteria in our study we expect only a minority of T1L

assessed to be enhancing lesions.

To ensure informativeness of the results, we only included

patients with a high number of voxels within each tissue class.

Although this could bias the sample towards patients with higher total
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lesion volume, we showed that this was unrelated to disease severity

and duration.

When comparing the sensitivity of the metrics to lesional tissue,

the ROC analysis showed AUCs between 0.68 and 0.98, which overall

indicated high classification accuracy. This analysis assumes that the

T2-lesion masks are the gold-standard. However, lesion segmentation

is not a trivial process (Carass et al., 2017). As shown in our inter-

operator reliability analysis, this is highly operator-dependent. Even if

the correlation between lesion volumes calculated from two operators

suggests reliable lesion segmentation, some operators can be more

conservative than others (Carass et al., 2017).

The patient cohort in this study was on average 6 years older than

the controls and had on average 4 years fewer of education. Our ana-

lyses show that this difference had an effect on the normalised damage

scores in the patients. However, the effect size was small compared to

the effect of pathology, apart from the relationship between education

and MTR. However, here, causality cannot be inferred, as the disease

severity may be a confound, affecting both microstructure and how

long patients can stay in education for. Additionally, since all patients'

maps were normalised in the same way, a potential bias in the z-scores

would not have affected the correlations between the metrics.

The high sensitivity of DTI-based metrics to the underlying fibre

configuration could contribute to explain, at least in part, their low

sensitivity to lesional tissue. We aimed to address this inherent limita-

tion of DTI by spatially normalising the metrics to healthy control tis-

sue. However, the co-registration of the microstructural images,

which is based on T1-weighted structural images, limits the extent to

which this analysis can succeed. To minimise potential registration

biases due to atrophy in our patient group, we employed ANTs SyN

algorithm, which is considered as a robust method to register atrophic

brains (Avants et al., 2008; A. Klein et al., 2009). Additionally, in

advance of applying this method to our patient cohort, we compared

it to other methods (linear and nonlinear registration provided by FSLs

FLIRT and FNIRT) and investigated the effect of atrophy on the

resulting MNI normalisation (Supporting Informtion Figure S3). Our

results suggested that ANTs SyN provided the best registration suc-

cess in our dataset, with differences between patients with higher

versus lower atrophy being negligibly small compared to differences

between the compared registration algorithms.

4.8 | Conclusions

The four investigated metrics of white matter damage (FA(z), RD(z),

MTR(z) and MWF(z)) show good agreement, when estimating micro-

structural damage in MS. Differences between the damage estimates

are likely to be a result of differences in sensitivity to different aspects

of pathology. These metrics, therefore, provide complementary infor-

mation about microstructural damage. Considering them in combina-

tion in MS, as well as in other conditions affecting the integrity of

white matter (Mole et al., 2016), can improve our understanding of tis-

sue pathology and may offer more accurate measurement of the effect

of novel therapeutic interventions for prevention, neuroprotection or

repair.
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