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The electronic structure of the giant vortex states in a mesoscopic superconducting disk is studied
in a dirty limit using the Usadel approach. The local density of states profiles are shown to be
strongly affected by the effect of quasiparticle (QP) tunneling between the states localized in the
vortex core and the ones bound to the sample edge. Decreasing temperature leads to a crossover
between the edge-dominated and core-dominated regimes in the magnetic field dependence of the
tunneling conductance. This crossover is discussed in the context of the efficiency of quasiparticle
cooling by the magnetic field induced QP traps in various mesoscopic superconducting devices.

I. INTRODUCTION

Vortex states in mesoscopic superconducting (SC) sys-
tems of the size comparable to the superconducting co-
herence length, have been well studied over the past few
decades, mainly with the emphasis on the dependence
of the vortex configuration on the size and geometry of
the sample. In such nanoscale samples theory predicts
that only a few vortices can be placed, and confinement
effects result in different exotic vortex configurations un-
like the triangular Abrikosov lattice [1–13]. These exotic
configurations are formed by the interplay between im-
posed boundary conditions and the repulsive interactions
between vortices.

The most remarkable consequence of this interplay
is the formation of the so-called giant vortex state or
multiquantum vortex when all the vortices merge in
the disk center predicted mostly within the Ginzburg-
Landau formalism provided the disk size is of order of
the coherence length. A variety of experimental meth-
ods have been used to verify these theoretical predic-
tions: (i) Hall probe microscopy [3, 5, 14, 15], (ii) Bitter
decoration [16], (iii) scanning SQUID microscopy [17],
(iv) different tunneling experiments including scanning
tunneling microscopy/spectroscopy studies [18–22].

The latter experimental approach is known to be sen-
sitive to the electronic structure of the sample, namely,
to the local density of states of quasiparticle excitations
and, thus, the phenomenological Ginzburg – Landau the-
ory often appears to be insufficient for the interpreta-
tion of the experimental data. This clear demand to the
microscopic theory has stimulated theoretical activity in
the field concentrated mainly on the calculations based
on the Bogolubov-de-Gennes theory [11, 12, 23–32], i.e.,
on the clean limit corresponding to the very large mean
free path ` well exceeding both the coherence length ξ0

and the sample size. Certainly, the predictions made
within such approach may be difficult to use for most of
the experimentally available samples for which the dirty
limit conditions (`� ξ0) are much more appropriate. In
particular, it is natural to expect that all the density of
states features associated, e.g., with the different anoma-
lous spectral branches [33] in the giant vortex or with the
mesoscopic oscillations of the Caroli-de Gennes-Matricon
energy levels [29] due to the finite sample size should be
smeared by disorder. An adequate theoretical descrip-
tion of the sample electronic structure in this diffusive
regime should be, of course, based on the Usadel-type
theory. And indeed such calculations are known to pro-
vide an excellent tool for the analysis of the Abrikosov
vortex lattices in unrestricted geometries (see, e.g., [34]).
For multiquantum giant vortices these results have been
generalized in Ref. [35] without accounting the effect of
the sample boundary.

It is important to note that the demand in the the-
oretical explanation of the available data of scanning
tunneling microscopy and spectroscopy (STM/STS) on
the exotic vortex structures in mesoscopic samples (see,
e.g., [36, 37]) is not the only motivation for the contin-
uing research work in the field. Nowadays, supercon-
ducting nanostructures have become an important ele-
ment in designing devices for rapidly expanding fields of
quantum computing, quantum memory, superconduct-
ing logic, and metrology and they are obviously the
main building blocks for the superconducting electronics.
However, superconductors are known to be easily poi-
soned by non-equilibrium quasiparticles and these extra
excitations drastically affect the performance of above-
mentioned quantum devices, e.g. via overheating or un-
wanted population in general. To suppress overheat-
ing in a superconductor different types of quasiparticle
traps are used (see, e.g., Refs. [38–40] and references
therein). One of the possible types of quasiparticle traps
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can be formed by regions with the reduced superconduct-
ing gap which appear in the Meissner and vortex states
and can be successfully controlled by the external mag-
netic field (see [40–46]). Further progress in the field re-
quires a quantitative theoretical description of both types
of quasiparticle traps based on the vortex penetration as
well as on Meissner currents flowing mostly at the sample
edge. Thus, the main goal of our work is to analyze the
behavior of the local density of states in giant vortices
penetrating to a circular superconducting sample of or-
der of the coherence length, with proper accounting of the
sample edge effects. This analysis, to our mind, should
provide an important step on the route to rather general
model of quasiparticle traps in mesoscopic samples.

To elucidate the key results of our study it is useful
to note that both the giant vortex cores and the sample
edge with the flowing Meissner screening currents can be
clearly viewed as Andreev potential wells for quasiparti-
cles in the clean limit [11]. On the other hand, the im-
purity scattering in the dirty limit surely modifies some
spectral characteristics of these wells compared to the
clean regime: (i) scattering broadens the discrete lev-
els of the Caroli-de Gennes-Matricon energy branch [47],
which crosses the Fermi level, suppressing the minigap
in the spectrum [34], (ii) scattering can also result in the
increase of minigap in the quasiparticle spectrum Eg at
the sample edge because the changes in the quasiparticle
momentum directions partially suppress the effect of the
Doppler shift of the quasiparticle energy in the presence
of the surface currents [48–51]. The overall spectral char-
acteristics and local density of states of the mesoscopic
sample can be considered as an interplay of the subgap
states, located in the vortices and in the regions with
the reduced spectral gap Eg by Meissner currents, espe-
cially at the sample edge. To illustrate this interplay we
consider for instance different contributions to the zero
bias conductance (ZBC) at the sample edge (see Fig. 1),
which can be experimentally accessed in tunneling trans-
port measurements. The contribution of the giant vortex
core states to this quantity can be estimated as follows:
∼ exp(−R/dL), where R is the distance from the vor-
tex center to the boundary and dL is the effective decay
length dependent on the vorticity L. For L = 1 the latter
length d1 ' ξ0 is of order of the coherence length ξ0. The
contribution of the edge states should include the tem-
perature activation exponent ∼ exp(−Eg/T ) due to the
finite spectral minigap Eg. These two terms are compa-
rable for a characteristic temperature T ∗(R) ' EgdL/R.
Thus, we conclude that in a sample of certain size R
for the temperatures larger than T ∗(R) the core con-
tribution is negligible at the sample edge and, conse-
quently, the finite temperature masks the coupling of
the Andreev wells in the vortex core and at the edge.
In the opposite limit of small temperatures T < T ∗(R),
quantum-mechanical tunneling of the subgap quasiparti-
cles between the vortex and the edge traps becomes ob-
servable in the experimentally measurable quantities and
dominating over thermally-activated processes. Here and
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FIG. 1. (Color online) Schematic picture of the spatial or-
der parameter distribution (shown by semi-transparent blue
color) in the superconducting disk of the radius R with the
giant L-fold vortex in the applied perpendicular magnetic
field H. The exponential factor e−R/dL (e−Eg/T ) close to the
red dashed (orange solid) lines corresponds to the amplitude
of the quantum tunneling (thermally activated) process.

further the Boltzmann’s constant is set to unity, kB = 1.
The above estimates give us a simple criterion of the

interplay of the core and edge state contributions which
will be quantitatively confirmed by further calculations
of the local density of states (LDOS) in a diffusive meso-
scopic SC disk in a wide interval of magnetic fields, ap-
plied perpendicular to the sample plane. Note that these
estimates can be of course applied not only for a vortex in
a finite size sample but also for any experimental geome-
try with vortices positioned close to the superconductor
edge (see, e.g., STM images in Ref. [52]).

The paper is organized as follows. In Sec. II we briefly
discuss the basic equations. In Sec. III we calculate the
superconducting critical temperature Tc and study the
switching between the states with different vorticity L
while sweeping the magnetic field. In Sec. IV we find
both analytically and numerically the spatially resolved
LDOS and study the behavior of the jumps in ZBC which
are attributed to the entrance of a vortex into the disk.
We summarize our results in Sec. V.

II. MODEL AND BASIC EQUATIONS

Hereafter we consider a thin superconducting disk of
a finite radius R of order of the coherence length at
the temperature T , placed in external magnetic field
H = Hz0 oriented perpendicular to the plane of the disk
(Fig. 1). The disk thickness is assumed to be small com-
pared to the London penetration depth, thus, the effec-
tive magnetic field penetration depth is large. This allows
us to neglect the contributions to the magnetic field from
supercurrents and, thus, rotA = B ≡ H. Using the no-
tations τ−1 for the electron elastic scattering rate and
Tcs for the bare superconductor transition temperature
the dirty limit conditions can be written as Tcsτ � 1.
In this regime the normal (G) and anomalous (F) qua-
siclassical Green’s functions are described by the Usadel
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equations [53], which are valid for the whole temperature
and magnetic field range. Focusing on the axisymmetric
multiquantum vortex states with the vortex core posi-
tioned in the center of the disk r = 0

∆(r) = ∆L(r) eiLϕ , (1)

we consider solutions, homogeneous along the z-axis and
characterized by a certain angular momentum L, referred
further as vorticity

F(r, ωn) = FL(r, ωn) eiLϕ . (2)

Here we choose the cylindrical coordinate system (r, ϕ, z)
and the gauge A = (0, Aϕ, 0), Aϕ = rH/2. Due to
the symmetry of Usadel equations F is an even func-
tion of ωn, F(r,−ωn) = F(r, ωn), so that it is enough to
treat only positive ωn values. In the standard trigono-
metrical parametrization G = cos θL, F = sin θL eiLϕ,
F† = sin θL e−iLϕ the Usadel equations take the form

− ~D
2

[
1

r

d

dr

(
r
dθL
dr

)
−
(
L− φr
r

)2

sin θL cos θL

]
+ ωn sin θL = ∆L(r) cos θL . (3)

The self-consistency equation for the singlet supercon-
ducting order parameter function reads

∆L(r)

g
− 2πT

∑
n≥0

sin θL = 0 . (4)

Here D = vFl/3 is the diffusion coefficient, Φ0 = π~c/e is
the flux quantum, ωn = πT (2n+1) is the Matsubara fre-
quency at the temperature T , φr = πr2H/Φ0 is a dimen-
sionless flux of the external magnetic field H threading
the circle of certain radius r, and the pairing parameter
g determines the bare critical temperature Tcs as

1

g
=

ΩD/(2πTcs)∑
n=0

1

n+ 1/2
' ln[ΩD/2πTcs]+2 ln 2+γ , (5)

with the Debye frequency ΩD and the Euler – Mascheroni
constant γ ' 0.5772. The coherence length ξ0 =√

~D/2∆0 plays the role of a typical lengthscale in the
Usadel equations.

The equations (3, 4) should be supplemented with the
boundary conditions at the disk edge r = R:

d∆L

dr

∣∣∣∣
R

=
dθL
dr

∣∣∣∣
R

= 0 . (6)

III. CRITICAL TEMPERATURE OF
SUPERCONDUCTING TRANSITIONS WITH

DIFFERENT VORTICITIES

For the temperatures close to the critical temperature
of the superconducting transition T . Tc(H), we can

restrict ourselves by the solution of the Usadel equations
Eqs. (3, 4) linearized in the anomalous Green function
(sin θL ' θL):

− ~D
2

[
1

r

d

dr

(
r
dθL
dr

)
−
(
L− φr
r

)2

θL

]
+ ωn θL = ∆L(r) , (7)

∆L(r)

g
− 2πT

∑
n≥0

θL = 0 . (8)

In these linearized equations the relation between the
anomalous Green function θL(r) and the order parameter
∆L(r) can be written in the standard form

θL(r, ωn) =
∆L(r)

ωn + ΩL
, (9)

where ΩL is the depairing parameter depending on the
disk radius R and the external magnetic field H. Thus,
the solution of Eq. (7) in the region r ≤ R can be ex-
pressed via the confluent hypergeometric function of the
first kind (Kummer’s function K(a, b, z) [54])

∆L(r) = θL(r)(ωn + ΩL) = CL fL(φr) , (10a)

fL(φr) = e−φr/2φ|L |/2r K ( aL, bL, φr ) . (10b)

Here CL is a constant, and the parameters aL and bL
depend on the vorticity L as follows (see Appendix A for
details):

aL =
1

2

(
|L| − L+ 1− Φ0ΩL

π~DH

)
, bL = |L|+ 1 .

The boundary condition (6) for the orbital mode L writ-
ten in the form (10) results in the following algebraic
equation

ΓL(aL, φ) = bL ( |L| − φ ) K(aL, bL, φ)

+ 2φaLK(aL + 1, bL + 1, φ) = 0 . (11)

The equation (11) determines the implicit dependence
of the parameter aL on the flux φ(H) = πR2H/Φ0 ≡
H/H0 through the disk for a fixed value of vorticity L
normalized to the flux quantum. Here we introduced a
characteristic field H0 = Φ0/πR

2.

The solutions a
(n)
L of the equation (11) give a set of val-

ues Ω
(n)
L which depend on the normalized flux threading

the whole disk φ and the disk radius R: ΩL = ΩL(φ, R).
Finally, substituting the expression (9) into the self-
consistency condition (8) one obtains the following equa-
tion for the critical temperature TL of the state with the
vorticity L:

ln
TL
Tcs

= Ψ

(
1

2

)
−Ψ

(
1

2
+

ΩL
2πTL

)
, (12)
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FIG. 2. (Color online) The dependence of the critical tem-
perature Tc (solid red line) and the depairing parameter Ωc

(dashed blue line) on the external magnetic field. Here we
choose R = 4ξ0 . The numbers near the curves denote the
corresponding values of the vorticity Lc. The dotted vertical
lines correspond to the fluxes φ = φL, where the switching of
the orbital modes L� L+ 1 takes place.

where Ψ is the digamma function. In accordance with
the self-consistency equation (12), the minimal value of
the depairing parameter

Ωc = min
L, n

{
Ω

(n)
L (φ, R)

}
(13)

determines the vorticity Lc and the critical temperature
Tc = TLc of the orbital mode, which nucleates in the disk
of the radius R placed in the external magnetic H.

Figure 2 shows typical dependencies of the critical tem-
perature Tc and the depairing parameter Ωc on the exter-
nal magnetic flux φ across the disk for a fixed value of the
disk radius R. The phase boundary Tc(φ) exhibits an os-
cillatory behavior similar to the well-known Little-Parks
oscillations [55, 56], caused by the transitions between
the states with different angular momenta L. The values
of the normalized flux through the disk φL, where the
switching of the orbital modes L � L + 1 takes place,
obey the equations

ΓL(aL, φL) = 0, ΓL+1(aL+1, φL) = 0 , (14)

and do not depend on the disk radius R: φL '
1.92; 3.40; 4.74; 6.04; 7.30; . . . for L = 0÷5 . . .. The mag-
netic field of the switching between modes L and L + 1
is determined by the expression Hs = H0φL. The values
of the dimensionless fluxes corresponding to the vorticity
switching coincide with the ones found in Ref. [9] for a
superconducting disk within the Ginzburg–Landau the-
ory. This coincidence comes from the obvious fact that
the linearized Usadel equation (7) after the substitution
of the expression (9) becomes similar to the linearized
Ginzburg–Landau equation. Surely, this similarity does
not extend to the full behavior of the TL(H) curve de-
termined by Eq. (12). Note also that both the depairing
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0
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FIG. 3. (Color online) Schematic temperature dependence of
the upper critical field Hc2 of superconducting phase transi-
tion of 2D disks. Dashed lines show the dependence of the
critical magnetic fields HL(T ) for the orbital mode with the
vorticity L explicitly written in the plot. The dotted horizon-
tal lines are given by the relation φ(H) = φL corresponding
to the switching between the orbital modes. The inset shows
a typical dependence of the critical magnetic fields HL(T ) for
the orbital mode L.

factor and, thus, the critical temperature depend strongly
on the disk radius R: ΩL ∼ R−2Ω̃L(φ), where Ω̃L(φ) is
a certain function of the dimensionless flux φ only. One
can see that the decrease in the R value results in the de-
crease in the number of observable different vortex states.

IV. DENSITY OF STATES

For a fixed temperature T the orbital mode L exists in
the interval of the magnetic field values 0 ≤ HL1 ≤ H ≤
HL2 which satisfy the condition TL(φ(H)) ≥ T (see the
inset in Fig. 3). Figure 3 shows a typical temperature
dependence of the upper critical field for the disk,

Hc2 = max
L
{HL(T ) } ,

affected by the transitions between different orbital
states. In order to analyze the characteristics of the sam-
ple far from the phase transition line we return back to
the nonlinear Usadel theory and consider full free energy
functional:

FL = 2πT
∑

ωn<ΩD

R∫
0

r dr

{(
∂θL
∂r

)2

+

(
L− φr
r

)2

sin2 θL

− 4

~D
(ωn cos θL + ∆L sin θL)

}
+

2

~D

R∫
0

r dr
∆2
L

g
.

(15)

Focusing now on the effect of the switching between dif-
ferent vortex states on the density of states we should
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note that experimentally this quantity can be most di-
rectly probed by the measurements of the local differen-
tial conductance:

GL(ε , r , φ) =
dI/dV

(dI/dV )N
(16)

=

∞∫
−∞

dε
NL(ε , r , φ)

N0

∂f(ε− eV )

∂V
,

where V is the applied bias voltage, (dI/dV )N is a
conductance of the normal metal junction, and f(ε) =
1/ (1 + exp(ε/T )) is the Fermi function.

A. High magnetic field: H . Hc2

We start our analysis from the limit of high magnetic
fields close to the phase transition line Hc2(T ) shown in
Fig. 3 when the solution of the Usadel equations can be
significantly simplified due to the smallness of the func-
tions ∆L and θL. In this case one can use the solu-
tion of the linearized theory (9, 10). The constant CL
in Eq. (10a) should be found from the nonlinear Usadel
theory (3). For this purpose we write the corresponding
free energy up to the fourth power of ∆L and θL:

~D
2

(FL − FN) =

R∫
0

r dr

{
∆2
L

g
− 2πT

∑
ωn<ΩD

∆LθL

−2πT
∑

ωn<ΩD

[
~D
2

(
L− φr
r

)2
θ4
L

3
+ωn

θ4
L

12
−∆Lθ

3
L

3

]}
,

(17)

where FN is the free energy of the normal state. Using
the above self-consistency equation for Tc(H)

1

g
=

∑
ωnc<ΩD

2πTc(H)

ωnc + ΩL
(18)

with ωnc = πTc(H)(2n + 1), and the relation (9), we
obtain

~D
4π

(FL − FN) ≡ ~D
4π

(
−AC2

L +BC4
L

)
=

R∫
0

rdr

{
∆2
L

( ∑
ωnc<ΩD

Tc(H)

ωnc + ΩL
−

∑
ωn<ΩD

T

ωn + ΩL

)

+∆4
LT

∑
ωn<ΩD

 1

4(ωn + ΩL)3
+

ΩL − 2~D
(
L−φr

r

)2

12(ωn + ΩL)4

} .
(19)

Here the second (third) line corresponds to the quadratic
(quartic) terms in ∆L = CLfL(φr).

Finally the amplitude CL which minimizes the above
functional FL = FN−AC2

L +BC4
L takes the form C2

L =
A/(2B), with

A =
Φ0

π~DH
I2,0×[

Ψ(ωL,Tc
)−Ψ(ωD,Tc

)−Ψ(ωL,T ) + Ψ(ωD,T )
]

(20)

B =
1

6(2πT )3

{ Φ0I4,0
2π~DH

[6πTζ3(ωL,T ) + ΩLζ4(ωL,T )]

−
(
I4,1 − 2LI4,0 + L2I4,−1

)
ζ4(ωL,T )

}
, (21)

where ζk(a) =
∑
n≥0 1/(n + a)k is the zeta function,

ωL,T = ΩL/(2πT )+1/2, ωD,T = (ΩD +ΩL)/(2πT )+3/2,
and

In,k =

∫ φ

0

fnL(φr)φ
k
rdφr . (22)

Substituting now ωn = −iε in the relation (9), one
obtains the following expressions for the LDOS valid in
the first order in ∆2

L(r) :

NL(ε , r, φ)= Re[G(ε , r)] = Re [cos θL(r)]

∣∣∣∣
ωn=−iε

(23)

≈ 1 +
∆2
L(r)

2

ε2 − Ω2
L

[ ε2 + Ω2
L ]

2

The transitions between different vortex states while
sweeping the magnetic field up, are visualized by abrupt
changes (or jumps) in ZBC [19, 21, 22], which are deter-
mined by the LDOS N(ε, r, φ) at the Fermi level ε = 0.
Let us consider a certain point (T = Ts , H = Hs) at
the phase diagram Fig. 3, where switching of the orbital
modes L� L+ 1 takes place, Hs = H0φL. Since the de-
pairing parameters of the orbital modes L and L+ 1 co-
incide ΩL = ΩL+1 the corresponding jump in the LDOS
NL+1 −NL at the disk edge r = R can be estimated as
follows:

NL+1 −NL
∣∣∣∣ε=0
r=R
φ=φL

∼
∆2
L(R)−∆2

L+1(R)

2Ω2
L

. (24)

Figure 4 shows the magnetic field dependence of the nor-
malized LDOS at the disk edge. The transitions between
different vortex states (L → L + 1) are accompanied by
the abrupt reduction in LDOS at the disk edge while
sweeping the magnetic field up. Similar jumps of the
LDOS, which are attributed to the entrance of a vortex
inside the disk, have been observed in measurements of
the normalized ZBC on Pb nano-island [19] and MoGe
nanostructures [22].

B. An arbitrary magnetic field: 0 < H < Hc2

As a next step, we analyze the conductance behavior as
a function of magnetic field and temperature at arbitrary
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FIG. 4. (Color online) The normalized LDOS N/N0 at the
disk edge versus the external magnetic field H (N0 is the
electronic density of states at the Fermi level) at T = Tc(H)−
0.01Tcs. Here we choose R = 4ξ0; g = 0.18.

0 2 4 6
-4

-3

-2

-1

0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 5. (Color online) The dependence of the free energy F (φ)
(15) (symbol •) and the normalized zero bias conductance
(ZBC) GL(0 , R , φ) (16) at the disk edge for the temperatures
T = 0.1Tcs (symbol �) and T = 0.2Tcs (symbol �) on the
magnetic flux φ = H/H0 across the SC disk of the radius
R = 4ξ0. The dashed lines show the dependence FL(φ) for
fixed vorticity L = 0÷ 4. The numbers near the curves denote
the corresponding values of vorticity L. Vertical dotted lines
H/H0 = φL correspond to the switching of the orbital modes
in the critical temperature Tc, shown in Fig. 2.

magnetic fields, 0 < H < Hc2. The Usadel equations (3 -
6) have been solved numerically for different vorticities
which allowed us to calculate and compare the values of
the free energy.

Figure 5 shows the magnetic field dependence of
the free energy F (15) and the zero bias conductance
GL(0 , R , φ) (16) at the Fermi level for a small disk ra-
dius R = 4ξ0 and two temperatures T = 0.1Tcs and
T = 0.2Tcs. All three curves illustrate the switching be-
tween the states with different vorticities L = 0÷4, which
are similar Little-Parks-like switching of the critical tem-
perature Tc(H), Fig. 2. Sequential entries of vortices pro-

FIG. 6. (Color online) Evolution of the spatially resolved
LDOS N(ε, r, φ) in the disk center r = 0 (dashed lines) and
the disk edge r = R (solid lines) in the magnetic field: thin
lines – H/H0 ' 2.24; bold lines H/H0 ' 3.84 (R = 4 ξ0,
T = 0.1Tcs). The numbers near the curves denote the corre-
sponding values of vorticity L.

duce a set of branches FL with different vorticity L on the
F (H) and dI/dV (H) curves. The transitions between
different vortex states are accompanied by an abrupt
change in the ZBC, which is attributed to the entry/exit
of a vortex inside the disk while sweeping the magnetic
field. We observe the Meissner state when the total vor-
ticity L = 0 for H . Hs0 = 2.24H0, and a single-vortex
state L = 1 in the field range Hs0 . H . Hs1 = 3.84H0.
In the Meissner state the ZBC is suppressed and spatially
homogeneous: the ZBC value at the disk edge is slightly
higher then ZBC value in the center. In the increasing
magnetic field the gap in the tunneling spectra gradu-
ally fills with the quasiparticle states. This effect is more
pronounced near the disk edge where the screening su-
perconducting currents have higher density. The smooth
evolution of ZBC continues till H/H0 ' 2.24 where it is
interrupted by a vortex entry. At higher fields H > Hs1

the multivortex states L = 2 ÷ 4 become energetically
favorable. Note, that the field values HsL at which the
jumps in vorticity (L → L + 1) occur are always larger
than the values H0 φL found from the calculations of the
critical temperature behavior.

Figure 5 illustrates an important point noted in Intro-
duction, i.e., the temperature crossover between differ-
ent regimes in the behavior of the conductance vs mag-
netic field. Indeed, one can clearly see that the change
in temperature from 0.1Tcs to 0.2Tcs is accompanied by
the change of the direction of jumps in the dependence
of zero bias conductance vs magnetic field. The up-
ward jumps in conductance for the lower temperature,
T < T ∗(R), can be associated with the core dominated
regime e−Eg/T < e−R/dL , see Fig. 1, when the conduc-
tance increases with the increase in the number of vor-
tices trapped in the center of the sample and therefore in
the parameter dL. The downward jumps in conductance
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at higher temperatures, T > T ∗(R), are caused by the
increase in the (soft) spectral gap value Eg at the sample
edge as the vortex enters, which should result in the sup-
pression of the subgap conductance GL ∼ e−Eg/T . The
change in vorticity L → L+ 1 in this case results in the
decrease of the screening current density and the corre-
sponding enhancement of superconductivity at the edge
of the disk. Assuming the crossover temperature T ∗(R)
to be in the interval 0.1Tcs < T ∗(R) < 0.2Tcs and taking
R = 4ξ0 one can estimate the value Eg ∼ 0.8∆0 which
is in good agreement with the behavior of the energy de-
pendence of the local density of states in Fig. 6. Indeed,
the position of the maximal slope of the energy depen-
dence of the density of states roughly gives the value of
the minigap at the edge: Eg . 0.8∆0.

Figure 6 also illustrates the switching between the
states with hard and soft gaps with the increase in the
magnetic field. In the Meissner state (H < Hs0) the hard
minigap ∆m in the spectrum exists (N(ε < ∆m, r, φ) =
0) till the first vortex entry. The density of states in the
center of the disk N(ε, 0, φ) is equal to the electronic den-
sity of states at the Fermi level N0 for any vortex state
L ≥ 1, indicating a full suppression of the spectral gap
in the disk center due to the vortex entry. At the same
time, at the edge of the disk the superconductivity sur-
vives though the gap becomes soft, 0 < N(0, R, φ) < N0.

Figure 7 presents the radial distributions of the SC or-
der parameter ∆L(r) and the ZBC dI/dV at T = 0.1Tc

for different values of the magnetic field H correspond-
ing to the switching between the states with different
vorticity L. The profiles of ZBC in multiquantum vor-
tices L > 1 reveal a plateau near the vortex center,
which can be considered as a hallmark of the multiquan-
tum vortex formation in dirty mesoscopic superconduc-
tors [19, 20, 35].

The electronic properties of the vortex states look to
be rather different if the radius of the disk R is much
larger than the coherence length ξ0. In this case the core
of a multiquantum vortex does not extend to the edge of
the disk, and quasiparticles in the vortex core remain well
localized near the disk center. Clearly, in this case the
temperature crossover between the core-dominated and
edge-dominated regimes accompanied by the change in
the direction of the jumps in the local ZBC at the sample
edge becomes much more difficult to observe due to the
exponentially small values of the factors exp(−R/dL) and
exp(−Eg/T ) near the crossover.

V. CONCLUSIONS

To sum up, we have analyzed the behavior of the LDOS
N(ε , r ,H) and conductance on an external magnetic
field H in a mesoscopic superconducting disk on the basis
of Usadel equations. We have demonstrated that transi-
tions between the superconducting states with different
vorticities provoke abrupt changes (jumps) in the local
zero bias conductance dI/dV at the edge of the disk.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

FIG. 7. (Color online) The radial dependence of the SC
order parameter ∆L (a) and ZBC GL(0, R, φ) (b) for min-
imal (dashed line) and maximal (solid line) allowed values
of the magnetic field H for the orbital mode L: L = 0 –
H/H0 = 0 , 2.24; L = 1 – H/H0 = 2.24 , 3.84; L = 2 –
H/H0 = 3.84 , 4.96; L = 3 – H/H0 = 4.96 , 6.08; L = 4 –
H/H0 = 6.08 (R = 4 ξ0, T = 0.1Tcs). The numbers near the
curves denote the corresponding values of vorticity L.

These jumps of the ZBC are attributed to the entry/exit
of vortices while sweeping the magnetic field. The tran-
sitions between different vortex states can be accompa-
nied both by the decrease and increase in the ZBC while
sweeping the magnetic field up. The direction of jumps
in ZBC attributed to the vortex entry depends on the
disk radius R and the temperature T and is determined
by two opposite in sign contributions to conductance:
(i) the entrance of a vortex into the disk is accompanied
by the reduction of the supercurrents flowing along the
sample edge and, thus, improves superconductivity at the
edge; (ii) the entrance of a vortex increases the number
of subgap quasiparticle states in the multiquantum vor-
tex core which provide an additional contribution to the
conductance because of the quasiparticle tunneling be-
tween the vortex core and the sample edge. To the best
of our knowledge, the systematic experimental analysis
of the direction of the ZBC jumps has not been done
yet. However, these measurements can provide an ad-
ditional information about the soft gap value governing
not only the contribution to the tunneling transport, but



8

also the one to the thermal relaxation mechanisms (see,
e.g., [40, 46]) and also about the classical-to-quantum
interplay in quasiparticle tunneling in mesoscopic super-
conducting samples. These results are directly related
to the quantitative characterization of the quasiparticle
traps appearing in the Meissner and vortex states of su-
perconductors (see, e.g., [40–46]), especially in the dif-
ferent types of single-electron sources based on hybrid
superconducting junctions and working far from equilib-
rium [40, 46, 57–59].
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Appendix A: Solution of Eq. (7) via the Kummer’s
functions

Substituting the expression of the order parameter
∆L(r) = θL(r) (ωn + ΩL), (9), into Eq. (7) and rewrit-
ing the latter in terms of the renormalized flux φr =
πr2H/Φ0,

d

dφr

(
φr

dθL
dφr

)
− (L− φr)2

4φr
θL +

Φ0ΩL
2π~DH

θL = 0 (A1)

one can easily obtain the equation for the function W (φr)
defined as

θL(r) = e−φr/2φ|L|/2r W (φr) (A2)

φr
d2W

dφ2
r

+ (bL − φr)
dW

dφr
− aLW = 0 , (A3)

with the parameters aL and bL given by

aL =
1

2

(
|L| − L+ 1− Φ0ΩL

π~DH

)
, bL = |L|+ 1 .

(A4)

The solution of Eq. (A3) in the region r ≤ R is conflu-
ent hypergeometric function of the first kind (Kummer’s
function), W = K(aL, bL, φr), which after substitution
to the expression (A2) for θL(r) gives the result (10) from
the main text.
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