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Accelerated adiabatic quantum gates: Optimizing speed versus robustness
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We develop protocols for high-fidelity single-qubit gates that exploit and extend theoretical ideas for
accelerated adiabatic evolution. Our protocols are compatible with qubit architectures where direct transitions
between logical states are either vanishingly small or nonexistent; in such systems traditional approaches cannot
be implemented. Prime examples are superconducting fluxonium qubits, which have highly localized states, and
AMO systems, where there are no dipole allowed transitions between the ground states encoding the logical
states. By using an accelerated adiabatic protocol we can enforce the desired adiabatic evolution while having
gate times that are comparable to the inverse adiabatic energy gap (a scale that is ultimately set by the amount
of power used in the control pulses). By modeling the effects of decoherence, we explore the trade-off between
speed and robustness that is inherent to shortcuts-to-adiabaticity approaches.
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I. INTRODUCTION

Any approach to implementing quantum gates requires
applying time-dependent control fields to a system, such that
the corresponding time-dependent Hamiltonian generates the
desired unitary evolution. Regardless of the setting, ideal gates
have two defining features: they are both robust against small
imperfections in the amplitude, duration, and phase of control
pulses, and they are fast. Unfortunately, typical approaches
to constructing gates optimize only one of these two desired
characteristics. Schemes based on quantum adiabatic evolu-
tion (e.g., [1,2]) are typically extremely robust against pa-
rameter variations [3] but suffer from extremely long protocol
times. In contrast, more conventional nonadiabatic approaches
can be extremely fast (approaching the quantum speed limit
[4-9]) but require precise tuning of control pulses. In a typical
experimental setting, neither approach is fully optimal, as both
speed and robustness are important characteristics.

Given this, protocols that lie between these two extremes
are highly desirable. This naturally leads one to the general
approach of shortcuts to adiabaticity (STAs) [10-13] (also
known as counter-diabatic driving). STAs are a family of tech-
niques that allow one to mimic adiabatic evolution under some
Hamiltonian ﬂo(t) using a modified Hamiltonian ﬁmod(t),
on a much shorter time scale. STA protocols for evolving
a well-defined initial state to some prescribed well-defined
final state have been discussed in many contexts and have
even recently been implemented in a variety of experimental
settings [14-20]. While not often stressed, STA protocols
invariably involve a tunable trade-off between speed and
robustness. This tunability can, however, be extremely useful
in a real experimental setting, where the ultimate infidelity of
a gate will be influenced by both these features. In Ref. [19],
this trade-off was discussed in the specific context of an
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accelerated STIRAP protocol implemented in an NV center
system.

In this paper, we investigate the use of STA techniques to
accelerate well-known adiabatic quantum gates based on a tri-
pod level configuration, where three “ground-state” levels all
interact controllably with a single “excited-state” level. Such
schemes can find direct application in a variety of systems,
including trapped ion qubits [1,21] as well as superconducting
qubits [22,23]. Accelerating a quantum gate is a more chal-
lenging problem than simply accelerating an adiabatic evolu-
tion with a single, well-defined initial state, as now one is in-
terested in a manifold of possible initial states. In the case of a
unique initial state, the (global) phase accumulated during the
evolution is of no importance and it can consequently differ
between the adiabatic and the accelerated protocols. In stark
contrast, when generating a quantum gate, the accumulated
phases are of utmost importance. This is problematic, as stan-
dard STA techniques are not designed to preserve dynamical
or geometric phases generated by adiabatic evolution. Despite
this difference, we show that the superadiabatic transitionless
driving (SATD) scheme developed in Ref. [24] to accelerate
STIRAP-style quantum state transfer can be used to accelerate
tripod-based adiabatic quantum gates. We also study in detail
the trade-offs entailed when using an accelerated protocol:
while the protocol time can be dramatically reduced, one
necessarily also becomes less tolerant of parameter variations
and more sensitive to dissipative effects originating with the
lossy excited level. The understanding we develop will allow
one to design an optimally constructed accelerated protocol
for a given set of experimental parameters.

In contrast to other schemes [25-28] that generate nona-
diabatic geometric gates, ours is purely geometric and does
not rely on accumulating specific dynamical phases. This
also distinguishes our work from the recent experiment by
Yan et al. [29], where an accelerated geometric gate is only
obtained if a dynamical phase is canceled by applying a 7
pulse. We also note that while Ref. [30] straightforwardly
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FIG. 1. (a) Schematic of a tripod system. We choose |0) and |1)
to encode the qubit states. The ground-state manifold couples to an
excited state |e) via control fields denoted 2, (¢), 21.(¢), and 2,.(¢).
(b) Effective A system describing the evolution of the tripod system.
The control pulses €2;,.(¢) and £2,.(¢) are chosen to generate a cyclic
evolution based on STIRAP. (c) Example of a control sequence
generating a cyclic evolution. The relative phase of €2,.(¢) is changed
instantaneously at ¢ = #,/2. This does not result in any discontinuity
in the evolution since 2,(#,/2) = 0. (d) Geometric representation of
the evolution of the system on the Bloch sphere. The geometric phase
accumulated by |1) is equal to the solid angle encapsulated during the
evolution.

applied the dressed-state technique of Ref. [24] to accelerate
an adiabatic gate, the authors did not consider the potential
difficulties associated with this procedure (stemming from
STA-induced modification of phases).

II. GEOMETRIC GATES IN A TRIPOD SYSTEM
A. Basic double-STIRAP protocol

We start by reviewing how geometric qubit gates can be
implemented in a four-level tripod system [see Fig. 1(a)]. Our
discussion complements existing literature [1,2] by providing
a thorough discussion of how nonadiabatic errors deteriorate
the performance of such gates. The system consists of three
ground-state levels, (|0), |1), and |a)), each of which is con-
trollably and resonantly coupled to a common excited state
|e). The system Hamiltonian (in the rotating frame of the drive
fields) is

H(t) = 1[Qoe()I0)(e] + Q1e(t)]1) el
+ Que(t)la)(e] + Hee.], (1)

where Q,.(t) (i =0, 1, a) denotes the complex envelope of
each control field.

We use the ground states |0) and |1) to encode a logical
qubit state (logical subspace). It allows one to use highly
isolated states as qubit levels, thus potentially enabling long
coherence times. This kind of situation can be realized in a
variety of experimental platforms, e.g., in superconducting
fluxonium qubits [22,23].

We next parametrize the control fields, assuming only that
they are chosen to keep the instantaneous eigenvalues of H (1)

independent of time:
Q0. (1) = Qo cos(a) sin[6 ()],
Qie(r) = Qo sine) sinf0 1)]e”, @)
Que(t) = Qo cos[0(t)]e™ ™.

2o determines the overall scale for the control fields [and
the size of the energy gap of A (¢)], while the angles 6 and
o determine their relative magnitudes. The angles § and y
control the relative phases between control fields. For reasons
that will become clear, we consider in what follows protocols
where @ and B are time independent. We emphasize that
choosing €2 to be constant in Eq. (2) is not restrictive. As we
discuss below, adding a finite turn-on (turn-off) to the control
pulses does not modify the dynamics of the logical subspace.

Diagonalizing the instantaneous Hamiltonian H(r), one
finds that it always possesses two zero-energy eigenstates that
are orthogonal to |e). States in this “dark-state” manifold are
ideally suited for geometric gates, as they will never acquire
dynamical phases. Further, there is always a unique dark state
that is a superposition of qubit states only, namely,

|0) = sin(@)]0) — exp(if) cos(@)|1). 3)

This state does not depend on time. The orthogonal qubit-only
state is

1) = cos(a)|0) + exp(if) sin(a)|1) 4)
and, in general, is not an instantaneous eigenstate of A ).
Writing A (t) in terms of these new qubit basis states yields

H(t) = 5[Q,0[1)(e] + Que(t)la) (e] + Hee,  (5)

where Q7,(t) = Q0 sin[0(¢)]. We see that the qubit state |0)
is completely decoupled, whereas the qubit state |1) forms a
three-level A system [31,32] with the states |a) and |e) [see
Fig. 1(b)]. One can now use well-known STIRAP protocols
[31,32] to adiabatically manipulate these states. In particular,
using an appropriate double-STIRAP protocol we can engi-
neer a cyclic evolution, such that the qubit state |1) acquires
a purely geometric Berry phase [33,34]. This will form the
basis of our adiabatic single-qubit gate (as first suggested in
Refs. [1,2]).

To understand the double-STIRAP protocol, we first list
the remaining instantaneous eigenstates of H(z). In addition
to the zero-energy qubit dark state |0) [cf. Eq. (3)], H(@) in
Eq. (5) also has a second, orthogonal zero-energy dark state,

ld> (1)) = cos[0()]|T) — 7@ sin[0(t)]]a), (6)

as well as two nonzero energy eigenstates,

b+ (1)) = %(i sin[6()]|T) £ €7 cos[0(1)]]a) + |€>),(7)

with instantaneous energies £ /2.

The double-STIRAP protocol involves adiabatically evolv-
ing the dark state |d»(t)) from being purely |1) at t = 0, to
being |a) at t =1,/2, and then back to being |T) at the final
time ¢ = t,. This can be accomplished by choosing

oo (310

: . 2 ©)
-pPe-%)] 4% t

032323-2



ACCELERATED ADIABATIC QUANTUM GATES: ...

PHYSICAL REVIEW A 100, 032323 (2019)

where P(¢) is a monotonic function varying between P(0) =
and P(ty/2) = 1. The following form for P(z) is particularly
effective:

(2;)5 <2¢>4 <2r)3
Py=6(=) —15(=) +10(=) . )
tg tg tg

This choice gives a smooth turn-on and turn-off of the pulses,
i.e., it satisfies 9(0) = Q(Ig/Z) = G(tg) = 9(0) = 9(tg/2)
O(tg) = 0. Note that at this stage, we do not specify the time
dependence of the relative phase y (¢); as we will see, y (¢) will
determine the geometric phase acquired by |1). We assume
for clarity that the control field ,.(¢) is nonzero at t = 0.
This is not restrictive. Even if one includes a finite turn-on
(turn-off) time for this field, the additional resulting dynamics
only affects the states {|a), |e)} (i.e., the auxiliary subspace).
As shown in what follows, this does not hinder the realization
of our geometric gate, as this gate is not contingent on any
special preparation of the auxiliary subspace.

The system dynamics is best analyzed in the instantaneous
eigenstate frame (adiabatic frame) that diagonalizes H(@) at
each instant in time. The frame-change operator is given by

Saa(t) = [O)O] + Ida(0))da| + 1b- ()| + b1 (1))bs|.

(10)
In the adiabatic frame, we have
Haa(8) = S}y(H 0)8aa(t) = i834(1)3,Sua (1)
= Hy(t) + Ve (1), (11)

where
N Q
Hy(t) = —7°(|b_)(b_| — b )by ]) + 7 (t) sin[6()1*|da)do|

1
+ EJ'/(t)COS[O(t)]Z(Ib—Xb—I + 161 Xb+]) 12)

is a diagonal operator which generates the desired adiabatic
evolution. In contrast, V,,;(t) describes nonadiabatic errors in
the evolution,

Vore(6) = ff ({ld)b- | — ilda)bs | + Hee.)
in[26
+ @ [— cos[A ()| )b | + %MMJ
in[26
— &ﬁwmxbg + Hc:| (13)

Equation (13) differs from the nonadiabatic Hamiltonian de-
rived in Ref. [24] because the latter work did not consider
STIRAP with time-dependent relative phases.

If one now assumes that we are in the adiabatic limit, i.e.,
20(1)/2%0 — 0and 2y(t)/Q — 0, then we can ignore Ve (1),
and the unitary operator describing the evolution is

Uaa(t) = 10X0] + e |da){db|
+ I F b b_| + e b |
o) p(t
@[Q &}

14
% @ (14)

where

yo = / " dn sinf0@)Py (1),
0

[
n=sy / dty cos[0 ()P (1) (15)
0

are the geometric phases accumulated by the dark and bright
states, respectively.

Before proceeding, we note that there is an extremely
simple choice for the relative control field phase y () that, de-
spite first appearances, is compatible with adiabatic evolution.
Namely, one can use

y@) = yo®(t - %) (16)

where ®(¢) denotes the Heaviside step function. Despite the
discontinuity at t =t,/2, there is no issue with adiabatic-
ity. Note that our chosen pulse shapes [cf. Eq. (2)] satisfy
0(tg/2) = m /2, which leads to £2,.(t,/2) = 0, implying that
the phase y (¢) is not well defined at this time; this allows the
jump in Eq. (16). Another way to understand that choosing
y (1) as given by Eq. (16) does not impact the adiabaticity of
the protocol is to realize that the instantaneous eigenenergies
of H,(t) [see Eq. (11)] are not altered by the phase jump.
For a more geometric picture, note that this type of control
results in a trajectory on the Bloch sphere that resembles a
citrus wedge, as depicted in Fig. 1(d). Finally, we emphazise
that this choice leads to y; = 0 [cf. Eq. (15)].

We can express Eq. (14) in the (time-independent)
laboratory frame via the transformation Uu(t) =
Saa (U a(t)S7,(0). Using for y(r) Eq. (16), we find at
the final time t = ¢,

Uaa =22 Oo @y ol 7 oI 4 a0 (17)
Here, o1 = (J0X1| + H.c., —i|0}1| + H.c., [0X0] — [1X1])
and 6, = (la)e| + H.c., —ila)e| + H.c., |a)a| — |e)e]|) de-

note a vector of Pauli matrices. We have further defined the
unit vectors

[sin(2a) cos(B), sin(2a) sin(B), cos(2w)],

. Qo

sin (—= Qot
Ny = Msin<@)[ cot(yo),l,cot( 0g>:|

sin (%2) 2 2 2

(18)

n

and the rotation angle

Qo
Qad = 2 arccos [cos <§) cos <%)] (19)

Equation (17) shows clearly that at t = ¢, the qubit sub-
space is decoupled from that of the two auxiliary levels.
The evolution in the qubit subspace is a simple rotation. The
rotation axis n is controlled by the static pulse parameters o
and B, whereas the rotation angle yy is a geometric phase. We
thus have a purely geometric arbitrary single-qubit gate. We
stress that having a gate that acts independently on the qubit
and auxiliary subspaces is crucial: it allows a qubit gate to
be performed without first having to prepare the state of the
auxiliary levels.
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B. Nonadiabatic errors

Our goal is to accelerate the adiabatic gate described
above. As the first step, we need to understand the effects of
nonadiabatic errors that occur when the protocol time is not
infinitely slow compared to the inverse instantaneous energy
gap 2/ of H(t).

We can calculate nonadiabatic corrections to the evolution
perturbatively in Ve (¢) [cf. Eq. (13)] using a Magnus expan-
sion [35]. Using 6(¢) as defined in Eq. (8) with P(¢) given by
Eq. (9) and y(¢) as defined in Eq. (16), we find to leading
order (see Appendix A)

A 0] n 1
UG= e_”e_’ n(r@e 7 ¢ zn"aam +O|: i|’
( ) (Qol‘g)3
(20

with
sin[go(t,)]

Rpy = —————sin <@>{—
e sm(‘@‘“) 2

¢¥na = 2 arccos icos (%) cos[(po(tg)]],

cot (%), 1, cot[(po(tg)]],

Q()tg 1072

2 I,

Comparing with Eqgs. (17) and (20), we see that, to leading
order, nonadiabatic errors do not change the nature of the gate:
we still have a pure geometric operation on the qubit subspace
and the latter is still decoupled from the auxiliary subspace.
Nonadiabatic errors only change the rotation performed on
the auxiliary levels. The favorable scaling here is a direct
consequence of our choice for 6(¢) [cf. Eq. (8)], whose deriva-
tives vanish at the protocol start and end; this corresponds
to the “boundary cancellation method” for nonadiabatic error
suppression discussed in Refs. [36-38].

A more useful measure for quantifying the impact of
nonadiabatic errors is given by the state-averaged fidelity of
the gate [39]

Polty) = 21

AN 712
i Tr[OO"] + |Tr[O]] ’ 22)
dd+1)

where Tr[-] denotes the trace operation, d = 4 is the dimen-
sion of the Hilbert space, and O = Ug’adﬁg, where UG,ad is
given in Eq. (17) and Ug; is the unitary operator generated by
Eq. (1) evaluated at t = 7,. Using the approximate Ug given in
Eq. (20), we find

_ 407*
F=1-— 49(Qofg)2 + O[(Qolg)4:|. (23)

However, it is misleading to compare UG,ad to Ug to
determine the gating time for which the error ¢ = 1 — F goes
above a critical threshold, e.g., e = 1073 for quantum error
correction. In Eq. (23) the deviations from unity are only
due to imperfect dynamics in the auxiliary subspace as we
identified earlier [see Eqs. (17) and (20)]. Since Eq. (22) holds
for any linear operator O in a d-dimensional Hilbert space,
we consider instead O, = ﬁqﬁé.adﬁqﬁcﬁq, which allows us
to quantify errors that only affect the dynamics in the qubit
subspace. Here, ISq is the projector onto the qubit subspace.
Oq corresponds to measuring the overlap between the unitary
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FIG. 2. Error ¢ = 1 — F [see Eq. (22)] as a function of the gate
time for the unitary operator U acting on both the qubit and auxiliary
subspace and its projection 0q on the qubit subspace (&,). Corrections
to the ideal gate due to nonadiabatic transitions only affect the
auxiliary subspace at leading order in Ve, while the dynamics in the
qubit subspace is only affected at third order. This is a consequence
of our choice of 6(t), whose first and second derivatives vanish at
t=0,1,/2,and t,.

operator Uq,ad = f’qUG,adpq and the operator Ijq = f’qUGﬁ ;
the latter is not necessarily unitary. Due to the direct sum
structure of UG,ad [cf. (17)], the projection operation yields
the ideal gate acting on the qubit subspace only.

Within this framework, and performing a fourth-order
Magnus expansion (see Appendix A), we find

Fo=14+—— ar’ —1 + cos Shof cos(yp) | sin® oty
= 1 — ),
‘ (Q1p)° Ty )OO 8

(24)

with a = 14745 600. We stress that there exist special gate
times for which the fidelity is equal to unity. Using Eq. (24),
we find those times to be

ki, ky € N¥,
Iy = :flz((;'rJank ) (25)

—a kel
This phenomenon (a coherent cancellation of nonadiabatic

effects) has also been discussed in Ref. [38].
In Fig. 2, we plot the error e = 1 — F [see Eq. (22)] as
a function of the gate time for O and Oq obtained both
numerically by integrating the Schrodinger equation and per-
turbatively via the Magnus expansion. In the adiabatic regime,
i.e., Qoty/2 — oo, the Magnus expansion fully captures de-
viations from the ideal adiabatic evolution, which confirms
our error scaling analysis. However, even with the improved
error scaling in the qubit subspace, the achievable gate times
in a realistic setup remain longer than the typical decoherence

rates.

III. ACCELERATED GATE

We now turn to the main goal of this paper: How can
we accelerate the geometric qubit gate presented in Sec. IT A
using the general philosophy of “shortcuts to adiabaticity”
[10-12,24,40]? At first glance, this is a nontrivial problem.
The original purpose of STAs is to accelerate the evolution
of a specific initial state, and usually, one does not care about
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the final, overall phase of the state. In contrast, we want to
accelerate the evolution of an arbitrary initial qubit state,
and the phases acquired by the adiabatic states are of crucial
importance. Despite these difficulties, we show that our de-
sired goal can indeed be accomplished. We use our recently
proposed dressed-state approach, which allows acceleration
of STIRAP-type processes by simply modifying the form of
the original control pulses [19,24]. Note that Ref. [30] did not
consider these difficulties; as we show below, it is not a trivial
task to find a suitable STA that preserves the phases acquired
by the adiabatic states.

Our goal will be to modify the three control fields €2;.(¢)
(i =0, 1, a) from the values given in Egs. (2) and (8), so that
the desired gate operation is accomplished even though the
total protocol time #, is not long compared to 2/2g. This mod-
ification can be described by adding a term to the Hamiltonian,
ie., Ht) = H@) + W) = Hyoa(?). In the adiabatic frame,
this modification can be written as

N 1
Waa (1) = 5[ = Wo(O)(IbXb—| — |by )by )

We(t)
2
Wy(t)
V2

One can readily verify that transforming Eq. (26) to the
original frame, W(t) = S’ad(t)Wad(t)SZd(t), results in a control
Hamiltonian having the same form as Eq. (1); no additional
control fields are required. Note that the qubit-only dark
state |0) remains decoupled for any choice of the W), j €
{x,y,z}. .

Conventional STAs attempt to modify H(¢) so that the
evolution follows the (original) adiabatic trajectory at all
times. In contrast, the dressed-state approach of Ref. [24]
aims for something less extreme. We let the system deviate
from the adiabatic trajectory at intermediate times. This can be
framed as a time-dependent dressing of the original adiabatic
eigenstate, with the dressing vanishing at = 0 and ¢ = t,. For
our problem, we need to add an additional constraint. We must
find a dressed version of the dark state |d5),

+ (|d2}{b—| 4 |d2)(b+ | 4 H.c.)

+

(—ilb_Yds] — il )da] + H.C.)] 26)

|y (1)) = 8/ (1)]dy), 7)

which retains the geometric nature of the evolution. In other
words, we require that the new dressed dark state does not
acquire any dynamical phases.

A. Generic dressing

Following Ref. [24] we try a simple dressing transforma-
tion,

8,(t) = expl—ip(t)(1b-){da] + H.c.)], (28)

where the dressing angle w(¢) remains to be determined. It
must satisfy 1(0) = () = 0, to ensure that the dressing
vanishes at the start and end of the protocol (which then
guarantees |d>(1)) = |1) att = O0and ¢ = t,). Note that at this
stage we only assume 6(¢) to be of the form given in Eq. (8),
while no particular form is assumed for y (¢).

The goal is now to pick the dressing parameter w(¢) and
control modifications W (¢) such that the resulting dynamics
does not cause transitions out of the dressed dark state.
By considering the dynamics in the time-dependent frame
defined by Eq. (28) (dressing frame), we find that this can
be accomplished by choosing the dressing angle to fulfill the
differential equation

p(t) = %\/%)]y'(t) (29)
and the control fields to be
Wi(t) = sin[20(1)]y (1),
Wi(t) = V/2[cos[0(1)] tan[p ()] () + V20 (1)),
W,(t) = —S20 + 4+/2 cot[21(1)10(2)
+ %[1 + 5cos[26(1)] — 2 cos[O(1)]? sec[(t)]].
(30)

Unfortunately, suppressing unwanted transitions is not enough
to achieve our gate. We also need control over the phase
acquired by the dressed dark state. In particular, it should
not acquire a dynamical phase which depends explicitly on
t, while still accumulating a geometrical phase. We stress
that the control fields in Eq. (30) also cancel the purely
dynamical phase originating from the dressing by ensuring
that the energy of the dressed dark state is 0. Within this
framework the phase accumulated by the dressed dark state
is given by

fe 2
fas = f dzw{m[s + cos[2u(0)]
0

— cos[20(1)](1 + 3 cos[2u ()]
+ 42 sin[2u(1)10(1)}. 31

In spite of the similarities to Eq. (15), there is no guarantee
that this phase is purely geometric since one might not be able
to express p as a function of y and 6 only. In our example,
however, the situation is far worse. A solution of Eq. (29)
that fulfills the requirement that the dressing must vanish at
the boundaries, [1(0) = u(tg) = 0], leads to y(¢) being an
antisymmetric function in the interval [0, t,] since sin[26(¢)]
is symmetric in said interval [see Eq. (8)]. Using the symmetry
of the functions involved in Eq. (31), one finds @445 = O.

B. Spin-based dressing

However, for y (¢) given by Eq. (16) and arbitrary 6(¢) of
the form in Eq. (8), one can find a large class of STAs for
which there is an accumulated phase whose nature is geomet-
ric. To proceed, we first define effective spin-1 operators to
describe the dressed frame states: J, = (|d2)(b, | + |da)(b_| +
H.c)/V2. J, = (ild:)b-| — ild:)by] + H.c.)/v/2, and J, =
(|b_)b_| — |b, )b |). The dressing transformation of interest
is then

8,(t) = expl—iv(t)Jy aal- (32)
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In the dressed frame, the Hamiltonian is given by

Huressea = S (t)Hoa ()8, (1) — iST (1)8,81 (¢)

= Aspin(t) + ﬁns(t) + ﬂgeom(t)a (33)
with
Hein(t) = B (t)J, + B.(t)J; + By(t)Jy, (34)
Aoty = L2020 161+ 1B D)
+ E2(t)(|by)b_| + H.c.) + E3(t)(ilb.Xb_| + H.c.)
+ Ea(t)(|da)b—| — |do )by | + H.c.)
+ st (ilda)b_| + ildo)(b.| + H.c.)l, 35)
and
Heeom (1) = 7 (t) sin?[0(t)] cos*[v(t)]|d2 X . (36)

We have written Eq. (33) as the sum of a spin Hamiltonian
[see Eq. (34)], a nonspin Hamiltonian [see Eq. (35)], and a
Hamiltonian that generates the geometric phase [see Eq. (36)].
We also have defined the effective magnetic field components

By(1) = —v (1),

B,(t) = —% sin[v(r)] + 6(¢) cos[v(1)],

B.(t) = —% cos[v(t)] — (1) sin[v(t)], (37)

as well as the parameters of the non-spin Hamiltonian,
E1(1) = cos’[0(1)] + sin’[0 ()] sin[v(1)],
Ey(r) = — cos[A(t)] + sin’[0(1)] sin*[v(1)],
E3(t) = sin[26(¢)] sin[v(?)],

24(1) = sin[26(t)] cos[v(¢)]
4 —_ ﬁ ,
sin?[6()] sin[2v(¢)]
) = — . 38
5(1) NG (38)

The choice of dressing in Eq. (32) was made to ensure
that (dﬂ]—?dressed(t) — ﬂgeom (t)|d~2) = 0; this partly solves the
problem of the STA giving rise to unwanted dynamical phases
in the evolution of the dressed dark state |d,). In contrast to the
STA approach (see Sec. III A), we do not start by looking for
a dressing angle v(¢) that generates a dressing transformation
that cancels unwanted transitions (between dressed dark state
and dressed bright states). Instead, we start by looking for
a v(t) that gives a specific value for the phase accumulated
by the dressed dark state |d,). Neglecting for a moment
transitions involving the dressed dark state, we have that the
phase accumulated by |d,) is given by

Gus = f " s co’ O @), (39)
0

Taking into account that we have chosen a particular form for
y (1) [see Eq. (16)] and comparing Eq. (39) to Eq. (15), we see
that the phase accumulated by the dressed dark state is equal
to the adiabatic-limit dark-state geometric phase yy if

V(ty/2) =0, (40)

i.e., we must restrict ourselves to a class of dressing transfor-
mations that exactly vanish halfway through the protocol.

There is a second consequence of having to work with
dressing transformations that fulfill Eq. (40): one can easily
verify that H,(r) does not generate any dynamics. Since
y(t) = yod(t —t,/2), integrating H,s(t) between 1 = 0 and
t = t, yields 0 because we evaluate ﬁns(t) att =t,/2, where
0(tg/2) = w/2 and v(ty/2) = 0, such that all parameters de-
fined in Eq. (38) evaluate to 0.

Within this framework all that remains is to find a specific
dressing function v(¢) satisfying Eq. (40) and a corresponding
control Hamiltonian W (¢) that cancels unwanted transitions
generated by ﬂspin(t). This is essentially equivalent to the
general problem treated in Ref. [24]. While many choices
are possible, a particular simple approach is the so-called
superadiabatic transitionless driving dressing introduced in
Ref. [24]. This is defined by the specific dressing angle

2é(¢)}

v(t) = vsarp(t) = arctan |: 41
This satisfies our constra}int, Eq. (40), as long as the initial
pulse sequence satisfies 6(f,/2) = 0. For example, the pulse
shape in Eq. (9) satisfies this property.

Before proceeding we note that the phase accumulated
by the dressed dark state can still be viewed as a geometric
phase. As long as Eq. (40) is fulfilled the accumulated phase
is independent of the protocol time ¢, and does not depend on
the details of the pulse. We stress, however, one more time that
the dressing transformation allowing one to get an STA that
preserves the geometric nature of the phase accumulated by
the dressed dark state |da (7)) explicitly depends on our choice
of y () and that our specific choice of dressing [see Eq. (41)]
further requires the adiabatic protocol to obey 6(z,/2) = 0.

For this choice of dressing, the required modified control
fields (which cancel transitions out of the dressed dark state)
are

Qo (t) — % cos(a)|:sin[9(t)] + 4%]

Q% +462(1)

Q1) — % sin(a)e’” [sin[é(t)] + 4%}

Q2+ 4602(t)
sin[@(l)]@(t)]. @)

Que(t) > &ei”(’) [cos[e(t)] —4 :
“ 2 Q2 +40%(1)

Combining these results, we find that the accelerated dy-
namics results in an evolution that at t = ¢, yields the gate

UG,SATD _ e—i%oe—i%“n-é' ® ei%“ei“’sgm nsmme, (43)
whose action on the qubit subspace is the same as lA/G,ad
[see Eq. (17)] but acts differently on the auxiliary sub-
space. The latter undergoes a rotation of angle @sarp =
2 arccos[cos(yy/2) cos(P)] around the axis

sin(®) sin (%) Yo
W[— cot <E> 1, cot(CD)], (44)

with & = [ div/ Q3 + 462(r).

RSATD =
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We note that Eq. (43) always leads to a perfect qubit-
subspace fidelity F, = 1 independent of the speed of the
protocol.

IV. DISSIPATIVE DYNAMICS

In the following section, we characterize the performance
of both the adiabatic and the STA gates in the presence of
imperfections. We consider two types of imperfections: dissi-
pation and uncertainties in the parameters of the Hamiltonian.

To model the loss we consider a Lindblad master equation
that describes pure dephasing of the ground and excited states

ap@) = —i[H©O. pOI+ Y Ty,

j=0,1,a,e
1
x [Ij)(jlf)(t)ljle mEAUAYIE f)(t)}+], (45)

where A (7) is the Hamiltonian, p(t) is the density operator of
the system, I, ; (j € {0, 1, a, e}) is the dephasing rate of state
|7), and we have defined the anticommutator {O;, O»}, =
0,0, + 0,0,. We stress that in the adiabatic frame the
dephasing processes we are considering lead to transitions
between instantaneous eigenstates. For this reason we do not
explicitly consider relaxation processes.

To quantify how decoherence affects the performance of
the gate, we use the result of Bowdrey et al. for the average
fidelity of single-qubit maps [41],

Fmapzé Z

Jj=tx,£y,+z

Te[U, ;0 p; ()], (46)

where p; with j € {£x, £y, £z} is an axial pure state on
the Bloch sphere of the qubit, e.g., o, = 1/2(]0) + |1))({0] +
(1), Uq is defined earlier in the text, and p;(¢) is a solution of
Eq. (45) for the initial state p;.

In addition to errors due to noise, we also consider errors
arising from uncertainties in the system Hamiltonian. Here,
we assume that the amplitude parameter 2 [cf. Egs. (1) and
Eq. (2)] is only known with finite precision, as described by
the probability distribution p(£2(). In the following we assume
Pp(£20) to be uniform in the interval [20(1 — k), Qo(1 + k)]
with k € (0, 1). The performance of the gate is then quantified
via the averaged average fidelity,

B Qo(14k) B

(Fmap) = / dS20p(€20) Finap(€20). (47
Qo(1-k)

For the results that follow, accelerated gates are implemented

using a starting pulse shape given by Eq. (9) and the SATD

STA defined by Eqs. (41) and (42).

A. Excited-state dephasing

In Fig. 3, we plot the error &y = 1 — Fqp as a function of
the gate time fora =7 /4, 8 =0,y =7,y = Qo/2m X
100), and I', ; =0 for j € {0, 1, a} for both the adiabatic
(blue traces) and the accelerated (orange traces) protocols,
either without uncertainty on €2 (dashed traces) or with an
uncertainty of 40% (kK =0.2) on €y (solid traces). We
have indicated by the green arrow the shortest gate time for
which the maximal amplitude of the modified controls is still

Ad, ——

SATD ——

Ad. no uncert. -----
SATD no uncert. - ----

T
10° 10! 10?

gate time, ¢,

? 2w '8

FIG. 3. Comparison of the average error em,, =1 — Fmap be-
tween adiabatic (upper blue traces) and accelerated (lower orange
traces) gates either without uncertainty on €2 (dashed traces) or with
40% (k = 0.2) uncertainty on €2 (solid traces) as a function of the
gate time for « = /4, B =0, yo =7, I'y. = 1072(/27), and
Iy ; =0for j € {0, 1, a}. Gate times shorter than the one indicated
by the green arrow (first arrow from the right) result in a modified
control sequence whose maximal amplitude is higher than €. The
blue (second from the right) and red (third from the right) arrows
indicate a modified control sequence that requires twice and three
times the energy cost [see Eq. (48)] of the adiabatic sequence,
respectively.

Qo and by the blue (red) arrow the gate time for which the
energy cost to generate the STA is twice (three times) as high
as the energy cost to generate the adiabatic control sequence.
We define the energy cost of a control sequence as

t)?
C=1/ A, (48)
1y Jo
where ||I-7 ®)ll2 = Omax [H ()] is the p =2 operator norm
equal to the largest singular value of the Hamiltonian operator
H (1) denoted by oay [H (1)].

We start by observing that going to the adiabatic regime,
t; — 00, results in both gates becoming insensitive to noise
and uncertainty. This is expected because the evolution of the
system can be reduced to the evolution of the dark state |d())
[see Eq. (6)] which contains no excited-state amplitude. We
note that for the accelerated gate, going to the adiabatic regime
results in a vanishing dressing such that the dressed dark
state is effectively |d,). Moreover, a small uncertainty in the
instantaneous gap is irrelevant as long as 7, 3> 2/8g. Only
outside of the adiabatic regime are both gates affected by a
lossy excited state since during the evolution the excited state
will be occupied. One clearly sees that the accelerated version
of the gate outperforms its adiabatic counterpart; this reflects
the fact that the mechanism leading to excited-state occupancy
is different in each case.

For the adiabatic version of the gate, nonadiabatic
processes are responsible for the transitions between the
dark state |d) and the bright states |b1), which contain a
finite excited-state amplitude [see Eq. (7)]. Since nonadiabatic
transitions first need to happen for noise in the excited state
to disrupt the dynamics, the gate error is mainly dominated
by nonadiabatic errors. However, signatures of the dissipative
dynamics can be observed for the special times [see Eq. (25)]
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for which the coherent evolution brings the system back to the
dark state. These special times no longer lead to a perfect gate
because the coherent mechanism that brings the system back
to the dark state is disrupted by excited-state dephasing. This
coherent mechanism is further hindered by the uncertainty in
Q().

The accelerated gate is constructed such that whatever
amplitude leaves the dark state it has to return to the dark state
by the end of the protocol; this is equivalent to having the
system remain in the dressed dark state |d,(t)) for the whole
evolution. However, leaving the dark state is not harmless
in the presence of a noisy excited state: it disrupts the STA
dynamics in two ways. First, there is no guarantee that the
amplitude leaving the dark state returns by the end of the
evolution. Second, even if the amplitude that left the dark
state returns, it could come back with a phase error. These two
mechanisms can be identified as the leading-order processes
leading to deviations of the average fidelity [Eq. (46)] from
unity. Using a Magnus expansion we can find approximate
solutions of Eq. (45) which we use to evaluate Fmap [Eq. (46)]
(see Appendix B). We find

6%(1) 8 5

_ 4 fs/2
Frgp=1— =T, dt—————+— — _T, D
map 3 “’*/0 Q2 4462ty 3 0

12 32 2
/ ai—"0 Lo (F‘g’g) . (49)
0 [QF +462(1)] S0t

which is in good agreement with numerical simulations (see
Appendix B). In particular, Eq. (49) captures the nonmono-
tonic behavior of the gate error as a function of the gate
time. Sufficiently faster gates become insensitive to a lossy
excited state. We note, however, that reaching such a regime
experimentally is difficult.

In the presence of uncertainty in €2, it is impossible to
realize the exact STA that would cancel out nonadiabatic tran-
sitions. As a result, a low nonadiabatic transition probability
from the dressed dark state to the bright states remains. This
becomes apparent for faster gate times where the fidelity of
the accelerated gates oscillates in sync with the fidelity of the
adiabatic gate.

Finally, we note that in this scenario if being fast is not
essential, then there is no benefit in using an accelerated gate.
Both gates perform equally well in the adiabatic regime. How-
ever, if the gate time has to be below a threshold outside of the
adiabatic regime, then the accelerated gate will outperform the
adiabatic one.

B. Ground- and excited-state dephasing

In Fig. 4, we plot the error, &map = 1 — Frqp, as a func-
tion of the gate time for a =7 /4, =0, yo=m, Iy, =
Q/Q2m x 100), and Ty o =Ty 1 =Ty s = Q/2m x 100)
for both the adiabatic (blue traces) and the accelerated (orange
traces) protocols, either without uncertainty in 2y (dashed
traces) or with an uncertainty of 40% (k = 0.2) in € (solid
traces). Similarly to Fig. 3, we have indicated by the green
arrow the shortest gate time for which the maximal amplitude
of the modified controls is still 2 and by the blue (red) arrow
the gate time for which the energy cost [see Eq. (48)] to

10°
10714
%
g
W
-
=
T 107 Ad, ——
> SATD ——
: Ad. no uncert. -----
) SATD no uncert. --- - -
1073 T T

T T T
10° 10! 10?

gate time, ¢,

21 "8

FIG. 4. Comparison of the average error em,, =1 — F,mp be-
tween adiabatic (upper blue traces) and accelerated (lower orange
traces) gates either without uncertainty on €2 (dashed traces) or with
40% (k = 0.2) uncertainty on €2 (solid traces) as a function of the
gate time for « = /4, B =0, yp =7, I'y. = 107%(y/27), and
ry;= 1072(Qy/2m) for j € {0, 1, a}. Gate times shorter than the
one indicated by the green arrow (first from the right) result in a
modified control sequence whose maximal amplitude is higher than
Q. The blue (second from the right) and red (third from the right)
arrows indicate modified control sequences that require twice and
three times the energy cost [see Eq. (48)] of the adiabatic sequence,
respectively.

generate the STA is twice (three times) as high as the energy
cost to generate the adiabatic control sequence.

In contrast to the case where only the excited state is
lossy, operating in the adiabatic regime does not lead to a
perfect gate. The dephasing on the ground-state manifold sets
a threshold for the slowest “allowed” gate time. As a conse-
quence, the adiabatic version of the gate becomes an unviable
option. Trying to perform the gate more rapidly to avoid
ground-state dephasing unavoidably leads to a regime where
the dominating source of errors are nonadiabatic transitions.
On the other hand, the accelerated gate is less susceptible
to nonadiabatic errors. As a result decreasing the gate time
allows one to escape the interval for which the error is
mainly dominated by ground-state dephasing, t, < 1/(I'y 0 +
[y.1 + Ty ), to operate in a regime where only excited-state
dephasing contributes to the gate error.

In this scenario, being fast becomes essential and corre-
sponds to a situation where the accelerated gate provides a
real benefit over its adiabatic counterpart.

C. Extended robustness comparison

To identify the regimes where the accelerated gate provides
a clear benefit over the adiabatic gate, we look for the gate
time that yields the smallest error for fixed dephasing rates.
We have constrained the minimal gate time by imposing
that the maximal amplitude of the modified pulse sequence
cannot be higher than 2. For simplicity we consider the case
where the ground-state dephasing rates are equal, i.e., I'y o =
Ly 1 =Ty 4 =T,y gs. We also assume that the uncertainty on
Qo is 10% (k = 0.05). In Fig. 5, we plot contour lines for
different error thresholds as a function of I', gs and I', . for
the adiabatic gate (dashed lines) and accelerated gate (solid
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H
3
1

Ad. - - -
SATD ——

Tyoe

27
0

10734

e=10"3

excited state dephasing,

H
2
.

10-3 ' 101
ground state manifold dephasing, %F%Gs

—
.

FIG. 5. Comparison of the smallest gate error between adiabatic
and accelerated gates. For fixed values of the dephasing rates we
look for the gate time that yields the smallest error. We consider
an uncertainty on Qo of 10% (k =0.05) and 'y o =T, =Ty, =
Iy gs. The accelerated gate reaches the same error as the adiabatic
gate for dephasing rates that are roughly one order of magnitude
larger.

lines). For the displayed contours, we see that the accelerated
gate reaches the same error level as the adiabatic gate for rates
that can be roughly up to one order of magnitude higher.

V. CONCLUSION

We have shown how to use the framework of shortcuts to
adiabaticity to accelerate geometric gates in tripod systems.
We have discussed how standard STA techniques designed
for the transfer of a single known state are problematic due
to STA-induced modification of dynamical and geometric
phases. We have also shown a set of protocols that over-
come this seeming limitation and discussed the advantages
of using accelerated gates in the presence of dissipation
and Hamiltonian uncertainties: the accelerated gate preserves
the robustness against parameter variations and allows one
to be fast enough to overcome thresholds set by relax-
ation and dephasing times. Our accelerated control scheme
can be implemented in a variety of state-of-the-art qubit
implementations.

Our work also suggests that accelerated geometric-based
two-qubit gates could be developed for a variety of systems.
In particular, it could greatly benefit superconducting-based
architectures where two-qubit gates are still the main limita-
tion preventing the realization of high-fidelity complex gate
sequences.
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APPENDIX A: AVERAGE GATE FIDELITY WITH
UNITARY EVOLUTION

In this Appendix we show how to use a Magnus expansion
to obtain approximate solutions of the Schrodinger equation

D, U@)=H®U®), (A1)

where H (¢) is defined in Eq. (5) of the text. We focus on the
special case where the control field phase y(¢) is given by
Eq. (16). The special form of y(¢) and the symmetry of the
function 6(¢) [see Eq. (8)] allow us to split the evolution into
two distinct STIRAP processes defined by the Hamiltonians

- Q ~
H\(1) = TO[Sin[el (O]1)e| + cos[0(1)]|a)e| + H.c.],

(A2)
which describes the first half of the evolution that brings the
system from |1) to |a), and

A Q ~ .
Hy (1) = 70[008[91(t)]|1>(e| + € sin[6)(1)]]a)e| + H.c.],

(A3)
which describes the second half of the evolution that brings |a)
back to |1). Here, 6, (t) = mP(t)/2 [see Eq. (9)] is defined for
t € [0, t5/2] and we have used the symmetry of the function
0(t) [see Eq. (8)] to obtain Eq. (A3). Within this framework
the evolution operator U can be parametrized as

1,

) 0, 0<r <%,
)=1 . N A4
v {Uz(l D0, S<r<t,  OY

where U (1) is generated by H (1) [see Eq. (A2)] and U, (1)
is generated by H,(t) [see Eq. (A3)]. We stress that U@) is
continuous at t = t,/2 because the actual coupling strength
between |a) and |e) is 0, which allows us in the first place to
have a phase jump.

It is useful to look for solutions of Eq. (A1) in the adiabatic
frame. We can transform Eqs. (A2) and (A3) to the adiabatic
frame by using the frame-change operator S,(f) defined in
Eq. (10) of the text with

) = cos[61 ()1 T) — sin[6; (1)]la) for  H\(@),
20T sin(oy (01/T) — e coslOy ()1la)  for  Ha(r),
(A5)
and
L5 sin[6) (O1]T) % cosl6) (1)]]a) + |e)
for ﬁl(t),
ba() =1 | o
L5 (Ecos (1|T) & €7 sin[61 (1)]la) + le)
for  H, (7).
(A6)
We find
N Q - S
Hu100)(t) = =5 Jea £ 6,(t)Jy,ad, (A7)

where H,, [H.2] denotes Hi(t) [Ha(t)] in the adia-
batic frame. We have introduced the spin operators Jowd =
(16-)(b—| = [b4)(b+]) and Jyag = (ild2)(bi| —ilda) (b—| +
H.c.)/+/2. We note that the remaining spin operator J, ,q is
introduced in the text following Eq. (32). It is convenient to
transform Eq. (A7) to the interaction picture generated by

ﬂo,ad =—Q Amd /2 to perform the Magnus expansion; this
yields
) im0, 600(0) _i90,01(1)
Viio(t) = Fie "2 —=|b_)d,| L ie' 2" |by Xdo|
1,12) + NG 2 /2 +N\d2
+H.c. (A8)
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It is useful to note that the dynamics generated by Vl,l(z)(t)
can be parametrized as

Ur12y(t) = expl—i( AWy aa £ )y a0 £ Qy(t)Jy00)]
= exp[—i& (1)(n(t )], aa & 1, (t)

X j:v,ad + ny(t )Jtv,ad)]v (A9)

with £(1) = VAX (1) + Q5(1) + (1), n(t) = Q(0)/50),
ny(t) = 2,(t)/&(t), and n (t) = A(t)/&(t). This form allows
us to get an exact representation for ﬁl,l(z)(t) by expanding
the exponential into a series and using the properties of the
spin operators. The functions A(#), Q(¢), and £2,(¢) are found
perturbatively using a fourth-order Magnus expansion [35].
We find that at t = #,/2 these functions evaluate to

Alty/2) = = 4 2
# B QOtg (QOtg)?”

-2 (ot . Qot,
sin (—g) sin (—g)
Q(t,/2) =b 8 b 4 7
1 (15/2) 1 (i)’ + 02 (1)
Qot, 2 Qot,
sin (—"’) CcoS (—“)
Q,(t,/2) = 4 8 7, A10
y(te/2) = ¢ (QoreP +o Qor)* (A10)

with a; = —=572/7, a, = 45007*/2431 — 96072/7, b, =
38407, by = 9607 (336 + 572)/7, ¢; = —19207, and ¢, =
—19207 (336 + 572)/7. Finally, the evolution operators are
given by

Uio)t) = Sad,1(2)Uo(l)01,1(2)(f)§;d,1(2)(0% (A1l)
with Up(t) = exp[iQtS. .a/2].

We can evaluate Eq. (22) with 0= Oq [see text following
Eq. (23)] and Us=0U0 (tg) [see Eq. (A4)] (not shown due to
the length of the result). To get Eq. (24), one further needs
to expand the trigonometric functions involved in the result
to fourth order in £(¢) and collect terms up to sixth order in

1/(QOtg)~

APPENDIX B: AVERAGE MAP FIDELITY WITH
EXCITED-STATE DEPHASING

In this section we present the general framework allowing
us to evaluate perturbatively the average fidelity of the qubit
map [cf. Eq. (46)] for the accelerated gate in the presence
of excited-state dephasing. We start by defining the modified
Hamiltonian with the SATD correction

Huoa(t) = H(t) + Wsarp (1), (B1)

where H (1) is the Hamiltonian of the tripod system written in
terms of the new qubit states [cf. Eq. (5)] and

Qf + 462(1)
— "W sin[6(1)]|a)e| + H.c.].

Wsatp = [cos[O()]]T)e]
(B2)

In the frame defined by the SATD dressing [see Eqgs. (32)
and (41)], the master equation describing the evolution of the

tripod system with excited dephasing is given by

0y Par(t) = —ilHmod.ar(t), par()] + Ty D cit)
i, j k1
bo,bi,d

x G ONi)j1Par()er()ey (D)X

1
5T e Z {ei®)G O], par@®)}+,  (B3)

ij=

bb,d

with ¢; (1) = ¢, (1) = 1/(v2V 1+ 40%(1)/Q3) and ¢ =
2i0(1)/(QV 1 +46%(1)/Q2).

Using a superoperator formalism Eq. (B3) can be written
as

0 Par(t) = [Lo(t) + £y (1)]Par (B4)
where £o(1) = i[H] 4 (1) ® 1 — 1 ® Hmoa.ar(t)] and £, =
o)Lty — /210 LT0Le) —1/DLT 0L ) © 1
and we have defined L,(t) = /'y, Zi’j ci(®)ci (O] with
i, j€ {E,, E+, 32}. ‘We have also introduced tkle comple>§ con-
jugation and transpose operations, denoted L*(¢) and LT(z),
respectively.

To find approximate solutions of Eq. (B4) it is convenient

to work in the interaction picture defined by £y(¢). In this
frame Eq. (B4) reduces to

0 Par,1(t) = £y 1 () Par,1(2), (BS)

where £, ;(t) = ﬁg(t)lw(t)ﬁo(t) and Ly(¢) is the solution of
O Par (1) = €o(t)Par (t), 1.e., Par(t) = Lo(t)par(0). Within this
framework the solution of Eq. (B4) is given by pg(t) =
Lo(t)L(1)par(0), where L;(t) is a solution of Eq. (BS). Using
a first-order Magnus expansion [35], we can approximate
L;(t) by

L) ~ exp [/ dl‘1£¢_](t]):| ~1 —I—f dl‘]ltp,](l‘]).
0 0
(B6)

1072

Num. —

Magnus — - -

€ITOT, Emap

—_
[em)
|

IS

T T
10° 10 102
gate time, %tg
FIG. 6. Comparison of the average error &pyp = 1 — Fyyp calcu-

lated numerically (solid blue trace) vs using Eq. (49) (dashed orange
trace). Weusedo =7 /4, 8 =0, yp =, 'y . = Qo/2m x 100).
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This leads to an approximate solution for pg,(¢),

Par(t) ~ .co(r)[ﬂ + / dtil, (i )}, (B7)

0

which can be used to evaluate Eq. (46).

In Fig. 6 we plot the error &y,p as a function of the gate time
fora =n/4,8=0,y =m,and Iy, , = Qp/(27 x 100) for
the accelerated protocol calculated numerically (solid blue
trace) and using Eq. (49) (dashed orange trace). As stated
in the text, the approximate analytical result is in very good
agreement with the numerical results.
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