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Metaproteome analysis reveals that
syntrophy, competition, and phage-host
interaction shape microbial communities in
biogas plants
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Abstract

Background: In biogas plants, complex microbial communities produce methane and carbon dioxide by anaerobic
digestion of biomass. For the characterization of the microbial functional networks, samples of 11 reactors were
analyzed using a high-resolution metaproteomics pipeline.

Results: Examined methanogenesis archaeal communities were either mixotrophic or strictly hydrogenotrophic in
syntrophy with bacterial acetate oxidizers. Mapping of identified metaproteins with process steps described by the
Anaerobic Digestion Model 1 confirmed its main assumptions and also proposed some extensions such as syntrophic
acetate oxidation or fermentation of alcohols. Results indicate that the microbial communities were shaped by
syntrophy as well as competition and phage-host interactions causing cell lysis. For the families Bacillaceae,
Enterobacteriaceae, and Clostridiaceae, the number of phages exceeded up to 20-fold the number of host cells.

Conclusion: Phage-induced cell lysis might slow down the conversion of substrates to biogas, though, it could
support the growth of auxotrophic microbes by cycling of nutrients.

Keywords: Metaproteomics, Phages, Anaerobic digestion, Anaerobic Digestion Model 1, Phage-host interactions,
Microbiomes

Background
The anaerobic digestion of organic waste and energy
crops to biogas consisting of methane (CH4) and carbon
dioxide (CO2) constitutes an important renewable
energy source. A multitude of different bacterial and
archaeal species catalyze the different degradation steps
providing energy for biomass growth.
In agricultural biogas plants (BGPs), biomass conversion

into biogas is incomplete. Based on the theoretical gas po-
tential, the conversion of volatile solids (VS) to biogas
from particulate organic matter is only about 30–60% [1]

indicating that complete utilization of biomass by the
microbial community is impeded by so far unknown
mechanisms. Missing enzymes for specific biochemical re-
actions or high generation times of essential microbial
species are discussed as an explanation [2]. In order to de-
termine the specific causes of the low biomass degradation
efficiency and to develop strategies for increasing biogas
yields, detailed knowledge about the abundances and the
physiology of main microbial groups in the BGPs is re-
quired [3]. Overall, anaerobic conditions in BGPs provide
a smaller total energy gain for microorganisms in contrast
to aerobic conditions. Furthermore, sequentially ferment-
ing bacteria and archaea divide this energy into little
portions close to thermodynamic limits. The major con-
version steps carried out by different microbial groups are
hydrolysis, acidogenesis, acetogenesis, and methanogen-
esis. During hydrolysis, extracellular enzymes hydrolyze
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biopolymers such as cellulose, proteins, and lipids into
their respective monomers. In subsequent acidogenesis,
these monomers are fermented to volatile organic acids
and alcohols, molecular hydrogen (H2), and CO2. In the
following acetogenesis, volatile organic acids and alcohols
are fermented to acetate, H2, and CO2. For the conserva-
tion of energy, these secondary fermentation reactions de-
pend on subsequent homoacetogenesis or methanogenesis
which both consume H2 changing the thermodynamic
equilibrium towards its products. Finally, methanogenesis is
the production of CH4 from acetate (acetoclastic methano-
genesis), H2, and CO2 (hydrogenotrophic methanogenesis)
as well as from methylated compounds (methylotrophic
methanogenesis) by methanogenic archaea.
So far, the majority of metabolic pathways have been

characterized in pure culture experiments concerning
the involved enzymes and the thermodynamic condi-
tions [4, 5]. Simplified structured models such as the
Anaerobic Digestion Model 1 [6–8] are used for simula-
tions to assist BGP operation. The Anaerobic Digestion
Model 1 is able to predict experimental results of biogas
production and biogas composition based on multiple
steps describing biochemical as well as physicochemical
processes and the abundance of main microbial groups.
However, the Anaerobic Digestion Model 1 does not
cover more complex biological interactions and mecha-
nisms such as the metabolic versatility of individual
microorganisms, the functional interchangeability of differ-
ent microbial taxa, or the competition and syntrophic in-
teractions between bacteria and archaea [4]. In particular,
the impact of the presence of certain microorganisms as
well as their specific metabolic pathways on the overall
process is still poorly understood and not covered by the
Anaerobic Digestion Model 1. For example, syntrophic
acetate oxidation is the reversed pathway of homoaceto-
genesis [9]. Depending on the conditions, the thermo-
dynamic equilibrium between CO2, H2, and acetate is
shifted preferring either syntrophic acetate oxidation or
homoacetogenesis [10]. Finally, competition may also have
a major effect on the taxonomic and functional compos-
ition of microbial communities. For example, species of the
archaeal family Methanosaetaceae possess enzymes with a
high acetate affinity and may suppress other acetate-
consuming microorganisms [11]. However, competition is
not limited to substrates. For example, certain microbial
species may kill other species by the expression of bacte-
riocins, which lyse or inhibit their competitors [12].
Another recent finding is the presence of phages shaping

the microbial communities in anaerobic digestion [13, 14].
Replication of phages results in the lysis of host microor-
ganisms and is discussed to cause significant process distur-
bances due to removal of essential microbial groups [14].
Details about the interaction of phages and the microbial
communities in BGPs are rare because phages are difficult

to detect due to their small size and low biomass. Further-
more, only a few phage sequences are known, and the
dynamics of phage-host interaction were only studied for
few bacterial and archaeal species. For example, bacteria
and archaea may defend phage attacks by the expression of
CRISPR proteins, which snip out phage genes from their
own genome [15]. In summary, all these issues impede the
understanding of the microbial communities in BGPs and
hamper process development and optimization.
Over the last years, various “omics” studies investigated

the taxonomic and functional structure of microbial com-
munities in BGPs. These studies focused on individual genes
[16–18], transcripts [19, 20], or used approaches such as
metagenomics [21–23], metatranscriptomics [24, 25], and
metaproteomics [26–30] to assess the complexity of micro-
bial communities. In contrast to metagenomics and meta-
transcriptomics, the main advantage of metaproteomics is
that expressed enzymes can be detected and quantified. This
also includes the detection of phages by the identification of
phage proteins. This is in contrast to metagenomics and
metatranscriptomics that both study only genes but cannot
distinguish between the presence of phages and their
inactive genes incorporated into host cell genomes.
The aim of our in-depth metaproteomics study was to

identify which mechanisms shape the taxonomic and
functional composition of microbial communities in
BGPs. Eleven BGPs were investigated at two time points
using SDS-PAGE for pre-fractionation of proteins and
subsequent liquid chromatography (LC) coupled to a
high-resolution Orbitrap Elite tandem mass spectrom-
eter (MS/MS). Proteins were identified using the
MetaProteomeAnalyzer software [31]. Subsequently, the
taxonomic and functional compositions of the microbial
communities were analyzed. Mapping of identified meta-
proteins to the different metabolic pathways confirmed
the Anaerobic Digestion Model 1 and revealed some
indications for additional metabolites pathways such as
syntrophic acetate oxidation and microbial interactions.
In particular, the presence of phages and antimicrobial
peptides and proteins was detected. Most likely both influ-
ence the microbial biomass turnover and are discussed
regarding their impact on the microbial community and
on the process model.

Results
Operation parameters confirm stable operation of biogas
plant operation
In this study, seven large-scale BGPs constructed as
continuous stirred-tank reactors (CSTR) encompassing a
reactor volume range of 1100–3000 m3 and three
plug-flow reactors (equipped with a secondary CSTR) cov-
ering a volume of 270–350 m3 (Table 1) were investigated.
Additionally, one laboratory scale CSTR with 3-L working
volume was included in this study. Nine reactors were
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operated under mesophilic process conditions (39.7–43.4 °C),
while two parallel (plug-flow) reactors were run under
thermophilic conditions (52.2–53.4 °C). Biogas production
determined by the daily total biogas volume flux of specific
BGPs varied between 2342–22,800 m3 biogas per day, with
the plug-flow reactors typically achieving the highest biogas
productivities of up to 24m3 biogas per day and cubic meter
fermenter volume. For the latter, the largest amounts of bio-
gas were produced in the secondary CSTRs. The BGPs were
operated with a variety of agricultural feedstocks, character-
ized by a high proportion of maize silage and manure. Or-
ganic loading rates (OLRs) ranged between 1.3–6.1 kg
volatile solids (VS) per cubic meter fermenter volume and
day and hydraulic retention times (HRTs) between 15.1–86.0
days. The plug-flow reactor systems showed the highest
OLRs and the shortest HRTs. All monitored BGPs constantly
produced biogas containing about 50% (v/v) CH4. In the
large-scale BGPs, the total solids (TS) content of the
fermenting liquid was approximately 10%. In contrast, the
fluid in the laboratory scale reactor only contained about 4%
(m/v) TS. The ratio of total volatile fatty acids to total alkalin-
ity (TVFA/TA) ranged from 0.1 to 0.6, and the pH values
ranged from 7.2 to 8.9. The total acid content was below
2 g L−1 in most BGPs investigated. The plug-flow reactor
systems BGP_05a and BGP_05b showed considerably
higher acid contents in the range of 3.6–10.7 g L−1 com-
pared to the CSTR systems analyzed. Acetate (average
80% (m/v)) dominated the determined VFAs, followed by
propionate (mean 16.7% (m/v)), valerate (mean 8.4%
(m/v)), and butyrate (mean 6.5% (m/v)). The total ammo-
nia nitrogen (TAN) reached values between 1.8–6.2 g L−1.

Protein extraction and identification enabled
comprehensive insight into the microbial communities
SDS-PAGE (Additional file 1: Figure S1) revealed reprodu-
cible protein patterns for the technical (separate protein
extraction) and biological (different time points) replicates
of individual BGPs. Between BGPs, however, protein bands
can sometimes differ (for example, BGP05a and BGP04
(Additional file 1: Figure S1C+D). LC-MS/MS measure-
ments of all samples resulted in a total of 14,977,296 MS/
MS spectra. Among these spectra, 3,678,352 spectra were
identified. The number of identifications per BGP sample
varied between 143,423 spectra for the laboratory scale re-
actor BGP_X3 (lowest number) and 473,462 spectra for
BGP_05a (highest number). For removal of redundant hits,
protein identifications were grouped into metaproteins
using the UniProt Reference Clusters (UniRef) 50 as a
grouping criterion [32, 33]. Finally, 16,977 annotated meta-
proteins were assigned to 181 microbial families and 233
biological processes (UniProtKB Keywords) (Additional
file 2: Table S1). However, not all metaproteins could be
assigned to a specific order. About 35% of metaproteins
were assigned to higher taxonomic level or in worst case
to root, only (Fig. 2, Additional file 12).

Cluster analysis revealed major differences between
thermophilic, mesophilic, and lab-scale biogas plants
Reproducibility of the metaproteomic workflow was
examined for all samples by hierarchical clustering using
“cityblock” distance and “average” linkage based on all
metaproteins (Fig. 1, Additional file 3: Note 1). As
expected, the highest similarity between metaproteins was

Table 1 Technical and chemical process parameters of the investigated BGPs

T1 and T2 corresponded to the first and second sampling date. BGP 05 comprised two parallel process lines which were labeled with a and b. Circles indicate the
approximate percentage of the substrates, biogas composition or acid composition. Mesophilic process temperature is marked in the column “Temperature” by
blue bars and thermophilic process temperature is marked by red bars. Green bars just visualize the values of the different parameters. CSTR: continuously stirred
tank reactor; OLR: organic loading rate; HRT: hydraulic retention time; VS: volatile solids; TS: total solids; TVFA/TA: total volatile fatty acids to total alkalinity; TAN:
total ammonia nitrogen; mb

3: cubic meter biogas; mr: cubic meter reactor volume; kgvs: kilogram VS
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observed for technical replicates. Corresponding with the
stable process conditions of BGPs, samples taken at differ-
ent time points were also very similar, except for BGP_X2
which clustered separately. A potential explanation might
be an increased TVFA/TA (0.2 for time point 1 and 0.5
for time point 2, Table 1). Overall, three main clusters
were found: one for the laboratory scale reactor
(BGP_X3), one for thermophilic BGPs (BGP_05a and
BGP_05b), and one for mesophilic BGPs (BGP_2, BGP_3,
BGP_04, BGP_07, BGP_09, BGP_10, BGP_X1, BGP_X2).

Metaproteome analysis revealed insight into the major
microbial taxonomies and functions
As a first overview about the microbial community struc-
ture and the metabolic functionality of the sampled BGPs,
the identified microbial families and biological processes are
summarized for all analyzed BGPs in Fig. 2, Additional file
12. On average, and based on the spectral abundance, the
microbial communities consist of 77.8% ± 30.7% bacteria
(minimum 62.60%, maximum 93.58%), 21.9% archaea ±
13.1% (minimum 6.23%, maximum 37.13%), and 0.4% ± 0.3
viruses (minimum 0.11%, maximum 1.21%). Dominant bac-
terial families were Bacillaceae (6.7% ± 2.9%, minimum
2.49%, maximum 9.33%), Enterobacteriaceae (3.4% ± 2.0%,
minimum 1.39%, maximum 19.50%),Thermoanaerobactera-
ceae (2.1% ± 2.1%, minimum 0.00%, maximum 9.78%), and
Thermotogaceae (1.5% ± 3.0%, minimum 0.07%, maximum
5.94%). In the samples of the thermophilic BGPs (BGP_05a

and BGP_05b), higher amounts of bacterial families associ-
ated with thermophilic conditions (e.g., Thermotogaceae)
were found. Dominant archaeal families were Methano-
sarcinaceae (4.1% ± 3.7%, minimum 0.42%, maximum
9.57%), Methanocaldococcaceae (2.5% ± 1.4%, minimum
0.79%, maximum 4.12%), and Archaeoglobaceae (1.0% ±
0.5%, minimum 0.30%, maximum 2.19%).
The main biological processes in BGPs, as identified

by their UniProtKB Keyword, were “Transport” (18.8% ±
6.2%, minimum 13.86%, maximum 31.46%), “Methano-
genesis” (8.5% ± 9.1%, minimum 1.81%, maximum
29.49%), “One-carbon metabolism” (4.9% ± 3.0%, mini-
mum 1.35%, maximum 10.79%), “Carbohydrate metabol-
ism” (4.2% ± 2.0%, minimum 0.92%, maximum 13.42%),
and “Sugar transport” (4% ± 1.7%, minimum 1.94%,
maximum 10.99%). A more detailed overview of identified
taxa and biological processes is given in Additional file 2:
Table S1: Worksheet S3 and S4.
In order to link metaprotein taxonomies with their

respective functions, a chord diagram (Fig. 3, Additional
file 13, Additional file 4: Table S2) was created using the
NCBI taxonomic families [34] and the UniProtKB
keywords of the category “Biological Process”. In accord-
ance with the krona plot (Fig. 2, Additional file 12),
Bacillaceae was the most dominant family among all
classified families. A high number of metaproteins
assigned to this family were linked to multiple functions
associated with degradation of biomass including sugar

Fig. 1 Cluster analysis of all samples based on archaeal and bacterial metaproteins. Cluster analysis was carried out for all metaproteins based on
the “cityblock” distance and an “average” linkage using Matlab. All BGPs were colored in a different color. Three main clusters could be observed
which were linked with laboratory scaled reactors as well as the process temperature
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Fig. 2 Krona plot of identified bacteria, archaea and viruses. The krona plot shows all taxonomic levels based on the NCBI taxonomy starting from
superkingdom to family level and the associated abundances based on the number of identified spectra summed over all BGPs. Therefore, all 562,390
identified microbial and viral spectra from all 10,970 metaproteins were fed into the krona plot. For more details please refer to the Additional file 4
“C_InputKronaPlot”. In contrast, the calculation of the phage abundance in Additional file 7: Table S5 considers also metaproteins that were assigned on
root level, only. These metaprotein were assigned to phages based on their function. An interactive version of this Figure can be found in Additional file 12
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transport, carbohydrate metabolism, and lipid metabol-
ism. Furthermore, members of the family Bacillaceae
expressed large amounts of metaproteins for transcrip-
tion and sporulation.
The high abundance of sugar transporters assigned to

Rhizobiaceae and Bacillaceae indicates either competition,
functional redundancy, or functional differentiation.
Whereas the alpha-glucosides-binding periplasmic protein
of Rhizobiaceae was highly abundant in all BGP, the
probable arabinose-binding protein of Bacillaceae was de-
tected in several BGP, only. The presence of the

arabinose-specific transporter is related to hemicellulose
degradation releasing arabinose could hint for functional
differentiation of BGP. Cellulose degradation was linked
based on the identified metaproteins to the families
Clostridiaceae and Thermotogaceae using an interactive
version of the chord diagram (Fig. 3, Additional file 13,
Additional file 4: Table S2).
The family Methanosarcinaceae dominated methano-

genesis in the chord diagram but not completely in the
krona plot. The obvious discrepancy between the taxo-
nomic composition of methanogenic archaea in the

Fig. 3 Linkage between taxa and functions. The chord diagram shows the link between taxonomic families and biological processes for the 20
most abundant taxonomic families and 20 most abundant biological processes based on the number of spectral counts summed for all BGPs.
The size of a circle segment corresponds to the spectral abundance of a taxon or biological process, while the arcs connecting them correspond
to the amount of spectra shared by two entities. The data were exported directly from the MetaProteomeAnalyzer and are stored in Additional
file 4: Table S2. In contrast to the print version of this figure, the interactive plot enables to visualize and select all families and
biological processes. An interactive version of this Figure can be found in Additional file 13
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krona plot and the chord diagram is caused by the fact
that many metaproteins could not be assigned to a fam-
ily rank. For example, the protein V-type ATP synthase
subunit C (UniRef50_A0B9K4) was assigned only to the
order Methanosarcinales but not to a specific family.
Low abundant biological processes (“Other_Functions”)
were mainly assigned to well-characterized families such
as Bacillaceae (e.g., “Aromatic hydrocarbons catabolism”,
“Cell shape”, “Germination”) and Enterobacteriaceae
(“DNA condensation”, “Lipopolysaccharide biosynthesis”,
“Purine metabolism”). Probably, this is reasoned by the
fact that these families comprise well-studied microorgan-
isms such as Escherichia coli and Bacillus subtilis, for
which the proteins are well annotated.

Detailed assignment of metaproteins regarding their role
in anaerobic digestion
The strength of metaproteomics is that individual
metaproteins can be quantified and mapped to actually
occurring pathways in anaerobic digestion. Therefore,
detailed assignments of metaproteins to hydrolysis
(Additional file 5: Table S3 A_Hydrolysis) and substrate
uptake (Additional file 5: Table S3 B_Substrate_Uptake),
fermentation pathways (Additional file 5: Table S3 C_-
Fermentation), amino acid metabolism (Additional file 5:
Table S3 D_AA Metabolism), and CH4 production
through methanogenesis (Additional file 5: Table S3
E_Methanogenese) were made.
All identified metaproteins were mapped to the Anaer-

obic Digestion Model 1 [6–8] in order to summarize the
results which were presented and discussed in detail in
Additional file 3: Note 1. Most of the process steps of
the Anaerobic Digestion Model 1 were covered by the
identified metaproteins, i.e., biomass degradation to CH4

and CO2. However, no evidence for lipid degradation
and valerate fermentation were found in the investigated
agricultural BGPs as shown by the absence of enzymes
for hydrolysis and uptake of lipids resp. its degradation
products. In contrast, enzymes for hydrolysis and uptake
of proteins/peptides and carbohydrates were found in
high abundance. Amino acids were subsequently de-
aminated to ammonia and short-chain fatty acids. For
example, glycine was deaminated by both glycine reduc-
tase and the glycine cleavage system in order to balance
the redox potential (Additional file 3: Note 1) [35].
The identification of large amounts of metaproteins

involved in alcohol (24.76% ± 19.89% of the enzymes
assigned to fermentation; minimum 2.02%, maximum
54.30%) and lactate fermentation (5.74% ± 3.79% of the
enzymes assigned to fermentation; minimum 0.01%,
maximum 13.85%) (Additional file 5: Table S3 C_Fermen-
tation) suggest that both pathways play a central role in
BGPs. Interestingly, the corresponding process steps are
not covered by the Anaerobic Digestion Model 1.

In the analyzed BGPs, methanogenesis was carried out
either by a combination of hydrogenotrophic and aceto-
clastic (i.e., mixotrophic) methanogens or, exclusively, by
strictly hydrogenotrophic methanogens. In the latter
case, large amounts of the bacterial acetyl-CoA decarbo-
nylase/synthase (ACDS) protein complex (Fig. 4) were
present to replace the archaeal ACDS, which belongs to
the acetoclastic methanogenesis. Furthermore, evidence
of phages, antimicrobial peptides as well as proteins, and
proteins involved in the microbial immune defense were
found (Additional file 6: Table S4 and Additional file 7:
Table S5). This implied differing mechanism of competition
and killing of individual microbial groups. This issue is also
neglected in the Anaerobic Digestion Model 1 but will be
considered in more detail in the following paragraph.

Fate of microbial biomass
The fate of microbial biomass was investigated, since the
balance between microbial death and re-growth may affect
the anaerobic digestion process and the biogas produc-
tion. There are three principal reasons for microbial death:
(1) microorganisms die due to unfavorable environmental
conditions, (2) microorganisms are lysed by phages
(Additional file 7: Table S5), and (3) microorganisms are
killed by other microorganisms (e.g., directly by predatory
bacteria or mediated by secretion of antimicrobial pep-
tides and proteins) (Additional file 8: Table S6).
Overall 0.4% ± 0.3% (minimum 0.11%, maximum

1.21%) of the identified spectra were associated with viral
proteins (Fig. 2, Additional file 12). The highest virus
abundance was observed for the thermophilic BGPs, i.e.,
BGP_05a and BGP_05b (Fig. 5 and Additional file 7: Table
S5). In contrast to Fig. 2, Additional file 12, the calculation
of the phage abundance in Fig. 5 and Additional file 7:
Table S5 considers also phage metaproteins that were
assigned automatically on root level, only (Additional file
9: Figure S2). The manual reannotation of this large group
accounting 77% of all identified viral spectra was carried
out using descriptions of metaproteins indicating typical
viral functions. Furthermore, phage metagenome se-
quences from BGPs [13] were added to the reference data-
base. But the number of identified phage proteins did not
increase (data not shown). A large portion of phage pro-
teins was identified based on single peptides matching
from conserved domains. In future experiments, the iden-
tification of phage proteins has to be improved by better
matching phage metagenomes.
The largest abundance of viral metaproteins was found

for the orders Caudovirales (12.19% ± 14.95%, minimum
0.66%, maximum 58.72%), with its major families
Myoviridae (3.78% ± 5.80%, minimum 0.00%, maximum
16.95%), Siphoviridae (7.15% ± 10.00%, minimum 0.00%,
maximum 52.19%), and Podoviridae (1.26% ± 1.70%,
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minimum 0.00%, maximum 9.02%) (Additional file 6:
Table S4). Some viral proteins were identified for plant
and animal pathogens (e.g., Rice dwarf virus). Further-
more, 1.67% ± 2.74% of viral proteins were classified as
prophage proteins encoded in the microbial genomes.
Since only viruses targeting archaea and bacteria are
important for the microbial communities we focused on
this subgroup termed phage.
Most phage proteins were functionally annotated as cap-

sid proteins (25.7% ± 61.1%, minimum 0.00%, maximum
82.19%) followed by structural proteins (12.9% ± 51.5%,
minimum 0.00%, maximum 52.75%) and tail proteins
(12.8% ± 38.8%, minimum 0.00%, maximum 66.67%)
(Additional file 6: Table S4 and Additional file 10: Figure S3).
Furthermore, several proteins required for phage replication
such as terminase (1.2% ± 3.5%, minimum 0.00%, maximum
11.11%) or polymerase (3.4% ± 9.0%, minimum 0.00%,
maximum 43.33%) were found. In the following, the possible
impact of phages on the taxonomic composition of the mi-
crobial communities in the BGPs is investigated. First, major
phage groups were classified by their host family and

compared with the abundance of the major microbial fam-
ilies (Fig. 5, Additional file 7: Table S5). Second, the abun-
dance of metaproteins related to the microbial immune
response was calculated based on the detected number of
spectra for CRISPR metaproteins (Fig. 5, Additional file 7:
Table S5).
Out of 562,390 identified microbial and phage spectra

(100%), 9340 (1.6% of the microbial community) spectra
were assigned to phages and 3253 (0.6% of the microbial
community) to CRISPR metaproteins (Additional file 7:
Table S5). In contrast to the low phage abundance suggested
in the krona plot (0.4%), phage abundance based on the
spectral count is most likely significantly higher when taxo-
nomical unassigned or to the host-assigned phage proteins
(prophage proteins) are taken into account. This concerns
for example major capsid proteins (UniRef50_B2ZYY5)
which were not assigned to any taxonomy.
Furthermore, the presence and abundance of CRISPR

and phage metaproteins varied for individual families
and samples. In contrast to the high abundance of
bacterial phages (i.e., 1.2% of the considered bacterial

Fig. 4 Abundance of methanogenesis pathways as well as of archaeal and bacterial acetyl-CoA decarbonylase/synthase (ACDS). Spectral counts of
representative metaproteins for A.) methanogenesis pathway and B.) each ACDS metaprotein (Additional file 5: Table S3 E_Methanogenese) sorted by archaeal
and non-archaeal and summed. The black bars indicate bacterial one carbon metabolism and hydrogenotrophic methanogenesis. The red bars are associated
with either acetoclastic methanogenesis or acetoclastic methanogenesis as well as the methanol and methylamine pathways. Differences between both
groups of BGPs were validated by student’s t-test and highlighted by “*” and the associated p-values. The parentheses under the sample names on the x-axis
show the total number of identified microbial spectra for each BGP
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families), almost no archaeal phages (i.e., 0.1% of the
considered families) were found (Fig. 5, Additional file 7:
Table S5) (p value < 0.0042).
Main targets of phages were the bacterial families Bacilla-

ceae (0.7% related to the abundance of this family), Entero-
bacteriaceae (2.8% related to the abundance of this family),
and Clostridiaceae (2.3% related to the abundance of this
family). In contrast to the abundance of phage metaproteins,
the average abundance of CRISPR metaproteins related to
the abundance of the considered families was 0.1% for bac-
terial and 0.8% for archaeal families, respectively. Among
the methanogenic archaea, it was notable that only CRISPR
metaproteins for the family Methanocococaldacaea (1.9%
related to the abundance of this family) were observed.
Microorganisms can impede the growth or even kill

other microorganisms coexisting in the same environment
by secreting antimicrobial peptides or proteins [12].
Throughout all BGP samples, different antimicrobial pep-
tides and proteins accounting to 0.1% of all spectra (2.907
spectra) were identified (Additional file 8: Table S6). In
particular, large amounts of linocin, lysozyme, and mariti-
macin were found, with maritimacin being enriched in the

thermophilic BGPs, namely in BGPs BGP_05a + b (p value
< 0.00004). For the latter, no specific target organisms are
reported [36]. Finally, it has to be taken into account that
most taxonomic assignments of antimicrobial peptides
and proteins only refer to a specific superkingdom ham-
pering a deeper analysis of its origin. Nevertheless, their
relatively high abundance under thermophilic conditions
could be evidence for stronger competition under this
process regime.

Discussion
This study examined the microbial functional networks of
ten agricultural BGPs and one laboratory scale biogas fer-
menter using a comprehensive, high-resolution metapro-
teomics approach. Additional pre-fractionation increased
the number of identified metaproteins up to ten times in
comparison to a previous study [29] and enabled a more
detailed description of individual metabolic pathways in
biogas production. Hierarchical clustering demonstrated
the reproducibility of the metaproteomics workflow, as
exemplified in Fig. 1, where first technical replicates and
then samples for different time points grouped together.

Fig. 5 Mapping of the identified metaproteins to the Anaerobic Digestion Model 1. Identified metaproteins were assigned to the single steps of the Anaerobic
Digestion Model 1. Significant differences between the assumed steps in the Anaerobic Digestion Model 1 and the proved steps by the identified metaproteins
were highlighted in RED or BLUE color. Aspects that were not covered by metaproteomics analysis are displayed in gray (e.g., “Inert compounds”). For each of
the analyzed steps a summary provides the most important findings of this study. MCs: microbial communities
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Similar to earlier studies on BGPs [29], proteins were
grouped into metaproteins based on homologous protein
clusters (Uniref50) using MetaProteomeAnalyzer software.
The taxonomic affiliations of determined metaproteins
were defined as common ancestor taxonomies from all
identified peptides belonging to proteins from the same
UniRef50. As a result, specific taxonomic ranks could not
be assigned to all metaproteins (e.g., 35% of bacteria were
left unassigned taxonomy in the krona plot (Fig. 2, Add-
itional file 12)). Grouping to UniProt Reference Clusters
(UniRef) 50 is very stringent in comparison to other strat-
egies, e.g., shared peptides. The lower number of resulting
metaproteins was considered to be more beneficial to com-
pare the samples of this comprehensive dataset. The selec-
tion of a grouping strategy is critical and should be decided
considering several criteria, e.g., the size of the experiment
and the focus of the experiment (focus on taxonomic or
functional level). Specificity of taxonomies could be

increased when processing the metagenome data to individ-
ual genome bins [37, 38].

Assignment of metaproteins regarding their role in
anaerobic digestion process
The results of this study confirmed the taxonomic and
functional composition obtained in previous metapro-
teome studies [26, 27, 29, 39, 40]. Furthermore, the as-
signment of the metaproteins to the different metabolic
pathway as of the Anaerobic Digestion Model 1 fitted
rather well. However, our results suggest that some
biological processes are not or only poorly represented
by this model (Fig. 6). For example, lactate fermentation
is most likely taking place in BGPs as large amounts of
lactate are produced during the ensiling process for
conservation and storage of crop material as primary or
co-substrate for the anaerobic digestion process.

Fig. 6 Abundances of microbial families, phages and CRISPR proteins. Figure A shows the main microbial families (at least 1000 spectra for each
family) and their associated phages or CRISPR proteins based on the spectral count. Figure B shows the abundance of the microbial families,
phages and CRISPR proteins for each biogas plant
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The analysis of archaeal metaproteins showed that
hydrogenotrophic methanogenesis was universal for all
BGPs, with some microbial communities in BGPs
strictly following this pathway. Acetoclastic methano-
genesis was found to dominate microbial communities
in five of 11 BGPs suggesting two groups of BGPs. The
first group of BGPs (acetoclastic and hydrogenotrophic
methanogenesis) contained only trace amounts of
metaproteins linked to the bacterial C1 metabolism.
The second group (strictly hydrogenotrophic BGPs)
showed a high abundance of proteins related to the
bacterial C1 metabolism enabling the interconversion of
acetate to H2 and CO2. Due to the fact that proteins are
missing for acetoclastic methanogenesis as a sink for acet-
ate, the most likely metabolic flow is syntrophic acetate
oxidation [10], which might be considered for extension
of the Anaerobic Digestion Model 1. However, the pres-
ence of syntrophic acetate oxidation in the second group
did not correlate to any of the considered process condi-
tions (data not shown). Accordingly, the presence of two
different types of microbial communities might also be
influenced by a combination of parameters such as
temperature, metabolite concentrations, and inoculum
that could not be identified due to the still limited number
of samples analyzed.

Influence of syntrophy, competition, and phage-host
interaction on anaerobic digestion process
Microbial communities in BGPs consist of a mixture of
fermentative bacteria and methanogenic archaea. Certain
microbial species depend on syntrophic interaction [4]
where two different microbial species metabolize a certain
substrate together, as shown for syntrophic acetate oxida-
tion and hydrogenotrophic methanogenesis [10]. Further-
more, the present study showed that different microbial
species are competing for substrates and that the micro-
bial communities might also be shaped by phages. Appar-
ently, Rhizobiaceae and Bacillaceae expressed high
amounts of sugar transporters. Their growth is dependent
on sugars released by cellulolytic Thermotogaceae, Clostri-
diaceae, and Cellulomonadaceae (Additional file 3: Note
1). Instead of expressing their own enzymes for hydrolyz-
ing cellulose, they were cheating on monomeric sugars
released by the enzymes of the cellulolytic microbes.
Cheating could be considered somehow as competition
and is preferred in less structured environments like
mixed BGPs [41]. The detection of antimicrobial peptides
and proteins such as lysozyme and maritimacin impeding
the growth or killing potential competitors [12] suggests
that biological warfare might play a crucial role in com-
munity composition and even nutrient turnover of BGPs.
The highest concentrations of antimicrobial peptides and
proteins as well as phages were observed in thermophilic
BGPs, which have been shown to be less stable in

operation [42]. Very likely, the presence of both can lead
to stress of the microbial community and may contribute
to process instabilities.
The presence of both phage proteins and microbial

phage defense proteins belonging to the CRISPR system
in all analyzed BGPs adds another level of competition.
Taking into account the small number of sequenced
phages, many phage proteins were likely not identified
due to the lack of primary sequence data. Accordingly,
the scarcity of sequence data also limited the detailed
taxonomic assignment of phages to their hosts. Since
the use of a phage-specific metagenome from other
BGPs [13] did not increase the number of identified
phage proteins, phages in BGPs are probably much more
diverse than expected. In the BGPs studied here, Caudo-
virales constituted the largest order of phages as shown
previously [13, 14]. At first glance, the average abun-
dance of viral proteins appears to be low. However,
taking into account the size of phages in comparison to
microbial cells, this perspective changes drastically.
Assuming spherical shapes, similar protein amounts of
phages and microorganisms, a mean phage diameter of
100 nm and a mean cell diameter of 1.0 μm, and a mean
abundance of viral proteins of 0.4% in BGPs correspond
roughly to four phages per cell (Additional file 11: Note 2).
Potentially, the actual amount of phages is even higher
since Kleiner et al. [43] observed for a synthetic mock com-
munity an underrepresentation of phages by metaproteome
analysis. This indeed is in the range of expected phage
particles per cell in other ecosystems [44]. Moreover, phage
metaproteins specifically targeting Clostridiaceae and
Enterobacteriaceae amounted to 2.3–2.8% of the bacterial
protein (Additional file 7: Table S5) corresponding to a
phage load of approximately 20–30 phages per cell.
Whereas the high abundance of phage and CRISPR meta-
proteins for Enterobacteriaceae might be explained by a
higher rate of identification due to a variety of studies and
associated protein entries in databases [45, 46], the high
phage abundance of Clostridiaceae and Bacillaceae might
be related to specific biological processes. In case phage
abundance corresponds to a decrease in the number of
main cellulose degraders belonging to the family Clostridia-
ceae, hydrolysis of complex polymers and thus anaerobic
digestion could be negatively influenced (Fig. 7).
Due to the difficulties in the detection of phage pro-

teins and the assignment of phages to specific hosts, it
still remains unclear whether phage-induced cell lysis is
a rare and transient event or has a significant impact on
the composition of BGP communities and the dynamics
of biomass conversion. On the one hand, the extent to
which phages induce a re-routing of certain degradation
pathways of biomass by killing key players of the microbial
community has to be clarified in further experiments. On
the other hand, lysis of selected bacterial populations must
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not necessarily be considered as a primarily negative effect
on biogas production. In particular, the lysis of infected cells
results in a release of highly complex intracellular com-
pounds including vitamins, carbohydrates, and amino acids
which can support the growth of other members of the
community (Fig. 7). Whereas prototroph microorganisms

may produce these compounds on their own, auxotroph
microorganisms depend on such external sources [47]. The
presence of transporters for vitamins, cofactors, and trace
elements (Additional file 3: Note 1) detected in this study
supports this hypothesis. This is also in accordance with re-
sults obtained for other habitats, i.e., marine or animal

Fig. 7 Impact of phages on biogas processes and on the nutrition cycle in biogas plants. The microbial community consists of auxotroph
microorganisms and prototroph microorganisms. Whereas prototroph microorganisms may produce vitamins, cofactors and amino acids for their
growth themselves, auxotroph microorganisms require external sources for these compounds. Phage induced cell lysis of both microbial groups
slows biogas processes due to the lyses of the microorganisms. However, it represents also a major source of vitamins, cofactors and amino acids
for the auxotroph microorganism

Heyer et al. Microbiome            (2019) 7:69 Page 12 of 17



microbiomes [45]. Furthermore, pure cultures of secondary
fermenters and methanogens are known to require the
addition of complex substrates such as sludge fluid, rumen
fluid, and yeast extract for growth [48].
Unlike phages targeting Clostridiaceae, the appearance

of phages specific for Bacillaceae correlated with high
expression of sporulation proteins, e.g., stage II sporula-
tion protein D (UniRef50_P07372) and stage V sporula-
tion protein T (UniRef50_P37554). Sporulation of
Bacillaceae could be an option to escape from phage
infection, because the replication of the phage genome is
inhibited in sporulating cells [49]. The mechanism for
preventing phage infection is stochastically trapping the
phage DNA in only 20% of the spores [49] due to the re-
duction of the cell volume. However, certain phages such
as phage φE might integrate their DNA very efficiently
in the spore, providing pseudolysogeny [49]. In this case,
phage DNA is stabilized in the endospore against haz-
ardous environmental conditions, enabling a long-term
survival of the phages. Upon germination and growth of
vegetative cells, the virulence is activated. The co-
occurrence of sporulation and phage proteins of Bacilla-
ceae indicates the ongoing arms race between bacteria
and phages.
Considering other bacterial families, the phage load

was lower. For example, no phages were detected for the
high abundant families Thermoanaerobacteraceae and
Desulfovibrionaceae. However, the lack of phages for
certain families could be also caused by the failure to as-
sign more than 79.7% of viral proteins to their hosts
(Additional file 5: Table S3).
In contrast to bacteria, only few phages were detected

that target archaea. This is in accordance with the low
number of phages known to date infecting methanogens
[13]. In addition, the high expression level of antiviral
defense metaproteins (i.e., CRISPR) in several of the ar-
chaeal families, e.g., Methanococcaceae, might play a role.
The results point out the presence of phages as factors

shaping microbial communities in BGPs. Whether
phage-induced cell lysis slows down the biogas processes
or supports the growth of auxotrophic microbes in the
biogas processes by nutrient cycling needs further clarifi-
cation. The best confirmation of these results would be
through the isolation and description of phages and cor-
responding hosts allowing experiments in well-defined
systems. Enrichment and sequencing more phage meta-
genomes from BGPs [13] as well as annotating prophage
sequences from genomes could improve the assignment
of phage proteins to their hosts [50, 51]. Furthermore,
the abundance of phages should be correlated to process
conditions, if possible to process disturbances. For example,
foaming in BGPs could be related to phage-induced cell
lysis releasing proteins that stabilize foam. Metaproteomic
experiments using phages or host cells labeled with

non-canonical amino acids [52] or stable isotopes [53]
could be carried out to estimate the fate of microorganisms
in complex environments. Moreover, prophages could be
induced by stressing microbial communities with antibi-
otics, heat, acidic pH, or reactive oxygen species [54].
In summary, microbial communities in BGPS are

affected by microbial interactions such as syntrophy,
competition, and host-phage interactions. Further re-
search is required to understand whether phage-induced
cell lysis slows down the conversion of substrates to
biogas or support growth of auxotrophic microbes by
cycling of nutrients.

Methods
All chemicals were at least of analysis grade. For
nanoHPLC-MS/MS, MS grade solvents were used.

Biogas plant sampling and reactor performance
Ten large-scale BGPs (BGP_02, BGP_03, BGP_04,
BGP_05a, BGP_05b, BGP_07, BGP_09, BGP_10, BGP_X1,
BGP_X2) and one laboratory-scale reactor BGP (BGP_X3)
operating under stable process conditions were sampled
twice about 1 month apart (T1, T2) (Table 1). Samples
were stored at − 20 °C until further processing. BGP
operators provided information about biogas production,
feedstocks, fermenter content, process temperature, pH
value, acid content, and TAN (Table 1).

Metaproteomics workflow
Protein extraction was carried out in duplicates according
to the protocol of Heyer et al. [55]. LC-MS/MS measure-
ments were conducted according to Heyer et al. [29].
In brief, cell lysis and protein extraction were carried out

simultaneously by phenol extraction in a ball mill. Extracted
proteins were dissolved in a 2-mL aqueous solution
containing 7 M urea, 2 M thiourea, and 0.01 g mL−1 1,4-
dithiothreitol. Amido black assay was used to quantify pro-
tein concentration [56, 57]. After acetone precipitation,
proteins were separated by SDS-PAGE [58] using 500-μg
protein extract. Subsequently, the SDS-PAGE lanes were
sliced into ten fractions, proteins trapped in the gel were
digested tryptically to peptides [59] and dried in a vacuum
centrifuge (Digital Series SpeedVac SPD121P, Thermo Sci-
entific, Waltham, USA). Before LC-MS/MS measurements,
the samples were dissolved in 30-μL solvent A (98%
LC-MS Water, 2% ACN, 0.05% TFA), centrifuged (30 min,
13.000×g, 4 °C), and transferred into a HPLC vial. Peptides
were analyzed by LC-MS/MS using an UltiMate 3000
RSLCnano LC system, coupled online to an Orbitrap Elite™
Hybrid Ion Trap-Orbitrap MS (both from Thermo Fisher
Scientific, Bremen, Germany). After injection, 8-μL
peptides were loaded isocratically on a trap column
(Dionex Acclaim, nano trap column, 100 μm i.d. × 2 cm,
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PepMap100 C18, 5 μm, 100 Å, nanoViper) with a flow rate
of 7-μL min−1 chromatographic liquid phase A (98%
LC-MS Water, 2% ACN, 0.05% TFA) for desalting and
concentration.
Chromatographic separation was performed on a Dio-

nex Acclaim PepMap C18 RSLC nano-reversed phase
column (2-μm particle size, 100-Å pore size, 75-μm
inner diameter, and 250-mm length) at 40 °C column
temperature. A flow rate of 300 nL min−1 was applied
using a binary A/B-solvent gradient (solvent A 98%
LC-MS Water, 2% acetonitrile, 0.1% formic acid; solvent
B 80% acetonitrile, 10% LC-MS water, 10% trifluoretha-
nol, 0.1% formic acid) starting with 4% B for 4 min, con-
tinuing with a linear increase to 55% B for 120 min,
followed by a column wash with 90% B for 5 min, and a
re-equilibration with 4% B for 25 min. For MS acquisi-
tion, a data-dependent MS/MS method was chosen. MS
was operated in positive ion mode, and precursor ions
were acquired in the orbital trap of the hybrid MS at a
resolution of 30,000 and a m/z range of 350–2000. Sub-
sequently, the fragment ion scan was done in the linear
ion trap of the hybrid MS with a mass range and a scan
rate with “standard” parameter settings for the top 20
most intense precursors selected for collision-induced
dissociation. “Active Exclusion” was adjusted to 5 s for
two similar precursor ions.

Data handling
We used the Proteome Discoverer Software (Thermo
Fisher Scientific, Bremen, Germany, version 1.4.1.14) to
convert raw mass spectral data into mascot generic
files. Protein database searches were performed with
OMSSA [60] and X!Tandem [61] using the MetaProteo-
meAnalyzer (version 1.3, www.mpa.ovgu.de) [31], re-
quiring at least one identified peptide for a successful
protein identification. Furthermore, protein database
searches using Mascot [62] (Matrix Science, London,
England, version 2.5.1) were carried out through the
ProteinScape Software (Bruker Daltonics, Bremen,
Germany, version 3.1.3461), and obtained results were
imported into the MPA. Finally, OMSSA, X!Tandem,
and Mascot results were merged. Search parameters for
the protein database searches were trypsin, one missed
cleavage, monoisotopic mass, carbamidomethylation
(cysteine) as fixed modification, and oxidation (methio-
nine) as variable modifications, ±10 ppm precursor and
± 0.5 Da MS/MS fragment tolerance, 113C and + 2/+3
charged peptide ions. Results were controlled using a
target-decoy strategy and a cutoff of 1% for the false
discovery rate [63]. Validated single peptides were in-
cluded in search results. The protein database contained
sequences aggregated from UniProtKB/SwissProt (version
23.10.2014) [64] and seven metagenomes from BGP sam-
ples [20, 22, 23, 65]. The final FASTA database comprised

2.349.714 protein entries. All result files were submitted
to PRIDE [66] with the accession number PXD009349.
Unknown protein sequences from the metagenome were
identified by BLAST (NCBI-Blast-version 2.2.31) [67]
against UniProtKB/SwissProt requiring a maximum e value
of 10−4. All BLAST hits with best e value were considered
for further processing. Whenever possible, metaproteins
were annotated with NCBI taxonomy [34], biological pro-
cesses (UniProtKB keywords), UniRef [33], enzyme com-
mission numbers (EC), and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Orthologies (KO) based on their
UniProt entries [68]. Furthermore, redundant homologous
proteins were grouped into metaproteins, based on Uni-
Ref50 [33]. Finally, metaprotein profiles were exported as
comma-separated value files (csv). For visualization of taxo-
nomic and functional results, chord diagrams [69] and
krona plots [70] were created.

Replicates and statistical analysis
Four replicates were measured for each biogas plant. Con-
cerning the biological replicates, nearly no BGPs of more
than 9000 BGPs in Germany are operated under com-
pletely identical process conditions. “Real” biological repli-
cates are the samples BGP5a and BGP5b (two parallel
fermenters of a single BGP, which were operated similarly)
and the two identical lab scale fermenter. For the simula-
tion of biological replicates for the other BGPs, we chose
to sample fermenters operating at steady state (see Table 1
for chemical and technical parameters) at two time points
1month apart. Each of the biological replicates was sam-
pled twice to cover the variability of sampling and extrac-
tion. Overall the number of replicates was limited by
available time for LC-MSMS measurement (more than 4
weeks) and for computational analysis (approx. 6months).
For the comparison of the different metaproteins,

microbial taxa and biological processes the associated spec-
tral counts were normalized to the total spectral count of
each measurement. In order to test the similarity between
the samples and the reproducibility of our workflow we
performed cluster analyses using Matlab (The MathWorks
GmbH, Ismaningen, Germany, version 8.3.0.532 (R2014a)),
the “cityblock” distance and an “average” linkage. During
our data evaluation we focused on pathways, which were
present in high abundance and only made statements about
the presence or absence of different pathways. Comparisons
of two groups of microbial communities/ biogas plants
were validated by student's t-test and a p-value smaller than
0.05 was used as significance threshold.

Additional files

Additional file 1: Figure S1. A–L. 12% SDS-PAGE of 11 BGPs loaded
with 500 μg of total protein. For protein separation a 12% SDS-PAGE with
1.5 mm gel thickness was carried out and stained with colloidal coomassie
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dye solution. Proteins were extracted by combined phenol extraction in a
ball mill. (STD) size standard. T1 and T2 refer to the first and second
sampling time point. Ext1 and Ext2 represent two independent extractions.
(PPTX 36926 kb)

Additional file 2: Table S1. List of identifications. Worksheet S1: List of
all identified metaproteins. Worksheet S2: List of all identified microbial
metaproteins (archaea and bacteria). Worksheet S3: List of all
superkingdoms, Worksheet S4: List of all identified microbial families
(archaea and bacteria). Worksheet S5: List of all identified biological
processes. (XLSX 9006 kb)

Additional file 3: Note 1. Assignment of metaproteins mapped to
biological processes involved in AD. (DOCX 361 kb)

Additional file 4: Table S2. Input files for chord diagram. (XLSX 101 kb)

Additional file 5: Table S3. Detailed assignment of microbial
metaproteins and their role in biomass degradation focusing on
A_Hydrolysis, B_Substrate_Uptake, C_Fermentation, D_AA_Metabolism,
and E_Methanogenese. Metaproteins were grouped by EC or KO
number, respectively, in the case of B_Substrate_Uptake. For the
assignment of metaproteins to B_fermentation, archaea were excluded
and for E_Methanogesis only archaea were considered. (XLSX 21299 kb)

Additional file 6: Table S4. Abundance of microbial key families,
phages and, metaproteins related to microbial immune response. This
excel sheet contains the detailed grouping of all metaproteins by their
families as well as by their belonging to phages, and microbial immune
response. It was the basis for Additional file 7: Table S5. (XLSX 18377 kb)

Additional file 7: Table S5. Abundance of main microbial families, host
families of phages as well as the abundance of microbial immune
response as represented by CRISPR proteins. Identified microbial
metaproteins, phage metaprotein and CRISPR metaproteins were
grouped by their (host) families and their spectral counts are shown as
averages with the associated standard deviation. In contrast to the
calculation of the phage abundance in Fig. 2, Additional file 12 this
calculation considers also metaproteins that were assigned on root level,
only. These metaprotein were assigned to phages based on their
function. The abundance of the microbial families was normalized to the
total number of identified microbial spectra. For the abundance of
phages metaproteins and CRISPR metaproteins the spectral counts were
normalized to the spectral counts of the corresponding microbial
families. For a better overview the table was divided in A.) Bacterial
families, B.) Archaeal families, C.) Others and D.) Overall. The detailed
assignment can be found in Additional file 6: Table S4. F: taxonomic
family; P: phage; C: CRISPR proteins. Differences between the abundances
of phages assigned to archaea and to bacteria were validated by
student’s t-test, showing with a p-value <0.00442 larger amounts of
phages assigned to bacteria. For further details for the creation of this
table please refer to Additional file 6: Table S4. (PDF 785 kb)

Additional file 8: Table S6. Overview about all antimicrobial peptides
and proteins metaproteins. (XLSX 18 kb)

Additional file 9: Figure S2. Taxonomic profile of all identified viruses
based on the number of identified viral spectra summed over all
analyzed BGPs. (PNG 107 kb)

Additional file 10: Figure S3. Functional assignment of all identified
phage spectra summed over all BGPs. (PNG 113 kb)

Additional file 11: Note 2. Estimation of the number of phage particles.
(DOCX 21 kb)

Additional file 12: An interactive version of Fig. 2. (HTML 408 kb)

Additional file 13: An interactive version of Fig. 3. (ZIP 6150 kb)
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