SUPPORTING INFORMATION

Regioselective trans-Carboboration of Propargyl Alcohols

Hongming Jin and Alois Fürstner*

Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany) E-mail: fuerstner@kofo.mpg.de

Table of Contents

Supporting Crystallographic Data	S2
Reaction Optimization	S6
¹¹ B NMR	S8
Procedures and Characterization Data	S8
NMR Spectra	S25
References	S76

SUPPORTING CRYSTALLOGRAPHIC DATA

Figure S1. Structure of compound **5b** in the solid state; only one of two independent molecules present in the unit cell is shown for clarity

X-ray Crystal Structure Analysis of 5b: ($C_{23}H_{28}BCIO_3$), $M_r = 398.71 \text{ g}\cdot\text{mol}^{-1}$, colorless plate, crystal size 0.327 x 0.298 x 0.050 mm³, triclinic, space group *P*1, *a* = 9.8066(2) Å, *b* = 10.5520(3) Å, *c* = 21.6009(6) Å, *a* = 103.3530(10)°, β = 92.0280(10)°, γ = 99.6610(10)°, *V* = 2137.56(10) Å³, *T* = 100(2) K, *Z* = 4, D_{calc} = 1.239 g·cm³, λ = 1.54178 Å, μ (*Cu*- K_{α}) = 1.736 mm⁻¹, Gaussian absorption correction (T_{min} = 0.63, T_{max} = 0.93), Bruker AXS X8 Proteum diffractometer, 4.900 < θ < 72.472°, 40538 measured reflections, 7914 independent reflections, 6551 reflections with *I* > 2 σ (*I*), R_{int} = 0.0529.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.047$ [$I > 2\sigma(I)$], $wR_2 = 0.112$, 561 parameters. Several low-angle reflections were shadowed by the beamstop and were omitted before the final refinement cycles.

The H atoms were refined using a rotational group riding model, S = 1.028, residual electron density 0.3/-0.5 e Å⁻³. **CCDC 1895345**.

Figure S2. Structure of compound **5n** in the solid state; only one of the two antipodal molecules present in the unit cell is shown for clarity

X-ray Crystal Structure Analysis of 5n: $(C_{20}H_{27}BClF_{3}O_{3})$, $M_{r} = 418.67$ g·mol⁻¹, colorless prism, crystal size 0.144 x 0.111 x 0.092 mm³, triclinic, space group *P*1, a = 9.1295(10) Å, b = 11.2795(13) Å, c = 21.152(3) Å, $\alpha = 99.045(2)^{\circ}$, $\beta = 95.674(5)^{\circ}$, $\gamma = 91.865(2)^{\circ}$, V = 2138.0(5) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.301$ g·cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 0.221$ mm⁻¹, Gaussian absorption correction (T_{min} = 0.97, T_{max} = 0.98), Bruker AXS Enraf-Nonius KappaCCD diffractometer, $1.961 < \theta < 33.142^{\circ}$, 65114 measured reflections, 16259 independent reflections, 13805reflections with $l > 2\sigma(l)$, $R_{int} = 0.0243$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.039$ [$I > 2\sigma(I)$], $wR_2 = 0.109$, 527 parameters. Several low-angle reflections were shadowed by the beamstop and were omitted before the final refinement cycles.

Hydroxyl H atoms were found and refined. Otherwise, H atoms were refined using a riding model, S = 1.025, residual electron density 0.8/-0.5 e Å⁻³. **CCDC 1895348**.

Figure S3. Structure of compound **10i** in the solid state; two co-crystallized [D₄]-MeOH molecules are not shown for clarity

X-ray Crystal Structure Analysis of 10: ($C_{36}H_{44}D_8BClO_6$), $M_r = 635.08 \text{ g}\cdot\text{mol}^{-1}$, colorless prism, crystal size 0.260 x 0.169 x 0.103 mm³, monoclinic, space group $P2_1$, a = 9.4553(4) Å, b = 11.9148(5) Å, c = 16.3010(6) Å, $\beta = 106.060(2)^\circ$, V = 1764.77(12) Å³, T = 100(2) K, Z = 2, $D_{calc} = 1.195 \text{ g}\cdot\text{cm}^3$, $\lambda = 1.54178$ Å, $\mu(Cu-K_{\alpha}) = 1.289 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.85$, $T_{max} = 0.91$), Bruker AXS X8 Proteum diffractometer, 2.821 < $\theta < 72.228^\circ$, 68680 measured reflections, 6357 independent reflections, 5764 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0514$, Absolute structure parameter = 0.014(15).

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.033$ [$I > 2\sigma(I)$], $wR_2 = 0.082$, 419 parameters. Several low-angle reflections were shadowed by the beamstop and were omitted before the final refinement cycles.

Hydroxy-H atoms were found and refined. Otherwise, H atoms were refined using a riding model, S = 1.110, residual electron density 0.3/-0.3 e Å⁻³. **CCDC 1895347**.

Figure S4. Structure of 1,2-oxaborolol derivative 3b in the solid state

X-ray Crystal Structure Analysis of 3b: $(C_{17}H_{23}B_2ClO_4)$, $M_r = 348.42 \text{ g} \cdot \text{mol}^{-1}$, colorless prism, crystal size 0.153 x 0.095 x 0.021 mm³, monoclinic, space group $P2_1/n$, a = 6.4123(12) Å, b = 16.923(3) Å, c = 17.041(3) Å, $\beta = 100.090(4)^\circ$, V = 1820.6(6) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.271 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 0.227 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.43$, $T_{max} = 0.84$), Bruker AXS Enraf-Nonius KappaCCD diffractometer, 2.407 < θ < 30.533°, 47844 measured reflections, 5551 independent reflections, 4565 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0545$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.040$ [$I > 2\sigma(I)$], $wR_2 = 0.107$, 224 parameters. Several low-angle reflections were shadowed by the beamstop and were omitted before the final refinement cycles.

The H atoms were refined using a rotational group riding model, S = 1.032, residual electron density 0.5/-0.4 e Å⁻³. **CCDC 1895346**.

REACTION OPTIMIZATION

Entry	Base	Pd catalyst	Ligand	PhX	Solvent	Yield (%) ^a
1	n-BuLi	Pd(OAc) ₂	dppf ^d	PhOTf	THF	0
2	LiTMP	Pd(OAc) ₂	dppf ^d	PhOTf	THF	0
3	LiHMDS	Pd(OAc) ₂	dppf ^d	PhOTf	THF	10
4	LiHMDS	$Pd_2(dba)_3$	P(o-tol) ₃	$Ph_2I^+OTf^-$	THF	31
5	NaHMDS	$Pd_2(dba)_3$	P(o-tol) ₃	$Ph_2I^+OTf^-$	THF	37
6	NaOtBu	$Pd_2(dba)_3$	P(o-tol) ₃	$Ph_2I^+OTf^-$	THF	0
7	NaH	$Pd_2(dba)_3$	P(o-tol) ₃	$Ph_2I^+OTf^-$	THF	10
8	NaHMDS	$Pd_2(dba)_3$	P(o-tol) ₃	$PhMesI^+OTf^-$	THF	20
9	NaHMDS	$Pd_2(dba)_3$	P(o-tol) ₃	PhI	1,4-dioxane	< 5
10	NaHMDS	$Pd_2(dba)_3$	P(o-tol) ₃	$Ph_2I^+OTf^-$	1,4-dioxane	62 (66) ^b
11	NaHMDS	$Pd_2(dba)_3$	XPhos	$Ph_2I^+OTf^-$	1,4-dioxane	$< 5^{b}$
12	NaHMDS	$Pd_2(dba)_3$	$P(1-nap)_3$	$Ph_2I^+OTf^-$	1,4-dioxane	$< 5^{b}$
13	NaHMDS	$Pd_2(dba)_3$	P(tBu) ₃	$Ph_2I^+OTf^-$	1,4-dioxane	$< 5^{b}$
14	NaHMDS	$Pd_2(dba)_3$	DPEPhos ^d	$Ph_2I^+OTf^-$	1,4-dioxane	33
15	NaHMDS	Pd(dba) ₂	P(2-furyl) ₃	$Ph_2I^+OTf^-$	1,4-dioxane	68
16	NaHMDS	Pd(OAc) ₂	P(2-furyl) ₃	$Ph_2I^+OTf^-$	1,4-dioxane	73
17	NaHMDS	$Pd_2(dba)_3$	P(2-furyl) ₃	$\mathbf{Ph}_{2}\mathbf{I}^{+}\mathbf{OTf}^{-}$	1,4-dioxane	81 ^b

^aisolated yields. ^bat 60 °C. ^c10 mol% of the ligand

Entry	Variations on the standard condition	Yield (%) ^a
1	none	62
2	dioxane as solvent	15
3	without THF	0
4	LiHMDS instead of NaHMDS	0

^aisolated yields.

Entry	Catalyst	Ligand	Solvent	Yield (%) ^a
1	$Pd_2(dba)_3$	P(o-tol) ₃	THF	34 (25) ^b
2	$Pd_2(dba)_3$	P(o-tol) ₃	1,4-dioxane	67
3	$Pd_2(dba)_3$	P(2-furyl) ₃	1,4-dioxane	36
4	$Pd_2(dba)_3$	$P(1-nap)_3$	1,4-dioxane	77 (67) ^c
5	CuCl	Xantphos ^d	THF	0

^aisolated yields. ^bLiHMDS instead of NaHMDS. ^C1.5 equiv. MeI was used. ^d10 mol% of Xantphos

Entry	Catalyst	Ligand	Solvent	Yield (%) ^a
1	$Pd_2(dba)_3$	P(2-furyl) ₃	1,4-dioxane	78
2	$Pd_2(dba)_3$	XPhos	1,4-dioxane	17
3	$Pd_2(dba)_3$	DPEPhos ^b	PhMe/THF (10 equiv.)	44
4	$Pd_2(dba)_3$	P(2-furyl) ₃	PhMe/THF (10 equiv.)	90
5	$Pd_2(dba)_3$	P(2-furyl) ₃	PhMe	68
5	CuCl	Xantphos ^d	THF	0

^aisolated yields. ^b10 mol% of the ligand.

¹¹B NMR: Evidence that intermediate 2b is (largely) in the borate state

PROCEDURES AND CHARACTERIZATION DATA

General Methods: Unless stated otherwise, all reactions were carried out under Argon atmosphere in flame-dried glassware. The solvents were purified by distillation over the indicated drying agents under Argon: THF, 1,4-dioxane, hexane, toluene (Na/K); CH₂Cl₂ (CaH₂) and 1,2-dichloroethane (CaH₂) were stored over molecular sieves and degassed via three freeze-pump-thaw cycles. If not mentioned otherwise, NMR spectra were recorded at room temperature using either a Bruker DPX 300, AMX 300 or AV 400 spectrometer in the solvents indicated. Chemical shifts (δ) are given in ppm and coupling constants (*J*) in Hz. The following abbreviations are used to indicate the signal multiplicity: s (singlet), brs (broad singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as combinations of them. Mass spectra (MS and HRMS) were determined using either a Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker), Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan) spectrometer. Infrared Spectroscopy (IR): Spectrum One Perkin Elmer, wavenumbers ($\tilde{\nu}$) in cm⁻¹. Flash chromatography was carried out using Merck silica gel 60 (40-63 µm) using the indicated eluents. Analytical Thin Layer Chromatography (TLC) was carried out on precoated Macherey-Nagel plates (POLYGRAM[®] SIL G/UV254). Preparative TLC: Macherey-Nagel precoated plates (SIL G-100 UV 254; silica gel layer: 1.0 mm); detection was accomplished using UV-light (254 nm), $KMnO_4$ (in 1.5M Na_2CO_3 (aq.)), molybdatophosphoric acid (5 % in ethanol), vanillin/H₂SO₄ (in ethanol) or anisaldehyde/HOAc (in ethanol).

Starting Materials

Propargyl alcohols and diaryl iodonium triflates were purchased from Sigma-Aldrich, ABCR, or TCI, or were prepared in analogy to the literature procedures cited below:

3-Methyl-1-(2-methylphenyl)pent-1-yn-3-ol (S1).^[1] Colorless oil (344 mg, 91%); ¹H NMR (400 MHz,

CD₃OD) δ = 7.37-7.29 (m, 1 H), 7.23-7.16 (m, 2 H), 7.15-7.07 (m, 1 H), 2.41 (s, 3 H), 1.88-1.66 (m, 2 H), 1.53 (s, 3 H), 1.11 (t, *J* = 7.2 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 139.6, 131.4, 129.0, 127.8, 125.2, 122.7, 96.8, 81.2, 68.3, 36.3, 28.3, 19.4, 8.2 ppm; IR (ATR): \tilde{v} = 3363, 2972, 2934, 1485, 1456, 1370,

1155, 1125, 1033, 995, 906, 754, 716 cm⁻¹; HRMS (EI) m/z calcd for $[C_{13}H_{16}O]^+$: 188.1195; found: 188.1193.

1-((4-Ethylphenyl)ethynyl)cyclohexan-1-ol (S2).^[1] White solid (415 mg, 90%); mp: 89-90 °C; ¹H NMR

HO

(400 MHz, CD₃OD) δ = 7.34-7.26 (m, 2 H), 7.20-7.11 (m, 2 H), 2.63 (q, J = 7.6 Hz, 2 H), 2.04-1.87 (m, 2 H), 1.79-1.52 (m, 7 H), 1.36-1.25 (m, 1 H), 1.22 (t, J = 7:6 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 144.4, 131.1, 127.5, 120.3, 91.9, 83.6, 68.0, 39.6, 28.3, 25.0, 23.0, 14.5 ppm; IR

(ATR): $\tilde{v} = 3197, 2927, 2854, 1510, 1448, 1345, 1297, 1186, 1071, 965, 827, 682, 548 cm⁻¹; HRMS (EI)$ *m*/*z* $calcd for <math>[C_{16}H_{20}O]^+$: 228.1509; found: 228.1510.

(Z)-8-Methylnon-5-en-3-yn-2-ol (S3).^[2] Colorless oil (390 mg, 85%); ¹H NMR (400 MHz, CDCl₃) $\delta = 0$ OH 5.89-5.77 (m, 1 H), 5.45-5.36 (m, 1 H), 4.63-4.47 (m, 1 H), 2.14-2.03 (m, 2 H), 1.73 (brs, OH), 1.67-1.54 (m, 1 H), 1.38 (d, J = 6.4 Hz, 3 H), 0.82 (d, J = 6.8 Hz, 6 H)

ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 143.3, 109.0, 94.9, 81.1, 58.9, 39.2, 28.3,

MHz, CD₃OD) δ = 79.4, 75.6, 69.2, 67.2, 64.3, 59.9, 34.6, 30.8, 17.2,

24.5, 22.4 ppm; IR (ATR): $\tilde{v} = 3318$, 2956, 2929, 2871, 1464, 1368, 1330, 1278, 1154, 1121, 1073, 1015, 985, 884, 828, 729, 641 cm⁻¹; HRMS (ESI) *m*/*z* calcd for $[C_{10}H_{16}O+Na]^+$: 175.1093; found: 175.1094.

9-Methyldeca-4,6-diyne-1,8-diol (S4).^[3] White solid (337 mg, 71%), mp: 32-33 °C; ¹H NMR (400 MHz, OH CD₃OD) δ = 4.05 (d, *J* = 6.0 Hz, 1 H), 3.56 (t, *J* = 6.4 Hz, 2 H), 2.41-2.25 (m, 2 H), 1.82-1.58 (m, 3 H), 0.99-0.83 (m, 6 H) ppm; ¹³C NMR (101

16.6, 14.9 ppm; IR (ATR): $\tilde{v} = 3301, 3217, 2958, 2874, 2255, 1463, 1317, 1166, 1057, 1025, 896, 684 cm⁻¹; HRMS (ESI)$ *m/z* $calcd for <math>[C_{11}H_{16}O_2 + Na]^+$: 203.1042; found: 203.1043.

(8R, 9S, 13S, 14S, 17S) - 17 - ((4-Chlorophenyl) ethynyl) - 3-methoxy - 13-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl) - 3-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl - 7, 8, 9, 17-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl - 7, 8, 9, 11, 12, 13, 14, 15, 16, 17-methyl - 7, 8, 9, 17-methyl - 7, 17-meth

decahydro-6H-cyclopenta[a]phenanthren-17-ol (S5).^[4] Pale yellow solid (628 mg, 74%); mp: 73-74 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.38 (d, *J* = 8.4 Hz, 2 H), 7.32 (d, *J* = 8.4 Hz, 2 H), 7.17 (d, *J* = 8.4 Hz, 1 H), 6.65 (d, *J* = 8.4 Hz, 1 H), 6.58 (s, 1 H), 3.72 (s, 3 H), 2.94-2.68 (m, 2 H), 2.49-2.24 (m, 2 H), 2.23-1.69 (m, 7 H), 1.55-1.20 (m, 4 H), 0.91

(s, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 157.5, 137.4, 133.7, 132.5, 132.1, 128.3, 125.9, 121.9, 113.2, 111.0, 94.2, 83.8, 79.4, 54.1, 49.8, 47.4, 43.7, 39.7, 38.5, 33.0, 29.4, 27.2, 26.3, 22.4, 12.1 ppm; IR (ATR): \tilde{v} = 3421, 2927, 2867, 1608, 1488, 1453, 1252, 1234, 1090, 1039, 1013, 826, 781, 527 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₇H₂₉ClO₂+Na]⁻: 443.1748; found: 443.1749.

(4E,6E)-1-(3-(Trifluoromethyl)phenyl)octa-4,6-dien-1-yn-3-ol (S6).^[1] Semi-solid (479 mg, 90%, contains

≈11 % *Z*,*Z*-isomer); ¹H NMR (400 MHz, CD₃OD) δ = 7.74-7.60 (m, 3 H), 7.57-7.49 (m, 1 H), 6.45-6.32 (m, 1 H), 6.18-6.01 (m, 1 H), 5.86-5.74 (m, 1 H), 5.74-5.64 (m, 1 H), 5.06 (d, *J* = 6.4 Hz, 1 H), 1.81-1.72 (m, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 134.7 (d, *J* = 0.8 Hz),

131.9, 130.7, 130.6 (q, J = 32 Hz), 130.3, 129.1, 128.8, 127.7 (q, J = 4.0 Hz), 124.6 (q, J = 3.8 Hz), 123.9, 123.8 (q, J = 270 Hz), 90.4, 82.9, 62.0, 16.9 ppm; IR (ATR): $\tilde{v} = 3350$, 2207, 1650, 1610, 1433, 1330, 1166, 1123, 1071, 985, 902, 801, 694, 659 cm⁻¹; HRMS (CI Ammonia) m/z calcd for $[C_{15}H_{12}F_{3}O+NH_{3}]$: 282.1111; found: 282.1102.

(*E*)-1-(4-Chlorophenyl)hept-4-en-1-yn-3-ol (S7).^[1] White solid (620 mg, 87%); mp: 31-32 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.41 (d, *J* = 8.4 Hz, 2 H), 7.36 (d, *J* = 8.4 Hz, 2 H), 6.03-5.86 (m, 1 H), 5.70-5.57 (m, 1 H), 4.98 (d, *J* = 6.4 Hz, 1 H), 2.19-2.04 (m, 2 H), 1.05 (t, *J* = 7.2 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 134.4, 134.0, 132.6, 128.3, 128.2, 121.6, 89.9, 83.2, 62.3, 24.6, 12.2 ppm;

IR (ATR): $\tilde{v} = 3223$, 2964, 2874, 1669, 1487, 1296, 1251, 1089, 993, 962, 828, 766, 735, 521 cm⁻¹; HRMS (EI) m/z calcd for $[C_{13}H_{13}ClO]^+$: 220.0649; found: 220.0646.

trans-Carboboration Reactions

Representative Procedure for trans-Arylboration. Preparation of (Z)-4-(4-Chlorophenyl)-2-methyl-4-

phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-ol (5d). A flame-dried tube equipped with a magnetic stir bar was charged under Ar with THF (0.2 mL), 2-methyl-4-phenylbut-3-yn-2-ol (32 mg, 0.2 mmol,), and NaHMDS (36.7 mg, 0.2 mmol). B₂Pin₂ (55.8 mg, 0.22 mol,), 1,2-dichloroethane (2 mL), Pd₂(dba)₃ (9.1 mg, 0.01 mmol), tri(2-furyl)phosphine (9.2 mg, 0.04 mmol) and bis(4-chlorophenyl) iodonium triflate (200 mg,

0.4 mmol) were sequentially added. The tube was sealed and the mixture stirred at 60 $^{\circ}$ C (bath temperature) for 18 h. After cooling to room temperature, the reaction was quenched with aq. sat. NH₄Cl (2 mL), the aqueous phase was extracted by EtOAc (3 x 5 mL), and the combined organic

layer were dried (NaSO₄), filtered and evaporated. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc) or thin layer chromatography to provide the title compound as a white solid (55.8 mg, 70 %). mp: 119-120 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.33-7.26 (m, 4 H), 7.25-7.14 (m, 5 H), 1.26 (s, 6 H), 1.02 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 144.7, 144.2, 141.8, 132.1, 129.9, 128.7, 127.6, 127.5, 126.6, 83.3, 73.6, 30.1, 23.7 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.0 ppm; IR (ATR): \tilde{v} = 2975, 2931, 1622, 1488, 1335, 1303, 1265, 1138, 1092, 1013, 962, 835, 760, 696, 637, 541 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₃H₂₈ClBO₃+Na]⁺: 421.1712; found: 421.1715.

The following compounds were prepared analogously:

4,4-Diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-ol (5a). White solid (51

Ph OH mg, 72%); mp: 136-137 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.38-7.30 (m, 2 H), 7.30-Ph Bpin 7.14 (m, 8 H), 5.80-5.71 (m, 1 H), 4.53 (q, *J* = 6.4 Hz, 1 H), 1.31 (d, *J* = 6.4 Hz, 3 H), 1.19 (s, 6 H), 1.12 (s, 6 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 149.1, 143.9, 141.7, 128.7, 128.6, 127.9, 127.5, 126.9, 126.7, 83.4, 68.9, 23.9, 23.7, 21.9 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.9 ppm; IR (ATR): \tilde{v} = 2977, 2927, 2559, 1614, 1491, 1443, 1358, 1291, 1142, 1126, 1069, 929, 851, 766, 704, 638, 596 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₂H₂₇BO₃+Na]⁺: 373.1945; found: 373.1947.

(E) - 4 - (4 - Chlorophenyl) - 2 - methyl - 4 - phenyl - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5, 5 - tetramethyl - 3 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5 - tetramethyl - 3 - dioxaborolan - 2 - yl) but - 3 - (4, 4, 5 - tetramethyl - 3 - dioxaborolan - 3 - dioxaborolan - 3 - yl) but - 3 - (4, 4, 5 - tetramethyl - 3 - dioxaborolan - 3 - dioxaborolan - 3 - (4, 4, 5 - tetramethyl - 3 - dioxaborolan - 3 - dioxaborolan - 3 - dioxabor

en-2-ol (5b). White solid (65 mg, 81%); mp: 123-124 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.38-7.10 (m, 9 H), 1.21 (s, 6 H), 1.04 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 144.6, 143.2, 142.5, 132.3, 130.3, 128.3, 127.6, 127.4, 126.4, 83.3, 73.8, 29.9, 23.6 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.0 ppm; IR (ATR): \tilde{v} = 3483, 2974, 2932, 1480, 1369, 1329, 1280, 1141, 1083, 1011, 940, 848, 801, 766, 702, 658, 598, 541 cm⁻¹; HRMS (EI) *m/z* calcd for [C₂₃H₂₇BClO₃]⁻: 397.1747; found: 397.1747.

(E) - 4 - (4 - Trifluoromethylphenyl) - 2 - methyl - 4 - phenyl - 3 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - dio

Ph OH **yl)but-3-en-2-ol (5c).** White solid (70 mg, 90%); mp: 164-165 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.58-7.43 (m, 4 H), 7.36-7.26 (m, 2 H), 7.26-7.17 (m, 3 H), 1.23 (s, 6 H), 1.00 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 148.5, 144.5, 142.1, 129.3, 128.5 (q, *J* = 32 Hz), 128.3, 127.8, 126.6, 124.33 (q, *J* = 269 Hz), 124.34 (q, *J* = 3.9 Hz), 83.3, 73.8, 29.8, 23.6 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 29.9 ppm; IR (ATR): \tilde{v} = 3571, 2980, 2931, 1612, 1382, 1326, 1300, 1161, 1138, 1107, 1065, 1029, 961, 849, 708, 675, 615, 546, 499 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₄H₂₈BF₃O₃+Na]⁺: 455.1975; found: 455.1980.

(Z)-4-(4-Fluorophenyl)-2-methyl-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-ol (5e). White solid (31.3 mg, 61%); mp: 186-187 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.32-7.26 (m, 2 H), 7.26-7.14 (m, 5 H), 7.08-6.99 (m, 2 H), 1.25 (s, 6 H), 1.02 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 162.9, 160.5, 144.7 (d, *J* = 51.7 Hz), 139.1 (d, J = 3.7 Hz), 130.0 (d, J = 8.1 Hz), 128.7, 127.5, 126.5, 114.2 (d, J = 21.4 Hz), 83.3, 73.6, 30.0, 23.6 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.1 ppm; IR (ATR): \tilde{v} = 2979, 2938, 2577, 1599, 1503, 1371, 1330, 1288, 1216, 1142, 1041, 964, 854, 736, 699, 639, 560, 529 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₃H₂₈FBO₃+Na]⁺: 405.2007; found: 405.2011.

(Z) - 2 - Methyl - 4 - phenyl - 3 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 4 - (p - tolyl) but - 3 - en - 2 - ol - 2

(**5f**). White solid (42 mg, 70%); mp: 143-144 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.19-7.14 (m, 2 H), 7.11-7.02 (m, 3 H), 7.01-6.95 (m, 4 H), 2.12 (s, 3 H), 1.11 (s, 6 H), 0.90 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 146.1, 144.8, 140.0, 135.9, 128.7, 128.2, 128.1, 127.3, 126.3, 83.2, 73.9, 30.0, 23.7, 19.8 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.3 ppm; IR (ATR): \tilde{v} = 2978, 2928, 2547, 1508, 1371, 1339, 1299, 1144,

1109, 1044, 964, 849, 728, 694, 635, 560, 525 cm⁻¹; HRMS (ESI) m/z calcd for $[C_{24}H_{31}BO_3+Na]^+$: 401.2258; found: 401.2263.

(Z) - 4 - (4 - Bromophenyl) - 4 - (4 - methoxyphenyl) - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) but - 1, 3, 4, 4, 5, 5 - tetramethyl - 1, 3, 4, 5, 5 - tetramethyl - 1, 4, 5, 5 - tetramethyl - 1, 5, 5 - tetra

3-en-2-ol (5g). Pale yellow solid (320.6 mg, 70%); mp: 128-129 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.54-7.40 (m, 2 H), 7.16-6.98 (m, 4 H), 6.86-6.73 (m, 2 H), 4.44 (q, *J* = 6.4 Hz, 1 H), 3.75 (s, 3 H), 1.28 (d, *J* = 6.4 Hz, 3 H), 1.19 (s, 6 H), 1.13 (s, 6 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 159.4, 147.4, 141.1, 136.0, 130.9, 130.6, 129.9, 120.5, 112.9, 83.4, 68.9, 54.3, 23.9, 23.7, 21.9 ppm; ¹¹B

NMR (128 MHz, CD₃OD) δ = 31.1 ppm; IR (ATR): \tilde{v} = 3482, 2976, 2931, 1737, 1606, 1509, 1300, 1243, 1132, 1034, 849, 829, 817, 758, 618 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₃H₂₈BrBO₄+Na]⁺: 481.1156; found: 481.1158.

(1E,4E)-1-(4-Chlorophenyl)-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-

dien-3-ol (5h). Yellow solid (35 mg, 68%); mp: 157-158 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.36-7.29 (m, 2 H), 7.10-6.92 (m, 6 H), 2.47 (q, *J* = 7.6 Hz, 2 H), 1.63-1.27 (m, 11 H), 1.06 (t, *J* = 7.6 Hz, 3 H), 0.89 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₂Cl₂) δ = 145.2, 143.4, 142.8, 141.8, 131.0, 130.1, 128.7, 127.4, 120.3, 83.4, 75.2, 38.0, 28.5, 25.3, 24.4, 21.5, 15.7 ppm; ¹¹B

NMR (128 MHz, CD_2Cl_2) $\delta = 29.9$ ppm; IR (ATR): $\tilde{v} = 2928$, 2846, 1483, 1372, 1337, 1302, 1140, 1069, 1013, 969, 885, 850, 822, 751, 611 cm⁻¹; HRMS (ESI) *m/z* calcd for $[C_{28}H_{36}BBrO_3+Na]^+$: 533.1833; found: 533.1840.

(Z)-2-Methyl-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oct-3-en-2-ol (5i). White solid (33 mg, 62%); mp: 86-87 °C; ¹H NMR (400 MHz, C_6D_6) δ = 7.04-6.99 (m, 4 H), 6.98-6.91 (m, 1

Ph OH H), 2.45 (t, J = 8 Hz, 2 H), 1.78 (brs, OH), 1.47-1.36 (m, 2 H), 1.33-1.21 (m, 8 H), Bpin 1.15 (s, 12 H), 0.81 (t, J = 7.6 Hz, 3 H) ppm; ¹³C NMR (101 MHz, C₆D₆) $\delta = 145.1$, 143.3, 128.5, 126.2, 82.9, 74.1, 41.3, 31.2, 30.8, 24.8, 22.8, 14.0 ppm; ¹¹B NMR

(128 MHz, C_6D_6) δ = 30.6 ppm; IR (ATR): \tilde{v} = 2974, 2930, 2860, 1630, 1467, 1378, 1339, 1294,

1141, 1060, 963, 845, 771, 716, 665, 528 cm⁻¹; HRMS (ESI) m/z calcd for $[C_{21}H_{33}BO_3+Na]^+$: 367.2415; found: 367.2417.

(Z)-4-(Cyclohex-1-en-1-yl)-2-methyl-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

Ph OH y Bpin 1

yl)but-3-en-2-ol (5j). White solid (54 mg, 79%); mp: 141-142 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.32-7.16 (m, 3 H), 7.12-7.04 (m, 2 H), 5.80-5.70 (m, 1 H), 2.11-1.99 (m, 2 H), 1.95-1.84 (m, 2 H), 1.53-1.43 (m, 4 H), 1.29 (s, 12 H), 1.10 (s, 6 H),

ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 149.0, 143.0, 141.2, 128.5, 127.1, 126.2, 123.9, 83.1, 73.5, 30.1, 26.7, 25.0, 24.2, 22.2, 21.6 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.3 ppm; IR (ATR): \tilde{v} = 2974, 2938, 1724, 1447, 1365, 1201, 1144, 1081, 982, 850, 756, 699, 672 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₃H₃₃BO₃+Na]⁺: 391.2415; found: 391.2416.

(Z)-1-(Cyclohex-1-en-1-yl)-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-3-

ol (5k). Colorless oil (48 mg, 70%); ¹H NMR (400 MHz, CD₃OD) δ = 7.36-7.29 (m, 2 H), 7.28-7.21 (m, 1 H), 7.20-7.14 (m, 2 H), 5.80-5.71 (m, 1 H), 4.10 (t, *J* = 7.2 Hz, 1 H), 2.16-2.07 (m, 2 H), 1.97-1.70 (m, 2 H), 1.71-1.51 (m, 6 H), 1.31 (s, 6 H), 1.30 (s, 6 H), 0.70 (t, *J* = 7.6 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 154.0, 143.1, 140.0, 128.4, 127.6, 126.6, 124.7, 83.1, 73.6, 29.4, 26.9, 25.1, 24.2, 23.8, 22.3, 21.8, 9.5 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.9 ppm; IR (ATR): \tilde{v} = 2975, 2928, 1443, 1354, 1295, 1134, 1083, 963, 853, 772, 703, 667, 608 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₃H₃₃BO₃+Na]⁺: 391.2415; found: 391.2417.

(E)-2-Methyl-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)undec-3-en-5-yn-2-ol (5l).

Colorless oil (34 mg, 51%); ¹H NMR (400 MHz, CD₃OD) δ = 7.34-7.21 (m, 3 H), 7.21-7.13 (m, 2 H), 2.23 (t, *J* = 6.8 Hz, 2 H), 1.52-1.39 (m, 2 H), 1.35 (s, 12 H), 1.32-1.27 (m, 4 H), 1.12 (s, 6 H), 0.86 (t, *J* = 7.2 Hz, 3 H) ppm; ¹³C

NMR (101 MHz, CD₃OD) δ = 140.7, 128.1, 127.6, 126.7, 126.6, 91.6, 83.6, 82.9, 73.5, 30.8, 29.6, 28.1, 23.9, 21.8, 18.9, 12.9 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.0 ppm; IR (ATR): \tilde{v} = 2974, 2931, 2860, 1587, 1463, 1369, 1347, 1297, 1143, 1040, 964, 848, 725, 701, 669, 613 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₄H₃₅BO₃+Na]⁺: 405.2571; found: 405.2573.

(1E, 4E) - 1 - (4 - chlorophenyl) - 1 - phenyl - 2 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) hepta - 1, 4 - (4 - chlorophenyl) - 1 - phenyl - 2 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) hepta - 1, 4 - (4 - chlorophenyl) - 1 - phenyl - 2 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) hepta - 1, 4 - (4 - chlorophenyl) - 1 - phenyl - 2 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) hepta - 1, 4 - (4 - chlorophenyl) - 1 - phenyl - 2 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) hepta - 1, 4 - (4 - chlorophenyl) - 1 - phenyl - 2 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) hepta - 1, 4 - (4 - chlorophenyl - 2 - yl) hepta - 1, 4 - (4 - chlorop

dien-3-ol (5m). The reaction was carried out in 1,4-dioxane instead of 1,2dichloroethane/THF; white solid (36 mg, 56 %). mp: 120-121 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.30-7.09 (m, 5 H), 7.08-6.97 (m, 4 H), 5.65-5.47 (m,

2 H), 4.56-4.45 (m, 1 H), 2.70 (d, J = 8.8 Hz, 1 H), 2.07-1.91 (m, 2 H), 1.09 (s, 6 H), 1.03 (s, 6 H), 0.92 (t, J = 7.6 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₂Cl₂) $\delta = 149.1$, 143.9, 141.7, 128.7, 128.6, 127.9, 127.5, 126.9, 126.7, 83.4, 68.9, 23.9, 23.7, 21.9 ppm; ¹¹B NMR (128 MHz, CD₂Cl₂) $\delta = 30.8$ ppm; IR (ATR): $\tilde{v} = 2976$, 2927, 1592, 1485, 1349, 1312, 1246, 1140, 1085, 1012, 962, 848, 765, 700, 608 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₅H₃₀BClO₃+Na]⁺: 447.1869; found: 447.1872.

(E) - 5 - (4 - Chlorophenyl) - trifluoro - 2, 2 - dimethyl - 4 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - dio

Cl yl)hex-4-en-3-ol (5n). White solid (32 mg, 52%); mp: 140-141 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.36-7.24 (m, 2 H), 7.14-7.02 (m, 2 H), 3.87 (d, *J* = 6.4 Hz, 1 H), 2.30 (d, *J* = 6.4 Hz, 1 H), 1.26 (s, 6 H), 1.25 (s, 6 H), 0.71 (s, 9 H) ppm; ¹³C NMR (101 MHz, CD₂Cl₂) δ = 137.4 (q, *J* = 29.4 Hz), 134.4, 132.5, 131.2, 128.6, 123.2 (q, *J* = 273 Hz), 84.9, 79.7, 36.4, 26.2, 25.2, 24.9 ppm; ¹¹B NMR (128 MHz, CD₂Cl₂) δ =

30.1 ppm; IR (ATR): $\tilde{v} = 3501$, 2961, 1491, 1307, 1200, 1164, 1119, 1087, 1015, 961, 826, 736, 576 cm⁻¹; HRMS (ESI) *m*/*z* calcd for $[C_{20}H_{27}F_3ClBO_3+Na]^+$: 441.1586; found: 441.1587.

Representative Procedure for *trans*-Methylboration. Preparation of (*E*)-2-Methyl-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-3-en-2-ol (10a). A flame-dried tube equipped

with a magnetic stir bar was charged under Ar with 1,4-dioxane (2 mL), 2-methyl-4-OH Me phenylbut-3-yn-2-ol (32 mg, 0.2 mmol), NaHMDS (36.7 mg, 0.2 mmol), and B₂Pin₂ (55.8 mg, 0.22 mol). The mixture was stirred for 2-5 min at room temperature before Pd₂(dba)₃ (9.1 mg, 0.01 mmol), tri-1-naphthylphosphine (16.5 mg, 0.04 mmol) and MeI (37 µL, 0.6 mmol) were added. The tube was sealed and stirred at 60 °C (bath temperature) for 18 h. After cooling to room temperature, the reaction was quenched with aq. sat. NH_4Cl (2 mL), the aqueous phase was extracted with EtOAc (3 x 5 mL), the combined organic layers were dried over Na₂SO₄ and filtered, and the filtrate was evaporated under vacuum. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc) or thin layer chromatography to give the title compound as a colorless oil (42.3 mg, 70%). When carried out with KHMDS (39.8 mg, 0.2 mmol) instead of NaHMDS, the yield was 56%. ¹H NMR (400 MHz, CD₃OD) δ = 7.29-7.15 (m, 5 H), 2.12 (s, 3 H), 1.50 (s, 6 H), 0.93 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) $\delta = 146.6, 143.3, 128.0, 127.5, 126.2,$ 83.0, 72.8, 29.2, 23.7, 21.3 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 29.6 ppm; IR (ATR): \tilde{v} = 2976, 2931, 2067, 1441, 1371, 1343, 1293, 1142, 977, 849, 765, 700, 667, 553 cm⁻¹; HRMS (EI) *m/z* calcd for [C₁₈H₂₇BO₃+Na]⁺: 325.1945; found: 325.1946.

(E)-4-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-3-en-2-ol (10f) (Larger Scale).

A flame-dried round bottom flask equipped with a magnetic stir bar was charged under Ar with 1,4-dioxane (25 mL), 4-phenylbut-3-yn-2-ol (730 mg, 5 mmol) and KHMDS (998 mg, 5 mmol), followed by slow addition of B_2Pin_2 (1.40 g, 5.5 mol) (*Attention: exothermic*!). $Pd_2(dba)_3$ (228 mg, 0.25 mmol), tri-1-naphthylphosphine (412 mg, 1.0 mmol) and MeI (935 µL, 15 mmol) were sequentially introduced and the resulting

mixture was stirred at 60 °C (bath temperature) for 24 h. After cooling to room temperature, the reaction was quenched with aq. sat. NH₄Cl (10 mL), the aqueous phase was extracted with EtOAc (3 x 10mL), the combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc) to provide the title compound as a pale yellow oil (972 mg, 67 %). ¹H NMR (400 MHz, CD₃OD) δ = 7.33-7.15 (m, 5 H), 4.79 (q, *J* = 8 Hz, 1 H), 2.01 (s, 3 H), 1.37 (d, *J* = 8 Hz, 3 H), 1.08 (s, 6 H), 1.01 (s, 6 H) ppm; ¹³C NMR (101 MHz,

CD₃OD) δ = 145.7, 143.1, 127.6, 127.4, 126.5, 83.0, 67.9, 23.7, 23.6, 21.6, 18.8 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 29.9 ppm; IR (ATR): \tilde{v} = 2976, 2928, 1629, 1372, 1354, 1293, 1140, 973, 855, 762, 700, 670, 533 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₁₇H₂₅BO₃+Na]⁺: 311.1789; found: 311.1789.

The following compounds were prepared analogously:

(E) - 4 - (4 - Chlorophenyl) - 2 - methyl - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) pent - 3 - en - 2 - ol - 2

(10b). White solid (48 mg, 77%); mp: 68-70 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.30-7.24 (m, 2 H), 7.22-7.16 (m, 2 H), 2.13 (s, 3 H), 1.51 (s, 6 H), 0.98 (s, 12 H) ppm; ¹³C NMR (125 MHz, CD₃OD) δ = 145.2, 141.9, 132.1, 129.7, 127.5, 83.1, 72.8, 29.1, 23.6, 21.1 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 29.8 ppm; IR (ATR): \tilde{v} = 3451, 2975, 2930, 1619, 1481, 1372, 1335, 1288, 1214, 1164, 1141,

1086, 1012, 923, 847, 828, 688, 648, 550 cm⁻¹; HRMS (ESI) m/z calcd for $[C_{18}H_{26}BClO_3+Na]^+:359.1556$; found: 359.1557.

(E)-4-(4-Methoxyphenyl)-2-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-3-en-2-ol

(10c). Colorless oil (52 mg, 85%); ¹H NMR (400 MHz, CD₃OD) δ = 7.17-7.09 (m, 2 H), 6.86-6.79 (m, 2 H), 3.77 (s, 3 H), 2.11 (s, 3 H), 1.51 (s, 6 H), 0.98 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 158.7, 143.0, 139.1, 129.1, 112.9, 83.0, 72.8, 54.4, 29.2, 23.7, 21.4 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 29.9

ppm; IR (ATR): $\tilde{v} = 2975, 2931, 1607, 1509, 1370, 1343, 1289, 1241, 1142, 1083, 1034, 980, 849,$ 831, 734, 666, 557 cm⁻¹; HRMS (ESI) m/z calcd for $[C_{19}H_{29}BO_4+Na]^+$: 355.2051; found: 355.2052.

(E)-2-Methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(4-(trifluoromethyl)phenyl)pent-

3-en-2-ol (10d). Yellow oil (65 mg, 82%); ¹H NMR (400 MHz, CD₃OD) δ = 7.62-7.50 (m, 2 H), 7.43-7.34 (m, 2 H), 2.16 (s, 3 H), 1.53 (s, 6 H), 0.95 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 150.6, 141.9, 128.7, 128.5 (q, *J* = 32 Hz), 124.5 (q, J = 4 Hz), 124.4 (q, J = 270 Hz), 83.1, 72.8, 29.1, 23.6, 21.0 ppm; ¹¹B NMR

(128 MHz, CD₃OD) δ = 29.7 ppm; IR (ATR): \tilde{v} = 2977, 2933, 1614, 1372, 1323, 1297, 1162, 1123, 1107, 1063, 1016, 927, 844, 667, 608, 539 cm⁻¹; HRMS (ESI) m/z calcd for $[C_{19}H_{26}BF_3O_3+Na]^+$: 393.1819; found: 393.1820.

(E)-4-(4-Hydroxy-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-en-2-

yl)benzonitrile (10e). White solid (45 mg, 62%); mp: 147-148 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.60-7.50 (m, 2 H), 7.33-7.21 (m, 2 H), 2.03 (s, 3 H), 1.40 (s, 6 H), 0.86 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 151.6, 141.5, 131.6, 129.2, 118.4, 109.9, 83.2, 72.9, 29.1, 23.7, 20.8 ppm; ¹¹B NMR (128 MHz,

CD₃OD) δ = 29.5 ppm; IR (ATR): \tilde{v} = 2980, 2928, 2585, 2231, 1598, 1347, 1297, 1256, 1141, 1081, 975, 946, 843, 648, 577, 517 cm⁻¹; HRMS (ESI) m/z calcd for $[C_{19}H_{26}NO3B+Na]^+$: 350.1898; found: 350.1899.

(E)-2-Methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(thiophen-3-yl)pent-3-en-2-ol

Me OH (10g). Pale yellow solid (40 mg, 68%); mp: 77-78 $^{\circ}$ C; ¹H NMR (400 MHz, CD₃OD) δ = 7.19-7.14 (m, 1 H), 7.04-7.00 (m, 1 H), 6.90-6.87 (m, 1 H), 1.99 (s, 3 H), 1.39 (s, 6 H), 0.95 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 147.2, 137.7, 127.7, 124.5, 121.6, 83.2, 72.8, 29.2, 23.9, 20.8 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 29.6 ppm;

IR (ATR): $\tilde{v} = 2972, 2929, 2557, 1619, 1370, 1340, 1290, 1142, 1086, 978, 852, 793, 664, 636, 521$ cm^{-1} ; HRMS (ESI) *m/z* calcd for [C₁₆H₂₅O₃BS+Na]⁺: 331.1510; found: 331.1511.

(E)-3-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(o-tolyl)hex-4-en-3-ol (10h).

Colorless oil (50 mg, 77%); ¹H NMR (400 MHz, CD₃OD) δ = 7.12-6.95 (m, 4 H), 2.29 (d, J = 2.8 Hz, 3 H), 2.02 (d, J = 3.2 Hz, 3 H), 1.97-1.82 (m, 1 H), 1.82-1.67 (m, 1 H), 1.48 (d, J = 4.0 Hz, 3 H), 1.06 (dt, J = 1.2, 7.6 Hz, 3 H), 0.87 (d, J = 2.5 Hz, 6 H), 0.83 (s, 6 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 145.65, 145.63,

142.5, 142.3, 135.42, 135.39, 129.34, 129.32, 128.96, 128.92, 126.3, 124.89, 124.88, 82.6, 75.57,

75.55, 34.84, 34.82, 27.36, 27.19, 23.58, 23.56, 23.34, 23.30, 20.84, 20.76, 18.27, 18.16, 7.56, 7.50 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 29.7 ppm; IR (ATR): \tilde{v} = 2977, 2930, 2069, 1372, 1346, 1292, 1144, 1122, 1078, 976, 851, 769, 727, 668 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₀H₃₁BO₃+Na]⁺: 353.2258; found: 353.2259.

(8*R*,9*S*,13*S*,14*S*,17*R*)-17-((*E*)-2-(4-Chlorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)prop-1-en-1-yl)-3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta-[a]phenanthren-17-ol (10i). White solid (85 mg, 72% using KHMDS); mp: 145-146 °C; ¹H NMR

(400 MHz, CD₃OD) δ = 7.31-7.23 (m, 2 H), 7.23-7.13 (m, 3 H), 6.70-6.61 (m, 1 H), 6.61-6.54 (m, 1 H), 3.73 (s, 3 H), 2.9-2.71 (m, 2 H), 2.52-2.40 (m, 1 H), 2.39-2.28 (m, 1 H), 2.18 (s, 3 H), 2.16-2.07 (m, 1 H), 1.98-1.67 (m, 6 H), 1.52-1.22 (m, 4 H), 1.00 (s, 3 H), 0.96 (s, 6 H), 0.92 (s, 6 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 157.5, 148.0, 146.1, 137.4, 132.4, 132.2, 130.1,

127.6, 125.8, 113.2, 111.1, 86.4, 82.9, 54.1, 49.0, 48.4, 43.5, 40.0, 38.7, 33.7, 29.5, 27.3, 26.7, 24.8, 24.1, 23.7, 13.6 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.6 ppm; IR (ATR): \tilde{v} = 2976, 2930, 1609, 1499, 1335, 1253, 1141, 1092, 1014, 982, 850, 830, 697, 548 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₃₄H₄₃BClO₄]⁻: 561.2948; found: 561.2943.

(3*E*,5*Z*)-4,8-Dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-3,5-dien-2-ol (10j).

Colorless oil (29 mg, 60%); ¹H NMR (400 MHz, CD₃OD) δ = 6.01 (d, *J* = 12 Hz, 1 H), 5.34-5.17 (m, 1 H), 4.57 (q, *J* = 8 Hz, 1 H), 2.00-1.80 (m, 2 H), 1.67 (s, 3 H), 1.56-1.42 (m, 1 H), 1.20 (d, *J* = 8 Hz, 3 H), 1.15 (s, 12 H), 0.79 (d, *J* = 8 Hz, 3 H), 0.78 (d, *J* = 8 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 139.9, 133.3, 129.8, 83.0, 67.4, 37.6, 28.5, 23.9, 23.6, 21.7, 21.6, 21.4, 17.4 ppm; ¹¹B NMR (128

MHz, CD₃OD) δ = 30.6 ppm; IR (ATR): \tilde{v} = 2956, 2929, 1465, 1371, 1352, 1291, 1143, 1107, 975, 855, 732, 672, 517 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₁₇H₃₁BO₃+Na]⁺: 317.2258; found: 317.2259.

(E)-6,6,6-Trifluoro-5-methyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-4-en-3-

ol (10k). Colorless oil (39 mg, 66%); ¹H NMR (400 MHz, CD₃OD) δ = 7.30-7.19 (m, 4 H), 7.19-7.12 (m, 1 H), 4.50-4.41 (m, 1 H), 2.84-2.73 (m, 1 H), 2.72-2.60 (m, 1 H), 2.09-1.96 (m, 1 H), 1.76-1.65 (m, 1 H), 1.60 (s, 3 H), 1.30 (s, 6 H), 1.29 (s, 6 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 141.7, 128.2, 128.0, 127.2 (q, *J* =

29 Hz), 125.4, 124.4 (q, J = 270 Hz), 84.0, 69.7, 37.3, 31.2, 23.9, 23.8, 10.9 ppm; ¹¹B NMR (128 MHz, CD₃OD) $\delta = 30.1$ ppm; IR (ATR): $\tilde{v} = 2979$, 2930, 1661, 1454, 1357, 1313, 1165, 1137, 1102, 1021, 847, 748, 699, 531 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₁₉H₂₆BF₃O₃+Na]⁺: 393.1819; found: 393.1819.

less oil (49 mg, 63%); ¹H NMR (400 MHz, CD₃OD) δ = 4.67-4.63 (m, 1 H), 4.59-4.55 (m, 1 H), 4.31 (t, *J* = 8 Hz, 1 H), 1.73 (q, *J* = 0.8 Hz, 3 H), 1.65 (s, 3 H), 1.61-1.40 (m, 2 H), 1.33-1.18 (m, 6 H), 1.13 (s, 12 H), 0.81 (t, *J* = 8 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 150.4, 146.6, 111.7, 82.9, 71.1, 36.6,

31.7, 25.2, 23.8, 23.7, 22.3, 20.0, 15.7, 13.0 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.6 ppm; IR (ATR): \tilde{v} = 2929, 2858, 1628, 1446, 1371, 1354, 1293, 1166, 1142, 1009, 964, 895, 859, 687, 669, 564 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₁₈H₃₃BO₃+Na]⁺: 331.2415; found: 331.2412.

(E)-6,9-Dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dec-6-en-4-yne-1,8-diol (10m). Colorless

oil (30 mg, 48 %, using 2 equiv. NaHMDS and 2.2 equiv. B₂Pin₂); ¹H NMR (400 MHz, CD₃OD) δ = 3.94 (d, *J* = 8.4 Hz, 1 H), 3.54 (t, *J* = 6.4 Hz, 2 H), 2.29 (t, *J* = 7.2 Hz, 2 H), 1.74 (s, 3 H), 1.72-1.67 (m, 1 H), 1.67-1.60 (m, 2 H), 1.20 (s, 12 H), 0.91 (d, *J* = 6.8 Hz, 3 H), 0.71 (d, *J* = 6.8 Hz, 3 Hz, 2 Hz,

3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 126.4, 89.6, 83.4, 83.2, 76.4, 60.4, 33.7, 31.3, 23.8, 23.7, 19.1, 18.4, 18.1, 15.4 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.6 ppm; IR (ATR): \tilde{v} = 3439, 2974, 2932, 2872, 1607, 1442, 1379, 1324, 1304, 1139, 1008, 854, 672, 578 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₁₈H₃₁BO₄+Na]⁺: 345.2208; found: 345.2209.

(*E*)-2,4-Dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)undec-3-en-5-yn-2-ol (10n).

Colorless oil (39 mg, 60%); ¹H NMR (400 MHz, CD₃OD) δ = 2.26 (t, *J* = 8 Hz, 2 H), 1.96 (s, 3 H), 1.56-1.46 (m, 2 H), 1.44-1.32 (m, 10 H), 1.30 (s, 12 H), 0.92 (t, *J* = 8 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 123.5, 88.3, 84.0, 83.4, 72.6, 30.9, 28.9, 28.3, 23.9, 21.9, 20.1, 18.8, 12.9 ppm; ¹¹B

NMR (128 MHz, CD₃OD) δ = 29.9 ppm; IR (ATR): \tilde{v} = 2975, 2931, 2860, 1592, 1465, 1371, 1348, 1294, 1165, 1143, 976, 928, 855, 668, 554 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₁₉H₃₃BO₃+Na]⁺: 343.2415; found: 343.2415.

(*E*)-5-(Cyclohex-1-en-1-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-4-en-3-ol (10o). Me OH Colorless oil (33 mg, 69%); ¹H NMR (400 MHz, CD₃OD) $\delta = 5.47-5.38$ (m, 1 H), 4.35 (t, *J* = 8 Hz, 1 H), 2.21-1.97 (m, 4 H), 1.74 (s, 3 H), 1.72-1.55 (m, 6 H), 1.26 (s, 12 H), 0.91 (t, *J* = 8 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) $\delta = 148.1$, 144.2, 122.1, 82.8, 72.8, 29.5, 26.7, 24.8, 24.1, 23.9, 22.4, 21.8, 16.0, 9.4 ppm; ¹¹B NMR (128 MHz, CD₃OD) $\delta = 30.5$ ppm; IR (ATR): $\tilde{v} = 2977$, 2929, 2876, 2068, 1623, 1378, 1353,

1291, 1131, 1081, 977, 918, 857, 699, 563 cm⁻¹; HRMS (ESI) m/z calcd for $[C_{18}H_{31}BO_3+Na]^+$: 329.2258; found: 329.2261.

(2E,5E,7E)-3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(3-(trifluoromethyl)phenyl)nona-2,5,7-trien-4-ol (10p). Yellow oil (56 mg, 68%, contains ≈ 8 % of the 2*E*,5*Z*,7*Z*-isomer); ¹H NMR (400 MHz,

CD₃OD) δ = 7.62-7.42 (m, 4 H), 6.36-6.19 (m, 1 H), 6.19-6.02 (m, 1 H), 5.93-5.52 (m, 2 H), 5.08 (d, *J* = 8 Hz, 1 H), 2.06 (s, 3 H), 1.82-1.74 (m, 3 H), 1.06 (s, 6 H), 1.01 (s, 6 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 146.6, 143.7, 131.3, 131.2, 131.1, 130.4, 129.8 (q, *J* = 31 Hz), 129.1, 128.4, 124.4 (q, *J* = 270 Hz), 124.3 (q, *J* = 4 Hz), 123.2 (q, *J* = 4 Hz), 83.2, 72.6, 23.6, 23.5, 19.3, 16.9 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.2 ppm; IR (ATR): \tilde{v} = 2977, 2931, 2058, 1575, 1361, 1329, 1309, 1119, 1076, 986, 850, 804, 696, 663 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₂H₂₈BF₃O₃+Na]⁺: 431.1976; found: 431.1976.

Representative Procedure for *trans*-Allylboration. **Preparation of** (*E*)-4-(4-Methoxyphenyl)-2methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-3,6-dien-2-ol (11). A flame-dried

glass tube equipped with a magnetic stir bar was charged under Ar with 1,4dioxane (2.5 mL), 2-methyl-4-(4-methoxyphenyl)but-3-yn-2-ol (48.2 mg, 0.253 mmol), NaHMDS (46.5 mg, 0.253 mmol), and B₂Pin₂ (71.1 mg, 0.28 mol). The mixture was stirred for 2-5 minutes at room temperature before Pd(PtBu₃)₂ (12.7 mg, 0.025 mmol) and allyl bromide (65 μ L, 0.75 mmol) were added. The tube

was sealed and the mixture stirred at 75 °C (bath temperature) for 18 h. After cooling to room temperature, the reaction was quenched with aq. sat. NH₄Cl (2 mL), the aqueous phase was extracted by EtOAc (3 x 5 mL), and the combined organic layer were dried (NaSO₄), filtered and evaporated. The residue was purified by flash chromatography (SiO₂, hexanes/acetone), affording the title compound as a colorless oil (60 mg, 66 %). ¹H NMR (400 MHz, CD₃OD) δ = 7.12-7.02 (m, 2 H), 6.83-6.74 (m, 2 H), 5.70-5.55 (m, 1 H), 4.90-4.85 (m, 1 H), 4.84-4.82 (m, 1 H), 3.75 (s, 3 H), 3.41-3.33 (m, 2 H), 1.50 (s, 6 H), 0.94 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 158.7, 144.9, 136.5, 135.7, 130.2, 114.8, 112.6, 83.0, 72.7, 54.3, 39.3, 29.9, 23.7 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 29.6 ppm; IR (ATR): \tilde{v} = 2976, 2932, 1606, 1509, 1463, 1348, 1291, 1242, 1175, 1143, 1109, 1034, 909, 832, 808, 732, 666, 553, 512 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₁H₃₁BO₄+Na]⁺: 381.2208; found: 381.2209.

(E) - 4 - (4 - Chlorophenyl) - 2 - methyl - 5 - phenyl - 3 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) pent-independent of the second s

3-en-2-ol (12). Prepared according to the representative procedure using benzyl bromide instead of MeI; white solid (50 mg, 65%); mp: 133-134 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ = 7.18-6.99 (m, 9 H), 4.13 (s, 2 H), 3.86 (brs, OH), 1.57(s, 6 H), 0.94 (s, 12 H) ppm; ¹³C NMR (101 MHz, (CD₃)₂CO) δ = 143.6, 143.0, 139.5, 131.6,

131.2, 129.2, 127.8, 127.1, 125.5, 82.8, 72.6, 39.9, 31.1, 24.2 ppm; ¹¹B NMR (128 MHz, (CD₃)₂CO) δ = 29.9 ppm; IR (ATR): \tilde{v} = 2975, 2932, 1601, 1484, 1349, 1298, 1203, 1141, 1085, 1014, 980, 848, 724, 700, 548, 460 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₄H₃₀BClO₃+Na]⁺: 435.1869; found: 435.1870.

Representative Procedure for *trans*-Alkynylboration. Preparation of (*Z*)-4-(4-chlorophenyl)-2methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-(triisopropylsilyl)hex-3-en-5-yn-2-ol

(13a). A flame-dried tube equipped with a magnetic stir bar was charged under Ar with THF (0.2 mL), toluene (2 mL), 2-methyl-4-(4-chlorophenyl)but-3-yn-2-ol (38.8 mg, 0.2 mmol,), NaHMDS (36.7 mg, 0.2 mmol,), and B_2Pin_2 (55.8mg, 0.22 mol). The mixture was stirred for 2 minutes at room temperature before $Pd_2(dba)_3$

(9.1 mg, 0.01 mmol), tri(2-furyl)phosphine (9.2 mg, 0.04 mmol) and (bromoethynyl)triisopropylsilane (156 mg, 0.6 mmol) were added. The flask was sealed and the mixture stirred at 75 °C (bath temperature) for 20 h. After cooling to room temperature, the reaction was quenched with aq. sat. NH₄Cl (2 mL), the aqueous phase was extracted by EtOAc (3 x 5 mL), and the combined organic layer were dried (NaSO₄), filtered and evaporated. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc) to provide the title compound as a white solid (90 mg, 90 % yield). mp: 79-80 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ = 7.39-7.33 (m, 2 H), 7.27-7.21 (m, 2 H), 3.93 (s, 1 H), 1.57 (s, 6 H), 0.98-0.93 (m, 33 H) ppm; ¹³C NMR (101 MHz, CD₂Cl₂) δ = 140.3, 132.8, 130.2, 127.9, 124.0, 106.3, 99.9, 83.4, 74.1, 28.1, 24.2, 18.1, 11.3 ppm; ¹¹B NMR (128 MHz, CD₂Cl₂) δ = 29.5 ppm; IR (ATR): \tilde{v} = 2943, 2865, 2129, 1584, 1463, 1360, 1326, 1303, 1142, 1086, 1014, 998, 939, 883, 806, 677, 663, 618, 560 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₈H₄₄BSiClO₃+Na]⁺: 525.2733; found: 525.2734.

The following compound was prepared analogously:

CI

(Z)-6-(*tert*-Butyldimethylsilyl)-4-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-3-en-TBS 5-yn-2-ol (13b). White solid (65 mg, 55%); mp: 114-115 °C;; ¹H NMR (400 MHz, OH CD₃OH) δ = 7.46-7.36 (m, 2 H), 7.34-7.22 (m, 3 H), 5.09 (q, *J* = 6.4 Hz, 1 H), 1.43 (d, *J* = 6.8 Hz, 3 H), 1.19 (s, 6 H), 1.14 (s, 6 H), 0.98 (s, 9 H), 0.15 (s, 3 H), 0.14 (s, 3 H)

H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 139.9, 127.8, 127.76, 127.71, 127.5, 103.6, 99.8, 83.8, 71.1, 25.2, 23.8, 23.7, 21.2, 16.1, -5.81, -5.83 ppm; ¹¹B NMR (128 MHz, CD₃OH) δ = 30.6 ppm; IR (ATR): \tilde{v} = 2977, 2929, 1590, 1354, 1305, 1250, 1141, 1058, 976, 824, 812, 769, 698, 672, 606 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₄H₃₇BSiO₃+Na]⁺: 435.2497; found: 435.2499.

Downstream Functionalization

(*E*)-4-Phenylpent-3-en-2-ol (14).^[5] Prepared by adaptation of a literature procedure:^[6] A mixture of compound 10f (34.8 mg, 0.12 mmol), AgNO₃ (2 mg, 0.012 mmol, 10 mol %), NEt₃ (16 mg, 0.16 mmol) in EtOH/H₂O (0.5 mL/0.5 mL) was stirred at 80 °C for 3 h under air. The reaction was quenched with brine (5 mL) and the aqueous phase extracted with ethyl acetate (5 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered and evaporated under vacuum. The residue was purified by flash chromatography on silica gel to afford the product as a colorless oil (16.2 mg, 83%). ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.35-7.28 (m, 2 H), 7.26-7.19 (m, 2 H), 7.18-7.12 (m, 1 H), 5.69 (dq, *J* = 1.2 and 8.0 Hz, 1 H), 4.69-4.58 (m, 1 H), 1.99 (d, *J* = 1.2 Hz, 3 H), 1.21 (d, *J* = 6.0 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 143.0, 135.7, 132.2, 128.2, 127.1, 125.7, 65.0, 23.3, 15.8 ppm.

(*E*)-3-(4-Chlorophenyl)-4-phenylpent-3-en-2-ol (15). Prepared by adaptation of a literature procedure:^[8] A flame-dried Schlenk flask was charged with compound 10f (0.157 mmol, 45.2 mg) and THF (2 mL). Pd(Pt-Bu₃)₂ (8 mg, 10 mol %), 1-chloro-4-iodobenzene (45.3 mg, 0.19 mmol), solid NaOH (18.8 mg, 0.47 mmol) and H₂O (8.5 μ L) were added under Ar and the resulting mixture was stirred at 50 °C for 12 h. After evaporation of all volatile materials, the crude product was purified by flash chromatography on silica gel to offer the title compound as a pale yellow solid (28.4 mg, 66 %). mp: 99-100 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.03-6.97 (m, 4 H), 6.96-6.92 (m, 1 H), 6.92-6.83 (m, 4 H), 5.04 (q, *J* = 6.4 Hz, 1 H), 2.09 (s, 3 H), 1.13 (d, *J* = 6.4 Hz, 3 H) ppm; ¹³C NMR

(101 MHz, CD_2Cl_2) $\delta = 144.0$, 139.7, 137.5, 135.7, 132.5, 131.8, 128.5, 127.6, 127.3, 125.9, 66.8, 22.0, 20.1 ppm; IR (ATR): $\tilde{v} = 3273$, 2926, 1488, 1442, 1129, 1069, 1015, 940, 835, 763, 699, 603, 508 cm⁻¹; HRMS (EI) *m/z* calcd for $[C_{17}H_{17}OCl]^+$: 272.0968; found: 272.0963.

2-Hydroxy-4-phenylpentan-3-one (16). Prepared by adaptation of a literature procedure:^[6]: A mixture of $Me \quad OH \quad compound \ 10f \ (46.2 mg, \ 0.16 mmol), \ NaBO_3 H_2O \ (128 mg, \ 0.64 mmol) \ and \ THF/H_2O \ (2 mL/2 mL) \ was stirred at room temperature for 3 h. The reaction was quenched with brine (5 mL) and the aqueous phase was extracted with ethyl acetate (3 x 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum.$

The crude product was purified by flash chromatography on silica gel to afford the title compound as a colorless oil (20 mg, 70 %, dr = 3.3 :1). ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.28-7.21 (m, 2 H), 7.21-7.09 (m, 3 H), 4.31-4.04 (m, 1 H), 3.98-3.84 (m, 1 H), 3.18 (brs, OH), 1.37-1.30 (m, 3 H), 1.28-1.04 (m, 3 H) ppm; ¹³C NMR (101 MHz, CD₂Cl₂) δ = 212.8, 140.0, 129.0, 128.7, 127.84, 127.82, 127.4,

127.2, 72.7, 70.9, 47.8, 47.7, 19.9, 19.7, 19.2, 17.5 ppm; IR (ATR): $\tilde{v} = 3400, 2979, 2935, 1713, 1447, 1367, 1149, 1073, 1009, 899, 698 cm⁻¹; HRMS (ESI)$ *m/z* $calcd for <math>[C_{11}H_{14}O_2+Na]^+$: 201.0886; found: 201.0887.

$(S^*) \hbox{-} 1 \hbox{-} ((2S^*, 3S^*) \hbox{-} 3 \hbox{-} Methyl \hbox{-} 3 \hbox{-} phenyl \hbox{-} 2 \hbox{-} (4, 4, 5, 5 \hbox{-} tetramethyl \hbox{-} 1, 3, 2 \hbox{-} dioxaborolan \hbox{-} 2 \hbox{-} yl) oxiran \hbox{-} 2 \hbox{$

yl)ethan-1-ol (17). Prepared by adaptation of a literature procedure:^[7] A flame-dried Schlenk flask was charged with compound **10f** (40.5 mg, 0.14 mmol), CH₂Cl₂ (2 mL) and VO(acac)₂ (5.6 mg, 15 mol %) under Ar. The resulting greenish-blue solution was cooled to $-20 \,^{\circ}$ C before a solution of *tert*-butyl hydroperoxide (5.0 M solution in decane, 84 µL, 0.42 mmol) was added dropwise at this temperature. The mixture was stirred at $-20 \,^{\circ}$ C for 20 h before it was filtered through a pad of Celite. The filtrate was evaporated and the residue was *rapidly* purified by flash chromatography on silica gel to afford the title compound as a white solid (28.5 mg, 66 %). mp: 130-131 °C; ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 7.30-7.22$ (m, 2 H), 7.22-7.16 (m, 2 H), 7.16-7.09 (m, 1 H), 3.66-3.55 (m, 1 H), 2.32-2.22 (m, 1 H), 1.62 (s, 3 H), 1.25 (d, $J = 6.4 \,^{\circ}$ Hz, 3 H), 0.85 (s, 6 H), 0.76 (s, 6 H) ppm; ¹³C NMR (101 MHz, CD₂Cl₂) $\delta = 142.4$, 127.8, 127.1, 126.1, 84.2, 68.6, 65.2, 24.2, 24.1, 21.5, 19.8 ppm; ¹¹B NMR (128 MHz, CD₃OD) $\delta = 30.5 \,^{\circ}$ pm; IR (ATR): $\tilde{v} = 3473$, 2977, 2921, 1449, 1316, 1276, 1141, 1086, 1057, 982, 851, 780, 703, 661, 551 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₁₇H₂₅BO₄+Na]⁺: 327.1738; found: 327.1739.

2-(1,1-Dimethyl-3-(4-(trifluoromethyl)phenyl)-1 H-inden-2-yl)-4,4,5,5-tetramethyl-1,3,2-inden-2-yl)-4,5-inden-2-yl)-4,5-inden-2-yl-1,5-inden-2-

dioxaborolane (18). Prepared by adaptation of a literature procedure: $^{[9b]}$ Sc(OTf)₃ (2.46 mg, 5 mol%) was added to a solution of compound **5c** (43 mg, 0.1 mmol,) in 1,2-dichloroethane (2 mL) and the resulting mixture was stirred at 50 °C for 1 h. The solvent was removed in vacuo and the residue was

purified by flash chromatography on silica gel to afford the title compound as a white solid (38.1 mg, 92 %). mp: 124-125 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.62-7.56 (m, 2 H), 7.53-7.46 (m, 2 H), 7.36-7.30 (m, 1 H), 7.23-7.09 (m, 3 H), 1.36 (s, 6 H), 1.12 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₂Cl₂) δ = 156.9, 151.4, 142.3, 140.3 (d, *J* = 1.5 Hz), 129.7, 129.3 (q, *J* = 32 Hz), 126.6, 126.4, 124.6 (q, *J* = 3.9 Hz), 124.5 (q, *J* = 270 Hz), 121.5, 121.0, 83.1, 52.6, 24.4, 24.3 ppm; ¹¹B NMR (128 MHz, CD₂Cl₂) δ = 30.1 ppm; IR (ATR): \tilde{v} = 2971, 2928, 1591, 1575, 1369, 1321, 1307, 1265, 1120, 1105, 1064, 1016, 852, 759, 719, 673, 634 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₄H₂₆BF₃O₂+Na]⁺: 437.1870; found: 437.1874.

2-(2,5-Dimethyl-4-phenylfuran-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (19). Prepared by

adaptation of a literature procedure:^[9a] AuCl₃ (1.5 mg, 5 mol%) was added to a solution of (Z)-enynol **13b** (0.11 mmol, 46 mg) in 1,2-dichloroethane (2 mL) and the resulting mixture was stirred at room temperature for 2 h. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel to afford the title

compound as a colorless oil (19.6 mg, 65 %). ¹H NMR (400 MHz, CD₃OD) δ = 7.48-7.26 (m, 5 H),

2.52 (s, 3 H), 2.32 (s, 3 H), 1.33 (s, 12 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 159.7, 146.1, 134.6, 129.4, 127.1, 125.8, 125.1, 82.7, 23.6, 12.6, 10.5 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 30.2 ppm; IR (ATR): \tilde{v} = 2977, 2921, 1577, 1413, 1341, 1302, 1141, 1055, 994, 846, 758, 698, 663 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₁₈H₂₃BO₃+Na]⁺: 321.1632; found: 321.1633.

4-(4-(2-Chloroethoxy)phenyl)but-3-yn-2-ol (20). Prepared according to a literature procedure.^[4]

Yellow solid (487 mg, 94%); mp: 73-74 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.40-7.30 (m, 2 H), 6.96-6.86 (m, 2 H), 4.67 (q, *J* = 6.4 Hz, 1 H), 4.25 (t, *J* = 5.6 Hz, 2 H), 3.86 (t, *J* = 5.6 Hz, 2 H), 148 (d, *J* = 6.4 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 158.4, 132.6, 115.6, 114.3, 89.6, 82.5, 68.1, 57.6, 41.8, 23.4 ppm; IR (ATR): \tilde{v} = 3393, 2981, 1609, 1510, 1453, 1289, 1254, 1179, 1110, 1036, 933, 827, 666 cm⁻¹; HRMS (EI) *m/z* calcd for [C₁₂H₁₃O₂Cl+Na]⁺: 247.0496; found: 247.0495.

(Z)-4-(4-Bromophenyl)-4-(4-(2-chloroethoxy)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)but-3-en-2-ol (21). A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged under Ar with THF (0.24 mL), 4-(4-(2-chloroethoxy)phenyl)but-3-yn-2-ol **20** (67.5 mg, 0.3 mmol), and NaHMDS (55.8 mg, 0.3 mmol). B_2Pin_2 (83.8 mg, 0.33 mmol), 1,2-dichloroethane (3 ml), $Pd_2(dba)_3$ (13.7 mg, 0.015 mmol), tri(2-furyl)phosphine (13.9 mg, 0.06 mmol)

and bis(4-bromophenyl)iodonium triflate (352 mg, 0.6 mmol) were sequentially added, the tube was sealed and the mixture stirred at 60 °C (bath temperature) for 18 h. After cooling to room temperature, the reaction was quenched with aq. sat. NH₄Cl (2 mL), the aqueous phase was extracted with EtOAc (3×5 mL), and the combined organic layers were dried (NaSO₄), filtered and evaporated. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc) to provide the title compound as a white solid (95 mg, 62%); mp: 160-161 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.53-7.43 (m, 2 H), 7.13-7.01 (m, 4 H), 6.87-6.80 (m, 2 H), 4.44 (q, *J* = 6.4 Hz, 1 H), 4.20 (t, *J* = 5.6 Hz, 2 H), 3.81 (t, *J* = 5.6 Hz, 2 H), 1.28 (d, *J* = 6.4 Hz, 3 H), 1.19 (s, 6 H), 1.13 (s, 6 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 158.1, 147.3, 141.0, 136.6, 131.0, 130.6, 130.0, 120.6, 113.8, 83.5, 68.9, 68.1, 41.8, 23.9, 23.7, 21.9 ppm; ¹¹B NMR (128 MHz, CD₃OD) δ = 32.0 ppm; IR (ATR): \tilde{v} = 2975, 2924, 1605, 1508, 1484, 1352, 1299, 1242, 1132, 1069, 1010, 961, 882, 850, 828, 814, 757, 671, 617 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₄H₂₉BBrClO₄+Na]⁺: 529.0923; found: 529.0932.

(Z)-4-(4-Bromophenyl)-4-(4-(2-chloroethoxy)phenyl)-3-phenylbut-3-en-2-ol (S8). A flame-dried

Schlenk flask was charged with compound **21** (0.065 mmol, 33 mg) and THF (0.6 mL). Pd(dppf)Cl₂ (4.7 mg, 10 mol %), iodobenzene (15 μ L, 0.134 mmol), aq. KOH (9 M, 29 μ L, 0.26 mmol) were added under Ar atmosphere and the resulting mixture was stirred at room temperature for 6 h. After evaporation of all volatile materials, the crude product was purified by flash chromatography

to give the title compound as a white solid (29 mg, 97%); mp: 50-51 °C; ¹H NMR (400 MHz, CD₃OD)

δ = 7.63-7.42 (m, 2 H), 7.30-7.06 (m, 7 H), 6.90-6.75 (m, 2 H), 6.63-6.50 (m, 2 H), 4.75 (q, J = 6.4 Hz, 1 H), 4.07 (t, J = 5.6 Hz, 2 H), 3.74 (t, J = 5.6 Hz, 2 H), 1.13 (d, J = 6.4 Hz, 3 H) ppm; ¹³C NMR (101 MHz, CD₃OD) δ = 156.7, 142.6, 141.2, 139.3, 138.5, 134.8, 131.23, 131.21, 131.1, 130.9, 126.9, 126.0, 120.5, 113.2, 67.8, 67.0, 41.8, 20.5 ppm; IR (ATR): $\tilde{v} = 2966$, 2925, 1604, 1507, 1485, 1238, 1173, 1070, 1010, 827, 759, 701, 666 cm⁻¹; HRMS (ESI) *m*/*z* calcd for [C₂₄H₂₂BrClO₂+Na]⁺: 479.0384; found: 479.0387.

α-Hydroxyidoxifene (22).^[11] A Schlenk flask was charged with compound S1 (0.04 mmol, 18.3 mg),

EtOH (0.15 mL) and pyrrolidine (0.15 mL) and the resulting mixture was stirred at reflux temperature overnight. After reaching ambient temperature, all volatile materials were evaporated. CuI (1.5 mg, 0.008 mmol), NaI (30 mg, 0.2 mmol), 1,4-dioxane (0.3 mL) and N,N'-dimethylethane-1,2-diamine (1.8 μ L, 0.016mmol) were added under Ar and the resulting mixture was stirred at 110 °C (bath temperature) for 18 h.

The mixture was allowed to cool before it was filtered through a short plug of silica. The filtrate was concentrated and the residue purified by thin layer chromatography to give the title compound as a white solid (16.3 mg, 75%); mp: 148-149 °C; ¹H NMR (300 MHz, CD₃OD) δ = 7.80-7.64 (m, 2 H), 7.30-7.10 (m, 5 H), 7.10-6.99 (m, 2 H), 6.87-6.75 (m, 2 H), 6.64-6.48 (m, 2 H), 4.75 (q, *J* = 6.6 Hz, 1 H), 3.96 (t, *J* = 5.7 Hz, 2 H), 2.81 (t, *J* = 5.7 Hz, 2 H), 2.69-2.50 (m, 4 H), 1.87-1.69 (, m, 4 H), 1.13 (d, *J* = 6.6 Hz, 3 H) ppm; ¹³C NMR (75 MHz, CD₃OD) δ = 158.5, 143.8, 143.2, 140.9, 139.9, 138.4, 135.8, 132.7, 132.6, 132.5, 128.3, 127.4, 114.4, 93.0, 68.4, 67.4, 55.9, 55.5, 24.1, 21.9 ppm; IR (ATR): \tilde{v} = 2964, 2925, 2806, 1604, 1507, 1480, 1281, 1242, 1109, 1052, 1006, 911, 826, 759, 736, 700 cm⁻¹; HRMS (EI) *m/z* calcd for [C₂₈H₃₀INO₂+H]⁺: 540.1394; found: 540.1396.

NMR SPECTRA

S26

S28

S31

S33

S34

S51

REFERENCES

- P. A. A. Klusener, J. C. Hanekamp, L. Brandsma, P. v. R. Schleyer, J. Org. Chem. 1990, 55, 1311–1321.
- [2] A. Hamze, O. Provot, J.-D. Brion, M. Alami, J. Org. Chem. 2007, 72, 3868–3874.
- [3] S. Lee, T. Lee, Y. M. Lee, D. Kim, S. Kim, Angew. Chem. Int. Ed. 2007, 46, 8422–8425.
- [4] F. R. Wüst, T. Kniess, J. Label. Compd. Radiopharm. 2003, 46, 699–713.
- [5] W. Adam, H.-U. Humpf, K. J. Roschmann, C. R. Saha-Moeller, J. Org. Chem. 2001, 66, 5796– 5800.
- [6] Y. Ping, T. Chang, K. Wang, J. Huo, J. Wang, Chem. Commun. 2019, 55, 59–62.
- [7] M. M. Hussain, J. H. Toribio, P. J. Carroll, P. J. Walsh, Angew. Chem. Int. Ed. 2011, 50, 6337–6340.
- [8] A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020–4028.
- [9] a) X. Du, F. Song, Y. Lu, H. Chen, Y. Liu, *Tetrahedron* 2009, 65, 1839–1845; b) S. Guo, Y. Liu, Org. Biomol. Chem. 2008, 6, 2064–2070.