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Using Schwinger-boson mean-field theory, we calculate the dynamic spin structure factor at low
temperatures 0 < T � J for the spin-1/2 antiferromagnetic Heisenberg kagome model, within the
gapped Z2 spin liquid phase Ansatz. We find that the spectral gap rapidly fills with tempera-
ture, with robust low-energy spectral weight developing by a temperature of ∆/3, where the spin
gap is 2∆ (i.e., ∆ is the spinon gap), before any appreciable rise in spinon density or change in
zero-temperature mean-field parameters. This is due to deconfinement of spinons which leads to
terms suppressed only by exp(−∆/T ). At still higher temperatures, the spinon density increases
rapidly leading to a breakdown of the Schwinger-boson mean-field approach. We suggest that if the
impurity-free spectral functions can be obtained through neutron scattering experiments on kagome
herbertsmithites, temperature dependence of the subgap weight can provide distinct signatures of
a Z2 quantum spin liquid.

I. INTRODUCTION

The Mermin-Wagner theorem1 asserts that in two-
dimensional lattices with short-range interactions there
can be no spontaneous breaking of continuous symme-
tries at finite temperatures T > 0, although such sponta-
neous symmetry breaking is allowed at T = 0. However,
in certain such lattices, geometric frustration2–11 due to
the interplay of lattice geometry and antiferromagnetic
coupling leads to quantum fluctuations strong enough
to preserve continuous symmetries even at T = 0. A
quantum spin liquid8–12 (QSL) is such a phase of mat-
ter, where localized magnetic moments are highly cor-
related but their fluctuations are nevertheless still very
pronounced even at T = 0, leading to a high density of
low-lying energy eigenstates, and the ground state can
then host fractionalized excitations and topological or-
der.

The ground state of the paradigmatic spin-1/2 an-
tiferromagnetic Heisenberg kagome model (AFKM)
is a promising candidate for a QSL,13,14 while
experiments15–22 on the kagome-lattice compound her-
bertsmithite indicate that it may indeed comprise such
a QSL ground state. A big debate, both experimen-
tally and theoretically, is the existence of a spin gap in
the system. NMR measurements of Fu et al.23 indicate
a nonzero spin gap, whereas inelastic neutron scatter-
ing (INS) measurements of Han et al. suggest a contin-
uum of fractionalized spinon excitations24 with an ab-
sence of any sharp onset with frequency,25,26 although
it is to be mentioned that INS continua do not neces-
sarily come from fractionalized excitations only. A large
number of low-lying excitations can also give a broad fre-
quency response in INS. It is also worth noting here that
herbertsmithite is known to be more complex than the
nearest-neighbor AFKM primarily due to Dzyaloshinskii-
Moriya interactions and impurities,27–36 and that recent

measurements on variants of the herbertsmithite mate-
rials show evidence for gapless excitations.37,38 On the
theoretical side, density matrix renormalization group
(DMRG) simulations offer strong evidence for a robustly
gapped Z2 QSL,39–42 while many recent computational
studies have argued for a gapless, possibly U(1) Dirac
QSL state.43–46

The two-dimensional (2D) Z2 QSL is known not to
need to go through a transition as the temperature is
increased, because the involved topological defects are
piontlike objects known as visons, which are always cre-
ated with finite density at nonzero temperatures.9,47 This
means that the 2D Z2 QSL may be smoothly connected
to a trivial paramagnet, i.e. there is only a crossover at
finite temperatures. Starting from the ground state with
gapped spinon and vison excitations as is the case in
a gapped Z2 QSL, as the temperature is subsequently
cranked up, these excitations become thermally popu-
lated. As soon as there is a density of thermally excited
visons, the different topological ground-state sectors can
no longer be distinguished. However, even though strictly
speaking the topological order of the 2D gapped Z2 QSL
is destroyed at any finite temperature,48,49 remnants of
the QSL phase must survive in the form of local physical
observables, which cannot be immediately destroyed at
T > 0 in the absence of a zero-temperature phase tran-
sition.

The dynamic spin structure factor (DSF) offers a use-
ful way of relating theoretical results to INS measure-
ments that can shed light on the properties of the AFKM,
and has been numerically computed in this model at
zero and finite temperatures using exact diagonalization
methods in small systems,50–52 and at zero tempera-
ture using Abrikosov fermion mean-field theory34 and
SBMFT.25,36,53 Such finite-temperature measurements
can allow for a better characterization of the ground-
state properties of the AFKM in light of the aforemen-
tioned discussion of how QSL behavior at finite temper-
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ature is related to the zero-temperature physics. Re-
cently, Ref. 54 has computed the finite-temperature DSF
of the AFKM at finite temperatures using the numer-
ical linked cluster expansion (NLCE) method, but the
latter is only valid for T ≥ J/4. Previously, the finite-
temperature static structure factor was computed using
a high-temperature expansion.55

In this paper, we compute the finite-temperature DSF
of the AFKM in the framework of Schwinger-boson
mean-field theory13,56–59 (SBMFT). Low-temperature
thermodynamic properties have previously been com-
puted in SBMFT, such as in the case of the triangular-
lattice60,61 and square-lattice57,62 Heisenberg antiferro-
magnets. Our work is fundamentally different though, as
the latter studies investigate systems that are ordered,
and hence gapless in an SBMFT sense, at zero tempera-
ture, which leads to subtleties in the SBMFT treatment
since at finite temperature a gap suddenly emerges due to
being in a disordered phase. On the other hand, AFKM is
still gapped and in a disordered phase at T = 0, and thus
we do not face such issues. The work presented here fol-
lows zero-temperature DSF calculations53 in SBMFT of
various ground states of the AFKM based on two proto-
typical Anätze13,63 of the projective symmetry group58,64

(PSG). We are not aware of any previous such calculation
at very low but nonzero temperatures.

In the framework of SBMFT, bond mean fields are used
to characterize the QSL, where a given PSG Ansatz sets
the properties of the mean fields. These local observables
are expected to not vanish immediately at finite temper-
ature due to the crossover from a QSL ground state to a
trivial paramagnet. Thus, so long as the spinon density
is low enough such that interactions can be neglected,
SBMFT can provide a suitable method to qualitatively
study AFKM properties at low temperatures.

A. Summary of results

Our most surprising and striking result is that the
spectral-weight in the spin gap (∼ 2∆, where ∆ is the
spinon gap) in the DSF fills up rapidly with tempera-
ture. Well below the spin-gap energy and even before
the SBMFT parameters have changed significantly from
their T = 0 values or there is any significant rise in spinon
density, the low-frequency spectral weight starts to get
populated. This is due to deconfinement of spinons in
a Z2 QSL, which leads to terms suppressed by a factor
of only exp(−∆/T ) rather than exp(−2∆/T ), the sup-
pression factor in case of confined spinons. Only at still
higher temperatures (T > 0.1J) does the spinon density
start rising rapidly leading to a breakdown of the SBMFT
treatment. This result applies to both the different mean-
field Ansätze that we consider. We also note some in-
teresting changes in spectral weight with frequency and
wave vector in the Brillouin zone.

A quantitative comparison of our results with ex-
periments is not appropriate as experimental systems

have many additional interactions and also because the
SBMFT is not expected to be quantitatively accurate for
the spin-half model. However, the fact that the spin gap
is rapidly populated at low temperatures, with an acti-
vation energy different from the T = 0 spin gap, in itself
constitutes a signature of deconfinement. This is a robust
result and can, in principle, be looked for in experiments.
However, this is not possible for current experiments in
Ref. 24 where impurities need to be subtracted14 and the
very existence of a spin gap is unclear. But, we can still
attempt a qualitative comparison. As we show below for
one of the Ansätze, we can qualitatively capture their
DSF measurement at low temperature T ∼ J/100 and
low frequency ω ∼ J/10. However, our DSF is not con-
stant over frequency as theirs is, but we argue that this
can be reproduced in SBMFT by allowing for spinon-
vison interactions as is done in Ref. 25. In the latter, the
DSF is structureless and flattens at intermediate ener-
gies upon including the spinon-vison interactions, albeit
there remains an onset around ω ∼ J/10. Our results, in
which the onset completely vanishes at low temperatures,
strongly indicate that such a study at finite tempera-
ture incorporating spinon-vison interactions may lead to
a much more complete agreement with the measurements
of Ref. 24, and we leave this open for future work.

B. Structure of the paper

The rest of the paper is organized as follows. In Sec. II,
after introducing the AFKM, we provide a brief review of
SBMFT, derive the mean field-decoupled AFKM Hamil-
tonian, and discuss the self-consistency conditions on the
respective bond mean fields and local constraint. In
Sec. III we derive the finite-temperature DSF. Sec. IV
provides the numerical results of the finite-temperature
DSF for two prominent PSG Ansätze, followed by a dis-
cussion of all the results. We conclude and provide out-
look for follow-up work in Sec. V. The paper contains four
Appendices supplementing the material presented in the
main text with further details and results. Furthermore,
we set Planck’s reduced constant ~ and Boltzmann’s con-
stant kB to unity throughout the entire paper.

II. MODEL AND METHODS

The antiferromagnetic Heisenberg Hamiltonian on the
kagome lattice is given by

Ĥ = J
∑
〈i,j〉

Ŝi · Ŝj , (1)

where Ŝi is the spin operator on site i, and J > 0 is
the antiferromagnetic spin coupling constant. We now
express the spin operators in terms of Schwinger bosons:
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FIG. 1. (Color online). The Ansätze q = 0 and
√

3 ×
√

3
have three-site unit cells (demarcated in dashed blue lines),
on the kagome lattice, with each containing six bonds, where
each bond has a singlet pairing and hopping mean field. For
the q = 0 Ansatz, all pairing and hopping mean fields equal
A and B, respectively. For the

√
3×
√

3 Ansatz, bonds with a
dashed (solid) arrow have pairing mean field ±A and hopping
mean field B.

Ŝi =
1

2
b̂†i,ασ̂

αβ b̂i,β , (2)

where b̂i,β and b̂†i,α are bosonic annihilation and creation
operators satisfying the canonical commutation relations

[b̂i,α, b̂j,β ] = 0 and [b̂i,α, b̂
†
j,β ] = δi,jδα,β . All through-

out the paper, we assume summation over Greek indices,
with which we denote the spin degrees of freedom. As
such, (1) can now be rewritten as

Ĥ =
J

4

∑
〈i,j〉

(2δα,µδβ,γ − δα,βδγ,µ) b̂†i,αb̂
†
j,γ b̂i,β b̂j,µ

+ λ
∑
i

(b̂†i,αb̂i,α − 2S), (3)

where λ is a Lagrange multiplier that constrains, on
average, the number of bosons to 2S per site, where
S is the spin length.62 Note that this is necessary
since the Hilbert space of the Schwinger bosons is in-
finite while that of the spin operators is not. The La-
grange multiplier is a way to make the mapping from
spins to Schwinger bosons faithful. Mapping spins to
Schwinger bosons has been extensively used in the study
of antiferromagnets,13,56,57,62 and has recently also been
used in Keldysh quantum field theoretical treatments of
out-of-equilibrium strongly-correlated spin systems.65,66

Strictly speaking, the Schwinger boson number con-
straint,

b̂†i,↑b̂i,↑ + b̂†i,↓b̂i,↓ = 2S, (4)

should be enforced by a site-dependent Lagrange mul-
tiplier in (3) to enforce exactly 2S bosons per site, but

this is numerically very expensive, which is why the site-
dependence of λ is dropped to enforce this constraint only
on average. It is also important to realize that the con-
straint (4), in relating a boson number to a spin length,
means that S can now be treated as a continuous pa-
rameter that interpolates between the extreme quantum
limit of S = 0 and the classical limit of S → ∞. In the
SBMFT treatment of AFKM, choosing the spin length
S = 1/2 can lead to magnetically ordered phases.13 It
is therefore quite common to go to lower values of S in
order to ensure falling in the QSL phase of this model.
For this purpose and for continuity with previous work,53

in this paper we choose S = 0.2, though we stress that
other values of S < 1/2 can only quantitatively, but not
qualitatively, change the main conclusions of this work.

A. Schwinger-boson mean-field theory

Let us consider the SU(2)-symmetric singlet pairing
and hopping bond operators

Âij =
1

2
εαβ b̂i,αb̂j,β , (5)

B̂ij =
1

2
b̂†i,αb̂j,α, (6)

respectively, with εαβ the SU(2) Levi-Civita tensor,
which allows us to rewrite (3) in the form

Ĥ = J
∑
〈i,j〉

(B̂†ijB̂ij − Â
†
ijÂij) + λ

∑
i

(b̂†i,αb̂i,α − 2S). (7)

A mean-field decoupling of (7) yields

ĤMF = J
∑
〈i,j〉

(〈B̂ij〉B̂†ij − 〈Âij〉Â
†
ij + H.c.)

+ J
∑
〈i,j〉

(〈Âij〉〈Â†ij〉 − 〈B̂ij〉〈B̂
†
ij〉)

+ λ
∑
i

(b̂†i,αb̂i,α − 2S). (8)

The fields 〈Âij〉 and 〈B̂ij〉 are in general complex-valued
parameters that shall be self-consistently computed at a
given temperature T (see Sec. II C). Even though most

SBMFT studies usually use only the pairing field 〈Âij〉,
additionally including the hopping field 〈B̂ij〉 has been
proven67,68 to offer a better description of the excitation
spectrum in frustrated systems. Fig. 1 shows the kagome
lattice, where a unit cell contains three sites, and thus six
bonds. SBMFT involves setting all the auxiliary fields
in (8) to static and uniform saddle-point (self-consistent)
parameters. Here, we consider the two prototypical sym-
metric Ansätze13,63,69 q = 0 and

√
3 ×
√

3, which are
characterized by
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〈Âij〉 = Aeiθ, 〈B̂ij〉 = B, (9)

where, consulting Fig. 1, θ = 0 (φ) on dashed (solid)
bonds, with φ = 0 for the q = 0 Ansatz and φ = π
for the

√
3 ×
√

3 Ansatz, and the mean fields are such
that A > 0 and B < 0. A, B, and λ will be calculated
self-consistently for each Ansatz, and their value will de-
pend, in addition to the Ansatz itself, on the temperature
T at which our system is. Enforcing self-consistency is
discussed in Sec. II C.

We now employ the Fourier transformation

b̂i,α = b̂sm,α =
1√
N

B.z.∑
k

b̂sk,αeik·(Rm+s), (10)

where N is the number of unit cells, the site position
is ri = Rm + s, Rm is the position of the unit cell m
housing the site, s denotes the position of the site within
the unit cell, and B.z. stands for the first Brillouin zone.
Plugging (10) into (8), we derive

ĤMF =

B.z.∑
k

Ψ̂†kDkΨ̂k + 6NJ
(
A2 − B2

)
− 3Nλ(1 + 2S),

(11)

where we have introduced the SU(2) spinor

Ψ̂k =



b̂uk,↑

b̂vk,↑

b̂wk,↑

b̂u†−k,↓

b̂v†−k,↓

b̂w†−k,↓


, (12)

with

Dk = J

 BRk ei
φ
2APk,φ

e−i
φ
2AP ᵀ

k,φ BRk

+ λ16, (13)

Rk =


0 cos k1 cos k3

cos k1 0 cos k2

cos k3 cos k2 0

 , (14)

Pk,φ =


0 − cos

(
k1 − φ

2

)
cos
(
k3 + φ

2

)
cos
(
k1 + φ

2

)
0 − cos

(
k2 − φ

2

)
− cos

(
k3 − φ

2

)
cos
(
k2 + φ

2

)
0

 ,

(15)

where 1d, with d ∈ N, is the d × d identity matrix and
φ = 0 or π if the Ansatz is q = 0 or

√
3×
√

3, respectively.

Moreover, our notation entails denoting kj = k · ej , j ∈
{1, 2, 3}, with the real-space vectors e1 = a(1/2,

√
3/2),

e2 = a(1/2,−
√

3/2), and e3 = a(−1, 0), and a is the
intersite spacing, which, without any loss of generality,
we set to unity throughout the paper.

B. Bogoliubov transformation

We now diagonalize (11) by employing the Bogoliubov
transformation

Ψ̂k = MkΓ̂k, (16)

with

Mk =

Uk Xk

Vk Yk

 , (17)

and the Bogoliubov spinor

Γ̂k =



γ̂uk,↑

γ̂vk,↑

γ̂wk,↑

γ̂u†−k,↓

γ̂v†−k,↓

γ̂w†−k,↓


, (18)

where the Bogoliubov operators satisfy the canonical

commutation relations [γ̂k,α, γ̂q,β ] = 0 and [γ̂k,α, γ̂
†
q,β ] =

δk,qδα,β . The Bogoliubov transformation (16) diagional-
izes (11) if and only if

M†kτ
3Mk = τ3, (19)

M†kDkMk = Ek =

Ek,↑ 03

03 E−k,↓

 , (20)

where

τ3 =

13 03

03 −13

 , (21)

03 is the 3× 3 zero matrix, and

Eq,α =


εuq,α 0 0

0 εvq,α 0

0 0 εwq,α

 , (22)
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are the Bogoliubov bosonic eigenenergies at momentum
k and spin polarization α. We recall here that due
to time-reversal invariance and SU(2) symmetry one
has εsk,↑ = εs−k,↓ and εsk,↑ = εsk,↓, respectively, with

s ∈ {u, v, w}. Even though Mk can in principle be calcu-

lated analytically for both Ansätze q = 0 and
√

3×
√

3,
it contains very lengthy expressions. Nevertheless, it can
be very efficiently and cheaply numerically computed us-
ing standard matrix-diagonalization functions in MAT-
LAB or Mathematica, for example. Care has to be taken
though so as to ensure that (19) is satisfied. Thus, with
the Bogoliubov transformation one can rewrite (11) in
the diagonal form

ĤMF =

B.z.∑
k

Γ̂†kEkΓ̂k + 6NJ
(
A2 − B2

)
− 3Nλ(1 + 2S).

(23)

As such, with regards to the time-dependent Bogoliubov
operators, we use the Heisenberg equation to derive

γ̂rk,α(t) = e−iε
r
k,αtγ̂rk,α. (24)

This relation will be useful in the derivation of the DSF
in Sec. III.

C. Self-consistent mean-field parameters

On a unit cell m, the necessary and sufficient condi-
tions for self-consistency for both bond mean fields and
the Lagrange multiplier are

A =
1

12N
εαβ

u.c.∑
m

〈b̂um,αb̂vm,β + b̂vm,αb̂
w
m,β + b̂wm,αb̂

u
m,β

+ e−iφ
(
b̂um,αb̂

v
m̃,β + b̂vm,αb̂

w
m̃,β + b̂wm,αb̂

u
m̃,β

)
〉, (25)

B =
1

12N

u.c.∑
m

〈b̂u†m,αb̂vm,α + b̂v†m,αb̂
w
m,α + b̂w†m,αb̂

u
m,α

+ b̂u†m,αb̂
v
m̃,α + b̂v†m,αb̂

w
m̃,α + b̂w†m,αb̂

u
m̃,α〉, (26)

2S =
1

3N

u.c.∑
m

〈b̂u†m,αb̂um,α + b̂v†m,αb̂
v
m,α + b̂w†m,αb̂

w
m,α〉, (27)

which are then solved numerically at a given tempera-
ture T using fixed-point iteration or some other efficient
method. All throughout we assume that a spinon con-
densate does not form, and this can always be justified
so long as we do not get complex spinon eigenvalues. We
note that this method is an alternative to the one based
on free-energy extremization13,53,63 that has tradition-
ally been used, but it gives the same results and is more
efficient based on our experience.

We present in Fig. 2 the self-consistent field values for
spin length S = 0.2 and at temperatures up to T = 0.23J .

FIG. 2. (Color online). Self-consistent bond mean fields and
local constraint parameter as function of temperature for the
symmetric Ansätze q = 0 and

√
3 ×
√

3. The apparent non-
analyticity at T ≈ J/5 indicates the unreliability of SBMFT
at too high temperatures. In reality, one expects the bond
parameters A and B to smoothly and asymptotically go to
zero as is the case in a crossover.

We see that both bond mean fields A and B smoothly
decrease in magnitude until T ≈ J/5 where they non-
analytically go to zero. This is a result of SBMFT be-
ing inadequate for the description of the paramagnetic
phase at temperatures so high that nearest-neighbor cor-
relations are destroyed.57 Moreover, it is clear that the
bond fields going to zero cannot be an indication of a
continuous phase transition for two main reasons: (i) the
2D gapped Z2 spin liquid does not undergo such a tran-
sition, but rather a crossover, to a trivial paramagnet
at finite temperature; and (ii) the bond fields A and B
are not local order parameters in the Landau sense. De-
spite this nonanalyticity being an artifact of SBMFT at
too high temperatures,56,57,61 it is known that at low
temperatures where the mean fields are nonzero SBMFT
gives qualitatively reliable results.56,57,60–62 In fact, Fig. 3
shows the spinon gap ∆ and spinon density

nspinon =
1

3N

bands∑
r

B.z.∑
k

1

eε
r
k,α/T − 1

, (28)

where it can be seen that for the low temperatures we
consider (T . J/10) nspinon is small enough such that
interactions can be neglected, thus rendering SBMFT
results valid. However, for higher temperatures, Fig. 3
shows that the spinon density can no longer be con-
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FIG. 3. (Color online). The gap (top panel) and spinon den-
sity (bottom panel) as function of temperature for the sym-
metric Ansätze q = 0 and

√
3×
√

3 as calculated in SBMFT.
The spinon density is small such that interactions can be ne-
glected for low temperatures making SBMFT adequate for
the low-temperature description of the AFKM.

sidered small enough for interactions to be neglected,
which means that SBMFT is not to be considered a faith-
ful description of the underlying physics. More drasti-
cally, once the bond fields are completely diminished at
T ≈ J/5, which is the case for a high-temperature triv-
ial paramagnet,56,57 the qualitative validity of SBMFT
completely fails. Indeed, when A = B = 0, the Hamil-
tonian (11) is diagonal with only λ along the diagonal of
Dk. Hence, a Bogoliubov transformation is not needed,

and the “spinon” density is just 2S then. Therefore, here
it no longer makes sense to speak of spinons, because in
this limit the excitations in SBMFT correspond to sim-
ply adding or removing a boson on a lattice site, but
these excitations are unphysical and have no correspon-
dence in the physical Hilbert space of the original spin
model. There are ways of extending the theory to more
reliably handle such high temperatures,61 though for low
temperatures SBMFT proper gives qualitatively sound
results that are often offset by a trivial factor.56,62 As we
are interested only in low-temperature DSF calculations,
such extensions to SBMFT are outside the scope of our
paper.

III. SPIN STRUCTURE FACTORS

We now derive the finite-temperature DSF for the
AFKM in the framework of SBMFT. The DSF is the
Fourier transform of the space-time spin-spin correla-
tions, and is formally given by

S(k, ω) =
1

3N

∑
l,j

e−ik·(rl−rj)
∫ ∞
−∞

dt eiωt〈Ŝl(t) · Ŝj〉.

(29)

Recalling that we have εjp,↑ = εjp,↓ due to SU(2) symme-

try, and employing (24) and the relations

〈γ̂r†k,αγ̂
s
q,β〉 =

1

eβε
r
k,α − 1

δk,qδr,sδα,β , (30)

〈γ̂rk,αγ̂sq,β〉 = 0, (31)

we derive

S(k, ω) =
1

12N

B.z.∑
q

bands∑
r,s,m,n

[
δ(ω + εmq,↑ + εn−k−q,↑)(

eε
m
q,↑/T − 1

)(
eε
n
−k−q,↑/T − 1

)A r,s,m,n
k,q +

eε
n
k+q,↑/T δ(ω + εmq,↑ − εnk+q,↑)(
eε
m
q,↑/T − 1

)(
eε
n
k+q,↑/T − 1

) Br,s,m,n
k,q

+
eε
m
−q,↑/T δ(ω − εm−q,↑ + εn−k−q,↑)(

eβε
m
−q,↑/T − 1

)(
eε
n
−k−q,↑/T − 1

)C r,s,m,n
k,q +

eε
m
−q,↑/T eε

n
k+q,↑/T δ(ω − εm−q,↑ − εnk+q,↑)(

eε
m
−q,↑/T − 1

)(
eε
n
k+q,↑/T − 1

) Dr,s,m,n
k,q

]
, (32)

where the terms in script font are defined in Appendix A,
and they comprise sums of products of the momentum-
dependent Bogoliubov matrices of (17).

The finite-temperature DSF can be understood by
thinking of an INS experiment, where the incoming neu-
tron exchanges with the system a net momentum k and
a net energy ω. As in the zero-temperature case, an in-
coming neutron can transfer a net momentum k and a
net energy ω ≥ 0 if and only if there are two spinons

whose eigenenergies sum to ω at momenta that sum to
k. At finite temperature, on the other hand, the spinons
are thermally excited, and thus they can also transfer
net energy (in such a case ω < 0) to the neutron. More-
over, the net energy exchange at finite temperature can
either be sums or differences, giving rise to the first three
terms in (32), in addition to the fourth that is the only
remaining term at zero temperature. Indeed, in the limit
T → 0, (32) reduces to the zero-temperature DSF derived
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FIG. 4. (Color online). The dynamic spin structure factor for the q = 0 Ansatz along the Γ-M-K-Γ high-symmetry lines
at finite temperatures T/J = 0.01, 0.02, 0.05, and 0.1. Even though at T = 0J the DSF displays no spectral weight at all
below the spin gap,53 at T = 0.01J it already shows nonnegligible weight below the spin gap continuously down to negative
frequencies, while already at T = 0.02J the DSF below the spin gap shows nontrivial weight.

in Ref. 53.

What is particularly interesting about (32) is that
terms that only appear at finite temperature are not all
exponentially suppressed by the spin gap 2∆. In fact, two
terms are exponentially suppressed only by the spinon
gap ∆, and thus it would be interesting to see if these
terms will lead to substantial contributions at low tem-
perature. Of course, this will actually also depend on the
numerical values of the factors Br,s,m,n

k,q and C r,s,m,n
k,q , and

can provide clear signature of deconfinement of spinons.

IV. RESULTS AND DISCUSSION

Numerically calculating (32) in the presence of Dirac-
delta functions is problematic due to the zero support
these functions have. As such, we approximate the
Dirac-delta functions in (32) by Lorentzians with width
10−3, and subsequently use the VEGAS70 Monte Carlo
integration routine to numerically evaluate the finite-
temperature DSF, which has proven to be a viable
scheme in previous works.25,53 In all our numerical calcu-
lations, the spin length is set to S = 0.2, and we use the
self-consistent parameters shown in Fig. 2. The choice of
S = 0.2 is to ensure that we are in the quantum spin liq-
uid phase,13 and additionally serves to provide continuity
with previous work.53

We begin with the finite-temperature DSF results

shown in Fig. 4 for the q = 0 Ansatz along the Γ-M-K-Γ
high-symmetry lines at low temperatures T ≤ 0.1J . Even
though at zero-temperature there is no spectral weight at
all below the spin gap in the DSF, we see that even at
very small temperature T = 0.01J there is already non-
negligible spectral weight filling up the spin gap continu-
ously down to negative frequencies. This spectral weight
arises from the first three terms in (32), which completely
vanish at T = 0J . Physically in an INS setup, this
means that due to thermal excitations, processes exist
where the incoming neutron and an excited spinon im-
part (absorb) energy on (from) a second spinon, which
gives rise to weight in the DSF at positive (negative)
frequencies that are smaller than the spin gap in magni-
tude. Also, this can alternatively mean that two excited
spinons impart energy on the incoming neutron, which
contributes weight only at negative frequencies ω ≤ −2∆
in the DSF. Even though it seems that below the spin gap
the DSF is homogeneous over momentum at T = 0.01J ,
Fig. 5 shows that at this temperature at fixed frequency
ω = 0.1J , the DSF has a rich structure with minimum
at the Γ point (kx, ky) = (0, 0) and maximum at the

M point (kx, ky) = (0, 2π/
√

3), and with the K point

(kx, ky) = (2π/3, 2π/
√

3) being of an intermediate spec-
tral weight. This is remarkably similar to the INS mea-
surement of Han et al. at T ∼ J/100 and ω ∼ J/10 in
Fig. 1(c) of Ref. 24. However, unlike their result, we do
not find that the DSF is constant as a function of fre-
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FIG. 5. (Color online). The dynamic spin structure factor over the extended Brillouin zone at finite temperature and fixed
frequency ω = 0.1J for the q = 0 Ansatz. All results exhibit a six-fold rotation symmetry around the Γ point due to time-
reversal invariance. Interestingly, the DSF exhibits a rich structure at T = 0.01J , where it is reminiscent of the experimental
result in Fig. 1(c) in Ref. 24 at an energy roughly an order of magnitude below J .

quency. In fact, around the spin gap, the DSF is about
three orders of magnitude larger than at ω = 0.1J .

As the temperature is increased to T = 0.02J , the
spectral weight around ω = 0.1J is already larger by
almost a factor of three from what it is at T = 0.01J as
can be seen in Figs. 4 and 5. Interestingly, the DSF at
ω = 0.1J in Fig. 5 shows a notable change at T = 0.02J
compared to T = 0.01J , whereas the maximum at the
M point in the latter now shows a hexagram structure of
lower spectral intensity. A similar hexagram structure of
yet lower intensity also appears at the Γ point.

At T = 0.05J , the spectral weight around ω = 0.1J is
over two orders of magnitude larger than at T = 0.01J
at the same frequency, whereby the signal in the DSF
around zero frequency shown in Fig. 4 compares in weight
to that above the spin gap in certain regions. Interest-
ingly, we see that at ω = 0J the weight concentrates at
the Γ and M points even though the highest-intensity
point over the whole DSF is at the K point at roughly
ω = 0.5532J . Note that at zero temperature, there is no
weight at all at the Γ point, and this is due to the fact
that the ground state has a total spin of zero. At finite
temperature, there are thermal excitations and the sys-

tem does not have zero total spin. The DSF at ω = 0.1J
for this temperature is also given in Fig. 5, where its
structure is similar to that at T = 0.02J .

As the temperature is increased to T = 0.1J , Γ be-
comes the highest-intensity point in the DSF, and the M
point at zero frequency overtakes in intensity the K point
at ω = 0.5532J . Moreover, it can be seen that the DSF
seems to be splitting into three distinct separate regions,
one at positive frequency, a second at negative frequency,
and a third region around ω = 0J . From (32) it is easy
to determine which terms contribute to each region. The
first term in (32) is responsible for the DSF weight at
negative frequencies, and this becomes more prominent
with higher temperature, as the spinons are more ther-
mally excited and hence it is more likely that two spinons
impart their energy on the incoming neutron. The second
and third terms of (32) correspond to processes where a
neutron and an excited spinon impart (absorb) energy on
(from) a second spinon, leading to the extended region
around zero frequency in the DSF. This contribution also
grows with temperature. The DSF at ω = 0.1J shown
in Fig. 5 is also significantly different from that shown
at lower temperatures. We remark that at this temper-
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FIG. 6. (Color online). Same as Fig. 4 but for the
√

3×
√

3 Ansatz.
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q = 0 (top panel) and

√
3 ×
√

3 (bottom panel) Ansätze.
Unlike at lower energies (cf. Figs. 5 and 7), the DSF changes
insignificantly and is still almost the same up to T = 0.1J .

ature, the spin density is still small enough such that
interactions may be neglected and SBMFT therefore re-
mains valid, but as the lower panel of Fig. 3 clarifies, here
we are in a regime where the spinon density is increas-
ing rapidly, and thus SBMFT cannot be fully trusted at
any higher temperatures. Indeed, this three-region struc-
ture of the DSF becomes even more prominent at higher
temperatures. A discussion thereof is provided in Ap-
pendix B.

Note that all the structures in Fig. 5 exhibit a six-
fold rotation symmetry around the Γ point due to the
symmetric nonchiral nature of the q = 0 Ansatz where
time-reversal symmetry is preserved. In the case of chi-
ral Ansätze such as cuboc1,69 the DSF displays time-
reversal symmetry breaking through a reduction of the
sixfold rotation symmetry around the Γ point to a three-
fold one, whereas the static spin structure factor (SSF)
is always invariant under k → −k.53 For the latter, see
Appendix C for examples.

In addition to our results for the q = 0 Ansatz, we
also calculate in Fig. 6 the DSF for the

√
3×
√

3 Ansatz
along the Γ-M-K-Γ high-symmetry lines. The same be-
havior manifests itself as in the case of the q = 0 Ansatz.
As temperature is increased, the spin gap of the DSF is

rapidly filled with spectral weight even when the tem-
perature is much lower that the spin gap itself. We also
present the DSF for the

√
3 ×
√

3 Ansatz at fixed fre-
quency ω = 0.1J in Fig. 7, where we see that, just as in
the case of the q = 0 Ansatz, the structure of the DSF is
very rich even at very low T , and it changes noticeably
as the temperature is increased. Also as in the case of
the q = 0 Ansatz, at T = 0.1J a three-region structure
emerges in the DSF seen in Fig. 6. This facet is further
discussed in Appendix B. At zero temperature, the DSF
of the

√
3 ×
√

3 Ansatz has its highest intensity at the
M point, and yet with increasing temperature, we see
that at ω = 0J the K point has more weight than the M
point. This is similar to the case of the q = 0 Ansatz
but with the points interchanged. We remark that even
though it is relatively easy to tell both Ansätze apart
from their DSF at the lower temperatures, the distinc-
tion is much less obvious at higher temperatures. Indeed,
in Appendix B the DSF is basically identical for both
at T = 0.19J when SBMFT implies a phase close to a
trivial paramagnet, but the theory is unreliable at such
high temperatures due to the significant spinon density;
cf. bottom panel of Fig. 3.

In Fig. 8, we show the DSF at T = 0.01J at high
frequency for both Ansätze. Once again, the DSF ex-
hibits six-fold rotation symmetry around the Γ point due
to time-reversal symmetry. We note that we also calcu-
late this DSF at higher temperatures T ≤ 0.1J but we
do not present these results as they look almost iden-
tical to their T = 0.01J counterparts besides a faint
smoothening effect. As a further probe of the frequency
dependence in the DSF, we plot it for each Ansatz in
Fig. 9 for the K and M points over the frequency range
ω/J ∈ [−1, 1]. In accordance with our description above,
we see that the spectral weight around zero frequency is
much smaller than at the spin-gap energy for T = 0.01J ,
although nonnegligible given our numerical accuracy and
the rich structures in Figs. 5 and 7. However, the spin gap
quickly fills up with temperature, with a significant zero-
frequency peak already at T = 0.02J for the M point
in both Ansätze. By T = 0.05J , the spectral weight
around the zero-frequency region is almost of the same
order as that at the spin-gap energy. We again see the
three-region structure forming in the DSF at T = 0.1J ,
which we have already discussed. Also as previously men-
tioned, we see that even though for the q = 0 (

√
3×
√

3)
Ansatz the K (M) point is always the highest in spec-
tral weight over the entire DSF at very low temperature,
as the temperature is raised, the zero-frequency spectral
weight builds more intensely at the M (K) point. It is
also worth mentioning that the frequency-dependent na-
ture of the DSF as shown in Fig. 9 is in contrast to INS
measurements24 that show the DSF to be constant as
a function of ω – apart from the peak at the Γ point,
which most likely is due to dirt in the sample. Nev-
ertheless, such ω-dependence can be vastly removed by
including spinon-vison interactions that lead to a struc-
tureless DSF.25 In fact, in Ref. 25 spinon-vison interac-
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FIG. 9. (Color online). The DSF for the Ansätze under consideration at the K and M points as function of frequency. The
spin gap shows rapid filling with temperature.

tions do not succeed in completely removing an onset in
the DSF, where one still remains at low frequency. Our
results show that this onset is completely removed even
at quite low temperatures. Therefore, we expect that a
finite-temperature extension of Ref. 25 would bring the
numerical and experimental results for the DSF to great
agreement. This is beyond the scope of the current paper,
however, and we leave it open for future work. We sum-
marize the finite-temperature contribution to the DSF in
Table I. Even though the contribution is very small for
T = 0.01J , we find that it is more than four percentage
points at T = 0.05J where SBMFT is expected to still
be reliable.

From a different point of view, our results rely on an
SBMFT self-consistently determined spinon gap that is
known to be an overestimate of its actual physical value.
In fact, in Ref. 25 this is taken into account by setting the
gap to a value smaller than its self-consistent result. In
our case, this is something that we can also do in princi-
ple. For example, if we are at temperature T and decrease
the gap by a factor of two, we would see the same level
of spin-gap filling happening originally at 2T ; cf. (32).
This in principle would bring our results qualitatively
even closer to the measurements of Ref. 24. Similarly,
our results nontrivially depend on the value of S, which
we have set to 0.2 due to continuity with previous work
and to ensure that we are deep in the quantum regime.
Indeed, if we increase S, this would actually decrease our

TABLE I. Self-consistently calculated spin gap 2∆ for the q =
0 SBMFT Ansatz on the AFKM as a function of temperature,
along with the contribution percentage f to the DSF from
energies ω < 2∆.

T/J 0 0.01 0.02 0.05 0.1
A 0.26269 0.26269 0.26268 0.26058 0.23357
−B 0.05729 0.05729 0.05730 0.05682 0.04373
λ 0.41268 0.41268 0.41270 0.41319 0.40498

2∆/J 0.26296 0.26458 0.26480 0.28851 0.40188
f(%) 0 5.79× 10−5 4.34× 10−2 4.32 30.57

spinon gap,13,71 eventually closing the gap and forming a
condensate as long-range order emerges. Therefore, our
results would be even further enhanced at larger S where
a smaller finite spinon gap arises.

Importantly, we note that we have checked that our
results obey the sum rule57 (see Appendix C), and addi-
tionally verified that the finite-temperature DSF satisfies
the relation of detailed balance (for an example, see Ap-
pendix D).

V. CONCLUSION AND OUTLOOK

In conclusion, we have analytically derived and nu-
merically calculated in the framework of Schwinger-boson
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mean-field theory the static and dynamic spin structure
factor at low temperatures of the spin-1/2 antiferromag-
netic Heisenberg kagome model for two prominent sym-
metric Ansätze, the q = 0 and the

√
3×
√

3. Our numer-
ical results show that the structure factors change quali-
tatively with increasing temperature, where the spin gap
rapidly fills up with temperature. Moreover, this popu-
lation of the spin gap in the DSF occurs already at tem-
peratures more than an order of magnitude smaller than
the spin gap itself, and before any significant changes
in the mean-field parameters have occured, or the spinon
density has nontrivially increased. This happens because
there are terms in the low-frequency structure factor that
are suppressed at finite temperatures by only exp(−∆/T )
and is thus a clear signature of deconfinement of spinons.
This may explain in part the results of INS experiments24

where there is no onset of the two-spinon continuum even
at temperatures of the order of J/100. A question that
immediately presents itself in the wake of our results is
whether finite temperature can bring full agreement be-
tween the theoretical results of Punk et al. in Ref. 25 and
the experimental measurements of Han et al. in Ref. 24.
Indeed, our results show that finite temperature com-
pletely removes any sharp onset in the DSF down to neg-
ative frequencies, but the DSF is still clearly frequency-
dependent. The inclusion of spinon-vison interactions in
Ref. 25 leads to a DSF that is more or less structure-
less and flattened at low energies, but that still exhibits
an onset at low frequencies. Hence, an extension of this
study to finite temperature may significantly advance the
agreement between theory and experiment. We have also
discussed that since the SBMFT self-consistent spinon
gap is actually larger than its physical value, we can use
a smaller value in our numerical simulations such that
the spin gap fills up more rapidly in the DSF at a given
temperature, thereby bringing our results closer to what
is observed experimentally in Ref. 24 even without in-
cluding spinon-vison interactions.

We have additionally discussed the shortcomings of
SBMFT at high temperatures, and explained how this
leads to a three-region structure in the DSF due to the
system spectrum approaching a quasi-elastic profile. The
spinon density can be used as a guide as to when SBMFT
is reliable, because so long as the density of spinons is
very small, then interactions can be effectively neglected
rendering SBMFT a good description of the system. As
temperature is raised, the spin density rapidly rises, and
then SBMFT results are no longer accurate. It would be
especially interesting to extend SBMFT in order to be
able to account for high temperatures where the nearest-
neighbor correlations disappear. This would give us a
platform to compare SBMFT results to those obtained

in NLCE54 for temperatures T ≥ J/4, which is above
what SBMFT can reliably describe. Another interesting
study would be the behavior of chiral Ansätze at finite
temperature, where it is expected that there would be a
finite-temperature phase transition from a time-reversal
symmetry broken phase at low temperature to a time-
reversal symmetric phase at high temperature. This is
the subject of an ongoing study by the current authors.

We here emphasize that the main conclusion of our
work – namely that at finite temperature the subgap
spectral weight is suppressed only by exp(−∆/T ) due to
spinon deconfinement – would still hold for other Ansätze
than the ones discussed in this work. Indeed, as previ-
ously mentioned, a more accurate description of herbert-
smithites would involve DM interactions. In SBMFT,
this still involves a gapped Z2 spin liquid phase,36 and
thus our qualitative result will still hold.

Finally, it is worth mentioning that this work, in using
SBMFT, inherently assumes that the AFKM spin liquid
phase is gapped. However, our results indicate that at
finite temperature the debate over whether this phase is
gapped or gapless may become irrelevant. Our results
show that even at low temperatures there is nontriv-
ial contribution to the DSF. Therefore, inelastic neutron
scattering experiments would need to be at very small
temperatures and very small energies – both very chal-
lenging limits26 – in order to truly ascertain whether the
AFKM QSL is gapped or gapless. We also emphasize
that we are not saying that our results would be the en-
tire explanation for the observed spectral weight at low
energies (impurities could play a role, etc) but our results
have to be taken into account if this is really the physics
of a gapped spin liquid.
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Appendix A: Exact expressions for DSF terms

Due to their length, the full expressions of the terms
in (32) are provided here. The term responsible for pro-
cesses where two thermally excited spinons impart energy
on an incoming neutron is given by
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FIG. 10. (Color online). The dynamic spin structure factor for the q = 0 (top panels) and the
√

3×
√

3 (bottom panels) Ansätze
along the Γ-M-K-Γ high-symmetry lines at temperatures T/J = 0.15 and 0.19. The rich structure at lower temperatures is
reduced to three high-intensity lines around ω = 0 and ±2λ at these high temperatures. This is due to the system approaching
a scenario where all spinon bands are degenerate with eigenvalue λ. SBMFT results are not fully reliable here, as the spinon
density is not small (cf. Fig. 3).
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A r,s,m,n
k,q =U∗rm(q)Xrn(k + q) [X∗sn(k + q)Usm(q)− Vsm(q)Y ∗sn(k + q)]

+ 2U∗rm(q)V ∗rn(−k− q) [Vsm(q)Usn(−k− q) + Vsn(−k− q)Usm(q)]

+ 2Yrm(−q)Xrn(k + q) [X∗sm(−q)Y ∗sn(k + q) +X∗sn(k + q)Y ∗sm(−q)]

+ Yrm(−q)V ∗rn(−k− q) [Vsn(−k− q)Y ∗sm(−q)−X∗sm(−q)Usn(−k− q)] . (A1)

This is the term that is most suppressed in (32) with
inverse temperature. The term that accounts for an in-

coming neutron imparting energy on two spinons, which
is the only term that occurs at zero temperature, reads

Dr,s,m,n
k,q =X∗rm(q)Urn(k + q) [U∗sn(k + q)Xsm(q)− Ysm(q)V ∗sn(k + q)]

+ 2X∗rm(q)Y ∗rn(−k− q) [Ysm(q)Xsn(−k− q) + Ysn(−k− q)Xsm(q)]

+ 2Vrm(−q)Urn(k + q) [U∗sm(−q)V ∗sn(k + q) + U∗sn(k + q)V ∗sm(−q)]

+ Vrm(−q)Y ∗rn(−k− q) [Ysn(−k− q)V ∗sm(−q)− U∗sm(−q)Xsn(−k− q)] . (A2)

The terms of the DSF responsible for processes where a
thermally excited spinon and the incoming neutron im-

part energy on a second spinon, or a thermally excited
spinon imparts energy on a second spinon and the incom-
ing neutron are

Br,s,m,n
k,q =U∗rm(q)Urn(k + q) [U∗sn(k + q)Usm(q)− Vsm(q)V ∗sn(k + q)]

+ 2U∗rm(q)Y ∗rn(−k− q) [Vsm(q)Xsn(−k− q) + Ysn(−k− q)Usm(q)]

+ 2Yrm(−q)Urn(k + q) [Y ∗sm(−q)U∗sn(k + q) + V ∗sn(k + q)X∗sm(−q)]

+ Yrm(−q)Y ∗rn(−k− q) [Ysn(−k− q)Y ∗sm(−q)−X∗sm(−q)Xsn(−k− q)] , (A3)

C r,s,m,n
k,q =X∗rm(q)Xrn(k + q) [X∗sn(k + q)Xsm(q)− Ysm(q)Y ∗sn(k + q)]

+ 2X∗rm(q)V ∗rn(−k− q) [Xsm(q)Vsn(−k− q) + Usn(−k− q)Ysm(q)]

+ 2Vrm(−q)Xrn(k + q) [U∗sm(−q)Y ∗sn(k + q) +X∗sn(k + q)V ∗sm(−q)]

+ Vrm(−q)V ∗rn(−k− q) [Vsn(−k− q)V ∗sm(−q)− U∗sm(−q)Usn(−k− q)] . (A4)

The two terms (A3) and (A4) are the ones responsible
for the rapid filling of the spin gap in the DSF with tem-
perature, while terms (A1) and (A2) contribute to the
spectral weight in the DSF at ω ≤ −2∆ and at ω ≥ 2∆,
respectively.

As mentioned in the main text, at high temperatures
the term (A3) dominates since the Bogoliubov matrices
V and X are negligile. This gives rise to the dominance
of the region around ω = 0J at higher temperatures as
seen in Fig. 10 in Appendix B below. Nevertheless, V
and X are still finite, and this leads to two thin dimmer
regions at around roughly ω = ±2λ in Fig. 10. It is to be
noted that at such high temperatures where the spinon
density is no longer small (cf. Fig. 3), SBMFT results

cannot be fully trusted.

Appendix B: DSF at highter temperatures

As discussed in the main text, at higher temperatures
where the spin density is no longer small enough, inter-
actions between spinons cannot be faithfully neglected,
and thus SBMFT is no longer reliable. Here we provide
SBMFT results for the DSF at high temperatures that
we do not expect to be reliably described by SBMFT.

In Fig. 10, we show the DSF at T = 0.15J for each
Ansatz, where now the major weight of the DSF is around
ω = 0J and small momenta around k = 0, with the
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FIG. 12. (Color online). S(k, ω) (top panel) and
exp(ω/T )S(k,−ω) (bottom panel) for the q = 0 Ansatz with
T = 0.1J and ω = 0.5908J . Both results compare very well
as per the relation of detailed balance (D1).

regions narrowing and becoming visibly distinct com-
pared to the DSF results for T = 0.1J shown in Figs. 4
and 6. This indicates that the spectrum starts to become
more quasi-elastic with increasing temperature. This be-
comes even clearer when the temperature is raised to
T = 0.19J , where now the DSF shows three distinct
thin high-intensity lines, with the weight focused dispro-
portionately at the Γ point. This can be understood
by looking at the self-consistent parameters as function
of temperature in Fig. 2. At high temperatures such
as T = 0.19J , the system has all its spinon bands al-
most degenerate with eigenvalue λ, since A,B ≈ 0. This
means that the Bogliubov matrices V,X ≈ 03, and thus
only U and Y are finite. One thus directly sees that this
leads to all terms being negligible except for the second
in (32), which contains only elements of U and Y (cf. Ap-
pendix A). This term contributes only around ω = 0J ,
because εmq,↑ ≈ εnk+q,↑ ≈ λ at this high temperature. The
other terms, though negligible, still lead to small contri-
butions around zero frequency and ω = ±2λ. Thus, we
see that with higher temperature, the spectrum is quasi-

elastic, meaning that spins are more or less completely
noninteracting, which is the expected result in the large-
temperature limit of a paramagnet.

Another interesting point is that at temperatures T ≤
0.1J , the DSF result along the Γ-M-K-Γ high-symmetry
lines looks very distinctive from one Ansatz to the other,
while at T/J = 0.15 and 0.19 one cannot easily separate
the Ansätze from their DSF. Thus, the SBMFT Ansatz
loses its characteristic features at very high temperatures.

We do not go beyond T = 0.19J , because at higher
temperatures T ≥ 0.2J , the bond mean fields A = B = 0,
and this is an indication that SBMFT completely fails to
describe such a high-temperature disordered phase where
nearest-neighbor correlations are absent.56,57

Appendix C: SSF results

The SSF, which is the integral over frequency space of
the DSF, is given by

S(k) =

∫ ∞
−∞

dω S(k, ω), (C1)

and in Fig. 11 we show it for the q = 0 and
√

3 ×
√

3
Ansätze at temperatures T/J = 0.01 and 0.1. The SSF
shows little change with temperature in terms of its char-
acteristic features, save for a small smoothening effect,
thus why we do not show it for intermediate tempera-
ture values.

As a sanity check, we have moreover numerically veri-
fied that our SSF results satisfy the sum rule57

1

N

B.z.∑
k

S(k) =
3

2
S(S + 1). (C2)

This is also supplemented by a further check, that of
detailed balance discussed in Appendix D.

Appendix D: Detailed balance

Detailed balance is a relation of the DSF,72 and is given
by

S(k, ω) = S(k,−ω)eω/T . (D1)

We numerically check that it is satisfied, and here we
provide an example in Fig. 12 for the q = 0 Ansatz at
T = 0.1J and ω = 0.5908J showing that (D1) is indeed
satisfied.
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