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Zusammenfassung

In dieser Arbeit wird Quantenelektrodynamik in einem intensiven ebene Wellen-Feld im
Rahmen der Lichtkegel-Quantisierung untersucht. In diesem Kontext werden Vakuumdop-
pelbrechung und -dichroismus in intensiven Laserfeldern betrachtet. Insbesondere wird ein
Aufbau analysiert, in dem Probe-gamma-Photonen mithilfe von Compton-Rückstreuung
erzeugt werden, durch einen intensiven Laserpuls propagieren, und anschließend durch
Paarerzeugung in materie detektiert werden. Die Polarisierung des Photonenstrahls wird
durch Stokes-Parameter charakterisiert und deren Änderung aufgrund der Vakuumdoppel-
brechung und des Vakuumdichroismus wird ermittelt. Die Größe der Polarisationseffekte
wird für zukünftige Hochleistungs-Laseranlagen beurteilt. Optimale Parameter und Re-
gimes werden identifiziert und sowohl die erforderliche Statistik als auch die Dauer des
Experimentes, die nötig sind, um die Vorhersagen der Quantenelektrodynamik zu bestäti-
gen, werden abgeschätzt. Des Weiteren wird ein Ansatz zur Behandlung des Bispinor-Teils
der Streuamplituden in einem ebene Wellen-Feld eingeführt. Für die Vertex-Funktionen,
die aus den Wechselwirkungstermen des Lichtfront-Hamiltonoperators entstehen, werden
vereinfachte Ausdrücke gefunden. Es wird demonstriert, dass mit der entwickelten Technik
die Berechnung der Gamma-Matrix Spuren für Streuung in externen ebene Wellen-Feldern
in relativ einfacher Weise durchgeführt werden kann und dass das finale Ergebnis in kom-
pakter Form geschrieben werden kann.

Abstract

Quantum electrodynamics in an intense plane-wave field is considered within the frame-
work of light-cone quantization. In this context, high-energy vacuum birefringence and
dichroism in an intense laser field are investigated. In particular, a setup is analyzed,
in which probe gamma photons are generated via Compton backscattering, propagate
through an intense laser pulse, and are subsequently detected via pair production in mat-
ter. The polarization of the photon beam is characterized by the Stokes parameters, and
their change due to vacuum birefringence and dichroism is determined. The magnitude
of the polarization effects is assessed for upcoming high-power laser facilities. Optimal
parameters and regimes are identified, and the required statistics and the duration of the
experiment in order to confirm the prediction of quantum electrodynamics are estimated.
Furthermore, an approach for the treatment of the bispinor part of scattering amplitudes
in a plane-wave field is introduced. Simplified expressions for the vertex functions, arising
from the interaction terms of the lightfront Hamiltonian, are obtained. It is demonstrated
that with the developed technique the evaluation of the gamma-matrix traces for scatter-
ing in an external plane-wave field can be performed in a relatively straightforward way
and the final results can be written in a compact form.
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Units and notation

Throughout the thesis, Heaviside and natural units are employed, i.e., ε0 = ~ = c = 1.

Greek letters (µ, ν, . . . ) denote four-dimensional vector components. In the instant form,
they take values 0, 1, 2, 3. In the front form, they take values +, –, 1, 2.

Latin letters starting with i (i, j, k, . . . ) denote two-dimensional transverse vector com-
ponents in the front form. They take values 1, 2. Occassionally, those letters are used for
other quantities that have two different components.

Three dimensional space vectors in the instant form are denoted by bold symbols, i.e.,
a = (a1, a2, a3). Two dimensional transverse vectors in the front form are denoted by bold
symbols with an upper index ⊥, i.e., a⊥ = (a1, a2).

Metric tensor is given by gµν = (1,−1,−1,−1) in the instant form. For the front form, it
is defined in Section 1.1.

If a sum over indices is not written explicitly, the Einstein summation rule is assumed for
both greek and latin indices, only if one of the letters is an upper index and the other one
is a lower index.

The scalar product of two four-vectors aµ and bµ is denoted as ab.

The Levi-Civita symbol εκλµν is defined with ε0123 = 1 in the instant form, and ε+−12 = −1
in the front form. The Levi-Civita symbol εij is defined with ε12 = 1.

The dual tensor is defined as (∗F )µν = εµνστFστ/2.

Gamma-matrix indices are treated as four-vector indices, i.e., γa = γµaµ.

A star superscript denotes a complex conjugate quantity, e.g., f∗(x) is complex conjugate
to f(x). Analogously, a dagger (†) denotes a Hermitian conjugate quantity.

A bar denotes a Dirac conjugate quantity, e.g., ψ = ψ†γ0 for a vector and Γ = γ0Γ†γ0 for
a matrix.
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Units and notation

Physical constants:

Speed of light: c = 2.998× 1010 cm/s.

Elementary charge: e = 4.803× 10−10 CGS electrostatic units.

Electron mass: m = 511.0 keV/c2.

Reduced Planck constant: ~ = 6.582× 10−16 eV · s.

Fine structure constant: α = 1/137.0.

Reduced Compton wavelength: λC = 3.862× 10−11 cm.

Classical electron radius: re = 2.818× 10−13 cm.
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Introduction

The Standard Model of particle physics, with its framework of quantum field theory,
has been incredibly successful over the years, particularly at the perturbative level. In
fact, the idea of pointlike particles, being fermions, interacting via the exchange of gauge
bosons, and the representation of this interaction as a sequence of graphs, is what shapes
our basic intuition about how the world is organized at the subatomic scale.

The Standard Model, however, does not embrace and explain all the knowledge, that we
have about particle physics. Some facts simply do not fit into the formulation of the Stan-
dard Model, some others are parts of the model, but do not find a rationalization within
it. One of the canonical examples is an experimental evidence, that neutrinos oscillate
and therefore have nonzero masses [Super-Kamiokande, 1998; SNO, 2001, 2002], the fact
that does not combine naturally with the coherent picture of the Standard Model. A re-
lated phenomenon is the quark flavor mixing. It is indeed incorporated into the Standard
Model via the Cabibbo-Kobayashi-Maskawa (CKM) matrix [Cabibbo, 1963; Kobayashi
and Maskawa, 1973], however, the components of the matrix are external parameters, not
derived from the theory.

One of the ways to understand our theory deeper and, hopefully, to get some insight
into the current problems within it, is to go beyond the perturbative approach. Nonlinear
phenomena, which, from the theoretical point of view, require a resummation of the per-
turbation series, allow one to test the theory at the so-called intensity frontier. Quantum
electrodynamics (QED) in an intense laser field is an example of a nonlinear quantum field
theory, which, on the one hand, can be studied in a relatively tractable way, and on the
other hand, is testable with current or near-future experimental capabilities.

Since 1950’s, when the first amplifiers of electromagnetic radiation via stimulated emis-
sion for microwaves (masers) were devised and built, and later, for visible light, analogous
devices (lasers) were constructed, the laser technology has made a huge leap forward. Due
to the invention of the chirped pulse amplification [Strickland and Mourou, 1985] and
optical parametric chirped pulse amplification [Piskarskas et al., 1986], nowadays, laser
pulses of power up to several petawatt (PW) are produced in the labs [Vulkan; Sung et al.,
2017] and 10-PW facilities are starting their operation [ELI-NP]. The upcoming 10-PW
laser facilities are expected to deliver focused intensities up to I ∼ 1023 W/cm2 [Di Piazza
et al., 2012; Jeong and Lee, 2014; Danson et al., 2015].

Such great intensities indeed require taking nonlinear effects into account. This can
be seen as follows. The strength of the interaction of an electron with a laser field can be
characterized by the classical intensity parameter (for simplicity, we consider the case of
a linearly polarized laser pulse) [Ritus, 1985; Di Piazza et al., 2012]

ξ = |e|E0
mω0

≈ 0.7495 1
ω0[eV]

√
I[W/cm2]

1018 , (1)
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Introduction

where E0 is the peak electric field strength and ω0 is the typical angular frequency of the
field (e < 0 and m are the electron charge and mass, respectively; here and below we use
units with ~ = c = ε0 = 1).

If ξ � 1, the probability for an electron to interact with n laser photons scales as ξ2n

[Ritus, 1985; Di Piazza et al., 2012]. The scaling ξ2n means that, when considering a pro-
cess for QED in a laser field, the corrections to the leading-order diagrams are supressed,
and the interaction with the laser field can be treated perturbatively.

On the other hand, if ξ & 1, higher-order corrections become sizable and must be taken
into account. For optical frequencies (ω0 ∼ 1 eV), the regime ξ & 1 implies intensities
I & 1018 W/cm2 [see Eq. (1)], which are already accessible. In essense, the parameter
ξ is a typical number of laser photons that interact with a quantum system on a typical
scale — (reduced) Compton wavelength λC = 1/m. If ξ & 1, the interaction happens with
several laser photons involved, and we need to consider the nonlinear regime.

An exciting prediction of QED, which has not been confirmed yet in a laboratory
experiment, but which could potentially be confirmed with an experimental access to the
nonlinear regime, is vacuum birefringence.

In the realm of classical electrodynamics the electromagnetic field experiences no self-
interaction in vacuum, as a result, the superposition principle holds [Landau and Lifshitz,
1987]. In QED, however, a finite photon-photon coupling is induced by the presence of
virtual charged particles in the vacuum [Berestetskii et al., 1982]. Due to the finite photon-
photon coupling, the vacuum, subjected to an external field, behaves like a birefringent
medium. This idea was initially proposed by Toll (1952), and then developed by other
groups [Klein and Nigam, 1964; Baier and Breitenlohner, 1967; Bialynicka-Birula and
Bialynicki-Birula, 1970].

An experimental observation of vacuum birefringence has been a great challenge, due
to the relative smallness of the light-by-light scattering cross section in the low-energy
regime. Laboratory experiments like BFRT [Cameron et al., 1993], BMV [Cadène et al.,
2014], PVLAS [Della Valle et al., 2016], and Q&A [Chen et al., 2007] have so far employed
magnetic fields to polarize the vacuum and optical photons to probe it, and they have
not reached the required sensitivity. Recent astronomical observation results seem to
confirm the existence of vacuum birefringence [Mignani et al., 2017] (see also the remarks
in [Capparelli et al., 2017; Turolla et al., 2017]). However, a direct laboratory-based
verification of this fundamental property of the vacuum is still missing.

As the light-by-light scattering cross section attains its maximum at the pair-production
threshold [Berestetskii et al., 1982], it is natural to consider this regime to probe vacuum
birefringence [Dinu et al., 2014; Ilderton and Marklund, 2016; Nakamiya and Homma,
2017; King and Elkina, 2016]. For a photon of energy k0 = ω, colliding head-on with
a linearly-polarized laser pulse of intesity I, a typical center-of-momentum energy of the
collision (in the units of the electron mass m) can be characterized by the quantum non-
linearity parameter

χ = 2ωω0
m2 ξ ≈ 0.5741ω [GeV]

√
I [W/cm2]

1022 . (2)

Gamma photons with energies ω & 1 GeV are obtainable with the use of Compton
backscattering [Berestetskii et al., 1982; Ginzburg et al., 1984]; such energies have been
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reached, e.g., at SPring-8 [Muramatsu et al., 2014] and HIγS [Weller et al., 2009] facili-
ties. Therefore, the regime χ ∼ 1 is attainable in future laser-based vacuum birefringence
experiments.

From the theoretical point of view, the regime χ & 1 is interesting and somewhat
intricate. If χ & 1, electron-positron photoproduction becomes sizable, and thus, the
vacuum acquires dichroic properties, and moreover, in this regime, the vacuum exhibits
anomalous dispersion [Becker and Mitter, 1975; Baier et al., 1976; Ritus, 1985; Heinzl and
Ilderton, 2009; Dinu et al., 2014].

A study of vacuum birefringence and dichroism in an intense laser field with high-
energy photons and the evaluation of the experimental prospectives to observe these effects
at upcoming laser facilities is one of the major topics of my thesis.

Another challenge for theoretical QED in an intense laser field is tree-level second-
order processes. Already at this level calculations are rather nontrivial with respect to the
evaluation of the traces of the gamma-matrix products [Hartin, 2006], and also complicated
with respect to the numerical calculation of the integrals. For the traces, the direct use
of software packages like Feyn Calc [Mertig et al., 1991] would normally produce results,
which are difficult to deal with. A full numerical evaluation is also possible, however,
computationally more demanding, and provides less insight.

It turns out, that the evaluation of the bispinor part for the scattering diagrams in
an intense laser field can be significantly simplified, if treated with the symmetry of the
problem in mind. A simple but powerful idea is that the way, how we parametrize the
spin dynamics of the system under consideration, should account for the presence of the
laser field.

As was pointed out in his seminal paper by Dirac (1949), there are three forms of
relativistic Hamiltonian dynamics (in fact, for theories, invariant under full Poincaré group
transformations, there are two more possibilities, they are usually not taken in account
though, due to the smallness of their stability group; for a review and details, see the
lectures by Heinzl in [Latal et al., 2001]). One of them is the instant form, in which the
parametrization of space-time is done in the same manner as in nonrelativistic physics,
with time x0 and space vector x = (x1, x2, x3). This is the form, which is commonly used
in relativistic physics.

Another form is the one which we will be interesed in, it is the front form. In the
front form, the surface of a constant “time” τ is defined as a light-like surface, e.g., τ =
x0 + x3 = const.

Upon defining the front-form time, as well as the corresponding space coordinates,
which together form the light-cone coordinate system, one can construct a Hamiltonian,
quantize it and consider quantum field theory in the front form. This approach, known
as light-cone or lightfront quantization, has been applied to QED in vacuum [Kogut and
Soper, 1970; Bjorken et al., 1971; Mustaki et al., 1991], other gauge theories [Brodsky
et al., 1998; Srivastava and Brodsky, 2002], superstring theory [Metsaev et al., 2001],
and has become one of the tools for studing nonperturbative quantum chromodynamics
[Wilson et al., 1994; Brodsky, 2002; Brodsky et al., 2015].

With respect to QED in an intense laser field, the laser field itself is customary treated
as a plane wave, i.e., the field tensor Fµν is assumed to be dependent on the coordinates xµ
via the scalar product k0x, with kµ0 being the characteristic laser photon four-momentum
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Introduction

(k2
0 = 0). The quantity k0x provides a natural choice for the light-cone time [e.g., if we

take a plane-wave propagating in the negative z-direction, then k0x = ω0(x0 + x3)].
Indeed, the front-form parametrization of space-time is convenient for describing physics

in an external plane-wave field and has been employed in calculations [Neville and Rohrlich,
1971; Mitter, 1975; Meuren et al., 2013]. Recently, also light-cone quantization was ap-
plied for studing some processes in a plane-wave field [Ilderton and Torgrimsson, 2013;
Dinu et al., 2014; Dinu and Torgrimsson, 2018a,b].

What I have found out during my work is that the bispinor part of scattering ampli-
tudes can be conveniently parametrized in the same lightfront fashion. However, in order
for this technique to be successful, one needs to split the interaction Hamiltonian of QED
into the terms, which are exactly the terms which one encounters when employing quan-
tization in the front form. This fact establishes one more relation and seemingly natural
connection between QED in an external plane-wave field and the light-cone quantization
approach.

In the view of what has been said above, I have organized my thesis in the following
way. In Chapter 1 we review light-cone quantization and develop some new ideas in context
of QED in a plane-wave field. The techniques, that we will draw from Chapter 1, could
be obtained in the instant form as well, and we will keep the connection. However, with
the front-form approach, those techniques appear in a natural way and together add up
to a coherent picture.

Chapter 2 is devoted to first-order processes. In particular, we consider electron-
positron annihilation into one photon. This process is a cross channel to nonlinear Comp-
ton scattering and nonlinear Breit-Wheeler process, which are well studied. The evaluation
of electron-positron annihilation into one photon is useful for testing the method that we
possess, and also for understanding how to describe two-particle scattering processes in
an external plane-wave field.

In Chapter 3 we study the vacuum polarization. We review the derivation of the po-
larization operator in a plane-wave field and see, how it can be simplified, if the front-form
approach is applied to the bispinor part. We go on with considering a setup for investigat-
ing vacuum birefringence and dichroism. The setup is based on Compton backscattering
to produce polarized gamma photons and exploits pair production in matter to determine
the polarization state of the probe photon after it has interacted with a linearly polarized
intense laser pulse. As we will see, a significant improvement in the experimental sensitiv-
ity can be achieved by employing circularly polarized probe gamma photons. Assuming
conservative experimental parameters, we find out that, with upcoming technologies, the
quantitative verification of the intense-field QED prediction for vacuum birefringence and
dichroism is feasible with an average statistical significance of 5σ on the time scale of a
few days.

Finally, in Chapter 4 we consider electron-positron annihilation into two photons.
This process may be sizable and important, e.g., for laser-plasma interactions. Up to
now, it has not been thorougly studied. First, we update our understanding of scattering
in an external plane-wave field, that we have gained in Chapter 2. Then, we proceed
with calculating the cross section (the interference terms are not taken into account) and
demonstrate a way to obtain compact results for this process.

18



1

Quantum electrodynamics in an
intense plane-wave field

In this chapter, we introduce important concepts of the front-form approach. Upon
defining light-cone coordinates and light-cone bispinor basis, we review light-cone quanti-
zation in the presence of an external plane-wave field. We proceed with considering the
vertex functions and obtain convenient expressions for them, which will be used in later
chapters. We consider momentum relations in a plane-wave field, and also discuss gauge
invariance of the theory. Finally, we introduce parameters, which will be employed later
for the description of scattering processes.

1.1 Light-cone coordinates

We start by introducing a parametrization of space-time. The front form is usually
parametrized by new time x+ and space coordinate x− in place of x0 and x3, with x1 and
x2 left unchanged [Brodsky et al., 1998]:

x+ = (x0 + x3)/
√

2, x− = (x0 − x3)/
√

2, xi
∣∣
front = xi

∣∣
instant. (1.1)

Here and below i, j, k, l, . . . ∈ {1, 2}. In Eq. (1.1), we use the convention as in [Kogut and
Soper, 1970], other definitions are also used in the literature [Lepage and Brodsky, 1980].

We strive to maintain manifest Lorentz-covariance, therefore we generalize the coor-
dinate system (1.1) by introducing light-cone four-vector basis {ηµ, η̄µ, eµ1 , eµ2} with the
four-vectors of this basis having the following properties [Meuren et al., 2013]:

η2 = η̄2 = 0, ηη̄ = 1, ηei = η̄ei = 0, eiej = −δij . (1.2)

The propeties (1.2) ensure that the four-vectors in the basis {ηµ, η̄µ, eµ1 , eµ2} are linearly
independent, therefore, the basis is complete and an arbitrary four-vector aµ can be written
as

aµ = a+η̄µ + a−ηµ + a1eµ1 + a2eµ2 , (1.3)

where
a+ = aη, a− = aη̄, a1 = −ae1, a2 = −ae2. (1.4)

The metric tensor is given by

gµν = ηµη̄ν + η̄µην − eµ1eν1 − eµ2eν2 , (1.5)
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1 Quantum electrodynamics in an intense plane-wave field

or in the matrix form (we choose the order of the components as +, –, 1, 2):

gµν =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 , (1.6)

Then the scalar product of two four-vectors aµ and bµ reads

ab = a+b− + a−b+ + aibi = a+b− + a−b+ − a⊥b⊥, (1.7)

where a⊥ = (a1, a2) and b⊥ = (b1, b2).

1.2 Light-cone bispinor basis
One of systematic ways of treating the bispinor part is by expanding it in a complete

basis set. The bispinor basis, which is customary used in calculations, is [Halzen and
Martin, 1984]

{1, γ5, γµ, γµγ5, σµν}, (1.8)

where 1 denotes the identity matrix, γµ are Dirac gamma matrices, σµν = (γµγν−γνγµ)/2,
and γ5 = (i/4!)εκλµνγκγλγµγν . Any product Γ of gamma matrices can be decomposed as

Γ = C1 + C5γ
5 + Cµγ

µ + C5µγ
µγ5 + Cµνσ

µν , (1.9)

where
C1 =1

4Tr{Γ}, C5 = 1
4Tr{γ5Γ}, Cµ = 1

4Tr{γµΓ},

C5µ = −1
4Tr{γµγ5Γ}, Cµν = −1

8Tr{σµνΓ}.
(1.10)

An example of the use of the basis (1.8) is the evaluation of polarization tensor in a
plane-wave field by Meuren et al. (2013). The basis (1.8) is also employed, e.g., to describe
polarization states of quarks in hadrons [Barone et al., 2002].

Another approach is to use the basis (1.8) in order to perform the Fierz transformation
[Okun, 1984] and write the total trace as a combination of traces with smaller amount of
gamma matrices each. This approach was investigated by Hartin (2016).

With either of the approaches, the trace evaluation for scattering in a plane-wave
field still remains a very tedious task. As we will see, there is a way to greatly simplify
the challenging evaluation of the bispinor part. For this purpose, in this subsection we
construct a light-cone bispinor basis, which is tailored to our needs. Later, it is shown
how this basis can be used for obtaining compact expressions in a relatively easy way, in
comparison with the previously developed methods.

We start by considering Dirac gamma-matrix algebra on the light cone. Light-cone
gamma matrices are defined as in Eq. (1.4):

γ+ = γη, γ− = γη̄, γi = −γei, i = 1, 2. (1.11)

All possible linear combinations and products of γ+ and γ− will be customary refered to
as longitudinal space, and all possible linear combinations and products of γ1 and γ2 will
be called transverse space.
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1.2 Light-cone bispinor basis

The usual relations for gamma matrices in the instant form, which are written in the
Lorentz-covariant way (see, e.g.,[Berestetskii et al., 1982]), are of course also valid in the
front form, since the light-cone gamma matrices are defined in the Lorentz-covariant way
too. Apart from those, we have the following relations for γ+ and γ−:

γ+γ+ = γ−γ− = 0, γ+γ−γ+ = 2γ+, γ−γ+γ− = 2γ−. (1.12)

The relations (1.12) are easily proved with the use of the general properties (1.2) and the
relation γµγν + γνγµ = 2gµν . For example, for γ+γ+ we have:

γ+γ+ = γµγνηµην = 1
2g

µνηµην = 0. (1.13)

The other properties in Eq. (1.12) are verified in an analogous way.
Going further, we notice that due to g±i = 0, gamma matrices in the transverse space

anticommute with γ±:
{γ±, γi} = 0. (1.14)

The anticommutativity allows us to prove the following relation:

Tr{γi1γi2 . . . γinγ+γ−} = Tr{γi1γi2 . . . γinγ−γ+} = Tr{γi1γi2 . . . γin}. (1.15)

For odd n, all the three traces are zero. For even n, in order to obtain Eq. (1.15), we
exchange one of the matrices γ+ or γ− n times with the transverse gamma matrices and
use the identity γ+γ− + γ−γ+ = 2.

With the obtained relations, we see that a trace of arbitrary number of gamma matri-
ces, if treated on the light cone, is reduced to a trace over gamma matrices in the transverse
space only, so, we can always reduce a problem to essentially a two-dimensional one.

Note also the following identities:

γiγjγi = 0; (1.16)
Tr{γλγµγνγ1γ2γ+} = 4εκλµνηκ, Tr{γλγµγνγ1γ2γ−} = −4εκλµν η̄κ, (1.17)

where for the Levi-Civita symbol εκλµν , we choose ε+−12 = −1, which is consistent with
the choice ε0123 = 1 in the instant form, if we assume the coordinate system, defined by
Eq. (1.1).

As one more step, we define the projectors Λ+ = γ−γ+/2 and Λ− = γ+γ−/2 [Mit-
ter, 1975; Mustaki et al., 1991; Brodsky et al., 1998]. The projectors have the following
properties:

Λ+ + Λ− = 1, Λ+Λ+ = Λ+, Λ−Λ− = Λ−, Λ+Λ− = Λ−Λ+ = 0. (1.18)

The first relation is just the statement γ+γ−+γ−γ+ = 2, and the rest follow directly from
the identities (1.12).

Now, we are ready to construct the light-cone bispinor basis. Since any product of
gamma matrices can be represented as a product with all the transverse matrices on one
side from the longitudinal ones, we seek for the basis having the form of the product
{transverse}× {longitudinal}. In the transverse space there are four linearly independent
combinations: 1, γ1, γ2, γ1γ2. In the longitudinal space there are four linearly independent
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1 Quantum electrodynamics in an intense plane-wave field

combinations as well: γ±, Λ± (the identity matrix is excluded due to Λ+ + Λ− = 1).
Therefore, the 16 matrices{

1, γ1, γ2, γ1γ2
}
×
{
γ+, γ−,Λ+,Λ−

}
(1.19)

exhaust all possible combinations of linearly independent gamma-matrix products and any
product Γ can be represented as

Γ =
∑
a=±

(Ca + Ciaγi + C12
a γ

1γ2)γa +
∑
a=±

(Da +Di
aγi +D12

a γ
1γ2)Λa. (1.20)

The coefficients are given by

C± = 1
4Tr{Γγ∓}, Ci± = −1

4Tr{Γγiγ∓}, C12
± = −1

4Tr{Γγ1γ2γ∓},

D± = 1
2Tr{ΓΛ±}, Di

± = 1
2Tr{ΓγiΛ±}, D12

± = −1
2Tr{Γγ1γ2Λ±}.

(1.21)

Let us conclude this section by demonstrating how the matrices (1.8) can be expressed
via the basis (1.19). Apart from γµ, which are in both bases, the expansion for the
combinations of the matrices in the transverse space via the basis (1.19) immediately
follows from Λ+ + Λ− = 1. We also note that σ+− = Λ− − Λ+ and σ±i = −γiγ±. The
rest of the elements in the basis (1.8) are with γ5, and they are given by

γ5 = −iγ1γ2(Λ+ − Λ−), γiγ5 = iεijγj(Λ+ − Λ−), γ±γ5 = −iγ1γ2γ±, (1.22)

where the Levi-Civita symbol εij is defined with ε12 = 1.

1.3 Classical plane-wave field
When considering a process in an external laser field, in principle, the laser field itself

needs to be treated at quantum level. We assume, however, that the laser field intensity is
high enough and the depletion of the field during a scattering process is small enough, such
that it can be approximated as a classical one [Berson, 1969; Bergou and Varró, 1981]. In
the following, we describe the laser field as a plane wave (not necessarily monochromatic
though), i.e., it is defined by the antisymmetric field tensor Fµν(φ) = −F νµ(φ), where
φ = k0x with kµ0 being the characteristic four-momentum of the field (kµ0k0µ = 0). For a
treatment of the laser field beyond the plane-wave approximation, see [Di Piazza, 2014,
2015, 2016]. For examples of studying electrodynamic processes in an external single-mode
quantized field, see [Bergou and Varró, 1981; Skoromnik et al., 2013].

Let us find a general form for the plane-wave field tensor Fµν(φ). We know that it
satisfies homogeneous Maxwell’s equations [Landau and Lifshitz, 1987]

∂µF
µν = 0, ∂µ(∗F )µν = 0, (1.23)

where (∗F )µν = εµνστFστ/2 is the dual tensor.
We expand the field tensor Fµν(φ) in the basis, which is the product of the light-cone

basis {ηµ, η̄µ, eµ1 , eµ2} with itself. In this basis, ηµ is defined as

ηµ = kµ0 /m, (1.24)
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1.3 Classical plane-wave field

which means that φ = mx+ (the electron mass m is introduced in order to have ηµ
dimensionless). The rest of the four-vectors may be arbitrary, under the conditions (1.2).
Due to Fµν(φ) being antisymmetric, there are at most 6 nonzero linearly independent
coefficients in this expansion.

We impose the condition that Fµν(φ) does not have a constant component, but contains
only a φ-dependent part. Then, from the first of Maxwell’s equations (1.23), it follows
that all the coefficients for the tensor combinations with η̄µ must vanish, and from the
second of Maxwell’s equations (1.23) it follows that also the coefficient for the combination
eµ1e

ν
2 − eµ2eν1 must vanish. Therefore, only two nonzero coefficients are left and the general

form of a plane-wave field tensor can be written as

Fµν(φ) =
∑
i=1,2

fµνi ψ′i(φ), (1.25)

where fµνi = kµ0a
ν
i −kν0aµi , four-vectors aµi define the amplitude of the field in two polarizar-

ion directions (k0ai = 0, a1a2 = 0), and functions ψi(φ) characterize the shape (|ψ′i| . 1,
with the prime denoting the derivative with respect to the function argument). Normally,
we assume that the field vanishes asymptotically: ψ′i(±∞) = 0.

A field tensor Fµν(x) can be expressed via a vector potential Aµ(x) as Fµν(x) =
∂µAν(x)− ∂νAµ(x). We adopt the light-cone gauge [Brodsky et al., 1998], which restricts
Aµ(x) by the condition

A+(x) = 0. (1.26)

Then the vector potential for the field tensor (1.25) can be written as

Aµ(φ) =
∑
i=1,2

aµi ψi(φ). (1.27)

Note that Aµ(φ) in Eq. (1.27) satisfies the Lorenz condition ∂µAµ(φ) = 0.
The choice (1.24) is kept in all the following calculations (with the only exception being

the derivation of the lightfront Hamiltonian in the next section; there we keep a general
light-cone basis). As for the other components, we could introduce the coordinate system
with the plane wave propagating along the z-axis (in the negative direction), such that
our light-cone coordinates are analogous to Eq. (1.1):

x+ = ω0
m

(x0 + x3), x− = m

2ω0
(x0 − x3), xi

∣∣
front = xi

∣∣
instant. (1.28)

Again, we would like to keep manifest Lorentz-covariance. Moreover, if one considers
a particle (or a system of particles), which is characterized by some four-momentum qµ,
it is convenient to use a frame, in which this particle (the system of particles) does not
have a transverse momentum component. The transition to this frame can be performed
by defining the light-cone basis {ηµ, η̄µ, eµ1 , eµ2} as [Meuren, 2015]:

ηµ = kµ0
m
, η̄µ = qµ

q+ −
q2ηµ

2q+2 , eµ1 = Λµ1 = qνf
νµ
1

mq+
√
−a2

1

, eµ2 = Λµ2 = qνf
νµ
2

mq+
√
−a2

2

. (1.29)

[the definition of ηµ is the same as in Eq. (1.24), it is repeated here for convenience].
Following Meuren (2015), we call the basis (1.29) canonical light-cone basis. The four-
vector qµ is such that q+ 6= 0. The choice of qµ will depend on the considered process.
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1 Quantum electrodynamics in an intense plane-wave field

Note that if q2 = 0, then q always counterpropagates the plane wave in the frame defined
by Eq. (1.29).

It should be pointed out that if we simultaneously changed the sign of both ηµ and η̄µ,
the resulting basis would still satisfy the conditions (1.2). This would change the sign of
all ‘+’ and ‘–’ components though. In the case of ηµ defined by Eq. (1.24), in any frame
η0 > 0, therefore, for any on-shell particle with four-momentum qµ the components q+

and q− are always nonnegative.
Before exploring the field theory of electromagnetic interaction, we spend a few mo-

ments on looking into classical dynamics of a pointlike charge in a plane-wave field. The
reason is that the solution for this problem will reappear at quantum level, and in fact,
will play a central role in describing the quantum dynamics as well.

We consider the Lorentz equation for an electron in a plane-wave background [Landau
and Lifshitz, 1987]:

dpµ
dτ = e

m
Fµν(φ)pν , (1.30)

where τ is the proper time. The solution is known [Landau and Lifshitz, 1987] and can
be written in the form

πµp (φ) = pµ− e[Aµ(φ)−Aµ(φ0)] + ηµ
(
ep[A(φ)−A(φ0)]

p+ − e2[A2(φ)−A2(φ0)]
2p+

)
, (1.31)

where pµ is the electron four-momentum at φ = φ0. We call πµp (φ) dressed four-momentum.
Note that π2

p(φ) = πµp (φ)πpµ(φ) = p2.
The dressed four-momentum πµp (φ) is gauge-invariant, it is clear from Eq. (1.30). It

can be also explicitly shown by rewriting Eq. (1.31) in a manifestly gauge-invariant form:

πµp (φ) = pµ + e

mp+F
µν(φ, φ0)pν + e2

2p+m2F
2µν(φ,φ0)η̄ν , (1.32)

where we introduced the integrated field tensor [Meuren et al., 2013]:

Fµν(φ, φ0) =
φ∫

φ0

dβ Fµν(β), F2µν(φ, φ0) = Fµρ(φ, φ0)F ν
ρ (φ, φ0). (1.33)

In the following, we assume that Aµ(−∞) = 0, i.e., ψi(−∞) = 0, therefore, Eq. (1.31)
can be written as

πµp (φ) = pµ − eAµ(φ) + ηµ
(
epA(φ)
p+ − e2A2(φ)

2p+

)
, (1.34)

with pµ being the asymptotic four-momentum.
For the case φ0 = −∞ we suppress the second argument for the integrated field tensor

in Eq. (1.33) and write simply

Fµν(φ) =
φ∫

−∞

dβ Fµν(β) =
∑
i

fµνi ψi(φ), F2µν(φ) = −kµ0kν0
∑
i

a2
iψ

2
i (φ) (1.35)

[the relations via ψi(φ) are due to Eq. (1.25) and ψi(−∞) = 0].
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1.4 Lightfront Hamiltonian

We also impose the condition that the integration over the whole time duration does
not leave a constant component:

∞∫
−∞

dβ Fµν(β) = 0, (1.36)

which, together with ψi(−∞) = 0, implies that ψi(∞) = 0.

1.4 Lightfront Hamiltonian
Our aim now is to obtain the Hamiltonian for interacting electron-positron and photon

fields on the light cone. In general, we follow the ideas introduced by Mustaki et al. (1991)
and later reiterated by Brodsky et al. (1998), therefore, we will discuss only major steps
and important concepts (some details on the derivation of the lightfront Hamiltonian are
provided in Appendix A). It should be noted, that, in comparison to the previous works,
we do not tie ourselves to a particular frame, but use general properties in a light-cone
basis {ηµ, η̄µ, eµ1 , eµ2}. Most of the steps and the result, as might be expected, are the same,
but some relations have to be derived in a different way. For one of those relations, an
explicit derivation is shown [Eq. (1.48) below], other cases are treated similarly. Another
subtlety is the presence of an external plane-wave field, which we want to take into account
exactly. This will be also discussed below.

In vacuum, the QED Lagrangian density is given by [Halzen and Martin, 1984]

L = Ψ(γi∂ −m)Ψ− 1
4 F̂µνF̂

µν + eΨγµΨÂµ, (1.37)

where Ψ and Âµ are the electron-positron and photon fields, respectively, F̂µν = ∂µÂν −
∂νÂµ, and a bar denotes the Dirac conjugate: Ψ = Ψ†γ0.

In an external plane-wave field, the Lagrangian density is obtained by the shift of the
photon field [Fradkin et al., 1991]

Âµ → Âµ +Aµ, (1.38)

with Aµ being the potential of the classical field. Then one obtains that

L = Ψ(γi∂ −m)Ψ− 1
4 F̂µνF̂

µν + eΨγµΨ(Aµ + Âµ). (1.39)

In Eq. (1.39) we do not write the terms with the free part of the classical field. With
the help of integrations by parts it can be shown that the contribution from those terms
vanishes.

Let us look at the equations of motion first. For the photon field, from the least action
principle, we obtain Maxwell’s equation

∂µF̂
µν = Jν , (1.40)

with Jµ = eΨγµΨ. Since we employ the light-cone gauge [see Eq. (1.26)], the ‘+’ compo-
nent of Maxwell’s equation is given by

∂µF̂
µ+ = −(∂−)2Â− − ∂−∂iÂi = J+. (1.41)
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1 Quantum electrodynamics in an intense plane-wave field

Note that Eq. (1.41) does not contain time derivatives, therefore, it is not an equation of
motion, but a constraint, which leaves just two independent degrees of freedom for Âµ.
We split Âµ into two parts: Âµ = Aµ + αµ, where αµ has only a ‘–’ component, which is
defined via

α− = 1
(i∂−)2J

+. (1.42)

The rest of Âµ is labeled as Aµ, it contains two independent degrees of freedom, with
the third defined via

− (∂−)2A− − ∂−∂iAi = 0. (1.43)

By construction, the field Aµ satisfies the Lorenz condition ∂µAµ = 0.
We proceed by considering the equation of motion for the electron-positron field. From

Eq. (1.39) we obtain Dirac equation

[γ(i∂ − eA− eÂ)−m]Ψ = 0. (1.44)

Multiply Eq. (1.44) by γ+ from the left, then:

2i∂−Ψ− − [γk(i∂k − eAk − eÂk) +m]γ+Ψ+ = 0, (1.45)

where Ψ± = Λ±Ψ (Ψ = Ψ+ + Ψ− due to Λ+ + Λ− = 1). Eq. (1.45) is again a constraint,
which allows us to express Ψ− via Ψ+. We define χ = χ+ + χ− with χ+ = 0 and

χ− = − 1
2i∂−

eγkÂkγ
+Ψ+. (1.46)

The rest of Ψ is labeled as ψ, so, ψ+ = Ψ+ and

ψ− = 1
2i∂−

[γk(i∂k − eAk) +m]γ+ψ+. (1.47)

Note that the classical field Aµ(x) is included into ψ−.
As an intermediate result, we have introduced fields Aµ and ψ that contain all inde-

pendent degrees of freedom and also some dependent parts, which are connected to the
independent ones as in the noninteracting theory. Since the remaining quantities αµ and
χ have to be functionals of Aµ and ψ, the fields Âµ and Ψ can be ultimately expressed
completely via Aµ and ψ. Indeed, it is clear from Eq. (1.46), that χ− is a functional of
only Aµ and ψ. The same is true for α− in Eq. (1.42), in particular, we have for J+:

J+ = eΨγ+Ψ = e(Λ+Ψ+ + Λ−Ψ−)†γ0γ+Ψ+ = e(Ψ+Λ− + Ψ−Λ+)γ+Ψ+

= eΨ+γ
+Ψ+ = eψγ+ψ. (1.48)

Now, we proceed with obtaining an expression for the lightfront Hamiltonian, with the
goal in mind to write it in terms of Aµ and ψ.

The canonical stress-energy tensor is obtained from the Lagrangian (1.39) in the usual
way:

Tµν =
∑
A

∂L
∂(∂µφA)∂

νφA − gµνL

= Ψ[γµi∂ν − gµν(γi∂ −m)]Ψ− F̂µσ∂νÂσ + gµν
1
4 F̂µνF̂

µν − gµνJσ(Aσ + Âσ). (1.49)
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1.4 Lightfront Hamiltonian

The (light-cone) time component of the stress-energy tensor defines the four-momentum
of our system:

P ν =
∫

d2x⊥dx−T+ν . (1.50)

Correspondingly, the Hamiltonian is the ‘–’ component of P ν :

H = P− =
∫

d2x⊥dx−T+−, (1.51)

where [see Eq. (1.49)]

T+− = Ψ[γ+i∂+ − (γi∂ −m)]Ψ− F̂+σ∂+Âσ + 1
4 F̂µνF̂

µν − Jσ(Aσ + Âσ). (1.52)

Expressing the dependent fields αµ and χ via Aµ and ψ, with the help of several
integrations by parts, we arrive at the result (details are given in Appendix A) [Mustaki
et al., 1991; Brodsky et al., 1998]:

H = H0 + V1 + V2 + V3 (1.53)

with

H0 =
∫

d2x⊥dx−
[
ψγ−i∂−ψ + eψγ+ψA− + 1

2(∂−A−)2 + 1
2(∂1A2 − ∂2A1)2

]
,

V1 = e

∫
d2x⊥dx− ψγµψAµ,

V2 =
∫

d2x⊥dx− χγ−i∂−χ = e2

2

∫
d2x⊥dx−Aµψγµ

γ+

i∂−
γνψAν ,

V3 = 1
2

∫
d2x⊥dx− J+ 1

(i∂−)2J
+ = e2

2

∫
d2x⊥dx− ψγ+ψ

1
(i∂−)2ψγ

+ψ.

(1.54)

The part H0 of the Hamiltonian is the one, that remains if we turn off the interaction
between fermions and photons, therefore, it is regarded as the free Hamiltonian. The in-
teraction with the external field is included into the free part. The resulting representation
upon quantinzation is known as the Furry picture [Furry, 1951] (see also [Fradkin et al.,
1991]). The other three terms are interaction terms, they will be treated perturbatively.
The three terms give rise to three types of interaction vertices, namely, V1 corresponds
to the usual three-point interaction vertex of QED, V2 corresponds to the instant-fermion
exchange vertex (the seagull vertex), and V3 corresponds to the instant-photon exchange
vertex (the self-interaction vertex).

Due to the split of Ψ according to Eqs. (1.46) and (1.47), in the interaction terms the
classical field Aµ appears only inside ψ. Upon solving the equation of motion for ψ, the
interaction of fermions with the classical field is taken into account exactly.

After the quantization of the Hamiltonian (1.53), we transfer into the interaction pic-
ture. In that picture the fields Aµ and ψ in Eq. (1.54) obey the free equations of motion.
Therefore, before actually quantizing H we would like to understand how (still classical)
free fields Aµfree and ψfree can be expanded in terms of Fourier modes (for simplicity, in the
following we omit ‘free’ in the subscript and write simply Aµ and ψ). For Aµ the equa-
tions of motion are homogeneous Maxwell’s equations, so, the expansion goes in terms
of (monochromatic) plane waves. For ψ the equation of motion is Dirac equation in a
plane-wave field. The solution is known as the Volkov solution and is discussed in the
next section.
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1 Quantum electrodynamics in an intense plane-wave field

1.5 Volkov wave function
We need to find a solution for the Dirac equation

[γ(i∂ − eA)−m]ψ = 0. (1.55)

The solution was first obtained by Volkov (1935), and it is known correspondingly as
the Volkov solution or Volkov wave function. In this section, we demonstrate a way of
deriving the Volkov wave function on the light cone. In our approach a convenient form
of the Volkov solution appears in a natural fashion. Note that the ideas, that we will use
in our derivation, were originally developed by Mitter (1975).

Let us start with defining an initial condition. We require that in some point x+ = x+
0

the Volkov wave function (positive-frequency ψpσ and negative-frequency ψ(−)
pσ ) transforms

into the corresponding solution for Dirac equation in vacuum (x+
0 is customary chosen as

zero or −∞):
ψpσ(x)

∣∣
x+

0
= ψ0,pσ(x)

∣∣
x+

0
, ψ(−)

pσ (x)
∣∣
x+

0
= ψ

(−)
0,pσ(x)

∣∣
x+

0
, (1.56)

with
ψ0,pσ(x) = upσ√

2p+V e−ipx, ψ
(−)
0,pσ(x) = vpσ√

2p+V eipx, (1.57)

where p denotes the asymptotic four-momentum pµ and σ denotes a polarization state.
The notation, that is introduced in Eq. (1.57), needs to be explained. We assume

to work in a finite (light-cone) space volume V. However, the volume V is supposed to
be so large, that we can approximate Kronecker symbols and sums with their continuous
analogs:

δpp′ →
(2π)3

V δ(+,⊥)(p− p′),
∑
p

→
∫ Vd2p⊥

(2π)2

∞∫
0

dp+

2π , (1.58)

where δ(+,⊥)(p− p′) = δ(p+ − p′+)δ(p1 − p′1)δ(p2 − p′2). Note that we have only on-shell
particles as of now, therefore, p+ is always positive.

With the rules (1.58), one can use the continuous notation, and at the same time keep
track of the volume factors, such that it is easy to ensure that in the final expressions they
cancel each other and observables do not depend on them. For observables, it is assumed
that the limit of the infinite volume is taken, such that the integration in space-time
coordinates is formally extended to R4.

The bispinors upσ and vpσ in Eq. (1.57) are normalized according to

upσupσ′ = −vpσvpσ′ = 2mδσσ′ , (1.59)

therefore
upσγ

µupσ′ = vpσγ
µvpσ′ = 2pµδσσ′ , (1.60)

and ∑
σ

upσupσ = γp+m,
∑
σ

vpσvpσ = γp−m. (1.61)

Let us proceed with solving Eq. (1.55). We know from Eq. (1.47) that ψ− is not a
dynamical component, therefore, if ψ+ is found, the whole solution can be reconstructed.
First, let us obtain an equation for ψ+. We multiply Eq. (1.55) by γ− and subsequently
take a derivative of it with respect to x−. With the use of Eq. (1.47), it is found that

2i∂−(i∂+ − eA−)ψ+ − [m2 − (i∂k − eAk)2]ψ+ = 0. (1.62)
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1.5 Volkov wave function

An interesting feature of Eq. (1.62) is that it is diagonal with respect to the components
of ψ+ (compare with the corresponding second-order differential equation in [Berestetskii
et al., 1982]).

We seek a solution of the original Dirac equation (1.55) in the form (we concentrate
on the positive-frequency solution, the negative-frequency one is derived in the same way)

ψpσ(x) = e−ipxF (x+), (1.63)

therefore
ψpσ+(x) = e−ipxF+(x+). (1.64)

We obtain the following differential equation for F+(x+):

iF ′+(x+) = [π−p (φ)− p− + eA−(φ)]F+(x+), (1.65)

where π−p (φ) = [π⊥2
p (φ)+m2]/2p+ is the ‘–’ component of the classical dressed momentum

from Eq. (1.34). The integration of Eq. (1.65) leads to F+(x+) = F0,+ exp[−iSp(φ, φ0)],
where

Sp(φ, φ0) = 1
m

φ∫
φ0

dβ
[
π−p (β)− p− + eA−(β)

]
=

φ∫
φ0

dβ
(
epA(β)
mp+ − e2A2(β)

2mp+

)
(1.66)

with φ0 = mx+
0 [the right-hand expression is due to Eq. (1.34)]. The constant bispinor

F0,+ is found from the initial condition in Eqs. (1.56) and (1.57) and we obtain:

ψpσ+(x) = Λ+upσ√
2p+V e−ipx−iSp(φ,φ0). (1.67)

Having the ‘+’ projection of the Volkov wave function, we proceed with the ‘–’ one.
The inversion of i∂− in Eq. (1.47) gives the factor 1/p+, we also need to replace i∂k with
pk. Then, upon summing the two parts, one obtains:

ψpσ(x) = Kp(φ) upσ√
2p+V e−ipx−iSp(φ,φ0), Kp(φ) = [γπp(φ) +m] γ

+

2p+ . (1.68)

With the use of the Dirac equation (γp−m)upσ = 0 the solution (1.68) can be recast
into a different form:

ψpσ(x) = Kp(φ) upσ√
2p+V e−ipx−iSp(φ,φ0), Kp(φ) = 1 + eγ+γA(φ)

2p+ . (1.69)

The form in Eq. (1.69) is well-known [Brown and Kibble, 1964; Nikishov and Ritus,
1964b], the form in Eq. (1.68) was presented and applied by Hartin (2016). We will use
the former expression (1.68), which turns out to be more convenient, than the latter one.

For the negative-energy Volkov wave function we obtain:

ψ(−)
pσ (x) = K−p(φ) vpσ√

2p+V eipx−iS−p(φ,φ0) = K−p(φ) vpσ√
2p+V eipx−iS−p(φ,φ0). (1.70)

In the following, we choose φ0 → −∞ and write Sp(φ,−∞) = Sp(φ).
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1 Quantum electrodynamics in an intense plane-wave field

As we want to eventually expand our fermion field in Fourier modes, with each mode
represented by the Volkov wave function, we consider orthogonality and particularly com-
pleteness of the Volkov solutions.

It is known, that the Volkov wave functions are orthogonal and complete in a fixed
instant-form time point, though the prove is not straightforward, and in fact, this question
has been tackled by several people [Ritus, 1985; Zakowicz, 2005; Boca and Florescu, 2010;
Yakaboylu, 2015; Di Piazza, 2018]. The problem of orthogonality and completeness can
be resolved in a somewhat elegant way on the light cone.

As for the orthogonality condition, written on the light cone as (again, we consider
only the positive-energy solutions, for the negative-energy ones, the relation is the same)∫

d2x⊥dx−ψpσ(x)γ+ψp′σ′(x) = (2π)3

V δ(+,⊥)(p− p′)δσσ′ , (1.71)

it does not pose any problem and can be easily verified [Bergou and Varró, 1980].
The question of completeness is more subtle. It was shown by Bergou and Varró (1980),

that in a fixed light-cone time point the Volkov wave functions do not satisfy the usual
completeness relation, though the relation, that they satisfy, still allows an expansion of
an arbitrary function.

From the perspective of quantizing the lightfront Hamiltonian [Eqs. (1.53) and (1.54)],
in fact, we need to approach the problem in a different way. As we remember, only the ‘+’
projection ψ+ is a dynamical field. Therefore, what is actually required, is the completeness
of the Volkov solutions in the subspace of the ‘+’ projections. This can be proved in a
straightforward fashion:

∑
σ

∫ Vd2p⊥

(2π)2

∞∫
0

dp+

2π
[
ψpσ+(x)ψpσ+(x′)γ+ + ψ

(−)
pσ+(x)ψ(−)

pσ+(x′)γ+
]

=

 ∞∫
0

dp+

2π e−ip+(x−x′) +
∞∫
0

dp+

2π eip+(x−x′)

Λ+δ
(⊥)(x− x′) = Λ+δ

(−,⊥)(x− x′) (1.72)

(for simplicity, we write x and x′, but we keep in mind that the expression is evaluated at
a common light-cone time point). Then any ψ+(x) = Λ+ψ(x) can be expanded in terms
of the Volkov solutions. Since the ‘–’ projection ψ−(x) is defined via the Dirac equation
of the noninteracting theory, upon summing ψ+(x) and ψ−(x) we recover the full Volkov
wave functions, so, we obtain for our field in Eq. (1.54):

ψ(x) =
∑
σ

∫ Vd2p⊥

(2π)2

∞∫
0

dp+

2π
[
apσψpσ(x) + b∗pσψ

(−)
pσ (x)

]
, (1.73)

where the coefficients apσ and b∗pσ are defined as:

apσ =
∫

d2x⊥dx−ψpσ(x)γ+ψ(x), b∗pσ =
∫

d2x⊥dx−ψ(−)
pσ (x)γ+ψ(x). (1.74)

The relations (1.73) and (1.74) look as they would for a usual complete set. How-
ever, ψ(x) is not a general function in the Hilbert space, but restricted by the condition
(1.47). In essense, the additional term, that was obtained by Bergou and Varró (1980) and
that violates the usual completeness relation for the Volkov wave functions on the light
cone, corresponds to the contribution to the interaction part, that we have separated out
explicitly.
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1.6 Quantized fields

1.6 Quantized fields
We proceed by quantizing the fields Aµ and ψ in the Hamiltonian H [Eqs. (1.53) and

(1.54)]. The transition to the interaction representation is done basically in the same way,
as in the vacuum case (see, e.g., [Itzykson and Zuber, 1980] or [Goldberger and Watson,
1964]). The difference is that our free Hamiltonian H0 depends on time, this does not pose
a problem though, since the dependence is through the classical field, which commutes in
different time points. We obtain the following expression for the S-matrix:

S = T exp
[
−i
∫

dx+(V1 + V2 + V3)
]
, (1.75)

where T is the (light-cone) time-ordering operator.
For the quantized fields in the interaction representation one obtains respectively

[Bjorken et al., 1971; Mustaki et al., 1991]:

ψ(x) =
∑
σ

∫ Vd2p⊥

(2π)2

∞∫
0

dp+

2π
[
apσψpσ(x) + b†pσψ

(−)
pσ (x)

]
,

Aµ(x) =
∑
λ

∫ Vd2k⊥

(2π)2

∞∫
0

dk+

2π
[
ckλφ

µ
kλ(x) + c†kλφ

∗µ
kλ(x)

]
,

(1.76)

with the creation and annihilation operators satisfying the relations

{
apσ, a

†
p′σ′
}

=
{
bpσ, b

†
p′σ′
}

= (2π)3

V δ(+,⊥)(p− p′)δσσ′ ,[
ckλ, c

†
k′λ′
]

= (2π)3

V δ(+,⊥)(k − k′)δλλ′ .
(1.77)

In Eq. (1.76) φµkλ(x) is a plane wave:

φµkλ(x) = εµkλ√
2k+V

e−ikx, (1.78)

with the polarization four-vectors satisfying

εµkλε
∗
kλ′µ = −δλλ′ , kµε

µ
kλ = 0. (1.79)

There are two independent polarization states for the photon field, as well as for the
electron-positron one, so, each λ and σ can have two different values. In the following,
we will be always summing/averaging over the polarization states, therefore, we do not
specify the choice of them, but note that several conventions exist [Brodsky et al., 1998].
Due to Eq. (1.5), one obtains

∑
λ

εµkλε
∗ν
kλ = −gµν + ηµkν + ηνkµ

k+ . (1.80)

Note that in vacuum the vector ηµ is chosen as a fixed light-like vector, which breaks
the manifest Lorentz-covariance of the theory. Since in our case ηµ is a true four-vector,
the theory in a plane-wave field formally remains manifestly Lorentz-covariant.
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1 Quantum electrodynamics in an intense plane-wave field

With Eq. (1.75) at hand, the whole machinery of the perturbative approach can be
developed. In position space, one needs to insert the corresponding Volkov solutions
for electrons and positrons in place of plane waves, which are employed in vacuum. In
momentum space, the additional factors due to the presence of the classical field can be
collected together in a vertex, and one obtains the usual QED in momentum space with,
however, a modified or ‘dressed’ vertex (see [Meuren, 2015; Mitter, 1975]). In our case,
there are three kinds of dressed vertices, which are discussed in the next section.

1.7 Dressed vertices

1.7.1 Three-point dressed vertex

We consider the interaction term V1 in Eq. (1.54) and for definiteness assume to have
an incoming electron with four-momentum pµ1 , and two outgoing particles: an electron
and a photon with four-momenta pµ2 and kµ, respectively. The particles are presumed
to be also in some polarization states, we do not define them explicitly and suppress the
corresponding indices, expecting to average/sum them out later with the use of Eqs. (1.61)
and (1.80). For clarity, we also suppress the normalization factors for now and in the next
two subsections. The complete expressions can be recovered if each bispinor up is divided
by
√

2p+V and each polarization four-vector εµk by
√

2k+V. One obtains:

− i
∫

dx+〈kp2|V1|p1〉 ∝ (2π)3δ(+,⊥)(p2 + k − p1)u2
[− ieΓµ21(k)

]
u1ε
∗
kµ, (1.81)

where

Γµ21(k) =
∫

dx+Kµ
21(φ) exp

[
i(p−2 + k− − p−1 )x+ + iS2(φ)− iS1(φ)

]
(1.82)

and
Kµ

21(φ) = K2(φ)γµK1(φ) = γ+

2p+
2

[γπ2(φ) +m] γµ [γπ1(φ) +m] γ
+

2p+
1
. (1.83)

For simplicity, we replaced the subscripts p1 → 1, p2 → 2 (we will do the same below too,
also for photons).

For later use, let us rewrite Kµ
21(φ) in Eq. (1.83) in a convenient form. In particular,

let us expand it in the light-cone bispinor basis (1.19). As can be noticed from Eq. (1.83),
all the traces which involve γ+, Λ+, and Λ− vanish, therefore, one needs to evaluate just
three traces, which involve γ− [see Eqs. (1.20) and (1.21)]. We obtain that

Kµ
21(φ) =

[
Sµ21(φ) + V iµ

21 γi + Tµ21(φ)γ1γ2
]
γ+, (1.84)

where
Sµ21(φ) = 1

2p+
2 p

+
1

{
p+

2 π
µ
1 (φ) + p+

1 π
µ
2 (φ)−

[
π2(φ)π1(φ)−m2

]
gµ+

}
,

V iµ
21 = m

2p+
2 p

+
1

[
(p+

2 − p+
1 )gµi − (pi2 − pi1)gµ+

]
,

Tµ21(φ) = − 1
2p+

2 p
+
1
ενρκλg

µνηρπκ2 (φ)πλ1 (φ).

(1.85)
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1.7 Dressed vertices

1.7.2 Seagull dressed vertex

Let us consider the interaction term V2 in Eq. (1.54). Now we assume to have incoming
fermion and photon with four-momenta pµ1 and kµ1 , respectively, and two outgoing particles:
a fermion and a photon with four-momenta pµ2 and kµ2 , respectively. We obtain:

−i
∫

dx+〈k2p2|V2|k1p1〉 ∝ (2π)3δ(+,⊥)(p2 + k2 − p1 − k1)

× u2

[
− ie2

2(p+
1 + k+

1 )
Γµν21 (k2, k1)

]
u1ε
∗
2µε1ν + {k1 ↔ −k2, ε1 ↔ ε∗2}, (1.86)

where

Γµν21 (k2, k1) =
∫

dx+Kµν
21 (φ) exp

[
i(p−2 + k−2 − p−1 − k−1 )x+ + iS2(φ)− iS1(φ)

]
, (1.87)

Kµν
21 (φ) = K2(φ)γµγ+γνK1(φ) = γ+

2p+
2

[γπ2(φ) +m] γµγ+γν [γπ1(φ) +m] γ
+

2p+
1
, (1.88)

and the term in the braces is the same as the first term, but with the photon momentum
and polarization four-vectors exchanged, as designated.

ForKµν
21 (φ), the expansion in the basis (1.19) goes in the same way, as in the case of the

three-point interaction, and we obtain the following form, which again will be particularly
useful for the evaluation of traces:

Kµν
21 (φ) =

[
Sµ2 + V iµ

2 (φ)γi
]
γ+
[
Sν1 + V jν

1 (φ)γj
]
, (1.89)

where
Sµp = m

p+ g
µ+, V iµ

p (φ) = 1
p+

[
p+gµi − πip(φ)gµ+

]
. (1.90)

1.7.3 Self-interaction dressed vertex

The last term out of the three interaction terms is V3. Now there are two incoming
electrons with four momenta pµ1 and pµ2 and two outgoing ones, with four-momenta pµ3 and
pµ4 . We obtain:

−i
∫

dx+〈p4p3|V3|p2p1〉 ∝ (2π)3δ(+,⊥)(p4 + p3 − p2 − p1)

×
∫

dx+u4Γ42(φ)u2
−ie2

(p+
1 − p+

3 )2u3Γ31(φ)u1 − {e3 ↔ e4}, (1.91)

where
Γ21(φ) = γ+ exp

[
i(p−2 − p−1 )x+ + iS2(φ)− iS1(φ)

]
, (1.92)

and the term in the braces is the same as the first one, but with the quantum numbers of
the outgoing electrons exchanged.

The bispinor structure of Γ21(φ) in Eq. (1.92) is the same as in the vacuum case, the
only contribution from the classical field is the change of the phase.
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1 Quantum electrodynamics in an intense plane-wave field

1.8 Fermion and photon propagators
For the electron two-point correlation function one obtains the following expression:

G(ni)(x2, x1) = −i〈0|T ψ(x2)ψ(x1)|0〉 = −i
∫ d2p⊥

(2π)2

∞∫
0

dp+

2π2p+

×
[
θ(x+

2 − x+
1 )Kp(φ2)(γp+m)Kp(φ1)e−ip(x2−x1)−iSp(φ2,φ1)

− θ(x+
1 − x+

2 )K−p(φ2)(γp−m)K−p(φ1)eip(x2−x1)−iS−p(φ2,φ1)
]
, (1.93)

which can be written as (we use the prescription m2 → m2 − iε, ε→ +0)

G(ni)(x2, x1) =
∫ d4p

(2π)4 e−ip(x2−x1)−iSp(φ2,φ1)Kp(φ2) γp̃+m

p2 −m2 + iε
Kp(φ1). (1.94)

In Eq. (1.94) the four-momentum pµ is off-shell with comparison to the one in Eq. (1.93),
the part of the numerator is still the on-shell momentum though, which we denote by a
tilde:

p̃µ =
(
p+,p⊥,

p⊥2 +m2

2p+

)
, p̃2 = m2. (1.95)

We call G(ni)(x2, x1) noninstantaneous fermion propagator.
Though we will not use it in our calculations, in order to check the consistency, let us

demonstrate that the noninstantaneous propagator can be combined with the contribution
from the seagull dressed vertex such that we obtain the covariant Feynman propagator of
the instant-form approach. It can be seen as follows. From Eqs. (1.86), (1.87), and (1.88)
we notice, that the seagull dressed vertex interaction can be written as the second-order
three-point one, but with the propagator

G(in)(x2, x1) =
∫ d2p⊥dp+

(2π)3 e−ip+(x−2 −x
−
1 )−ipk(xk2−xk1)δ(x+

2 − x+
1 ) γ

+

2p+

=
∫ d4p

(2π)4 e−ip(x2−x1)−iSp(φ2,φ1) γ
+

2p+ . (1.96)

ReplacingKp(φ2) andK−p(φ1) with Kp(φ2) and K−p(φ1), respectively, forG(ni)(x2, x1)
[see Eqs. (1.61), (1.68), and (1.69)], and noting that an arbitrary four-momentum pµ can
be decomposed as [Mantovani et al., 2016] (see also [Seipt and Kämpfer, 2012])

pµ = p̃µ + p̂µ, p̂µ =
(

0,0⊥, p− − p
⊥2 +m2

2p+

)
= p2 −m2

2p+ ηµ, (1.97)

we sum the two contributions and obtain the known form of the fermion propagator in a
plane-wave field [Ritus, 1985]

G(x2, x1) = G(ni)(x2, x1) +G(in)(x2, x1)

=
∫ d4p

(2π)4 e−ip(x2−x1)−iSp(φ2,φ1)Kp(φ2) γp+m

p2 −m2 + iε
Kp(φ1). (1.98)
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1.8 Fermion and photon propagators

For the photon two-point correlation function, we proceed in an analogous way. We
obtain:

D(ni)
µν (x2, x1) = i〈0|T Aµ(x2)A∗ν(x1)|0〉 = −i

∫ d2k⊥

(2π)2

∞∫
0

dk+

2π2k+

×
(
gµν −

kµην + kνηµ
k+

) [
θ(x+

2 − x+
1 )e−ik(x2−x1) + θ(x+

1 − x+
2 )eik(x2−x1)

]
, (1.99)

which, again, can be written as

D(ni)
µν (x2, x1) =

∫ d4k

(2π)4 e−ik(x2−x1) 1
k2 + iε

(
gµν −

k̃µην + k̃νηµ
k+

)
, (1.100)

where
k̃µ =

(
k+,k⊥,

k⊥2

2k+

)
, k̃2 = 0. (1.101)

The noninstantaneous photon propagator D(ni)
µν (x2, x1), like the electron one, can be

completed up to the Feynman propagator of the instant form. From Eqs. (1.91) and (1.92)
we conclude that the instantaneous photon propagator is given by

D(in)
µν (x2, x1) = −

∫ d4k

(2π)4 e−ik(x2−x1) ηµην
k+2 . (1.102)

Then we obtain that

Dµν(x2, x1) = D(ni)
µν (x2, x1) +D(in)

µν (x2, x1)

=
∫ d4k

(2π)4 e−ik(x2−x1) 1
k2 + iε

(
gµν −

kµην + kνηµ
k+

)
, (1.103)

which is the Feynman propagator in the light-cone gauge [Mantovani et al., 2016].
Note that if one starts with the instant-form formulation and then uses the light-

cone decomposition of the Feynman propagators, some additional vertex interactions are
generated besides the considered three ones. In particular, diagrams with two or more
instant particles meeting at one vertex appear in calculations. It can be shown, however,
that such diagrams vanish in the light-cone gauge [Kogut and Soper, 1970]. In the front-
form formulation, these diagrams are absent from the beginning.

Also note that due to Eq. (1.98), the three-point and the seagull vertices can be
represented as vertices of one type [Mitter, 1975; Meuren et al., 2013]:

Gµ21(k) =
∫

dx+K2(φ)γµK1(φ) exp
[
i(p−2 + k− − p−1 )x+ + iS2(φ)− iS1(φ)

]
. (1.104)

With respect to the self-interaction vertex, as we see from Eq. (1.103), it arises due to
the choice of the light-cone gauge.

Customary, in the diagrams the instantaneous propagators are depicted by lines with
a hash [Bjorken et al., 1971; Mustaki et al., 1991; Brodsky et al., 1998; Mantovani et al.,
2016]). Here, we will consider processes only up to the second order, and it is more
convenient to draw diagrams similar to the covariant instant-form approach, i.e., with the
propagators given by Eqs. (1.98) and (1.103). The rule is that each propagator consists
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1 Quantum electrodynamics in an intense plane-wave field

of the instantaneous and noninstantaneous part, or, what is the same, each propagator
gives rise to the corresponding four-point vertex, in addition to the combination of the
two three-point ones. Another rule is that diagrams with two instantaneous propagators,
meeting at one vertex, are to be excluded.

Also note, that we use the S-matrix perturbation theory, in comparison with the old-
fashioned perturbation theory [Heitler, 1954], usually employed together with light-cone
quantization. Both approaches are known to produce the same result [Thorn, 1979] (note
that in the case of having an external plane-wave field, there are no stationary states, and
one has to use a time-dependent approach).

One more important thing is that the instantaneous propagators are infrared divergent
in the ‘+’ momentum component. In fact, light-cone quantization approach is infamous for
having infrared divergences [Brodsky et al., 1998]. In principle, they need to be regularized
[Mustaki et al., 1991; Brodsky et al., 1998] (see also [Mandelstam, 1983; Leibbrandt, 1984]).
In Chapter 4 we encounter this type of divergencies, instead of introducing a regulator,
however, we rearrange the result such that the divergent terms cancel each other.

1.9 Four-momentum relations at the dressed vertices
Due to the presence of an external plane-wave field, only three asymptotic momen-

tum components are conserved at the dressed vertices [Mitter, 1975] [in particular, the
components + and ⊥= (1, 2) are conserved, see Eqs. (1.81), (1.86), and (1.91)].

We can rewrite the momentum conservation relations in terms of the dressed momenta.
From Eq. (1.81), for the three-point vertex [or for the full dressed vertex, given by the
vertex function (1.104)] we have:

[π2(φ) + k − π1(φ)](+,⊥) = 0. (1.105)

As for the ‘–’ components, we notice that for the phase

Φ(x+) = (p−2 + k− − p−1 )x+ + S2(φ)− S1(φ) (1.106)

a derivative with respect to the light-cone time is given by

∂+Φ(x+) = π−2 (φ) + k− − π−1 (φ). (1.107)

Therefore, for the sum of the ‘–’ momentum components we have the following integral

δ1(p2, p1, k) =
∫

dx+[π−2 (φ) + k− − π−1 (φ)]eiΦ(x+) = −i
∫

dx+∂+[eiΦ(x+)]. (1.108)

Our expectation is that boundary terms do not affect observables, which implies

π−2 (φ) + k− − π−1 (φ) ∼ 0. (1.109)

In Eq. (1.109), we write a tilde instead of an equal sign, since the relation may not hold
locally, but, if inside the integral in x+, gives a vanishing contribution as a result. We also
point out that relations, equivalent to the one in Eq. (1.109) have been employed before,
with different arguments, justifying its validity [Mitter, 1975; Mackenroth and Di Piazza,
2011; Ilderton, 2011; Seipt and Kämpfer, 2012; Hartin, 2016]; the form (1.109) was noted
by Hartin (2016).
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1.9 Four-momentum relations at the dressed vertices

Eq. (1.109) completes Eq. (1.105) to the full four-momentum conservation law (for the
dressed momenta)

πµ2 (φ) + kµ − πµ1 (φ) ∼ 0. (1.110)

As was suggested by Ilderton (2011), a conservation relation could be also inferred
from the requirement of gauge invariance, which is encoded in the Ward identity [Ward,
1950] and the more general Ward-Takahashi identity [Takahashi, 1957]. Due to the con-
nection between momentum conservation and gauge invariance, in principle, one could
verify whether Eq. (1.109) enforces gauge invariance of QED in a plane-wave field.

As an example, let us consider nonlinear Compton scattering (see Fig. 1.1). The
leading-order matrix element 〈kp2|S|p1〉 is given by Eq. (1.81). We are interested in the
preexponential factor of the integrand in Eq. (1.82). Replacing e∗µ with kµ we find that

K2(φ)γµK1(φ)kµ = Sµ21(φ)kµγ+ = [π−2 (φ) + k− − π−1 (φ)]γ+ ∼ 0, (1.111)

which is exactly the relation (1.109) (up to the factor γ+). We conclude, that Eq. (1.109)
guarantees gauge invariance for this case.

As a more elaborate example, let us consider double nonlinear Compton scattering.
The two diagrams are shown in Fig. 1.2.

We are going to check the Ward identity upon the replacement εν1 → kν1 . Again, we
write down only the preexponential factors of the integrands for the vertex functions. For
the noninstantaneous part we obtain:

Σ(ni) =
[
Kµ

23(φ2)γp̃3 +m

p3
3 −m2 K

ν
31(φ1) +Kµ

24(φ2)γp̃4 +m

p3
4 −m2 K

ν
41(φ1)

]
k1ν

= γ+

2p+
2

[γπ2(φ2) +m]
{
γµ[γπ3(φ2) +m] γ

+

2p+
3

γp̃3 +m

p2
3 −m2

γ+

2p+
3

[γπ3(φ1) +m]γk1

+ γk1[γπ4(φ2) +m] γ
+

2p+
4

γp̃4 +m

p2
4 −m2

γ+

2p+
4

[γπ4(φ1) +m]γµ
}

[γπ1(φ1) +m] γ
+

2p+
1
. (1.112)

We notice that γ+(γp̃3 + m)γ+ = 2p+
3 γ

+, and analogously for the other propagator.
Going further, we write γk1 for the first and the second term respectively as

γk1 = γπ1(φ1)− γπ3(φ1) + γ+δ(φ1), δ(φ1) = π−3 (φ1) + k−1 − π−1 (φ1);
γk1 = γπ4(φ2)− γπ2(φ2) + γ+δ(φ2), δ(φ2) = π−2 (φ2) + k−1 − π−4 (φ2).

(1.113)

p1

p2

k

Fig. 1.1. The leading-order diagram for nonlinear Compton scattering.
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1 Quantum electrodynamics in an intense plane-wave field

p3
p1 p2

k2k1

p4
p1 p2

k1k2

Fig. 1.2. The two leading-order diagrams for double nonlinear Compton scattering.

Employing the fact that [γπp(φ)±m][γπp(φ)∓m] = p2 −m2, we obtain:

Σ(ni) = γ+

2p+
2

[γπ2(φ2) +m]
{
γµ[γπ3(φ2) +m]

[
− γ+

2p+
3

+ γ+δ(φ1)
p2

3 −m2

]

+
[
γ+

2p+
4

+ γ+δ(φ2)
p2

4 −m2

]
[γπ4(φ1) +m]γµ

}
[γπ1(φ1) +m] γ

+

2p+
1
. (1.114)

For the sum of the two instantaneous terms we have:

Σ(in) = γ+

2p+
2

[γπ2(φ2) +m]
{
γµ

γ+

2p+
3
γk1 + γk1

γ+

2p+
4
γµ
}

[γπ1(φ1) +m] γ
+

2p+
1
. (1.115)

Again, we use Eq. (1.113) (due to the adjacent γ+ the third terms with δ’s do not
appear). After a permutation of gamma matrices for each term, one obtains:

Σ(in) = γ+

2p+
2

[γπ2(φ2) +m]
{
γµ[γπ3(φ2) +m] γ

+

2p+
3

− γ+

2p+
4

[γπ4(φ1) +m]γµ
}

[γπ1(φ1) +m] γ
+

2p+
1
. (1.116)

We see that the two terms in Eq. (1.116) cancel the corresponding two terms in
Eq. (1.114), and we are left with

Σ(ni) + Σ(in) = Kµ
23(φ2)2p+

3 δ(φ1)
p2

3 −m2 +Kµ
41(φ1)2p+

4 δ(φ2)
p2

4 −m2 . (1.117)

Recovering the full expression of 〈k2k1|S|p2p1〉 (up to the delta function and the nor-
malization factors), one obtains that

〈k2k1|S|p2p1〉 ∝
∫ dp−3

2π u2Γµ23(k2)u1
2p+

3
p2

3 −m2 δ1(p3, p1, k1)ε∗2µ

+
∫ dp−4

2π u2Γµ41(k2)u1
2p+

4
p2

4 −m2 δ1(p2, p4, k1)ε∗2µ, (1.118)

where Γµ23(k2) and Γµ41(k2) are the three-point vertex functions [see Eq. (1.82)], and the
δ1-functions are from Eq. (1.108).

Eq. (1.109) guarantees that the expression in Eq. (1.118) vanishes upon the contraction
with an arbitrary polarization four-vector ε∗µ2 , and for arbitrary initial and final momenta.

From what have been considered, we can make some general implications. Note that in
vacuum the only change in the preexponential factor for any amplitude is the replacement
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1.9 Four-momentum relations at the dressed vertices

of all πµp (φ) with pµ. As we see from the check of the Ward identity for single and double
nonlinear Compton scattering, the bispinors of the incoming and outgoing particles are
not needed for obtaining the final expression. It implies that, if considered perturbatively,
for any diagram the verification of the Ward (-Takahashi) identity goes in the same way
for the vacuum case and for the external-field case. Therefore, we might expect that
Eq. (1.109) allows us to preserve gauge invariance at any order.

With the four-momentum conservation relation (1.110) for the dressed momenta, we
can derive useful relations for the scalar products of this momenta. We notice that the
asymptotic momenta satisfy the condition

pµ2 + kµ = pµ1 + κηµ, (1.119)

with some scalar κ, which can be expressed as

κ = 1
p+

1

(
kp2 −

p2
1 − p2

2 − k2

2

)
= 1
p+

2

(
kp1 + p2

2 − k2 − p2
1

2

)

= 1
k+

(
p2p1 + k2 − p2

2 − p2
1

2

)
. (1.120)

On the other hand,

π−2 (φ) + k− − π−1 (φ) = κ +
(
ep2A(φ)
p+

2
− e2A2(φ)

2p+
2

)

−
(
ep1A(φ)
p+

1
− e2A2(φ)

2p+
1

)
. (1.121)

With the use of the above relations, we obtain:

k2π2(φ) = p+
1

[
π−2 (φ) + k− − π−1 (φ)

]
+ 1

2
(
p2

1 − p2
2 − k2

)
∼ 1

2
(
p2

1 − p2
2 − k2

)
,

k2π1(φ) = p+
2

[
π−2 (φ) + k− − π−1 (φ)

]
− 1

2
(
p2

2 − k2 − p2
1

)
∼ −1

2
(
p2

2 − k2 − p2
1

)
,

π2(φ)π1(φ) = k+
[
π−2 (φ) + k− − π−1 (φ)

]
− 1

2
(
k2 − p2

2 − p2
1

)
∼ −1

2
(
k2 − p2

2 − p2
1

)
.

(1.122)

Note that the relations (1.122) are in fact the same as in vacuum QED, however, they
hold only for momenta evaluated in the same time point.

As a final remark on the four-momentum relations, we notice that for the seagull and
self-interaction vertices the conservation relations are combinations of the relations from
two three-point vertices. For the seagull vertex we have [see Eq. (1.87)]

πµ2 (φ) + kµ2 − πµ1 (φ)− kµ1 ∼ 0, (1.123)

and for the self-interaction vertex we obtain [see Eqs. (1.91) and (1.92)]

πµ4 (φ) + πµ3 (φ)− πµ2 (φ)− πµ1 (φ) ∼ 0. (1.124)
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1 Quantum electrodynamics in an intense plane-wave field

1.10 Parameters for the description of scattering
In the following, we consider QED processes, in which one or two particles collide

with a laser pulse. In order to characterize them, it is convenient to employ gauge- and
Lorentz-invariant parameters. One of them is the classical intensity parameter [Ritus,
1985; Di Piazza et al., 2012], which has been discussed in the introduction:

ξi =
|e|
√
−a2

i

m
. (1.125)

We will be mostly interested in the case of a linear polarization (ξ1 = ξ, ξ2 = 0) and the
regime ξ � 1.

The second parameter is the quantum nonlinearity parameter [Ritus, 1985; Di Piazza
et al., 2012], which has been also mentioned in the introduction:

χ
(i)
b = p+

b

m
ξi, (1.126)

where p+
b is the ‘+’ component of the momentum of particle b, colliding with the laser

pulse.
If we consider one particle colliding with a laser field, then we can always choose a

frame, in which the collision is head-on [see Eq. (1.29)], therefore the parameters ξi and
χ(i) completely characterize the process [Ritus, 1985].

If we consider two particles and a laser field, then in general we can not make all the
transverse momentum components equal zero by choosing a frame. For such cases, we
introduce parameters ti and ζi(φ), which are defined via

tiξi = |e|p1µf
µν
i p2ν

m3(p+
1 + p+

2 )
, ζi(φ)ξi = |e|π1µ(φ)fµνi π2ν(φ)

m3(p+
1 + p+

2 )
. (1.127)

If we change the order of the particles, then ti and ζi(φ) change their signs. Below, we
consider electron-positron annihilation either in one photon, or in two photons. We will
use the definitions (1.127) with pµ1 being the electron four-momentum, and pµ2 being the
positron four-momentum.

Note that if we choose the canonical light-cone basis (1.29) with qµ = pµ1 + pµ2 , then
p⊥1 + p⊥2 = 0 and ti = pi1/m = −pi2/m, which shows that ti is in fact the transverse
momentum components of each of the colliding particles in their transverse center-of-
momentum frame. The quantity ζi(φ) is an analogous quantity for the dressed momenta.
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2

Electron-positron annihilation into
one photon

In comparison with vacuum QED, in QED with an external field first-order processes
are possible. Among them, emission of a photon by an electron (nonlinear Compton
scattering) and electron-positron photoproduction (nonlinear Breit-Wheeler process) are
the most studied for QED in a plane-wave field. Little to no attention is usually paid to one
more cross channel — electron-positron annihilation into one photon (see Fig. 2.1). This
process has been studied by Nikishov and Ritus (1964a,b), Ritus (1985), and also Ilderton
et al. (2011). The phase space for the latter process is completely different from the one
for the two former processes: two incoming particles and only one outgoing. Due to this,
electron-positron annihilation into one photon is regarded as generally less important for,
e.g., laser-plasma interactions, than the first two processes [Gonoskov et al., 2015].

With respect to the evaluation of the reduced matrix element squared, all three pro-
cesses are of course the same. We pick electron-positron annihilation into one photon
nevertheless, since considering this process allows to understand, what limitations an ex-
ternal field imposes on the description of two-particle scattering. This will be useful later,
in Chapter 4, when we consider electron-positron annihilation into two photons.

We start with reviewing scattering in vacuum from the front-form prospective. In
this review we follow the ideas presented by Itzykson and Zuber (1980), Goldberger and
Watson (1964), and Berestetskii et al. (1982). Then we construct cross section for the
electron-positron annihilation into one photon in a plane-wave field, evaluate the reduced
matrix element squared, obtain a final result, and analyze it.

2.1 Scattering in vacuum
We start with the fermionic states |p〉 with definite momenta, which, according to

Eq. (1.77), satisfy

〈p′|p〉 = (2π)3

V δ(+,⊥)(p′ − p) (2.1)

(for brevity, we suppress the indices for the spin degree of freedom). In position space, |p〉
is a plane wave [see Eq. (1.57)]:

〈x|p〉 = e−ipx√
V
· up√

2p+ , (2.2)

A wave packet |ψp〉 with the central momentum pµ is constructed according to

|ψp〉 =
∫ Vd̃3q

(2π)3 fp(q)|q〉, (2.3)
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2 Electron-positron annihilation into one photon

p1

−p2

k

Fig. 2.1. The leading-order diagram for electron-positron annihilation into one photon.

where
d̃3q = d2q⊥

(2π)2
dq+

2π θ(q+), (2.4)

and fp(q) is the momentum distribution density [note that fp(q) depends on q⊥ and q+,
but not on q−; for clarity we write simply q].

The density fp(q) is defined such that

〈ψp|ψp〉 =
∫ Vd̃3q

(2π)3 |fp(q)|
2 = 1. (2.5)

We define
fp(x) =

∫ Vd̃3q

(2π)3 fp(q)
e−iqx√
V

= Fp(x)e−ipx, (2.6)

where
Fp(x) =

∫ Vd̃3q

(2π)3 fp(q)
e−i(q−p)x√
V

(2.7)

is a relatively slowly varying function of x. The modulus squared |Fp(x)|2 = |fp(x)|2 is
the particle density.

The current density is defined as jµ(x) = ψp(x)γµψp(x). Assuming that the wave
packet is sharply peaked around pµ and taking into account that the bispinor uq is slowly
varying with qµ, we obtain that

jµ(x) ≈ |fp(x)|2 p
µ

p+ . (2.8)

Now, let us consider scattering in vacuum. We take two wave packets of two fermions
as the initial state (for simplicity, we assume that the fermions are distinguishable):

|i, in〉 =
∫ Vd̃3q2

(2π)3
Vd̃3q1
(2π)3 f2(q2)f1(q1)|q2q1, in〉. (2.9)

Then the matrix element to scatter into a final state |f, out〉 is given by

Sfi = 〈f, in|S|i, in〉 = i

∫ Vd̃3q2
(2π)3

Vd̃3q1
(2π)3 f2(q2)f1(q1)(2π)4δ(4)(Pf −q2−q1)T (q2, q1), (2.10)

where
T (q2, q1) = M(q2, q1)

2V
√
q+

2 q
+
1

∏
a

1√
2p′a+V

, (2.11)
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2.1 Scattering in vacuum

the reduced matrix element M(q2, q1) is a slowly varying function of qµ2 and qµ1 , and the
product in a is taken over all particles in the final state.

The modulus squared of Sfi is given by

|Sfi|2 =
∫ Vd̃3q4

(2π)3
Vd̃3q3
(2π)3

Vd̃3q2
(2π)3

Vd̃3q1
(2π)3 f2(q4)f∗2 (q2)f1(q3)f∗1 (q1)

× (2π)4δ(4)(Pf − q4 − q3)(2π)4δ(4)(Pf − q2 − q1)T (q4, q3)T ∗(q2, q1).
(2.12)

We rewrite the delta functions as
(2π)4δ(4)(Pf − q4 − q3)(2π)4δ(4)(Pf − q2 − q1)

= (2π)4δ(4)(q4 + q3 − q2 − q1)(2π)4δ(4)(Pf − q2 − q1).
(2.13)

Assuming that the summation over the final states extends beyond the size of the wave
packets, we replace q’s with corresponding p’s in the second delta function and in T ’s.
Going further, we represent the first delta function as

(2π)4δ(4)(q4 + q3 − q2 − q1) =
∫

d4x e−i(q4+q3−q2−q1)x. (2.14)

Then we obtain the following expression for |Sfi|2:

|Sfi|2 =
∫

d4x|f2(x)|2|f1(x)|2(2π)4δ(4)(Pf − p2 − p1) |M(p2, p1)|2
4p+

2 p
+
1

∏
a

1
2p′a+V . (2.15)

Then the differential probability per unit time per unit volume is given by

dẇ = |f2(x)|2|f1(x)|2(2π)4δ(4)(Pf − p2 − p1) |M(p2, p1)|2
4p+

2 p
+
1

∏
a

d̃3p′a
(2π)32p′a+ . (2.16)

An expression for the cross section is obtained from Eq. (2.16) by dividing it by the
factor, accounting for the fluxes of the incoming particles. In order to understand, how to
do it, let us recall the instant form approach [Itzykson and Zuber, 1980]. In the instant
form, the current density for particle a is given by jµa (x) = |ga(x)|2pµa/p0

a [compare with
Eq. (2.8)], with |ga(x)|2 being the particle density. If we consider a reference frame, where
particle 1 is at rest, then the cross section is equal to the probability per unit time per
unit volume divided by the target density j0

1(x) = |g1(x)|2 and by the incident flux density
|j2(x)| = |g2(x)|2|p2|/p0

2. We can introduce the following invariant:

I =
√

(p2p1)2 −m2
2m

2
1, (2.17)

with m2 and m1 being the masses of the colliding particles. Then

j0
1(x)|j2(x)| = |g1(x)|2|g2(x)|2 I

p0
2p

0
1
. (2.18)

Eq. (2.18) allows one to obtain a Lorentz-invariant expression for the cross section in the
instant form [Itzykson and Zuber, 1980] (see also [Berestetskii et al., 1982]).

Let us proceed in a similar fashion in the front form. Taking into account the ex-
pression (2.8) for the current density, we conclude, that we need to divide the probability
(2.16) by |f2(x)|2|f1(x)|2I/(p+

2 p
+
1 ). Then the differential cross section is given by

dσ = (2π)4δ(4)(Pf − p2 − p1) |M(p2, p1)|2
4I

∏
a

d̃3p′a
(2π)32p′a+ , (2.19)
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2 Electron-positron annihilation into one photon

which is exactly the same cross section as in the instant form, since

d̃3p

(2π)32p+ = d2p⊥

(2π)2
dp+

2π
θ(p+)
2p+ = d3p

(2π)32p0 = dΓp. (2.20)

The total cross section, summed over the final momentum and polarization states, and
averaged over the initial polarization states, is respectively given by

σ =
∏
a

∫ d̃3p′a
(2π)32p′a+ (2π)4δ(4)(Pf − p2 − p1) 1

16I
∑

polarization
|M(p2, p1)|2. (2.21)

Note that, if some of the final particles are identical, the expression for the total cross
section should be adjusted accordingly by multiplying it with a factor, which takes into
account the symmetry of the final state.

Before we move to scatterring theory in a plane-wave field, let us to look at |Sfi|2
in the position-space representation. For simplicity, let us consider a second-order tree-
level process. An instructive case is electron-positron (Bhabha) scattering, with the two
leading-order diagrams shown in Fig. 2.2.

For the diagram in Fig. 2.2a, the matrix element is given by

S
(1)
fi =

∫ Vd̃3q2
(2π)3

Vd̃3q1
(2π)3 f2(q2)f1(q1)

∫
d4x1d4x2

∫ d4k1
(2π)4

× ei(k1−q1−q2)x1+i(Pf−k1)x2S(1)(q2, q1, k1), (2.22)

where S(1)(q2, q1) is a slowly varying function of the initial momenta q1 and q2, the inter-
mediate momentum k1, also of the final momenta (we do not denote this dependence for
simplicity), and Pµf = p′2

µ + p′1
µ.

Let us evaluate the integral in xµ2 , then also the integral in kµ1 . We obtain:

S
(1)
fi =

∫ Vd̃3q2
(2π)3

Vd̃3q1
(2π)3 f2(q2)f1(q1)

∫
d4x1 ei(Pf−q1−q2)x1S(1)(q2, q1, Pf ). (2.23)

Upon squaring, one obtains:

|S(1)
fi |2 =

∫ Vd̃3q4
(2π)3

Vd̃3q3
(2π)3

Vd̃3q2
(2π)3

Vd̃3q1
(2π)3 f2(q4)f∗2 (q2)f1(q3)f∗1 (q1) (2.24)

×
∫

d4x3d4x1 ei(Pf−q4−q3)x3−i(Pf−q2−q1)x1S(1)(q4, q3, Pf )S(1)∗(q2, q1, Pf ). (2.25)

One can notice that in order to obtain the integral as in Eq. (2.14) and transform the
result into Eq. (2.15), obtained in the momentum representation, we need to introduce xµ

(a) −p2 −p′2

k1

p′1p1

(b)

p′1

−p2

p1

k2

−p′2

Fig. 2.2. The two leading-order diagrams for Bhabha scattering in vacuum.
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2.2 Cross section for electron-positron annihilation into one photon

as the average xµ = (xµ3 + xµ1 )/2. Note, that we could have not evaluated the integral in
xµ2 in the first place [see Eq. (2.22)]. Then the variable xµ could have been defined as the
average over all four space-time coordinates, appearing upon the squaring of S(1)

fi .
For the second diagram (see Fig. 2.2b) we obtain for the matrix element modulus

squared:

|S(2)
fi |2 =

∫ Vd̃3q4
(2π)3

Vd̃3q3
(2π)3

Vd̃3q2
(2π)3

Vd̃3q1
(2π)3 f2(q4)f∗2 (q2)f1(q3)f∗1 (q1)

×
∫

d4x4d4x3d4x2d4x1
d4k4
(2π)4

d4k2
(2π)4 eiΦS(2)

fi (q4, q3, k4)S(2)∗
fi (q2, q1, k2),

(2.26)

where

Φ = (p′2 − k4 − q4)x4 + (p′1 + k4 − q3)x3 − (p′2 − k2 − q2)x2 − (p′1 + k2 − q1)x1. (2.27)

In order to obtain Eq. (2.15), we introduce xµ as xµ = (xµ4 + xµ3 + xµ2 + xµ1 )/4.
The interference terms can be elaborated in a similar way. The result is that the

differential probability (2.16) for Bhabha scattering can be viewed as the one, evaluated
at the space-time point, which is the average of the space-time points, occuring in the
corresponding modulus squared of the matrix element in the position representation. This
conclusion can be extended to other processes as well.

2.2 Cross section for electron-positron annihilation into one
photon

Now we turn to the case of electron-positron annihilation into one photon in a plane-
wave field. The definite-momentum states are normalized according to Eq. (2.1). In the
position space those states are the Volkov states:

〈x|p〉 = ψp(x) = e−ipx−Sp(φ)
√
V

· Kp(φ)up√
2p+ . (2.28)

A wave-packet is formed in the same way, as in the vacuum case [see Eqs (2.3) and
(2.5)], and the distribution density in position space defined as:

fp(x) =
∫ Vd̃3q

(2π)3 fp(q)
e−iqx−iSq(φ)
√
V

= Fp(x)e−ipx−iSp(φ), (2.29)

where

Fp(x) =
∫ Vd̃3q

(2π)3 fp(q)
exp[−i(q − p)x− iSq(φ) + iSp(φ)]√

V
. (2.30)

The modulus squared |Fp(x)|2 = |fp(x)|2 is again the particle density.
The current density is given by (in the case of a sharply peaked wave packet)

jµ(x) ≈ |fp(x)|2π
µ
p (φ)
p+ . (2.31)
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2 Electron-positron annihilation into one photon

The matrix element for annihilation of an electron and positron, defined by wave
packets, peaked at pµ1 and pµ2 , respectively, into a photon with four-momentum kµ and
polarization defined by εµ, is given by

Sfi =
∫ Vd̃3q2

(2π)3
Vd̃3q1
(2π)3 f2(q2)f1(q1)(2π)3δ(+,⊥)(k − q2 − q1)

×
∫

dx+ exp
[
iΦq2q1(x+)

] iM(φ, q2, q1)√
2Vq+

2 2Vq+
1 2Vk+

, (2.32)

where

Φq2q1(x+) = k−x+ − q−2 x+ + S−q2(φ)− q−1 x+ − Sq1(φ), (2.33)
M(φ, q2, q1) = −evq2K

µ
−q2q1(φ)uq1ε

∗
µ, (2.34)

with Kµ
−q2q1(φ) given by Eq. (1.83). We define the reduced matrix element as

M(q2, q1) =
∫

dx+ exp
[
iΦq2q1(x+)

]
M(φ, q2, q1). (2.35)

Note, that it is different by its structure in comparison with the one in vacuum, since only
the three momentum components are conserved in a plane-wave background. Also note,
that M(φ, q2, q1) is a slowly varying function of qµ2 and qµ1 .

We take the modulus squared of Sfi, transform the delta functions in the same way,
as in Eq. (2.13), and replace the momenta of the incoming particles with the central ones
for all slowly varying functions and the one of the delta functions. We obtain:

|Sfi|2 =
∫

d2x⊥dx−dx+
2 dx+

1 (2π)3δ(+,⊥)(k − p2 − p1)

× f2(x⊥, x−, x+
2 )f∗2 (x⊥, x−, x+

1 )f1(x⊥, x−, x+
2 )f∗1 (x⊥, x−, x+

1 )

×M(φ2, p2, p1)M∗(φ1, p2, p1)eik−(x+
2 −x

+
1 )

8Vk+p+
2 p

+
1
. (2.36)

Let us discuss the result (2.36). As we find out, in Eq. (2.36) the wave packet densities
are evaluated at different time points, therefore, in general, we can not define cross section
in a way, as one does for the vacuum case, but need to take the dynamics of the wave
packets into account.

Recalling the discussion of scattering in vacuum, one can introduce the following vari-
ables:

x+ = (x+
2 + x+

1 )/2, δ+ = x+
2 − x+

1 . (2.37)
Then the product of the distribution densities for the electron is given by (for the positron
it is analogous)

f1(x⊥, x−, x+
2 )f∗1 (x⊥, x−, x+

1 ) = f1(x⊥, x−, x+ + δ+/2)f∗1 (x⊥, x−, x+ − δ+/2)
= F1(x⊥, x−, x+ + δ+/2)F ∗1 (x⊥, x−, x+ − δ+/2)

× exp
[
−ip−1 x+

2 − iSp1(φ2) + ip−1 x
+
1 + iSp1(φ1)

]
. (2.38)

On the one hand, we see that if it is possible to neglect δ+ in the arguments of F1’s
(and also of F2’s), then the expression for the differential probability, analogous to the one
in vacuum, is recovered.
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2.2 Cross section for electron-positron annihilation into one photon

On the other hand, we are mainly interested in the highly nonlinear regime, i.e.,
the regime ξ � 1, with ξ being the classical intensity parameter (1.125) (for a linearly-
polarized laser pulse). In this regime, the integrals in the light-cone time are highly
oscillating and form in the region when the phase < 1, which would correspond to the
integration in δ+ up to mδ+ ∼ 1/ξ [Ritus, 1985], unless a cancellation of oscillating terms
happen in the phase. It should be pointed out, that in general also the magnitude of the
quantum nonlinearity parameter defines the convergence of the integral and the validity
of our approximation [Baier et al., 1989; Dinu et al., 2016]. We always assume that χ . 1
for all involved particles, such that the above statements remain true.

Moreover, we assume that the wave packets are sufficiently narrow, i.e., |∆p⊥i | � |p⊥i |
and |∆p+

i | � |p+
i |, where ∆p⊥i and ∆p+

i are widths of the wave packets in momentum
space. As a result, the contribution to the phases of F1’s in Eq. (2.38) (and also F2’s)
from the terms with δ+ is � 1, when mδ+ ∼ 1/ξ.

Therefore, anticipating that in a highly nonlinear regime the integral in δ+ forms in
the region |mδ+| � 1 and neglecting δ+ in the arguments of F1’s and F2’s, we obtain the
probability per unit time unit volume:

dẇ = |f2(x)|2|f1(x)|2(2π)3δ(+,⊥)(k − p2 − p1)M(x+, p2, p1)
4p+

2 p
+
1

d̃3k

(2π)32k+ , (2.39)

where

M(x+, p2, p1) =
∫

dδ+ exp
[
iΦp2p1(x+

2 )− iΦp2p1(x+
1 )
]

×M(φ2, p2, p1)M∗(φ1, p2, p1). (2.40)

Then the total cross section, averaged (summed) over the initial (final) polarization states,
is given by

σ(x+) = 1
32k+I(φ)

∑
polarization

M(x+, p2, p1), (2.41)

where [compare Eqs (2.8) and (2.31)]

I(φ) =
√

[πp2(φ)πp1(φ)]2 −m4. (2.42)

The quantity (2.41) can be viewed classically as the probability to annihilate into a pho-
ton in the point xµ with the electron and positron fluxes, entering this point, normalized
to one particle. However, since we define the in- and out-states at infinitely distant past
and future, respectively, this interpretation should be taken with care. In our formulation,
a clear physical meaning has the total probability

W =
∫

d4x|f2(x)|2|f1(x)|2J(φ)σ(x+), (2.43)

where the flux factor J(φ) = I(φ)/(p+
2 p

+
1 ).

The problem with the cross section (2.41) is that it contains the invariant (2.42) in
the denominator. Due to the dependence on the external field, I(φ) may become zero,
even if the initial particles are not at rest in the center-of-momentum frame (note that the
invariant I in vacuum is zero only in the case, when the initial particles are at rest in the
center-of-momentum frame). It does not affect observables, however [see Eq. (2.43)].
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2 Electron-positron annihilation into one photon

It is more convenient to normalize the probability (2.39) to the flux at x+ → −∞ and
define the cross section as

σ0(x+) = 1
32k+I

∑
polarization

M(x+, p2, p1), (2.44)

with the invariant I given by Eq. (2.17). In the following, we use the cross section (2.44).
It should be pointed out, that the definition (2.39) is different from the one in [Ritus,

1985] and the definition (2.44) is different from the one in [Ilderton et al., 2011]. In [Ritus,
1985; Ilderton et al., 2011], the differential probability is obtained as an average of the
integration over a large time interval. In our case, the integration in time is naturally
limited by the time interval of the overlap of the wave packets.

2.3 Evaluation of the trace
The preexponential factor in Eq. (2.40), averaged and summed over the polarization

states, is given by:

1
4

∑
polarization

M(φ2, p2, p1)M∗(φ1, p2, p1) = e2T−21(φ2, φ1) (2.45)

(we denote momenta simply by numbers: p1 → 1, −p2 → −2), where

T−21(φ2, φ1) = −Tr
{
ρ

(−)
2 Kµ

−21(φ2)ρ1K
ν
1,−2(φ1)

}
gµν . (2.46)

The density matrices are given by (the incoming particles are assumed to be unpolarized)

ρ1 = 1
2(γp1 +m), ρ

(−)
2 = 1

2(γp2 −m) = −ρ−2. (2.47)

During the evaluation of the trace, for clarity, we relabel the momentum of the positron
as p2 → −p2, such that

T−21(φ2, φ1)→ T21(φ2, φ1) = Tr
{
ρ2K

µ
21(φ2)ρ1K

ν
12(φ1)

}
gµν . (2.48)

From the expansion (1.84) we conclude, that in the density matrices only the terms
with γ− give nonvanishing result, so, we obtain:

T21(φ2, φ1) = 1
4Tr

{
(γp2 +m)

[
Sµ21(φ2) + V iµ

21 γi + Tµ21(φ2)γ1γ2
]
γ+

× (γp1 +m)
[
Sν12(φ1) + V jν

12 γj + T ν12(φ1)γ1γ2
]
γ+
}
gµν

= 1
2p

+
2 p

+
1 Tr

{[
Sµ21(φ2) + V iµ

21 γi + Tµ21(φ2)γ1γ2
]

×
[
Sν12(φ1) + V jν

12 γj + T ν12(φ1)γ1γ2
]}
gµν . (2.49)

We obtain what has been noticed before: the initial trace is possible to reduce to a trace
in the transverse space only. The evaluation is trivial:

T21(φ2, φ1) = 2p+
2 p

+
1

[
Sµ21(φ2)Sν12(φ1) + V iµ

21 V
jν

12 gij − Tµ21(φ2)T ν12(φ1)
]
gµν . (2.50)
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2.4 Phase

Performing the contractions with gµν , we find that

T21(φ2, φ1) = 1
p+

2 p
+
1

[
p+2

1 π2(φ2)π2(φ1) + p+2
2 π1(φ2)π1(φ1)

−p+
2 p

+
1 π2(φ2)π1(φ2)− p+

2 p
+
1 π1(φ1)π2(φ1)

−p+2
2 m2 − p+2

1 m2 + 4p+
2 p

+
1 m

2]. (2.51)

With the use of the four-momentum relations [see Eq. (1.122)]

πµ2 (φ) + kµ − πµ1 (φ) ∼ 0,
kπ2(φ) ∼ 0, kπ1(φ) ∼ 0, π2(φ)π1(φ) ∼ m2,

(2.52)

(in the following, we will write simply an equal sign) the result can be rewritten as

T21(φ2, φ1) = 2m2 − 1
2

(
p+

2
p+

1
+ p+

1
p+

2

)
∆2(φ2, φ1), (2.53)

where

∆2(φ2, φ1) = [πp(φ2)− πp(φ1)]2 = e2[A(φ2)−A(φ1)]2

= −m2 ∑
i=1,2

ξ2
i [ψi(φ2)− ψi(φ1)]2 (2.54)

does not depend on pµ. Recovering the complete expression, we obtain:

T−21(φ2, φ1) = 2m2 − m2

2

(
p+

2
p+

1
+ p+

1
p+

2

) ∑
i=1,2

ξ2
i [ψi(φ2)− ψi(φ1)]2, (2.55)

which is the same form, as obtained for nonlinear Compton scattering, with the change
pµ2 → −pµ2 (see, e.g., [Hartin, 2016] or [Di Piazza et al., 2018]).

2.4 Phase
The phase in Eq. (2.40) is given by

Φ = (k− − p−2 − p−1 )δ+ + S−2(φ2, φ1)− S1(φ2, φ1). (2.56)

The field-dependent part can be written as [Meuren et al., 2013]

S−2(φ2, φ1)− S1(φ2, φ1) = S−21(φ2, φ1)

=
φ2∫
φ1

dβ
[
ep1µp2νFµν(β)

m2p+
1 p

+
2

− e2(p+
1 + p+

2 )p1µp2νF2µν(β)
2m3p+2

1 p+2
2

]
, (2.57)

where the integrated field-tensors are given by Eq. (1.35). With the use of the conservation
laws for the asymptotic momenta

(p2 + p1)(+,⊥) = k(+,⊥), (2.58)
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2 Electron-positron annihilation into one photon

one obtains:
Φ = −k

+m2δ+

2p+
2 p

+
1

[
1 +

∑
i

(ti + ξiIi)2 +
∑
i

ξ2
i (Ji − I2

i )
]
. (2.59)

where

Ii =
1∫
−1

dλψi
(
φ+ 1

2mδ
+λ

)
, Ji =

1∫
−1

dλψ2
i

(
φ+ 1

2mδ
+λ

)
, (2.60)

φ = mx+, and the parameter ti is defined by Eq. (1.127). The result (2.59) can be
conveniently derived in the canonical light-cone basis (1.29) with qµ = pµ2 + pµ1 (note that
in this basis ti = pi1/m = −pi2/m).

2.5 Final result
The cross section (2.44) is given by

σ0(x+) = e2

8Ik+

∫
dδ+ eiΦ T−21(φ2, φ1), (2.61)

where T−21(φ2, φ1) is given by Eq. (2.55) and Φ by Eq. (2.59).
Since the phase Φ is odd in δ+ and the preexponential factor T−21(φ2, φ1) is even in δ+,

the result can be written as

σ0(x+) = e2

8Ik+ Re
∞∫
0

dδ+ eiΦ T−21(φ2, φ1), (2.62)

with Re denoting the real part.
In general, the integral in δ+ has to be evaluated numerically. It can be expressed via

special functions, e.g., in the case of a constant-crossed field, which we consider below.
But first let us verify that in the high-intensity regime the integral in δ+ indeed forms

in the region mδ+ � 1. Consider a linearly-polarized pulse (ξ1 = ξ, ξ2 = 0). Then for the
phase we have

Φ = −k
+m2δ+

2p+
2 p

+
1

[
1 + t22 + (t1 + ξI1)2 + ξ2(J1 − I2

1 )
]
. (2.63)

The phase is negative for all δ+ (the relation J1 − I2
1 ≥ 0 follows from the Cauchy-

Bunyakovsky-Schwarz inequality; it can be also verified directly). For δ+ � 1 we have

J1 − I2
1 ≈ [ψ′(φ)]2m

2δ+2

12 , (2.64)

which shows that for χ1, χ2 . 1 [see Eq. (1.126)] the last term becomes of order one at
mδ+ ∼ 1/ξ � 1.

2.6 Constant-crossed field case
We consider the case of a linear polarization, with ψ1(φ) = φ. Then the integral in δ+

is evaluated to produce the result

σ0(x+) = 4π2r2
em

2

κI

(
χ2χ1
κ

)1/3
[
1 + ρ

(
χ2
χ1

+ χ1
χ2

)(
χ2χ1
κ

)2/3
]

Ai(ρ), (2.65)
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2.6 Constant-crossed field case

where Ai(ρ) is the Airy function [Olver et al., 2010], ρ is given by

ρ =
( κ
χ2χ1

)2/3
[1 + t22 + ζ2(φ)], (2.66)

the parameter ζ(φ) is given by [see Eq. (1.127)]

ζ(φ) = (t1 + ξφ)/ξ. (2.67)

the quantities χ1 and χ2 are the quantum nonlinearity parameters for the electron and
positron, respectively [see Eq. (1.126)], and in order to distinguish the photon we denoted
its quantum nonlinearity parameter as κ.

The obtained result is similar to the one for nonlinear Compton scattering [Ritus, 1985],
however, due to the presence of the parameters ζ(φ) and t2 in the argument of the Airy
function, the cross section is exponentially suppressed, if those parameters & 1, as was also
pointed out by Ritus (1985). Since the parameters ζ(φ) and t2 characterize the transverse
momentum of the colliding system, a nonnegligible probability for the annihilation is
obtained only if those momentum components are sufficiently small.
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3

High-energy vacuum birefringence
and dichroism

In this chapter, we study the vacuum polarization. For low-frequency (in comparison to
the electron mass m) electromagnetic fields Fµν vacuum polarization effects are described
by the effective Euler-Heisenberg Lagrangian density, which was derived by Heisenberg and
Euler (1936), independently by Weisskopf (1936), and later obtained by Schwinger (1951)
with the use of the proper-time method (for more recent reviews of the Euler-Heisenberg
Lagrangian, see, e.g., [Berestetskii et al., 1982; Dittrich and Gies, 2000; Dunne, 2012]).
Below the QED critical field Ecr = m2/|e| ≈ 1.3 × 1018 V/m, low-frequency vacuum
polarization effects are suppressed and the density is given by

LEH = −F + α

90πE2
cr

(4F2 + 7G2) + · · · , (3.1)

where F = FµνF
µν/4 and G = (∗F )µνFµν/4 are the electromagnetic field invariants,

(∗F )µν = εµνστFστ/2 is the dual tensor.
The critical intensity Icr = E2

cr ≈ 4.6 × 1029 W/cm2 is well above even the envis-
aged I ∼ 1023 W/cm2 for future 10 PW-class optical lasers. Therefore, the leading-order
correction given in Eq. (3.1) is sufficient to describe low-frequency vacuum polarization
effects. Recently, various schemes have been considered to measure them: vacuum bire-
fringence with x-rays [Heinzl et al., 2006; Karbstein and Sundqvist, 2016; Schlenvoigt
et al., 2016; Shakeri et al., 2017], diffraction [Di Piazza et al., 2006; King et al., 2010],
four-wave mixing [Lundström et al., 2006; Tennant, 2016], Bragg scattering [Kryuchkyan
and Hatsagortsyan, 2011], and other setups [Tommasini et al., 2008; Homma et al., 2011;
King and Keitel, 2012; Monden and Kodama, 2012; Hu and Huang, 2014; Mohammadi
et al., 2014; Fillion-Gourdeau et al., 2015; Gies et al., 2015; Karbstein and Shaisultanov,
2015; Zavattini et al., 2016], but all suggested experiments will remain challenging in the
foreseeable future.

Searches for optical vacuum polarization effects have also been proposed as a way to
discover low-energy physics beyond the Standard Model, e.g., axionlike or minicharged
particles and paraphotons [Gies et al., 2006; Abel et al., 2008; Tommasini et al., 2009;
Villalba-Chávez and Di Piazza, 2013; Villalba-Chávez et al., 2016] (see also [Jaeckel and
Ringwald, 2010] for a review and [Jaeckel and Spannowsky, 2016] for some recently updated
limits on low-energy new physics).

The combination of a high-intensity laser field and high-energy probe photon beam,
however, allows to reach the critical intensity in the center-of-momentum frame and, there-
fore, to explore vacuum polarization effects at their maximal value [Berestetskii et al.,
1982]. In this regime, i.e., in the regime χ & 1, the Euler-Heisenberg approximation is no
longer applicable, as the probe photon field can not be treated as slowly varying anymore.
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3 High-energy vacuum birefringence and dichroism

Instead, the polarization operator in the background field must be employed (see Fig. 3.1).
In the regime χ & 1, the imaginary part of the polarization operator is not suppressed,
with comparison to the regime χ� 1, and as a manifestation of this, dichroic properties
of the vacuum become sizable.

We start by reviewing the polarization operator in a plane-wave field with the use of
the lightfront formalism. Employing the polarization operator in the locally constant field
approximation, we derive how the polarization of a generic photon beam changes, while
traversing through an intense laser pulse. Finally, we consider an experimental scheme to
measure high-energy vacuum birefringence and dichroism in an intense laser field.

3.1 Polarization operator in a plane-wave field
The first calculation of the polarization operator in a monochromatic plane-wave field

was published by Becker and Mitter (1975). The polarization operator in an arbitrary
plane-wave field was obtained by Baier et al. (1976) with the use of the so-called operator
technique, and later by Meuren et al. (2013) by the direct evaluation of the Feynman
diagram.

Here, we employ the front-form approach and present a simplified derivation of the
polarizaton operator in a plane-wave field of an arbitrary shape. Generally, we follow the
ideas presented by Meuren et al. (2013), however, due to the split of the vertices into
the three-point and seagull parts and the use of the light-cone expansion, the amount of
the calculations is significantly reduced, especially at the step of the evaluation of the
derivatives with respect to the “sources” (see [Meuren et al., 2013] for details), in fact,
there is no need to explicitly introduce the sources.

3.1.1 General structure

The leading-order diagram for the polarization operator is shown in Fig. 3.1. To
be precise, the diagram corresponds to k2µiPµν(k2, k1)k1ν , with Pµν(k2, k1) being the
polarization operator, which we are going to evaluate (this definition is consistent with
[Berestetskii et al., 1982], up to 4π, due to the fact that we use Heaviside units). The
radiative corrections to the polarization operator can be neglected for χ . 1 [Ritus, 1985]
(see [Fedotov, 2017] for a review).

In the diagram, there are two electron propagators, each consisting of the noninstan-
taneous and instantaneous parts. They give rise to the three terms, which we correspond-
ingly denote as ‘nn’ for the term including the combination of the two noninstantaneous
propagators, ‘ni’ for the term including the combination of the noninstantaneous and the
instantaneous propagators, and ‘in’ for the term with the latter combination in the oppo-
site order [we use the first letter for the propagator with pµ2 , and the second letter for the

p2

p1

k1 k2

Fig. 3.1. The leading-order diagram for the polarization operator in a plane-wave field.
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3.1 Polarization operator in a plane-wave field

propagator with pµ1 (see Fig. 3.1)]. So, we have:

Pµν(k2, k1) = Pµνnn (k2, k1) + Pµνni (k2, k1) + Pµνin (k2, k1). (3.2)

Note that, according to our definition, the left index µ of Pµν(k2, k1) is contracted with
the polarization four-vector of the outgoing photon, and the right index ν is contracted
with the polarization four-vector of the incoming photon (see Fig. 3.1). In [Meuren et al.,
2013] and [Baier et al., 1976] the order is the opposite, therefore, the comparison of the
results needs to be made after the swap of the tensor indices.

The ‘nn’ contribution is given by

Pµνnn (k2, k1) = ie2(2π)3δ(+,⊥)(k2 − k1)
∫ dp−2

2π

∫ d4p1
(2π)4

∫
dx+

2 dx+
1

× eiΦ T µνnn
(p2

2 −m2 + iε)(p2
1 −m2 + iε) ,

(3.3)

where

Φ = (p−2 + k−2 − p−1 )x+
2 + (p−1 − k−1 − p−2 )x+

1 + S2(φ2, φ1)− S1(φ2, φ1), (3.4)

and
T µνnn = Tr

{
(γp̃2 +m)Kµ

21(φ2)(γp̃1 +m)Kν
12(φ1)

}
. (3.5)

The trace is evaluated analogously to the evaluation of the trace for first-order pro-
cesses:

T µνnn = 8p+
2 p

+
1

[
Sµ21(φ2)Sν12(φ1) + V iµ

21 V
jν

12 gij − Tµ21(φ2)T ν12(φ1)
]
. (3.6)

The ‘ni’ contribution is given by

Pµνni (k2, k1) = ie2(2π)3δ(+,⊥)(k2 − k1)
∫ d4p2

(2π)4

∫
dx+ ei(k−2 −k−1 )x+ T µνni

p2
2 −m2 + iε

, (3.7)

where

T µνni = 1
2p+

1
Tr
{
(γp̃2 +m)Kµν

22 (φ)
}

= 2p+
2

p+
1

[
Sµ2S

ν
2 − V iµ

2 (φ)V jν
2 (φ)gij

]
. (3.8)

Finally, the ‘in’ contribution is the same, as the ‘ni’ contribution, but with the exchange
pµ2 ↔ pµ1 :

Pµνin (k2, k1) = Pµνni (k2, k1)
∣∣∣
pµ2↔p

µ
1
, T µνin = T µνni

∣∣∣
pµ2↔p

µ
1
. (3.9)

Note, that formally we also need to swap the indices µ and ν for Kµν
11 (φ) in T µνin , however,

it is not necessary, since, as we see from Eq. (3.8), the tensor T µνni (and therefore T µνin ) is
symmetric.

For the “+” and “⊥” momentum components the following conservation relations are
valid:

p
(+,⊥)
2 = (p1 − k2)(+,⊥) = (p1 − k1)(+,⊥). (3.10)

We are interested in the evaluation of the field-dependent part of the polarization
operator, therefore, we subtract the vacuum part Pµν0 (k2, k1) and calculate the quantity

PµνF (k2, k1) = Pµν(k2, k1)− Pµν0 (k2, k1). (3.11)
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3 High-energy vacuum birefringence and dichroism

3.1.2 Ward-Takahashi identity

For the polarization operator Pµν(k2, k1), the Ward-Takahashi identity, applied to each
of the two external photon legs, results in the following relations [Peskin and Schroeder,
1995]:

k2µPµν(k2, k1) = 0, Pµν(k2, k1)k1ν = 0. (3.12)

It is instructive to check explicitly, how the four-momentum conservation relations,
discussed in Section 1.9, lead to Eq. (3.12). We prove the first identity in Eq. (3.12), the
second one can be proved in an analogous way.

For k2µT µνnn we need to find the contractions of kµ2 with Sµ21(φ2), V iµ
21 , and T

µ
21(φ2) [see

Eq. (3.6)]. We obtain:

k2S21(φ2) = 1
2p+

2 p
+
1

{
p+

2 k2π1(φ2) + p+
1 k2π2(φ2)− k+

2

[
π2(φ2)π1(φ2)−m2

] }
,

k2V
i

21 = k2T21(φ2) = 0.
(3.13)

Using the momentum relations (for simplicity, we write an equal sign instead of ‘∼’)

k2π2(φ2) = 1
2(p2

1 − p2
2 − k2

2), k2π1(φ2) = −1
2(p2

2 − p2
1 − k2

2),

π2(φ2)π1(φ2) = −1
2(k2

2 − p2
2 − p2

1),
(3.14)

we obtain that
k2µT µνnn = (p2

1 −m2)∆T νni + (p2
2 −m2)∆T νin, (3.15)

where
∆T νni = 4p+

2 S
ν
12(φ1), ∆T νin = −4p+

1 S
ν
12(φ1). (3.16)

The four-vectors ∆T νni and ∆T νin in Eq. (3.16) are to be combined with the ‘ni’ and ‘in’
parts, respectively.

For k2µT µνni we need to find the contractions of kµ2 with Sµ2 and V iµ
2 (φ) [see Eq. (3.8)].

We have:
k2S2 = mk+

2
p+

2
, k2V

i
2 (φ) = ki2 −

k+
2
p+

2
πi2(φ). (3.17)

After combining k2µT µνni and ∆T νni we obtain, that

k2µT µνni + ∆T νni = 4πν2 (φ) + 2
p+

2

(
m2 − p2

2

)
gν+. (3.18)

Performing the same calculations for the ‘in’ term, we obtain, that

k2µT µνin + ∆T νin = −4πν1 (φ)− 2
p+

1

(
m2 − p2

1

)
gν+. (3.19)

The momenta pµ1 and pµ2 are the integration variables. After relabeling pµ2 → pµ1 in
the integral of the ‘ni’ contribution, we see that this contribution transforms into the ‘in’
contribution, but with the opposite sign. Therefore, the sum of both contributions is zero,
which concludes the proof.
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3.1 Polarization operator in a plane-wave field

3.1.3 Tensor expansion

Having the identities (3.12) in mind, we represent the tensor structure of the polar-
ization operator by expanding it in the two complete and orthogonal basis sets [Meuren
et al., 2013; Baier et al., 1976]

{kµ2 ,Λµ1 ,Λµ2 , Qµ2} , {kν1 ,Λν1 ,Λν2 , Qν1} , (3.20)

where the four-vectors Λµi are from Eq. (1.29) and Qµi = (k2
i η
µ − q+kµi )/q+ (note that

Q2
i = −k2

i ). We are free to choose any qµ (under the condition q+ 6= 0). The four-vector
qµ will be specified in a moment, but for now, let us proceed with the general case. In the
following, we utilize the canonical light-cone Lorentz basis (1.29).

Due to Eq. (3.12), essentially, we need to know the contractions of the polarization
operator only with Λµ1 , Λµ2 , and ηµ. Let us start with the ‘ni’ contribution. One can find
that

ΛjS2 = 0, ΛjV i
2 (φ) = gij , ηS2 = ηV i

2 (φ) = 0, (3.21)

and analogously for the products from the left side. We see, that the ‘ni’ part contains only
terms proportional to Λµ1 Λν1 and Λµ2 Λν2 , with the coefficients not depending on the external
field [see Eq. (3.7)], as a result, it does not contribute to PµνF (k2, k1) [see Eq. (3.11)].
Absolutely analogous considerations are true also for the ‘in’ part. Therefore, only the
‘nn’ part needs to be evaluated.

For the calculation of the ‘nn’ term, we choose qµ = kµ1 , which implies that k⊥1 = k⊥2 =
0 and p⊥1 = p⊥2 . With this choice, we obtain that

ΛkS21(φ) = p+
2 + p+

1
2p+

2 p
+
1
πk1 (φ), ΛkV i

21 = m(p+
2 − p+

1 )
2p+

2 p
+
1

gik,

ΛkT21(φ) = −p
+
2 − p+

1
2p+

2 p
+
1
εklπ1l(φ), ηS21(φ) = 1, ηV i

21 = ηT21(φ) = 0.
(3.22)

The results for the contractions from the left side are obtained with the use of the symmetry
relations

Sµ12(φ) = Sµ21(φ), V iµ
12 = −V iµ

21 , Tµ12(φ) = −Tµ21(φ). (3.23)

Combining all the terms together, we obtain:

T µνnn = a12Λµ1 Λν2 + a21Λµ2 Λν1 + b12Λµ1 Λν1 + b21Λµ2 Λν2 + c5Q
µ
2Q

ν
1

+ d1(φ1)Qµ2 Λν1 + d2(φ1)Qµ2 Λν2 + d1(φ2)Λµ1Qν1 + d2(φ2)Λµ2Qν1 ,
(3.24)

where

aij = 2(p+
2 + p+

1 )2

p+
2 p

+
1

πi1(φ2)πj1(φ1)− 2(p+
2 − p+

1 )2

p+
2 p

+
1

πj1(φ2)πi1(φ1),

bij = 2(p+
2 + p+

1 )2

p+
2 p

+
1

πi1(φ2)πi1(φ1) + 2(p+
2 − p+

1 )2

p+
2 p

+
1

πj1(φ2)πj1(φ1) + 2m2(p+
2 − p+

1 )2

p+
2 p

+
1

,

c5 = 8p+
2 p

+
1

k+2
1

, di(φ) = 4(p+
2 + p+

1 )
p+

2 − p+
1

πi1(φ).

(3.25)
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3 High-energy vacuum birefringence and dichroism

3.1.4 Evaluation of the integrals

This part of the derivation is basically the same, as in [Meuren et al., 2013], up to the
point of the evaluation of the integrals in the transverse momentum components. Let us
go through major steps.

We make a change of variables:

x+ = (x+
2 + x+

1 )/2, δ+ = x+
2 − x+

1 . (3.26)

Then we write the phase (3.4) as

Φ = p−2 δ
+ − p−1 δ+ + k−2

(
x+ + δ+

2

)
− k−1

(
x+ − δ+

2

)
+ k+

1 δ
+

2p+
2 p

+
1

∑
i

(
2mξipi1Ii +m2ξ2

i Ji
)
,

(3.27)

where

Ii = 1
2

1∫
−1

dλψi
(
φ+ 1

2mδ
+λ

)
, Ji = 1

2

1∫
−1

dλψ2
i

(
φ+ 1

2mδ
+λ

)
. (3.28)

For the propagators [see Eq. (3.3)], the proper-time representation is employed:

1
(p2

2 −m2 + iε)(p2
1 −m2 + iε) = −

∞∫
0

dsdt exp
[
i(2p+

2 p
−
2 − p⊥2

2 −m2 + iε)s
]

× exp
[
i(2p+

1 p
−
1 − p⊥2

1 −m2 + iε)t
]
.

(3.29)

We will not write the terms with iε in the following, but will keep them in mind.
With the use of the representation (3.29), one is able to evaluate the integrals in p−2

and p−1 . We obtain two delta functions, which are transformed as

δ(δ+ + 2p+
2 s)δ(δ+ − 2p+

1 t) = 1
2(s+ t)δ

(
δ+ − 2k+

1 st

s+ t

)
δ

(
p+

1 −
k+

1 s

s+ t

)
. (3.30)

Subsequently, the obtained delta functions are used for the evaluation of the integrals in
δ+ and p+

1 .
As the next step, we introduce new variables τ and v:

τ = s+ t, v = s− t
s+ t

,

∞∫
0

ds dt→
1∫
−1

dv
∞∫
0

dτ τ2 . (3.31)

We obtain:

δ+ = 2k+
1 µ, p+

1 = k+
1 µ

τ
, (3.32)

Φ = (k−2 − k−1 )x+ + µk2k1 − (p⊥2
1 +m2)τ − τ

∑
i

(
2mξipi1Ii +m2ξ2

i Ji
)
, (3.33)

where µ = (1− v2)τ/4. The ‘nn’ term (3.3) takes the form:

Pµνnn (k2, k1) = − iα2 (2π)3δ(+,⊥)(k2 − k1)
∫ d2p⊥1

(2π)2

∫
dx+

1∫
−1

dv
∞∫
0

dτ eiΦ T µνnn . (3.34)
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3.1 Polarization operator in a plane-wave field

We notice that the the coefficients di(φ) in Eq. (3.24) are proportional to v [see
Eq. (3.25)], therefore, the integration in v yields zero for those coefficients, and we need
to consider the coefficients only in the first line of Eq. (3.24). For those coefficients we
change the order of the integrations and integrate in p⊥1 . The integrals are the Fresnel
integrals, or may be expressed as derivatives of the Fresnel integrals, in particular:

I
(⊥)
0 =

∫ d2p⊥1
(2π)2 e−iτ(p⊥2

1 +2p⊥1 R
⊥) = − i

4πτ eiτR⊥2
,

I
(⊥)
1i =

∫ d2p⊥1
(2π)2 p

i
1 e−iτ(p⊥2

1 +2p⊥1 R
⊥) = −RiI(⊥)

0 ,

I
(⊥)
2 =

∫ d2p⊥1
(2π)2 (pi1)2 e−iτ(p⊥2

1 +2p⊥1 R
⊥) =

[
− i

2τ + (Ri)2
]
I

(⊥)
0 ,

(3.35)

where Ri = mξiIi [see Eq. (3.33)].
After the integration and subtraction of the vacuum part, the final result is given by

PµνF (k2, k1) = − α

2π (2π)3δ(+,⊥)(k2 − k1)
∫

dx+
1∫
−1

dv
∞∫
0

dτ
τ

eiΦ0

× (b1Λµ1 Λν2 + b2Λµ2 Λν1 + b3Λµ1 Λν1 + b4Λµ2 Λν2 + b5Q
µ
2Q

ν
1) ,

(3.36)

where
Φ0 = (k−2 − k−1 )x+ + µk2k1 − τm2, (3.37)

and

b1 = 2m2ξ2ξ1
τ

4µ
(
X21 − v2X12

)
eiτβ,

b2 = 2m2ξ2ξ1
τ

4µ
(
X12 − v2X21

)
eiτβ,

b3 =
[
i(1 + v2)
τ(1− v2) −

m2τ

2µ

] (
eiτβ − 1

)
− 2m2 τ

4µ

(
ξ2

2X22 + ξ2
1v

2X11

)
eiτβ,

b4 =
[
i(1 + v2)
τ(1− v2) −

m2τ

2µ

] (
eiτβ − 1

)
− 2m2 τ

4µ

(
ξ2

1X11 + ξ2
2v

2X22

)
eiτβ,

b5 = −2µ
τ

(
eiτβ − 1

)
.

(3.38)

The quantities Xij and β in Eq. (3.38) are defined as

Xij =
[
Ii − ψi

(
φ+mk+

1 µ
)] [

Ij − ψj
(
φ−mk+

1 µ
)]

(3.39)

and
β = m2∑

i

ξ2
i (I2

i − Ji). (3.40)

The obtained result is the same as known from the literature [Meuren et al., 2013;
Baier et al., 1976], apart from the form of the coefficients b3 and b4 in Eq. (3.38). These
coefficients can be cast into the known form by an integration by parts in τ . For the
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3 High-energy vacuum birefringence and dichroism

second term in the square brackets in b3 and b4 we use the relation
∞∫
0

dτ
τ

ei(µk2k1−τm2)
(
eiτβ − 1

)
=
∞∫
0

dτ
τ

ei(µk2k1−τm2)

×
[(

i

τm2 + µk2k1
τm2

)(
eiτβ − 1

)
− eiτβ

∑
i

ξ2
i (Xii + Zi)

]
,

(3.41)

where
Zi = 1

2
[
ψi
(
φ+mk+

1 µ
)− ψi(φ−mk+

1 µ
)]2

. (3.42)

Note that the boundary terms vanish: the one at τ → ∞ due to the factor 1/τ and also
due to the exponential damping, that we have been keeping in mind [see Eq. (3.29)]; the
one at τ → 0 due to β ∝ τ2 in this limit.

So, we obtain:

b3 → b3 = −
(
i

τ
+ k2k1

2

)(
eiτβ − 1

)
+ 2m2

[
τ

4µ
(
ξ2

1Z1 + ξ2
2Z2

)
+ ξ2

1X11

]
eiτβ ,

b4 → b4 = −
(
i

τ
+ k2k1

2

)(
eiτβ − 1

)
+ 2m2

[
τ

4µ
(
ξ2

1Z1 + ξ2
2Z2

)
+ ξ2

2X22

]
eiτβ ,

(3.43)

which is the same form, as was derived by Meuren et al. (2013).

3.1.5 Locally constant field approximation

The locally constant field approximation [valid in the regime ξ � 1, χ = (k+
1 /m)ξ . 1]

for a linearly polarized plane-wave field [ψ1(φ) = ψ(φ), ψ2(φ) = 0] was obtained by Meuren
et al. (2013). Later, the polarization operator in this approximation will be used for the
derivation of the effective photon wave function. Despite having a different representation
of the polarization operator [Eq. (3.38)], one can proceed in exactly the same way, as was
done by Meuren et al. (2013), and obtain the same expression (up to the swap of the
indices µ and ν, as has been pointed out before). Therefore, here we do not discuss the
derivation. The final result is given by

PµνF (k2, k1) = −(2π)3δ(+,⊥)(k2 − k1)
∫

dx+ei(k
−
2 −k

−
1 )x+

× [p1(φ, χ)Λµ1 Λν1 + p2(φ, χ)Λµ2 Λν2 + p3(φ, χ)Gµν ] , (3.44)

where

p1(φ, χ) = αm2

3π

1∫
−1

dv
[
χ(φ)
w

]2/3
(w − 1)f ′(u),

p2(φ, χ) = αm2

3π

1∫
−1

dv
[
χ(φ)
w

]2/3
(w + 2)f ′(u),

p3(φ, χ) = αk2k1
π

1∫
−1

dv f1(u)
w

,

(3.45)

with w and u defined as

w = 4
1− v2 , u =

[
w

χ(φ)

]2/3 (
1− k2k1

wm2

)
, (3.46)
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3.2 Effective photon wave function in a plane-wave field

and χ(φ) = χ|ψ′(φ)| being the local value of the quantum nonlinearity parameter. In
Eq. (3.44) the tensor Gµν = gµν − (kµ1kν2 )/k1k2 is introduced and in Eq. (3.45) the Ritus
functions [Ritus, 1985; Meuren et al., 2013] are employed:

f(u) = i

∞∫
0

dt e−i(ut+t3/3) = πGi(u) + iπAi(u),

f1(u) =
∞∫
0

dt
t

e−iut
(
e−it3/3 − 1

)
,

(3.47)

where Gi(u) and Ai(u) are the Scorer and Airy functions, respectively [Olver et al., 2010].

3.2 Effective photon wave function in a plane-wave field
An external plane-wave field changes the photon dispersion relation via the radiative

corrections, induced by virtual particles (see Fig. 3.2). In the regime ξ � 1, χ . 1, the
effective photon wave function can be obtained in a closed form [Meuren et al., 2015].

We start with the Dyson equation [Berestetskii et al., 1982] for the photon external
line:

Φµ
k(x) =

∫
d4x2d4x1Dσµ(x, x2)Pµν(x2, x1)Φkν(x1), (3.48)

where Φµ
k(x) is the effective photon wave function (the index k denotes the four-momentum

kµ; we suppress the normalization factor 1/
√

2k+V in the following), Dσµ(x, x2) is the
photon propagator, and Pµν(x2, x1) is the polarization operator in the position space
representation, i.e.,

Pµν(x2, x1) =
∫ d4k2

(2π)4
d4k1
(2π)4 e−ik2x2Pµν(k2, k1)eik1x1 . (3.49)

From Eq. (3.48) we obtain that

− ∂σ∂σΦµ
k(x) =

∫
d4yPµν(x, y)Φkν(x), (3.50)

In the regime ξ � 1, χ . 1, we use the locally constant field approximation for the
polarization operator [see Eq. (3.44)]. We seek the solution of Eq. (3.50) as

Φµ
k(x) = εµ(φ)e−ikx, εµ(φ) =

∑
i=1,2

ci(φ)Λµi , (3.51)

with initial condition Φµ
k(x) → Φ(0)µ

k (x) = ε(0)µe−ikx as x+ → −∞, where ε(0)µ is the
initial polarization four-vector:

ε(0)ε(0)∗ = −1, kε(0) = 0, ε(0)µ =
∑
i=1,2

c
(0)
i Λµi . (3.52)

= + + + ... 

Fig. 3.2. Diagrammatic representation of the Dyson equation for the external photon line. We
neglect the radiative corrections to the polarization operator for χ . 1.
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3 High-energy vacuum birefringence and dichroism

Solving Eq. (3.50), we obtain that [Meuren et al., 2015]

ci(φ) = c
(0)
i exp [iκi(φ)− λi(φ)], (3.53)

where

κi(φ) = − 1
2k+

φ∫
−∞

dτ Re
{
pi(τ, χ)

}
, λi(φ) = − 1

2k+

φ∫
−∞

dτ Im
{
pi(τ, χ)

}
, (3.54)

and the functions pi(τ, χ) are given by Eq. (3.45). We refer to κi = κi(φ → ∞) as phase
shifts and to λi = λi(φ→∞) as decay parameters:

κi = − 1
2k+

∞∫
−∞

dτ Re
{
pi(τ, χ)

}
, λi = − 1

2k+

∞∫
−∞

dτ Im
{
pi(τ, χ)

}
. (3.55)

In the matrix form, the relation between the initial c(0)
i and final ci = ci(φ → ∞) coeffi-

cients can be written as
ci =

∑
j

Tijc
(0)
j , (3.56)

where
T =

(
eiκ1−λ1 0

0 eiκ2−λ2

)
. (3.57)

In order to extend the above result from a single photon to a photon beam (which is, in
general, not in a pure polarization state), we introduce the following density tensors, which
describe the initial (%(0)µν) and the final (%µν) polarization state of the beam [Berestetskii
et al., 1982; Blum, 2012; Meuren et al., 2016]

%(0)µν =
∑
a

waε
(0)µ
a ε(0)∗ν

a =
∑
i,j

ρ
(0)
ij Λµi Λνj , %µν =

∑
a

waε
µ
aε
∗ν
a =

∑
i,j

ρijΛ
µ
i Λνj , (3.58)

where wa is the probability to find a photon with polarization four-vector ε(0)µ
a (εµa) in the

initial (final) beam.
The initial ρ(0) and final ρ density matrices are related by

ρ = Tρ(0)T †, (3.59)

where the matrix T is given by Eq. (3.57).
Using the identity matrix and the Pauli matrices σ = (σ1, σ2, σ3), which are given by

[Berestetskii et al., 1982]

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.60)

we expand the initial (ρ(0)
ij ) and the final (ρij) polarization density matrices as [Berestetskii

et al., 1982; Blum, 2012; Meuren et al., 2016]

ρ(0) = 1
2
(
S

(0)
0 + S(0)σ

)
, ρ = 1

2 (S0 + Sσ) . (3.61)
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...

electron beam

backscatterring

γ beam
monochromator

strong laser field detection

foil (high Z ) Si-detector

Fig. 3.3. Experimental setup. Polarized highly energetic gamma photons (produced via Compton
backscattering) propagate through a strong laser field, which induces vacuum birefringence and
dichroism. Afterward, the gamma photons are converted into electron-positron pairs. From their
azimuthal distribution, the polarization state is deduced.

We note that Tr{ρ(0)} = S
(0)
0 , Tr{ρ} = S0, with S0 ≤ S(0)

0 , in general, as the photons can
decay in the strong background field.

The Stokes parameters S(0) = {S(0)
0 ,S(0)} [S(0) = (S(0)

1 , S
(0)
2 , S

(0)
3 )] and S = {S0,S}

[S = (S1, S2, S3)] are real numbers that completely characterize respectively the initial and
final polarization state of the beam [Blum, 2012; Born and Wolf, 1999]. Therefore, the fol-
lowing relations describe any possible vacuum birefringence and/or dichroism experiment
[see Eqs. (3.57), (3.59), and (3.61)](

S0
S3

)
= e−(λ1+λ2)

(
cosh δλ sinh δλ
sinh δλ cosh δλ

)(
S

(0)
0
S

(0)
3

)
,(

S1
S2

)
= e−(λ1+λ2)

(
cos δκ − sin δκ
sin δκ cos δκ

)(
S

(0)
1
S

(0)
2

)
.

(3.62)

Here, δκ = κ2 − κ1 is related to vacuum birefringence and δλ = λ2 − λ1 to vacuum
dichroism.

Note that S1 and S3 correspond to linear polarization as %µν = εµε∗ν with εµ =
cosϕΛµ1 + sinϕΛµ2 implies S0 = 1, S1 = sin(2ϕ), S2 = 0, and S3 = cos(2ϕ); whereas
S2 corresponds to circular polarization as εµ = (Λµ1 ± iΛµ2 )/

√
2 implies S0 = 1, S1 = 0,

S2 = ±1, and S3 = 0.

3.3 High-energy vacuum birefringence/dichroism experiment
Having deduced, how the polarization of a generic photon beam changes, while the

photons traverse an intense laser pulse, we are ready to study the feasibility of a detection
of that change in a near-future experiment.

For the discussion of the vacuum birefringence/dichroism experiment we do not employ
the lightfront formalism, but formulate dynamics in the instant form, with space-time four-
vector xµ = (x0,x), time x0, and space vector x = (x1, x2, x3). The four-momentum is
pµ = (p0,p) with p0 being the energy and p being the three-momentum. The metric tensor
is gµν = diag(1,−1,−1,−1).

We consider the setup, shown in Fig. 3.3. Polarized gamma photons are produced
via Compton backscattering off a highly energetic electron beam. The photons propagate
through an intense linearly polarized laser pulse, which induces vacuum birefringence and
dichroism. Afterward, the gamma photons are converted into electron-positron pairs.
From the azimuthal distribution of the pairs, the polarization state is deduced.
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3 High-energy vacuum birefringence and dichroism

We assume that the collision between the gamma beam and the laser pulse is head-
on, and direct the z-axis along the gamma beam propagation, i.e., kµ = ω(1, 0, 0, 1)
and kµ0 = ω0(1, 0, 0,−1) for the gamma and laser photons, respectively. We direct the
x-axis along the laser polarization direction, which implies that Λµ1 = (0, 1, 0, 0). We
choose Λµ2 = (0, 0, 1, 0), such that the spatial components of Λµ1 and Λµ2 and z-axis form a
right-handed coordinate system. Note that for a linear polarization the four-vector Λµ2 in
Eq. (1.29) is not defined, since there is no fµν2 . We can form Λµ2 via the dual tensor (∗F )µν :

Λµ2 = kν(∗F )νµ

mk+
√
−a2

1

(3.63)

(in general, the sign in front of Λµ2 is arbitrary).
Five different sets of the parameters are evalauted. Three of them are based on the

parameters of three laser facilities, which are currently under construction (each of those
facilities is planned to have at least two high-power lasers with at least one of them being a
10-PW machine): the Apollon facility (F1, F2 lasers) [Papadopoulos et al., 2016], ELI-NP
(two 10 PW lasers) [Negoita et al., 2016; Turcu et al., 2016], and ELI-Beamlines (denoted
as ELI-BL; L3, L4 lasers) [Rus et al., 2013; Le Garrec et al., 2014; ELI-Beamlines]. For
each facility, we assume that a 10 PW laser is employed to polarize the vacuum and the
second laser is utilized to produce electron bunches via laser wakefield acceleration [Wang
et al., 2013; Leemans et al., 2014; Kim et al., 2017].

The fourth considered case is the proposed FACET-II facility at SLAC, which is
planned to deliver up to 10-GeV high-density electron beams [FACET-II]. In our setup,
FACET-II is combined with a 100-TW laser, which has also been proposed as a future
upgrade of the existing 10-TW laser [Fry, 2017].

Finally, we evaluate a possible experiment (denoted as LINAC-PW) at a conventional
electron accelerator, e.g., the European XFEL (electron energies up to 17.5 GeV) [Eu-
roXFEL], SACLA (electron energies up to 8.5 GeV) [Yabashi et al., 2015], or previously
mentioned FACET-II, combined with a high-repetition (10 Hz) 1 PW laser.

The parameters of the high-power lasers, employed for polarizing vacuum in the ex-
periment, are summarized in Table 3.1.

Let us assess the magnitude of the effects first. Take the rectangular pulse profile with
N periods:

ψ′(φ) =
{

sinφ if φ ∈ [−Nπ,Nπ],
0 otherwise. (3.64)

In the case (3.64) the integrals (3.55) are simplified to

κi = − ξN

m2χ

π∫
0

dτ Re [pi(τ, χ)] , λi = − ξN

m2χ

π∫
0

dτ Im [pi(τ, χ)] . (3.65)

As we see from Eq. (3.65), the shift and decay parameters depend only on two quantities:
χ and ξN . The dependence of δκ and δλ on these quantities, as well as the estimations
for the three 10-PW laser facilities, are shown in Fig. 3.4.

As we see from Fig. 3.4, vacuum dichroism is suppressed in the regime 0.1 . χ < 1.
This can be also checked analytically, expanding the expressions in Eq. (3.65) with respect
to χ� 1: (

κ1
κ2

)
≈ αξNχ

90

(
4
7

)
,

(
λ1
λ2

)
≈
√
π

2
αξN

√
χ

16 e−8/(3χ)
(

3
6

)
. (3.66)
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3.3 High-energy vacuum birefringence/dichroism experiment

Table 3.1. Parameters of the ultrahigh-intensity lasers which are considered in the numerical
calculations: pulse energy E , pulse duration ∆t, peak focused intensity I, and pulse repetition rate
(PRR). From them we deduce ξ, χ, the number of cycles N for the rectangular enveloper and
the pulse width ∆φ used for the Gaussian envelope (the details are given in the main text). For
ELI-NP the laser wavelength λ0 = 800 nm (the angular frequency ω0 = 1.55 eV), for other facilities
this value is not stated in the literature, we use the same value as for ELI-NP. For Apollon F1,
the envisioned intensity > 2 × 1022 W/cm2, we use 1023 W/cm2. For FACET-II, focusing down
to 4 µm (radius) is assumed. For LINAC-PW, we assume to use a laser, similar to the L3 laser of
ELI-BL. Also note that ELI-NP hosts two lasers with the designated parameters.

E [J] ∆t [fs] I [W/cm2] PRR [Hz] ξ χ ξN ∆φ
Apollon F1 150 15 1023 1/60 150 1.8× ω [GeV] 860 30
ELI-NP (x2) 250 25 1023 1/60 150 1.8× ω [GeV] 1400 50
ELI-BL L4 1500 150 1022 1/60 50 0.57× ω [GeV] 2700 300
FACET-II 4 35 2.3× 1020 5 7.3 0.09× ω [GeV] 95 70
LINAC-PW 30 30 1021 10 15 0.18× ω [GeV] 170 60

So, λi and therefore pair production are exponentially suppressed for χ� 1.
In the regime 0.1 . χ < 1 a clean vacuum birefringence measurement is possible. As

can be seen in Fig. 3.4, for the three shown facilities this regime requires probe photons
with energies of ∼ 100 MeV and allows to reach |δκ| . 0.1.

In Fig. 3.4, we do not plot the results for FACET-II and LINAC-PW because of
their much smaller values for ξN (see Table 3.1). Nevertheless, we include them into the
consideration of the vacuum birefringence experiment, since those setups allow for faster
accumulation of the statistics, due to higher repetition rate of their lasers (and also due to
the high-density electron beam in the case of FACET-II). As we will see, this compensates
for the relatively low intensity of the laser pulse.

As for the regime χ & 1, it can be accessible if probe photons with energies of ∼ 1 GeV
are employed. The most promising setup for exploring this regime is ELI-NP, and we will
consider it for the vacuum birefringence/dichroism experiment. Notably, the quantity δκ
decreases with the increase of the probe photon energy for χ & 2.5, which characterizes
the anomalous dispersion of the vacuum in this regime [Becker and Mitter, 1975; Baier
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Fig. 3.4. Plots of δκ and δλ as functions of χ and ξN for a rectangular pulse profile [see Eq. (3.64)].
For each facility gamma photons with energy ω = 100 MeV (left point), ω = 500 MeV (central
point) and ω = 1 GeV (right point) are indicated.
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3 High-energy vacuum birefringence and dichroism

et al., 1976; Ritus, 1985; Heinzl and Ilderton, 2009; Dinu et al., 2014].
Below, first, we discuss each of the stages of the experiment in detail. Then we combine

everything together in order to obtain the results for the vacuum birefringence experiment
(we consider χ = 0.25) for the five mentioned facilities. After that, we make similar
estimations for the experiment in the regime χ = 2.5 for the case of ELI-NP.

For obtaining better estimates as those given in Fig. 3.4, in the following, we employ
a Gaussian pulse envelope

ψ′(φ) = exp
[− (φ/∆φ)2] sinφ, (3.67)

where ∆φ is related to the duration of the pulse ∆t (FWHM of the intensity) via ∆φ =
ωL∆t/

√
2 ln 2. The values of ∆φ are given in Table 3.1.

The pulse collides with
Nγ = Neσbs

Ibs
ωbs

∆tbs (3.68)

gamma photons, where σbs is the cross section of Compton scattering [Berestetskii et al.,
1982] and the index “bs” indicates the parameters characterizing the backscattering pro-
cess. To obtain a high degree of polarization, we consider only photons which are scattered
in the region θ ∈ (0, θmax � 1), where θ denotes the polar angle (θ = 0 corresponds to
perfect backscattering) [Berestetskii et al., 1982; Ginzburg et al., 1984; Fukuda et al., 2003;
Weller et al., 2009; Muramatsu et al., 2014].

We employ ∆tbs = ∆t, ωbs = 1.55 eV, and Ibs = 4.3× 1016 W/cm2 (considering linear
Compton scattering is sufficient as ξbs = 0.1 for this laser).

It turns out, that a significant improvement in the experimental sensitivity can be
achieved by employing circularly polarized probe gamma photons (this point will be jus-
tified below), as was also considered for low-energy experimental schemes by Cantatore
et al. (1991) and Wistisen and Uggerhøj (2013). Circularly polarized gamma photons
from Compton backscattering have been generated, e.g., at KEK [Fukuda et al., 2003].
We assume the use of a right-handed circularly polarized laser for producing high-energy
photons for the experiment.

3.3.1 Compton backscattering

The four-vectors pµ = (ε,p) and kµbs = (ωbs,kbs) [p′µ = (ε′,p′) and kµ = (ω,k)] denote
the four-momenta of the initial [final] electron and photon, respectively. We assume a head-
on collision and direct the z-axis along the initial electron momentum p [pµ = (ε, 0, 0, pz),
kµbs = ωbs(1, 0, 0,−1)].

We consider an unpolarized incoming electron beam and sum over the polarization of
the outgoing electrons. The polarization state of the initial photon beam and the state
selected by the detector, which measures the final photon polarization, are described by
the density tensors %µνbs and %′µν , respectively [Berestetskii et al., 1982]:

%µνbs =
∑

i,j=1,2
ρbs
ij e

µ
i e
ν
j , %′µν =

∑
i,j=1,2

ρ′ije
µ
i e
ν
j , (3.69)

where

eµ1 = Nµ

√
−N2

, eµ2 = Pµ√
−P 2

, (3.70)
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3.3 High-energy vacuum birefringence/dichroism experiment

Pµ = (gµν − KµKν

K2 )(p+ p′)ν , Nµ = εµνρσPνQρKσ, (3.71)

withKµ = kµbs+kµ and Qµ = kµ−kµbs. We introduce the Stokes vectors ξbs = (ξbs
1 , ξ

bs
2 , ξ

bs
3 )

and ξ′ = (ξ′1, ξ′2, ξ′3) via [compare with Eq. (3.61)]

ρbs = 1
2(1 + ξbsσ), ρ′ = 1

2(1 + ξ′σ), (3.72)

Using the above notation, the differential cross section for Compton scattering reads
[Berestetskii et al., 1982] (see also [Akhiezer and Berestetskii, 1969] and [Ginzburg et al.,
1984])

dσC = 1
16π2 |Mfi|2

ω2dΩ
m4x2 , (3.73)

where dΩ = sin θdθdϕ is the solid angle for the scattered photon, i.e., kµ = ω(1, cosϕ sin θ,
sinϕ sin θ, cos θ). The modulus squared of the reduced matrix element is given by

|Mfi|2 = 16π2r2
em

2
[
F0 + F3

(
ξbs

3 + ξ′3

)
+ F11ξ

bs
1 ξ
′
1 + F22ξ

bs
2 ξ
′
2 + F33ξ

bs
3 ξ
′
3

]
, (3.74)

with
F0 = V − F3, F3 = −(U2 + 2U),

F11 = 2(1 + U), F22 = V (1 + U), F33 = 2− F3,
(3.75)

U = 2/x− 2/y, V = x/y + y/x, (3.76)

and
x = 2pkbs

m2 = 2εωbs
m2 (1 + β), y = 2pk

m2 = 2εω
m2 (1 + β cos θ). (3.77)

The energy ω of the final photon is determined via four-momentum conservation pµ +
kµbs = p′µ + kµ and is given by

ω = (1 + β)εωbs
ε+ ωbs − (εβ − ωbs) cos θ , (3.78)

where β = |p|/ε. Correspondingly, the highest energy is obtained for perfect backscattering
(θ = 0):

ωmax = (1 + β)2ε2ωbs
m2 + 2(1 + β)εωbs

≈ 4ε2ωbs
m2 + 4εωbs

(3.79)

(the last relation holds for ultrelativistic electrons). We assume that in the experiment the
monochromator selects photons scattered by angles ϕ ∈ (0, 2π) and θ ∈ (0, θmax), where
θmax � 1. The total cross section (averaged over the initial and summed over the final
photon polarization) for those photons is

σbs = 4πr2
e

m2x2

θmax∫
0

dθ ω2F0 sin θ. (3.80)

In order to consider polarization effects we first note that [see Eq. (3.70)]

eµ1 = (0, sinϕ,− cosϕ, 0), eµ2 = −[tan(θ/2), cosϕ, sinϕ,− tan(θ/2)]. (3.81)
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3 High-energy vacuum birefringence and dichroism

Therefore, the Stokes parameters ξbs
i and ξ′i [see Eq. (3.72)] implicitly depend on ϕ. We

eliminate this dependence (to leading order in θ � 1) by introducing another basis ẽµi
(i = 1, 2) which is given by

ẽµi =
∑
j=1,2

Rij(ϕ)eµj , R(ϕ) =
(

cosϕ sinϕ
− sinϕ cosϕ

)
, (3.82)

such that

ẽµ1 (θ = 0) = −Λµ2 = (0, 0,−1, 0), ẽµ2 (θ = 0) = −Λµ1 = (0,−1, 0, 0). (3.83)

We denote the Stokes parameters for the initial beam and the state selected by the detector
in the new basis by Sbs

i and S′i, respectively. They are related to ξbs
i and ξ′i via(

ξbs
1
ξbs

3

)
= R(2ϕ)

(
Sbs

1
Sbs

3

)
,

(
ξ′1
ξ′3

)
= R(2ϕ)

(
S′1
S′3

)
, ξ2 = Sbs

2 , ξ′2 = S′2. (3.84)

In order to determine the Stokes parameters S(0)
i of the photon beam, which enters

the strong laser pulse, we set θ = 0 in the basis ẽµi [i = 1, 2; see Eq. (3.83)] as θ � 1 for
all selected photons, and integrate the cross section [see Eq. (3.73)] over ϕ. Finally, we
obtain that (see [Berestetskii et al., 1982])

S
(0)
1 = F11 + F33

2F0
Sbs

1 , S
(0)
2 = F22

F0
Sbs

2 , S
(0)
3 = F11 + F33

2F0
Sbs

3 . (3.85)

Note that for θ = 0 we obtain (F11+F33)
2F0

= 0 and F22
F0

= −1.

3.3.2 Pair production in a Coulomb field

One of the main experimental challenges is to analyze the final polarization state of
the gamma photons. Here, we consider pair production in a screened Coulomb field of
charge Z|e| [Hunter et al., 2014; Bernard, 2013; Kelner et al., 1975; Olsen and Maximon,
1959].

The cross section of electron-positron photoproduction by a photon with energy ω � m
colliding with an atom was derived by Olsen and Maximon (1959). After summing their
result {see Eq. (10.3) of [Olsen and Maximon, 1959]} over the spin states of the produced
electron and positron, we obtain for the cross section:

dσpp = dϕ

2π [σ0 + σ1(2|ûeγ |2 − 1)], (3.86)

where

σ0 = 2Z
2αr2

e

ω3

ω−m∫
m

dε
1∫

m2/ε2

dζ
{

(ε2 + ε′2)(3 + 2Γ) + 2εε′
[
1 + 4u2ζ2Γ

]}
(3.87)

and

σ1 = 2Z
2αr2

e

ω3

ω−m∫
m

dε
1∫

m2/ε2

dζ 8εε′u2ζ2Γ (3.88)
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Here, ϕ denotes the azimuth angle of the electron momentum in the transverse plane
(see Fig. 3.5), p denotes the electron momentum, ε =

√
m2 + p2 and ε′ = ω − ε are the

energy of the produced electron and positron, respectively; eγ denotes the polarization
vector of the incoming photon; u is the component of p (scaled by m) perpendicular to
k, it is defined as u = [p − k̂(k̂p)]/m, where k̂ = k/ω. In the frame, that we consider
(k = |k|ez, |k| = ω), we have: u = {ux,uy} = |u|{cosϕ, sinϕ}, where û = u/|u|.
Furthermore, ζ = 1/(1 + u2) and

Γ = ln(1/δ)− 2− f(Z) + F(δ/ζ), (3.89)

where δ = mω/(2εε′),

f(Z) = (Zα)2
∞∑
n=1

1
n[n2 + (Zα)2] . (3.90)

The term F(δ/ζ) takes the screening into account. We employ the Thomas-Fermi
model with Molière parametrization [Olsen and Maximon, 1959; Molière, 1947], i.e., the
screening term is given by

F(δ/ζ) = −1
2

3∑
i=1

α2
i ln(1 +Bi) +

3∑
i,j=1
i 6=j

αiαj

[
1 +Bj
Bi −Bj

ln(1 +Bj) + 1
2

]
(3.91)

with Bi = (βiζ/δ)2, βi = (Z1/3/121)bi and

α1 = 0.1, α2 = 0.55, α3 = 0.35,
b1 = 6.0, b2 = 1.2, b3 = 0.3.

(3.92)

We rewrite the cross section given in Eq. (3.86) as

dσpp = dϕ
2π

3∑
i,j=1

[σ0δ
ij + σ1(2ûiûj − δij)]eiγe∗jγ . (3.93)

Furthermore, we introduce the density matrix ρ and the Stokes vector S = {S0,S} for the
incoming photons as

eiγe
∗j
γ →

∑
a,b=1,2

eiae
j
bρab, ρ = 1

2(S0 + Sσ), (3.94)

γ

x

y

ϕ

e+

e−

Z|e|

Fig. 3.5. Scheme of electron-positron pair production by a gamma photon in a Coulomb field Z|e|.
The distribution in the momentum in the plane xy depends on the polarization of the photon.
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3 High-energy vacuum birefringence and dichroism

where e1 and e2 are spatial components of Λµ1 and Λµ2 , respectively. Combining Eqs. (3.93)
and (3.94) we obtain for the pair production cross section:

dσpp = dϕ
2π
{
σ0S0 + σ1[S1 sin(2ϕ) + S3 cos(2ϕ)]

}
. (3.95)

An analogous expression was obtained by Kelner et al. (1975).
Note that the cross section given by Eqs. (3.95), (3.87), and (3.88) neglects electron-

induced pair production and inelastic contributions. In the numerical calculations we
assume tungsten (Z = 74) as conversion material, therefore both effects are subdominant
(Z vs. Z2 scaling) [Tsai, 1974]. Moreover, most of the pairs are produced near the forward
direction such that we can neglect the nuclear form factors [Tsai, 1974].

Also note that the cross section σ0 represents the unpolarized part [see Eq. (3.87)],
whereas σ1 determines the significance of polarization effects [see Eq. (3.88)].

Now we are ready to discuss, which polarization of the probe photons provides advan-
tages for the experiment. The pair-production cross section in Eq. (3.95) is only sensitive
to linear polarization (S1 and S3), therefore, from Eq. (3.62) we conclude that employing
linearly polarized probe photons results in the effect ∼ (δκ)2 for |δκ| � 1. Utilizing cir-
cularly polarized probe photons, however, results in the effect which depend on δκ, rather
than (δκ)2 [see Eq. (3.62)]. Therefore, inverting the standard scheme by using circularly
instead of linearly polarized probe photons is highly beneficial in the regime |δκ| . 0.1
(see also [Cantatore et al., 1991; Wistisen and Uggerhøj, 2013]).

3.3.3 Statistical analysis

If we take S(0) = {1, 0,−1, 0} for the incoming gamma photons, the outgoing ones have
nonzero parameters S1 and S3, according to Eq. (3.62). The parameter S1 is sensitive to
vacuum birefringence (δκ), whereas S3 depends on vacuum dichroism (δλ). In order to
disentangle both effects, we introduce the following asymmetries:

RB =
(Nπ/4 +N5π/4)− (N3π/4 +N7π/4)
(Nπ/4 +N5π/4) + (N3π/4 +N7π/4) ,

RD =
(N0 +Nπ)− (Nπ/2 +N3π/2)
(N0 +Nπ) + (Nπ/2 +N3π/2) ,

(3.96)

where Nβ0 denotes the number of pairs detected in the azimuth angle range ϕ ∈ (β0 −
β, β0 + β) of the transverse plane, with β being specified below (see Fig. 3.6).

β

π/4

x

y

7π/4

3π/4

5π/4

π/2

x

y

β 0

3π/2

π

Fig. 3.6. Regions of the transverse plane (gray), which are used to define the observables RB (left)
and RD (right) [see Eq. (3.96)].
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Let us calculate the expectation values for RB and RD. The quantities introduced in
Eq. (3.96) are asymmetries of the type

R = NA −NB

NA +NB
, (3.97)

where NA and NB are experimentally measured numbers of events.
We describe the experiment in the following way: with probabilities pA and pB a probe

photon decays inside the detector such that the produced pair contributes to NA and NB,
respectively, and the probability pC = 1 − pA − pB accounts for all other possibilities
(the photon decays inside the strong laser pulse, passes through the detector, or the
produced pair is detected out of the range corresponding to NA and NB). Therefore, the
two random variables NA and NB are distributed according to a multinomial distribution
[Riley et al., 2006; James, 2006]. Their expectation values are given by 〈NA〉 = pANγ and
〈NB〉 = pBNγ , respectively, where Nγ denotes the number of gamma photons generated
via Compton backscattering [see Eq. (3.68)]. The standard deviations are given by ∆NA =√
NγpA(1− pA) and ∆NB =

√
NγpB(1− pB), respectively.

Assuming that the number of events counted is large we approximate the expectation
value of the asymmetry defined in Eq. (3.97) by [Riley et al., 2006; James, 2006; Ku, 1966]

〈R〉 = 〈NA〉 − 〈NB〉
〈NA〉+ 〈NB〉

(3.98)

and the variance by [Riley et al., 2006; James, 2006; Ku, 1966]

(∆R)2 =
(

∂R

∂〈NA〉
∆NA

)2
+
(

∂R

∂〈NB〉
∆NB

)2

+ 2
(

∂R

∂〈NA〉

)(
∂R

∂〈NB〉

)
Cov[NA, NB], (3.99)

where
∂R

∂〈Ni〉
= ∂R

∂Ni

∣∣∣∣
Nj=〈Nj〉

(i, j = A,B) (3.100)

and Cov[NA, NB] = −pApBNγ . Using Eqs. (3.98) and (3.99) we find that

〈R〉 = pA − pB
pA + pB

, (∆R)2 = 1− 〈R〉2
Nγ(pA + pB) . (3.101)

Assuming 〈R〉2 � 1 we conclude that the standard deviation of the asymmetry is given
by ∆R ≈ 1/

√
Nγ(pA + pB). The number of required incoming gamma photons for the nσ

confidence level is now obtained from the condition 〈R〉− 〈R0〉 = n∆R, where 〈R0〉 = 0 is
the expectation value of the asymmetry if vacuum birefringence/dichroism is absent. We
conclude that

Nγ = n2

〈R〉2(pA + pB) . (3.102)

The probabilities pA and pB are given by pA/B = nzlσA/B, where nz and l are the
number density and the thickness of the conversion material, respectively, and

σA/B = 2β
π
S0σ0 ±

sin(2β)
π

Siσ1 (3.103)
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Table 3.2. Parameters for measuring vacuum birefringence at the considered facilities. Here, ε
denotes the electron energy, θmax is the selected maximal scattering angle (chosen such that
|F22/F0| > 0.999), σbs is the Compton scattering cross section [see Eq. (3.80)], ω is the outgo-
ing probe photon energy [see Eq. (3.78)], σ0 and σ1 are pair production cross sections in tungsten
(Z = 74) for the obtained photon energies, the ratio σ1/σ0 determines the sensitivity to polariza-
tion effects. For FACET-II, we take the maximal designed energy ε = 10 GeV for the electrons
(this corresponds to χ = 0.165 for the generated photons). For the other facilities, we choose ε
such that χ = 0.25. The final photon energy ω differs by less than 2% from the given value in the
range 0 6 θ 6 θmax.

ε [GeV] θmax [rad] σbs[r2
e ] ω [GeV] σ0[r2

e ] σ1[r2
e ] σ1/σ0

Apollon/ELI-NP 2.5 3.0× 10−5 0.232 0.14 344 26.7 0.078
ELI-BL 4.5 1.6× 10−5 0.197 0.43 393 31.0 0.079

FACET-II 10 6.0× 10−6 0.113 1.9 420 32.3 0.077
LINAC-PW 8.4 7.6× 10−6 0.135 1.4 417 32.3 0.077

with Si = S1 and Si = S3 for RB and RD, respectively.
Then the expectation values of RB and RD [see Eq. (3.96)] are given by

〈RB〉 = sin(2β)
2β

σ1
σ0

S1
S0
, 〈RD〉 = sin(2β)

2β
σ1
σ0

S3
S0
. (3.104)

And from Eq. (3.102) we define, how many gamma photons one would need in order
to detect respectively vacuum birefringence and dichroism at the nσ confidence level on
average:

NB
γ = πn2

4ηβS0〈RB〉2
, ND

γ = πn2

4ηβS0〈RD〉2
, (3.105)

where η = nzlσ0 denotes the photon to pair conversion efficiency. By minimizing NB
γ

and ND
γ with respect to β, we find the optimal angle β = βopt ≈ 0.58 ≈ 33◦ for both

observables.
The thickness of a conversion foil should be . 1 milliradiation length (mRL), other-

wise multiple Coulomb scattering affects the measured angle [Kelner et al., 1975; Hunter
et al., 2014]. Supposing that several conversion foils alternating with silicon detectors are
cascaded [Tavani et al., 2003; Atwood et al., 2009; Peitzmann, 2013], we employ η = 10−2

(i.e., an effective thickness of ∼ 10 mRL).

Table 3.3. Duration τ of the vacuum birefringence experiment. S0 and S1, 〈RB〉, and NB
γ follow

from Eq. (3.62), Eq. (3.104) and Eq. (3.105), respectively (S(0) = {1, 0,−1, 0}; 5σ confidence level,
i.e., n = 5). Note that the pair production probability in the strong laser field is much smaller
than the conversion efficiency in the detector [(1− S0)� η = 10−2].

1− S0 S1 〈RB〉 NB
γ τ

Apollon 1.9× 10−5 0.06 3.4× 10−3 3.0× 108 45 days
ELI-NP 3.1× 10−5 0.09 5.6× 10−3 1.1× 108 10 days
ELI-BL 6.3× 10−5 0.18 1.1× 10−2 2.6× 107 11 hours

FACET-II 6.2× 10−9 0.004 2.5× 10−4 5.4× 1011 2 days
LINAC-PW 3.8× 10−6 0.01 6.8× 10−4 7.4× 109 2 days
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3.3 High-energy vacuum birefringence/dichroism experiment

3.3.4 Results

We assume that Ne = 108 monoenergetic few-GeV electrons are used in one exper-
imental cycle for the generation of probe gamma photons via Compton backscattering.
FACET-II is expected to produce high-density electron bunches, for this facility we use
Ne = 109. The laser beam for Compton backscattering has Sbs

1 = Sbs
3 = 0, Sbs

2 = 1.
Therefore, S(0)

1 = S
(0)
3 = 0, S(0)

2 ≈ −1 for small θmax. In order to obtain a highly polarized
beam we choose θmax such that |F22/F0| > 0.999 for all selected photons. For the consid-
ered facilities, the parameters and cross sections for Compton backscattering, as well as
the cross sections of the pair production are shown in Table 3.2.

The estimations for the vacuum birefringence experiment are shown in Table 3.3 (we
choose the 5σ confidence level).

As we see from Table 3.3, the pair production inside the laser pulse is much smaller
than the conversion efficiency [(1 − S0) � η = 10−2], therefore it does not affect the
experimental results.

We conclude, that the vacuum birefringence experiment could be performed within a
few days, with the expected duration of the experiment for ELI-BL less than one day.

As the number of required gamma photons NB
γ scales as 〈RB〉−2 [see Eq. (3.105)], the

use of circularly polarized probe photons instead of linearly polarized ones reduces the
measurement time by a factor ≈ 100 (δκ ≈ 0.1, see Fig. 3.4).

Finally, we consider the case χ = 2.5, which is attainable at ELI-NP by utilizing
8.4 GeV electrons for backscattering. The parameters are the following: θmax = 7.6×10−6,
σbs = 0.135r2

e , ω = 1.4 GeV. For the pair production, the ratio σ1/σ0 = 0.077.
In the regime χ = 2.5 vacuum dichroism and anomalous dispersion come into play and

the Euler-Heisenberg approximation breaks down completely (see Fig. 3.4). Note that the
production of particles, heavier than electrons and positrons, and QCD corrections are
still suppressed [Bern et al., 2001].

For S(0) = {1, 0,−1, 0}, we obtain that S = {0.18, 0.11,−0.12, 0.09} at ELI-NP (see
Fig. 3.7). Correspondingly, 〈RB〉 = 3.6 × 10−2 and 〈RD〉 = 3.0 × 10−2, implying a mea-
surement time of 3-4 days for reaching the 5σ confidence level.

0 1 2 3 4 5
χ

10−3

10−2

10−1

100

S
a

S0

S1

|S2|
S3

Fig. 3.7. Final Stokes parameters [see Eq. (3.62)] for gamma photons propagating through the
ELI-NP 10 PW laser pulse (S(0) = {1, 0,−1, 0}). The strongest effect is obtained around χ = 1
(note that pair production becomes sizable for χ & 1). As we consider the tunneling regime
1/ξ � 1, cusplike structures – characteristic for multiphoton pair production [Villalba-Chávez
et al., 2016; Becker and Mitter, 1975] – are absent.
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4

Electron-positron annihilation into
two photons

Among the tree-level diagrams in an external laser field, trident process is the most
studied one [Hu et al., 2010; Ilderton, 2011; King and Ruhl, 2013; Dinu and Torgrimsson,
2018b; King and Fedotov, 2018; Mackenroth and Di Piazza, 2018]. This process was also
observed experimentally, at SLAC in late 90’s [Burke et al., 1997].

Recently, also double Compton scattering in a general plane-wave field was evaluated
by Dinu and Torgrimsson (2018a).

First results on two-particle scattering in a laser field were published by [Oleinik, 1967,
1968], who studied electron-electron and Compton scattering in a monochromatic plane-
wave field, with the focus on the resonant effects. Here, by resonance, we mean that an
intermediate particle goes on shell. The resonance manifests itself as a divergence due to
the pole structure of the propagator. Resonance behavior of two-particle scattering has
been studied in later works (see [Voroshilo et al., 2016] and references therein).

Compton scattering and electron-positron production by two photons in a circularly
polarized laser field were studied by Hartin (2006).

Though the resonances seem to be an interesting feature of the processes under con-
sideration, we expect our theory to be finite and it is important to understand how to
deal with the divergencies. In our approach, we use the proper-time representation for the
propagators, therefore, the resonances appear as the divergencies in the integral over the
proper-time variable. We will see below, however, that for large values of the variable, the
densities of the colliding wave packets have to be taken into account. Since the wave pack-
ets are assumed to have finite sizes, the integral is expected to converge. Another aspect
is that if an intermediate particle propagates over sufficiently long distances inside a laser
pulse, then the radiative corrections has to be taken into account (see, e.g., [Meuren and
Di Piazza, 2011] for the consideration of the corrections to the electron wave function).
Those corrections, in general, induce a decay of the intermediate particle, therefore, again,
we should obtain a final result.

In this chapter, we consider the cross section for electron-positron annihilation into
two photons in a plane-wave field of a general shape. The two leading order diagrams are
shown in Fig. 4.1. The diagram in Fig. 4.1a will be referred to as direct diagram, and the
diagram in Fig. 4.1b as exchange diagram.

First, we reconsider scattering formalism and find out, when it is possible to define a
cross section. Then we evaluate the part of the cross section, which comes upon squaring
each of the diagram, i.e., we do not evaluate the interference part. Finally, we analyze the
obtained result.
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4 Electron-positron annihilation into two photons

4.1 Cross section
We proceed in the same way as in Chapter 2, and obtain for the matrix element:

Sfi =
∫ Vd̃3q2

(2π)3
Vd̃3q1
(2π)3 f2(q2)f1(q1)(2π)3δ(+,⊥)(k2 + k1 − q2 − q1)

×
∫

dx+
2 dx+

1 exp
[
iΦq2q1(x+

2 , x
+
1 )
] iM(φ2, φ1, q2, q1)

2V
√
q+

2 q
+
1

∏
i

1√
2k+

i V
, (4.1)

where
Φq2q1(x+

2 , x
+
1 ) = −iq−2 x+

2 + iS−q2(φ2)− iq−1 x+
1 − iSq1(φ1). (4.2)

and M(φ2, φ1, q2, q1) is defined via

M(q2, q1) =
∫

dx+
2 dx+

1 exp
[
Φq2q1(x+

2 , x
+
1 )
]
M(φ2, φ1, q2, q1), (4.3)

with M(q2, q1) being the reduced matrix element. The complete expression for M(q2, q1)
is given below. For now, it is important to note that M(φ2, φ1, q2, q1) is a slowly varying
function of qµ2 and qµ1 .

Upon squaring Sfi and transforming the delta functions [see Eq. (2.13)], one obtains:

|Sfi|2 =
∫

d2x⊥dx−dx+
4 dx+

3 dx+
2 dx+

1 f2(x⊥, x−, x+
4 )f∗2 (x⊥, x−, x+

1 )

× f1(x⊥, x−, x+
3 )f∗1 (x⊥, x−, x+

2 )(2π)3δ(+,⊥)(k2 + k1 − p2 − p1)

× M(φ4, φ3, p2, p1)M∗(φ1, φ2, p2, p1)
4p+

2 p
+
1

∏
i

1
2k+

i V
. (4.4)

As the next step, we make a change of variables (recall the discussion of the probability,
obtained from the matrix element written in position space, in Chapter 2):

x+ =
(
X+

2 +X+
1
)
/2, δ+ = X+

2 −X+
1 , δ+

2 = x+
1 − x+

4 , δ+
1 = x+

3 − x+
2 , (4.5)

where X+
2 = (x+

1 + x+
4 )/2 and X+

1 = (x+
3 + x+

2 )/2.
Let us look at the product of the distribution densities for the electron (for the positron

we proceed analogously). We have:

f1(x⊥, x−, x+
3 )f∗1 (x⊥, x−, x+

2 )

= F1
(
x⊥, x−, x+ − δ+/2 + δ+

1 /2
)
F ∗1

(
x⊥, x−, x+ − δ+/2− δ+

1 /2
)

× exp
[
−ip−1 x+

3 − iSp1(φ3) + ip−1 x
+
2 + iSp1(φ2)

]
.

(4.6)

(a)

p1

−p2

k1

k2 (b)

p1

−p2

k2

k1

Fig. 4.1. The leading-order diagrams or electron-positron annihilation into two photons in a
plane-wave field: (a) the direct diagram, and (b) the exchange diagram.

76



4.1 Cross section

If we could neglect δ+ and δ+
1 in the arguments of F1’s, we would obtain the particle

density |F1(x)|2 = |f1(x)|2, as in the vacuum case.
In the regime ξ � 1, the reasoning for neglectinig δ+

1 is the same as in the case of the
annihilation into one photon.

As for δ+, if it is neglected in the arguments of F1’s and F2’s, then the integration is
to be performed over the whole range in general. The parameter δ+ can be understood
as the (light-cone) time difference between the instants of the emissions of the two final
photons. In a plane-wave field, the intermediate fermion can go on shell, therefore, δ+ can
be, in principle, infinitely large (it should be noted that for large values of δ+ the radiative
corrections may become sizable, see, e.g., [Meuren and Di Piazza, 2011]).

Neglecting δ+ implies that we need to restrict our consideration to the process, hap-
pening locally.

If we consider the local process only, we can formally define a cross section, analogously
to how it is done for scattering in vacuum. We obtain for the differential probability per
unit phase unit volume:

dẇ = |f2(x)|2|f1(x)|2(2π)3δ(+,⊥)(k2 + k1 − p2 − p1)M(x+, p2, p1)
4p+

2 p
+
1

∏
i

dΓki , (4.7)

where

M(x+, p2, p1) =
∫

dδ+dδ+
2 dδ+

1

× exp
[
−ip−2 (x+

1 − x+
4 ) + iS−p2(φ1, φ4)− ip−1 (x+

3 − x+
2 )− iSp1(φ3, φ2)

]
×M(φ4, φ3, p2, p1)M∗(φ1, φ2, p2, p1). (4.8)

Then the total cross section, averaged (summed) over the initial (final) polarization
states, is given by

σ(x+) =
∏
i

dΓki(2π)3δ(+,⊥)(k2 + k1 − p2 − p1) 1
16I(φ)

∑
polarization

M(x+, p2, p1). (4.9)

Due to the delta function, we perform the integrals over the momentum components
of photon 2, and obtain:

σ(x+) =
p+

2 +p+
1∫

0

dk+
1

2π

∫ d2k⊥1
(2π)2

1
32k+

2 k
+
1 I(φ)

1
4

∑
polarization

M(x+, p2, p1), (4.10)

with k
(+,⊥)
2 = (p2 + p1 − k1)(+,⊥). In Eq. (4.10) the result is divided by 2, in order to

account for the double counting of the final states of the two identical particles.
Analogously to how it was done in Chapter 2, we define the cross section, normalized

to the flux at x+ → −∞:

σ0(x+) =
p+

2 +p+
1∫

0

dk+
1

2π

∫ d2k⊥1
(2π)2

1
32k+

2 k
+
1 I

1
4

∑
polarization

M(x+, p2, p1). (4.11)
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4 Electron-positron annihilation into two photons

4.2 Reduced matrix element
The reduced matrix element is given by

M(p2, p1) = −e2v2

[ ∫ dp−3
2π Γµ−23(k2) γp̃3 +m

p2
3 −m2 + iε

Γν31(k1) +
Γµν−21(k2,−k1)

2p+
3

]
u1ε
∗
2µε
∗
1ν

+ (γ2 ↔ γ1), (4.12)

where the lower indices indicate momentum variables (or collectively momentum and po-
larization variables), the lower index ‘–2’ means that the momentum pµ2 should be taken
with a minus sign, and (γ2 ↔ γ1) denotes the exchange term (the photon quantum num-
bers are swapped, see Fig. 4.1b). The vertex functions are given by Eqs. (1.82) and
(1.87).

The matrix element (4.12) contains 4 distinct terms. Taking the modulus squared
yields 16 terms. However, only 8 of them are different after we sum over the states of
the final photons. 4 of them, arising from squaring the direct diagram (see Fig. 4.1a), are
considered below. We call these terms direct-direct terms.

Summing over the final photon polarizations results in the replacement

εµi ε
∗ν
i → −gµν , i = 1, 2 (4.13)

(we discard the terms with kµi and kνi due to the Ward identity).
Averaging over the polarization states of the initial particles results in the replace-

ments [Berestetskii et al., 1982]

u1u1 → ρ1, v2v2 → ρ
(−)
2 = −ρ−2, (4.14)

and taking the trace over the bispinor part of |M(p2, p1)|2. The quantities ρ1 and ρ
(−)
2

denote the electron and positron density matrices, respectively. In the case of the initial
particles being unpolarized (which we assume below), we have:

ρ1 = 1
2(γp1 +m), ρ

(−)
2 = −ρ−2 = −1

2(γp−2 +m). (4.15)

Below, we deal with functions, that depend on four light-cone time variables. For
clarity of the calculations, we simplify our notation in the following way: functions f(φa)
of one light-cone time variable will be written as f(a), functions f(φa, φb) of two light-cone
time variables will be written as f(ab), etc.

Upon squaring the noninstantaneous part of the direct diagram [we call this term
noninstantaneous-noninstantaneous direct-direct (‘nndd’) term], summing and averaging
over the polarization states, we obtain:

1
4

∑
polarization

MndMnd∗ = e4
∫ dp−4

2π
dp−3
2π

∫
dx+

4 dx+
3 dx+

2 dx+
1

× exp
[
iΦdd(4321)

] T nndd

(p2
4 −m2 + iε)(p2

3 −m2 − iε) , (4.16)

where the phase Φdd(4321) is given by

Φdd(4321) = (k−2 − p−2 )(x+
4 − x+

1 ) + (k−1 − p−1 )(x+
3 − x+

2 )
− p−4 (x+

4 − x+
3 )− p−3 (x+

2 − x+
1 ) + Φdd

F (4321) (4.17)
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4.2 Reduced matrix element

with the field-dependent part Φdd
F (4321) given by

Φdd
F (4321) = −S4(43)− S3(21)− S−2(14)− S1(32). (4.18)

The field-dependent part of the phase (4.18) can be written as [Meuren et al., 2013]

Φdd
F (4321) = S−23(41) + S31(32), (4.19)

where

S−23(41) =
φ4∫
φ1

dβ
[
ep3µp2νFµν(β)

m2p+
3 p

+
2

− e2(p+
3 + p+

2 )p3µp2νF2µν(β)
2m3p+2

3 p+2
2

]
,

S31(32) =
φ3∫
φ2

dβ
[
ep1µp3νFµν(β)

m2p+
3 p

+
1

+ e2(p+
1 − p+

3 )p1µp3νF2µν(β)
2m3p+2

3 p+2
1

]
.

(4.20)

The quantity T nndd (as well as the T -preexponential factors for the other terms below)
is the trace of the bispinor part, which we consider in detail in the next section.

For the product of the instantaneous and noninstantaneous parts [we call this term
instantaneous-noninstantaneous direct-direct (‘indd’) term] we have

1
4

∑
polarization

M idMnd∗ = e4
∫ dp−3

2π

∫
dx+

3 dx+
2 dx+

1 exp
[
iΦdd(3321)

] T indd

p2
3 −m2 − iε , (4.21)

and, respectively, the product in the opposite order [we call this term noninstantaneous-
instantaneous direct-direct (‘nidd’) term] is given by

1
4

∑
polarization

MndM id∗ = e4
∫ dp−4

2π

∫
dx+

4 dx+
3 dx+

1 exp
[
iΦdd(4311)

] T nidd

p2
4 −m2 + iε

. (4.22)

Finally, the product of the two instantaneous part [we call this term instantaneous-
instantaneous direct-direct (‘iidd’) term] is given by

1
4

∑
polarization

M idM id∗ = e4
∫

dx+
3 dx+

1 exp
[
iΦdd(3311)

]
T iidd. (4.23)

The conservation relations for the asymptotic momenta are

p
(+,⊥)
3 = p

(+,⊥)
4 = (p1 − k1)(+,⊥) = (k2 − p2)(+,⊥). (4.24)

With the use of the canonical light-cone basis (1.29) and the momentum conservation
laws we obtain that the phase is given by [note that, since Φdd

F (4321) does not depend
on the ‘–’ momentum components, the full four-momentum conservation laws for the
asymptotic momenta can be employed within this part of the phase]

Φdd
F (4321) = −m

p+
3

∑
i=1,2

[
− ξi

p+
2

(p+
2 k

i
2 − pi2k+

2 )Ii(14)− mξ2
i k

+
2

2p+
2

Ji(14)

+ ξi

p+
1

(p+
1 k

i
1 − pi1k+

1 )Ii(32)− mξ2
i k

+
1

2p+
1

Ji(32)
]
, (4.25)
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4 Electron-positron annihilation into two photons

where

Ii(φ, φ′) =
φ∫

φ′

dβ ψi(β), Ji(φ, φ′) =
φ∫

φ′

dβ ψ2
i (β). (4.26)

Note that the result (4.25) does not depend on the choice of the vector qµ. If we choose
qµ = pµ2 + pµ1 , then

p⊥2 + p⊥1 = k⊥2 + k⊥1 = 0 (4.27)

and

Φdd
F (4321) = −m

p+
3

∑
i

ξik
i
1 [Ii(14) + Ii(32)]

+ m2

p+
3

∑
i

tiξi

[
k+

2
p+

2
Ii(14) + k+

1
p+

1
Ii(32)

]
+ m2

2p+
3

∑
i

ξ2
i

[
k+

2
p+

2
Ji(14) + k+

1
p+

1
Ji(32)

]
, (4.28)

where we defined ti = pi1/m = −pi2/m [see Eq. (1.127)].
In terms of the variables (4.5) the field-dependent part Φdd

F (4321) can be written as

Φdd
F (4321)→ Φdd

F = −m
p+

3

∑
i

ξik
i
1

[
δ+

2 I2i + δ+
1 I1i

]
+ m2

p+
3

∑
i

tiξi

[
k+

2
p+

2
δ+

2 I2i + k+
1
p+

1
δ+

1 I1i

]
+ m2

2p+
3

∑
i

ξ2
i

[
k+

2
p+

2
δ+

2 J2i + k+
1
p+

1
δ+

1 J1i

]
, (4.29)

where

Iji =
1∫
−1

dλψi
(
mX+

j + 1
2mδ

+
j λ

)
, Jji =

1∫
−1

dλψ2
i

(
mX+

j + 1
2mδ

+
j λ

)
. (4.30)

The form (4.29) is the same for all four direct-direct terms. However, for the ‘nndd’ term
all four variables in Eq. (4.5) are independent, only three are independent for the ‘indd’
term (due to x+

4 = x+
3 ) and for the ‘nidd’ term (due to x+

2 = x+
1 ), and only two are

independent for the ‘iidd’ term (due to x+
4 = x+

3 and x+
2 = x+

1 ).
We proceed by evaluating the traces for the direct-direct terms.

4.3 Evaluation of the traces for the direct-direct terms
The traces depend on four fermion momenta: initial pµ1 and pµ2 , and intermediate pµ3

and pµ4 . It is convenient to relabel the momenta in the following way:

pµ−2 → pµ4 , pµ4 → pµ3 , pµ1 → pµ2 , pµ3 → pµ1 . (4.31)

Then the conservation relations (4.24) change into

p
(+,⊥)
1 = p

(+,⊥)
3 = (p2 − k1)(+,⊥) = (k2 + p4)(+,⊥). (4.32)

In the final expressions, the initial labeling of the momenta will be restored.
As we will see below, the results are conveniently expressed via the following quantites:

∆µ
2 = ∆µ

2 (32), Zµ2 = Zµ2 (32), ∆µ
4 = ∆µ

4 (14), Zµ4 = Zµ4 (14), (4.33)
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4.3 Evaluation of the traces for the direct-direct terms

where
∆µ
p (φ, φ′) = πµp (φ)− πµp (φ′), Zµp (φ, φ′) =

[
πµp (φ) + πµp (φ′)

]
/2. (4.34)

Note that ∆µ
p (φ, φ′) is a purely field-dependent function as it vanishes in the absence of the

external field, and Zµp (φ, φ′) = pµ in this limit. Note also that ∆+
p (φ, φ′) = 0 identically.

It is also beneficial to combine the scalar and the tensor terms of Kµ
21(φ) in the three-

point dressed vertex function [see Eq. (1.84)] as

Sµ21(φ) + Tµ21(φ)γ1γ2 = 1
2 [Sµ21(φ)gij + Tµ21(φ)εij ] γiγj = 1

2U
µ
21ij(φ)γiγj . (4.35)

Then Kµ
21(φ) is given by

Kµ
21(φ) =

[1
2U

µ
21ij(φ)γiγj + V iµ

21 γi

]
γ+. (4.36)

The advantage of using the U -function is that the results of contractions with it are more
compact, than for S and T alone.

Also note the following relations:

1. UU commutativity:

Uκ
43im(φ)γiγmUµ21ks(φ

′)γkγs = Uµ21ks(φ
′)γkγsUκ

43im(φ)γiγm. (4.37)

2. UV product:
1
2U

κ
43im(φ)γiγmV kµ

21 γk = γiUκ
43ik(φ)V kµ

21 . (4.38)

3. V U product:
V iκ

43 γi
1
2U

µ
21ks(φ)γkγs = V iκ

43 U
µ
21ik(φ)γk. (4.39)

4.3.1 Trace for the ‘nndd’ term

The quantity T nndd in Eq. (4.16) is given by [after the relabeling (4.31)]

T nndd
4321 (4321) = −Tr

{
ρ4K

κ
43(4)(γp̃3 +m)Kλ

32(3)

×ρ2K
µ
21(2)(γp̃1 +m)Kν

14(1)
}
gκνgλµ, (4.40)

where the K-functions are given by Eq. (4.36).
As before, the trace is reduced to the one in the transverse space. We obtain:

T nndd
4321 (4321) = −2p+

4 p
+
3 p

+
2 p

+
1

×Tr
{[1

2U
κ
43im(4)γiγm + V iκ

43 γi

] [1
2U

λ
32jn(3)γjγn + V jλ

32 γj

]

×
[1

2U
µ
21ks(2)γkγs + V kµ

21 γk

] [1
2U

ν
14lt(1)γlγt + V lν

14 γl

]}
gκνgλµ. (4.41)
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4 Electron-positron annihilation into two photons

The evaluation of the trace is simplified, if we make the contractions with gκν and gλµ
first. Since there are four linearly independent matrices in the transverse space, a general
contraction may be written in the form[1

2U
κ
43im(φ)γiγm + V iκ

43 γi

] [1
2U

µ
21ks(φ

′)γkγs + V kµ
21 γk

]
gκµ

= S4321(φ, φ′) + V i
4321(φ, φ′)γi + T4321(φ, φ′)γ1γ2. (4.42)

Then the trace (4.41) is readily calculated and we obtain:
T nndd

4321 (4321) = −8p+
4 p

+
3 p

+
2 p

+
1

×
[
S3221(32)S1443(14) + V i

3221(32)V j
1443(14)gij − T3221(32)T1443(14)

]
. (4.43)

The evaluation of the coefficients in Eq. (4.43) is straightforward, but requires some
work. Useful identities are put into Appendix B.1.

After performing the contractions, we obtain the following form for the coefficients in
Eq. (4.43) (note that p+

3 = p+
1 ):

S3221(32) = 1
2p+2

2 p+2
1

[
−1

2(p+2
2 + p+2

1 )∆2
2 − 2k+

1 p
+
2 k1Z2 + 2p+

2 p
+
1 m

2
]
,

S1443(14) = 1
2p+2

4 p+2
1

[
−1

2(p+2
4 + p+2

1 )∆2
4 − 2k+

2 p
+
4 k2Z4 + 2p+

4 p
+
1 m

2
]
,

V i
3221(32) = m

2p+2
2 p+2

1
k+

1 p
+
2 ∆i

2,

V j
1443(14) = − m

2p+2
4 p+2

1
k+

2 p
+
4 ∆j

4,

T3221(32) = 2p+
2 − k+

1
2p+2

2 p+2
1

ενραβk
ν
1η

ρ∆α
2Z

β
2 ,

T1443(14) = −2p+
4 + k+

2
2p+2

4 p+2
1

εστγδk
σ
2 η

τ∆γ
4Z

δ
4 .

(4.44)

And finally, the products are given by

S3221(32)S1443(14) = 1
4p+2

4 p+2
2 p+4

1

×
[
−1

2(p+2
2 + p+2

1 )∆2
2 − 2k+

1 p
+
2 k1Z2 + 2p+

2 p
+
1 m

2
]

×
[
−1

2(p+2
4 + p+2

1 )∆2
4 − 2k+

2 p
+
4 k2Z4 + 2p+

4 p
+
1 m

2
]
,

V i
3221(32)V j

1443(14)gij = −m
2k+

2 k
+
1 p

+
4 p

+
2

4p+2
4 p+2

2 p+4
1

∆2∆4,

T3221(32)T1443(14) = −(2p+
2 − k+

1 )(2p+
4 + k+

2 )
4p+2

4 p+2
2 p+4

1

×
[
∆2∆4

(
k+

2 k
+
1 Z2Z4 + p+

4 p
+
2 k2k1 − k+

2 p
+
2 k1Z4 − k+

1 p
+
4 k2Z2

)
+ k+

2 p
+
2 k1∆4∆2Z4 + k+

1 p
+
4 k2∆2Z2∆4

− k+
2 k

+
1 ∆2Z4Z2∆4 − p+

4 p
+
2 k1∆4k2∆2

]
.

(4.45)
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4.3 Evaluation of the traces for the direct-direct terms

4.3.2 Trace for the ‘indd’ term

The quantity T indd is given by [again, we employ the relabeling (4.31)]

T indd
4321 (321) = −Tr

{
ρ4
Kκλ

42 (3)
2p+

3
ρ2K

µ
21(2)(γp̃1 +m)Kν

14(1)
}
gκνgλµ, (4.46)

where Kκλ
42 (3) is given by Eq. (1.89), and Kµ

21(2) and Kν
14(1) by Eq. (4.36). One obtains

that

T indd
4321 (321) = −1

2p
+
4 p

+
2 Tr

{[
Sλ2 − V jλ

2 (3)γj
] [1

2U
µ
21ks(2)γkγs + V kµ

21 γk

]
×
[1

2U
ν
14lt(1)γlγt + V lν

14

] [
Sκ

4 + V iκ
4 (3)γi

]}
gκνgλµ (4.47)

(we employed the fact, that p+
3 = p+

1 ).
With the use of the identities in Appendix B.2, we obtain for the trace:

T indd
4321 (321) = −1

2p
+
4 p

+
2 Tr

{[
S212 − V j

221(32)γj
] [
S414 + V i

441(31)γi
]}

= −2p+
4 p

+
2

[
S212S414 − V i

221(32)V j
441(31)gij

]
, (4.48)

where
S212 = m(p+

1 − k+
1 )

p+
2 p

+
1

, S414 = m(p+
1 + k+

2 )
p+

4 p
+
1

,

V i
221(32) = 1

p+
2 p

+
1

[
−1

2(p+
2 + p+

1 )∆i
2 + k+

1 Z
i
2 − p+

2 k
i
1

]
,

V j
441(31) = − 1

p+
4 p

+
1

[
−1

2(p+
4 + p+

1 )∆j
4 + k+

2 Z
j
4 − p+

4 k
j
2

]
.

(4.49)

And the result is given by

T indd
4321 (321) = − 2

p+2
1

[
m2(p+

1 − k+
1 )(p+

1 + k+
2 ) + 1

4(p+
2 + p+

1 )(p+
4 + p+

1 )∆2∆4

− 1
2k

+
2 (p+

2 + p+
1 )∆2Z4 −

1
2k

+
1 (p+

4 + p+
1 )Z2∆4

+ 1
2p

+
4 (p+

2 + p+
1 )k2∆2 + 1

2p
+
2 (p+

4 + p+
1 )k1∆4

+ k+
2 k

+
1 Z2Z4 − k+

2 p
+
2 k1Z4 − k+

1 p
+
4 k2Z2 + p+

4 p
+
2 k2k1

]
. (4.50)

4.3.3 Trace for the ‘nidd’ term

The quantity T nidd is given by

T nidd
4321 (431) = −Tr

{
ρ4K

κ
43(4)(γp̃3 +m)Kλ

32(3)ρ2
Kµν

24 (1)
2p+

1

}
gκνgλµ. (4.51)
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4 Electron-positron annihilation into two photons

The result is the same as for the ‘indd’ term, but with the replacements ∆µ
2 → −∆µ

2 ,
∆µ

4 → −∆µ
4 :

T nidd
4321 (431) = − 2

p+2
1

[
m2(p+

1 − k+
1 )(p+

1 + k+
2 ) + 1

4(p+
2 + p+

1 )(p+
4 + p+

1 )∆2∆4

+ 1
2k

+
2 (p+

2 + p+
1 )∆2Z4 + 1

2k
+
1 (p+

4 + p+
1 )Z2∆4

− 1
2p

+
4 (p+

2 + p+
1 )k2∆2 −

1
2p

+
2 (p+

4 + p+
1 )k1∆4

+ k+
2 k

+
1 Z2Z4 − k+

2 p
+
2 k1Z4 − k+

1 p
+
4 k2Z2 + p+

4 p
+
2 k2k1

]
. (4.52)

4.3.4 Trace for the ‘iidd’ term

The quantity T iidd is given by

T iidd
4321 (31) = −Tr

{
ρ4
Kκλ

42 (3)
2p+

3
ρ2
Kµν

24 (1)
2p+

1

}
gκνgλµ. (4.53)

The evaluation of the trace is straightforward and leads to

T iidd
4321 (31) = −2p+

4 p
+
2

p+2
1

. (4.54)

4.4 Rearrangement of the traces
In principle, Eqs. (4.43), (4.45), (4.50), (4.52), and (4.54) are the final result of the

trace evaluation for the direct-direct terms. They are written in a compact and manifestly
Lorentz-invariant form, which is suitable for the use also in the instant-form formulation
(one needs to take into account the fact, that p+ = k0p/m). It is convenient, however, to
rewrite the result. As one can notice, the traces are infrared divergent in the intermediate
momentum p+

1 [e.g., it is obvious for (4.54)], and therefore require a regularization. Instead
of regularizing the traces, we will use momentum relations (see Section 1.9) in order to
rearrange the traces in such a way that the infrared divergences cancel each other. Another
aim is to exclude the dependence of the preexponential factor on the transverse momentum
component k⊥1 , such that the integration in this component [see Eq. (4.11)] can be done
straightforwardly. As we will see, both goals can be achieved at the same time.

The following energy-momentum conservation relations are valid for the ‘nndd’ term
[wee are still working with the relabeled momenta, see Eq. (4.31)]

πµ4 (4) + kµ2 − πµ3 (4) ∼ 0,
πµ3 (3) + kµ1 − πµ2 (3) ∼ 0,
πµ2 (2)− kµ1 − πµ1 (2) ∼ 0,
πµ1 (1)− kµ2 − πµ4 (1) ∼ 0.

(4.55)

For the other terms the conservation relations are obtained from Eq. (4.55), with x+
4 = x+

3
(for the ‘indd’ term), or x+

2 = x+
1 (for the ‘nidd’ term), or both x+

4 = x+
3 and x+

2 = x+
1

(for the ‘iidd’ term).
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4.4 Rearrangement of the traces

4.4.1 The ‘nndd’ term

We use the relations (1.122) in order to extract terms proportional to (p2
3 −m2) and

(p2
1 − m2) and later include them into the corresponding instantaneous terms. For the

S3221(32)S1443(14) product we use the relations

k1Z2 ∼ −
1
4(p2

3 −m2)− 1
4(p2

1 −m2), k2Z4 ∼
1
4(p2

3 −m2) + 1
4(p2

1 −m2). (4.56)

Then we obtain:

S3221(32)S1443(14)

= 1
4p+2

4 p+2
2 p+4

1

[
−1

2(p+2
2 + p+2

1 )∆2
2 + 2p+

2 p
+
1 m

2
] [
−1

2(p+2
4 + p+2

1 )∆2
4 + 2p+

4 p
+
1 m

2
]

+ (p2
3 −m2) + (p2

1 −m2)
8p+2

4 p+2
2 p+4

1

{
k+

1 p
+
2

[
−1

2(p+2
4 + p+2

1 )∆2
4 + 2p+

4 p
+
1 m

2 − k+
2 p

+
4 k2Z4

]

− k+
2 p

+
4

[
−1

2(p+2
2 + p+2

1 )∆2
2 + 2p+

2 p
+
1 m

2 − k+
1 p

+
2 k1Z2

]}
.

(4.57)

For the ‘nndd’ term we consider only the first line of the righthand side of Eq. (4.57).
Note that the term is the product of two expressions with each of them being in fact the
same, as for electron-positron annihilation into one photon [see Eq. (2.53)].

As the next step, we notice that the final expression for the ‘nndd’ term does not
depend on the ‘–’ momentum components (they cancel each other). Therefore, we replace
all the scalar four-products with the scalar products in the transverse space: ab→ −a⊥b⊥.

In order to simplify the result even further, we use the canonical light-cone Lorentz
basis with qµ = pµ4 + pµ2 [see Eq. (4.27)], which implies that p⊥4 + p⊥2 = k⊥2 + k⊥1 = 0.

We use Eq. (4.56) in order to eliminate the dependence on k⊥2
1 . It can be shown that

Z−p = 1
2p+

(
m2 +Z⊥2

p + 1
4∆⊥2

p

)
. (4.58)

Then one obtains:

k⊥2
1 = 1

4

(
k+

2
p+

4
− k+

1
p+

2

)[(
p2

3 −m2
)

+
(
p2

1 −m2
)]
− k+

2
p+

4
k⊥1 Z

⊥
4 + k+

1
p+

2
k⊥1 Z

⊥
2

− k+2
2

2p+2
4

(
m2 +Z⊥2

4 + 1
4∆⊥2

4

)
− k+2

1
2p+2

2

(
m2 +Z⊥2

2 + 1
4∆⊥2

2

)
.

(4.59)

In order to eliminate the terms, depending on k⊥1 in the first power, we employ the
following relations:

k2∆4 ∼ k1∆2 ∼
1
2(p2

1 −m2)− 1
2(p2

3 −m2), ∆−p = 1
p+Z

⊥
p ∆⊥p . (4.60)
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4 Electron-positron annihilation into two photons

Then we obtain (the contributions to the instantaneous terms are excluded):

S3221(32)S1443(14) = 1
4p+2

4 p+2
2 p+4

1

[1
2(p+2

2 + p+2
1 )∆⊥2

2 + 2p+
2 p

+
1 m

2
]

×
[1

2(p+2
4 + p+2

1 )∆⊥2
4 + 2p+

4 p
+
1 m

2
]
,

V i
3221(32)V j

1443(14)gij = m2k+
2 k

+
1 p

+
4 p

+
2

4p+2
4 p+2

2 p+4
1

∆⊥2 ∆⊥4 ,

T3221(32)T1443(14) = −(2p+
2 − k+

1 )(2p+
4 + k+

2 )
4p+2

4 p+2
2 p+4

1

{
∆⊥2 ∆⊥4

×
[
k+

2 k
+
1 Z
⊥
2 Z
⊥
4 + k+2

2 p+
2

2p+
4

(
m2 +Z⊥2

4 + 1
4∆⊥2

4

)
+ k+2

1 p+
4

2p+
2

(
m2 +Z⊥2

2 + 1
4∆⊥2

2

)]

− k+2
2 p+

2
p+

4
Z⊥4 ∆⊥4 ∆⊥2 Z⊥4 −

k+2
1 p+

4
p+

2
Z⊥2 ∆⊥2 Z⊥2 ∆⊥4

− k+
2 k

+
1 ∆⊥2 Z⊥4 Z⊥2 ∆⊥4 − k+

2 k
+
1 Z
⊥
2 ∆⊥2 Z⊥4 ∆⊥4

}
.

(4.61)

The contributions, which are to be included into the corresponding instantaneous
terms:

∆T indd = ∆TSS + ∆TTT,1 + ∆TTT,2, ∆T nidd = ∆TSS −∆TTT,1 + ∆TTT,2, (4.62)

where

∆TSS = − 2
p+2

1

[
k+

1
4p+

4

(
p+2

4 + p+2
1

)
∆⊥2

4 −
k+

2
4p+

2

(
p+2

2 + p+2
1

)
∆⊥2

2

+ k+
1 p

+
1 m

2 − k+
2 p

+
1 m

2 − 1
2k

+
2 k

+
1 k2Z4 + 1

2k
+
2 k

+
1 k1Z2

]
,

∆TTT,1 = − 2
p+2

1
(2p+

2 − k+
1 )(2p+

4 + k+
2 )

×
[

1
4k
⊥
1 ∆⊥4 −

1
4k
⊥
1 ∆⊥2 −

k+
2

4p+
4
Z⊥4 ∆⊥4 −

k+
1

4p+
2
Z⊥2 ∆⊥2

− k+
2

2p+
4

∆⊥2 Z⊥4 −
k+

1
2p+

2
Z⊥2 ∆⊥4

]
,

∆TTT,2 = − 2
p+2

1
(2p+

2 − k+
1 )(2p+

4 + k+
2 )
[
− 1

4

(
k+

2
p+

4
− k+

1
p+

2

)
∆⊥2 ∆⊥4

]
.

(4.63)

Note that ∆T indd and ∆T nidd differ by the change ∆⊥4 → −∆⊥4 , ∆⊥2 → −∆⊥2 , which, in
essense, is the same change that we need to make in order to convert T indd into T nidd,
and vice versa.
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4.4 Rearrangement of the traces

4.4.2 The ‘indd’ term

As with the ‘nndd’ term, we notice, that the result (4.50) does not depend on the ‘–’
momentum components. Therefore, we can replace all the four-scalar products with the
corresponding scalar products over the transverse components.

The obtained expression should be combined with the contributions (4.63) from the
‘nndd’ term [see Eqs. (4.62) and (4.63)]. We use the momentum relations (1.122), which
imply that

k2Z4 = 1
2(p2

1 −m2)− k+
1

2p+
2
Z⊥2 ∆⊥2 + 1

2k
⊥
1 ∆⊥2 ,

k1Z2 = −1
2(p2

1 −m2) + k+
2

2p+
4
Z⊥4 ∆⊥4 + 1

2k
⊥
1 ∆⊥4 .

(4.64)

On the other hand, the products k2Z4 and k1Z2 can be written as

k2Z4 = p+
4 k
⊥2
1

2k+
2

+ k+
2 Z
−
4 + k⊥1 Z⊥4 ,

k1Z2 = p+
2 k
⊥2
1

2k+
1

+ k+
1 Z
−
2 − k⊥1 Z⊥2 ,

(4.65)

which allows us to eliminate the terms, quadratic in k⊥1 .
Combining the terms T indd

4321 (321) and ∆T indd, one obtains (note, that all the terms,
linear in k⊥1 , cancel each other):

T indd
4321 (321) = − 1

p+2
1 p+

4 p
+
2

{[
2p+

4 p
+
2 (p+2

1 − k+
2 k

+
1 )− k+2

2 p+2
2 − k+2

1 p+2
4

]
m2

−
[
k+

2 p
+
2 Z
⊥
2 + k+

1 p
+
4 Z
⊥
4 + 1

2p
+
1 (p+

2 + p+
1 )∆⊥2 + 1

2p
+
1 (p+

4 + p+
1 )∆⊥4

]2

+
[1

2k
+
1 (p+

4 + p+
1 )∆⊥4 −

1
2k

+
2 (p+

2 + p+
1 )∆⊥2

]2

+ 4p+2
1 p+

4 p
+
2

(
∆⊥2

4 + ∆⊥2
2

)}
+ (p2

3 −m2)∆T iidd,

(4.66)

where

∆T iidd = 1
p+2

1
(k+

2 k
+
1 − k+

2 p
+
2 + k+

1 p
+
4 ) (4.67)

is a contribution to the ‘iidd’ term.
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4 Electron-positron annihilation into two photons

4.4.3 The ‘nidd’ term

We can use the results, obtained for the ‘indd’ term. One finds that

T nidd
4321 (431) = − 1

p+2
1 p+

4 p
+
2

{[
2p+

4 p
+
2 (p+2

1 − k+
2 k

+
1 )− k+2

2 p+2
2 − k+2

1 p+2
4

]
m2

−
[
k+

2 p
+
2 Z
⊥
2 + k+

1 p
+
4 Z
⊥
4 −

1
2p

+
1 (p+

2 + p+
1 )∆⊥2 −

1
2p

+
1 (p+

4 + p+
1 )∆⊥4

]2

+
[1

2k
+
1 (p+

4 + p+
1 )∆⊥4 −

1
2k

+
2 (p+

2 + p+
1 )∆⊥2

]2

+ 4p+2
1 p+

4 p
+
2

(
∆⊥2

4 + ∆⊥2
2

)}
+ (p2

1 −m2)∆T iidd,

(4.68)

where T iidd is given by Eq. (4.67).

4.4.4 The ‘iidd’ term

Upon adding the contributions from the ‘nidd’ and ‘indd’ terms [see Eq. (4.67)] to the
expression (4.54), we come to a very simple result:

T iidd
4321 (31) + 2∆T iidd = −2. (4.69)

4.4.5 The final result for the traces

Let us restore the initial labeling of the momenta and collect together all the expres-
sions, that we have obtained. We have:

T nndd → 2m8

p+
2 p

+
1 p

+2
3
T̃ nndd, (4.70)

T̃ nndd = 1
m8

[1
2(p+2

1 + p+2
3 )∆⊥2

1 + 2p+
1 p

+
3 m

2
] [1

2(p+2
2 + p+2

3 )∆⊥2
−2 − 2p+

2 p
+
3 m

2
]

− k+
2 k

+
1 p

+
2 p

+
1

m6 ∆⊥1 ∆⊥−2 + (2p+
1 − k+

1 )(k+
2 − 2p+

2 )
m8

{
∆⊥1 ∆⊥−2

×
[
k+

2 k
+
1 Z
⊥
1 Z
⊥
−2 −

k+2
2 p+

1
2p+

2

(
m2 +Z⊥2

−2 + 1
4∆⊥2

−2

)
− k+2

1 p+
2

2p+
1

(
m2 +Z⊥2

1 + 1
4∆⊥2

1

)]

+ k+2
2 p+

1
p+

2
Z⊥−2∆⊥−2∆⊥1 Z⊥−2 + k+2

1 p+
2

p+
1

Z⊥1 ∆⊥1 Z⊥1 ∆⊥−2

− k+
2 k

+
1 ∆⊥1 Z⊥−2Z

⊥
1 ∆⊥−2 − k+

2 k
+
1 Z
⊥
1 ∆⊥1 Z⊥−2∆⊥−2

}
; (4.71)

T indd → m6

p+
2 p

+
1 p

+2
3
T̃ indd, (4.72)
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T̃ indd = 1
m6

{[
−2p+

2 p
+
1 (p+2

3 − k+
2 k

+
1 )− k+2

2 p+2
1 − k+2

1 p+2
2

]
m2

−
[
k+

2 p
+
1 Z
⊥
1 − k+

1 p
+
2 Z
⊥
−2 + 1

2p
+
3 (p+

1 + p+
3 )∆⊥1 −

1
2p

+
3 (p+

2 − p+
3 )∆⊥−2

]2

+
[1

2k
+
1 (p+

2 − p+
3 )∆⊥−2 + 1

2k
+
2 (p+

1 + p+
3 )∆⊥1

]2
− 4p+2

3 p+
2 p

+
1

(
∆⊥2
−2 + ∆⊥2

1

)}
; (4.73)

T nidd → m6

p+
2 p

+
1 p

+2
3
T̃ nidd, T̃ nidd = T̃ indd∣∣

∆⊥1 →−∆⊥1 ,∆
⊥
−2→−∆⊥−2

; (4.74)

T iidd → −2. (4.75)

Here, p+
3 is defined by Eq. (4.24).

The check of the finiteness of the obtained expressions will be done in Section 4.7, after
the evaluation of the integrals.

4.5 Evaluation of the integrals for the direct-direct terms

4.5.1 Integrals for the ‘nndd’ term

For the propagator denominators in Eq. (4.16) we use the proper-time representation:

1
p2

4 −m2 + iε
= −i

∞∫
0

ds ei(p2
4−m

2+iε)s,
1

p2
3 −m2 − iε = i

∞∫
0

dt e−i(p2
3−m

2−iε)t. (4.76)

We do not write the terms with iε in the following, but keep them in mind.
With the help of the representation (4.76) we evaluate the integrals in p−3 and p−4 [see

Eqs. (4.16) and (4.17)]:∫ dp−4
2π

dp−3
2π → δ[2p+

4 s− (x+
4 − x+

3 )] δ[2p+
3 t+ (x+

2 − x+
1 )], (4.77)

In place of s and t in Eq. (4.76) we introduce variables τ and v:

τ = s+ t, v = s− t
s+ t

,

∞∫
0

ds dt→
1∫
−1

dv
∞∫
0

dτ τ2 . (4.78)

In terms of the new variables the delta functions in Eq. (4.77) can be written as

δ[2p+
4 s− (x+

4 − x+
3 )] δ[2p+

3 t+ (x+
2 − x+

1 )] = δ(δ+ − p+
3 τ) δ(δ+

2 + δ+
1 + 2p+

3 vτ). (4.79)

Due to the change (4.5) we obtain the following integrals in the light-cone time variables:∫
dx+

4 dx+
3 dx+

2 dx+
1 →

∫
dx+dδ+dδ+

1 dδ+
2 . (4.80)

We use the delta functions in Eq. (4.79) to do the integrals in δ+ and δ+
2 , so

δ+ = p+
3 τ, δ+

2 = 2p+
3 vτ − δ+

1 . (4.81)
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After all the steps the phase (4.17) is given by [see also Eq. (4.29)]

Φdd(4321)→ Φdd = k⊥2
1

2p+
3

(
p+

2
k+

2
δ+

2 + p+
1
k+

1
δ+

1

)
− k

⊥
1 p
⊥
1

p+
3

(
δ+

2 + δ+
1

)

+ p⊥2
1 +m2

2p+
3

(
k+

2
p+

2
δ+

2 + k+
1
p+

1
δ+

1

)
+ Φdd

F , (4.82)

In place of δ+
1 we define variable ρ as

ρ = m2p+
2

k+
2 p

+
3
δ+

2 + m2p+
1

k+
1 p

+
3
δ+

1 ,

∫
dδ+

1 →
k+

2 k
+
1

m2(p+
2 + p+

1 )

∫
dρ, (4.83)

such that
δ+

1 = p+
3 k

+
1

2m2p+
1

(1 + u)ρ, δ+
2 = p+

3 k
+
2

2m2p+
2

(1− u)ρ, (4.84)

where the parameter u is given by

u =
[
4vm

2τ

ρ
+
(
k+

2
p+

2
+ k+

1
p+

1

)]/(
k+

2
p+

2
− k+

1
p+

1

)
. (4.85)

The dependence on ρ is only via δ+
1 and δ+

2 , and the dependence on v is only via u.
We notice that, upon changing the sign of ρ and the simultaneous change v → −v, the
parameter u does not change, but both δ+

1 and δ+
2 change their signs. It can be also seen

that the phase in Eq. (4.82) is odd with respect to the simultaneous swap of the signs of
δ+

1 and δ+
2 . As for the preexponential factor in Eqs. (4.70) and (4.71), it is even in ρ.

Then the integral in ρ can be written as

∫
dρ→ 2Re

∞∫
0

dρ, (4.86)

with Re denoting the real part of the expression to the right.
We rescale τ :

m2τ

ρ
→ τ, (4.87)

so that u does not depend on ρ [see Eq. (4.85)]:

u =
[
4vτ +

(
k+

2
p+

2
+ k+

1
p+

1

)]/(
k+

2
p+

2
− k+

1
p+

1

)
. (4.88)

Then the reduced matrix element modulus squared for the ‘nndd’ term [see Eq. (4.16)]
is given by

1
4

∑
polarization

MndMnd∗ = e4k+
2 k

+
1

m6(p+
2 + p+

1 )
Re
∫

dx+
1∫
−1

dv
∞∫
0

dρ
∞∫
0

dτ τρ2

× exp
(
iΦdd

)
T nndd, (4.89)
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where

Φdd = ρ

2m2 (k⊥2
1 + 2k⊥1 R⊥) + ρ(1 + t21 + t22)

4

[
k+2

2
p+2

2
(1− u) + k+2

1
p+2

1
(1 + u)

]

+ ρ

2
∑
i

tiξi

[
k+2

2
p+2

2
(1− u)I2i + k+2

1
p+2

1
(1 + u)I1i

]

+ ρ

4
∑
i

ξ2
i

[
k+2

2
p+2

2
(1− u)J2i + k+2

1
p+2

1
(1 + u)J1i

]
, (4.90)

with
Ri = 2mtivτ −

1
2mξi

[
k+

2
p+

2
(1− u)I2i + k+

1
p+

1
(1 + u)I1i

]
. (4.91)

4.5.2 Integrals for the ‘indd’ and ‘nidd’ term

Among the variables (4.5), we choose x+, δ+, and δ+
1 as the independent ones, then∫

dx+
3 dx+

2 dx+
1 →

∫
dx+dδ+dδ+

1 , (4.92)

and
δ+

2 = 2δ+ − δ+
1 . (4.93)

For the propagator in Eq. (4.21) we use the proper-time representation as in Eq. (4.76),
therefore: ∫ dp−3

2π
e−ip−3 (x+

2 −x
+
1 )

p2
3 −m2 − iε = i

∞∫
0

dt ei(p⊥2
3 +m2+iε)δ(x+

2 − x+
1 + 2p+

3 t)

= i

∞∫
0

dt ei(p⊥2
3 +m2+iε) 1

2δ(δ
+ − p+

3 t). (4.94)

Again, we suppress the terms with iε in the following.
After the evaluation of the integral in δ+ with the use of the delta function in Eq. (4.94),

we come to the following relations

δ+ = p+
3 t, δ+

2 = 2p+
3 t− δ+

1 , (4.95)

which are similar to the ones in Eq. (4.81), apart from the absense of the parameter v.
The parameter ρ is introduced according to Eq. (4.83), and the parameter τ is defined

as [compare with Eq. (4.87)]

τ = m2t

|ρ| . (4.96)

We split the integral in ρ into two:

∫
dρ =

∞∫
0

dρ+
0∫

−∞

dρ, (4.97)

and make the change ρ→ −ρ in the second integral. It turns out that after this the phase
in the first integral is the same as for the ‘nndd’ term, but with v = −1, and the phase in
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the second integral is also the same as for the ‘nndd’ term, but with v = 1, and an overall
minus sign. We denote them as Φdd

−1 and −Φdd
1 , respectively.

Finally, we obtain for the ‘indd’ term:

1
4

∑
polarization

M idMnd∗ = ie4k+
2 k

+
1

2m4(p+
2 + p+

1 )

∫
dx+

∞∫
0

dρ
∞∫
0

dτ ρ

×
[
exp

(
iΦdd
−1

)
T indd∣∣

ρ
+ exp

(
−iΦdd

1

)
T indd∣∣

−ρ

]
, (4.98)

where T indd in the first term is evaluated at ρ and in the second term at −ρ.
For the ‘nidd’ term [see Eq. (4.22)] the steps are analogous, and they lead to the

following result:

1
4

∑
polarization

MndM id∗ = ie4k+
2 k

+
1

2m4(p+
2 + p+

1 )

∫
dx+

∞∫
0

dρ
∞∫
0

dτ ρ

×
[
exp

(
iΦdd

1

)
T nidd∣∣

ρ
+ exp

(
−iΦdd

−1

)
T nidd∣∣

−ρ

]
. (4.99)

4.5.3 Integrals for the ‘iidd’ term

The ‘iidd’ term [see Eq. (4.23)] contains only two integrals over the light-cone time.
We employ the change given by Eq. (4.5), which in this case is reduced to

x+ = (x+
3 + x+

1 )/2, δ+ = x+
3 − x+

1 . (4.100)

Then the ‘iidd’ term is written as
1
4

∑
polarization

M idM id∗ = e4
∫

dx+dδ+ exp
[
iΦiidd

]
T iidd, (4.101)

where

Φiidd = k⊥2
1 (p+

2 + p+
1 )

2k+
2 k

+
1

δ+ − m2(p+
2 + p+

1 )
2p+

2 p
+
1

δ+ + Φiidd
F (4.102)

with

Φiidd
F = −m

2(p+
2 + p+

1 )
2p+

2 p
+
1

δ+∑
i

[
(ti + ξiIi)2 + ξ2

i (Ji − I2
i )
]
, (4.103)

Ii =
1∫
−1

dλψi
(
mx+ + 1

2mδ
+λ

)
, Ji =

1∫
−1

dλψ2
i

(
mx+ + 1

2mδ
+λ

)
. (4.104)

4.6 Direct-direct contribution to the cross section
Each of the four direct-direct terms contributes to the cross section (4.11). We combine

the contributions from the ‘nidd’ and ‘indd’ terms together, such that the total direct-
direct contribution to the cross section is written as the sum of three terms:

σdd
0 (x+) = σnndd

0 (x+) + σ
[in]dd
0 (x+) + σiidd

0 (x+), (4.105)

where σ[in]dd
0 (x+) = σindd

0 (x+) + σnidd
0 (x+).
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4.6.1 The ‘nndd’ term

The intergrals in k⊥1 [see Eqs. (4.10) and (4.90)] are the Fresnel integrals and are
evaluated analytically:∫ d2k⊥1

(2π)2 exp
[
i
ρ

2m2 (k⊥2
1 + 2k⊥1 R⊥)

]
= im2

2πρ exp
[
−iρR

⊥2

2m2

]
. (4.106)

where R⊥ is given by Eq. (4.91).
Rearranging the terms, we obtain the following expression for the phase (4.90) after

the integration:

Φdd = mρ

4

[
k+2

2
p+2

2
(1 + u) + k+2

1
p+2

1
(1− u)

]

+ mρ

8 (1− u2)
∑
i

[
k+

2
p+

2
(ti + ξiI2i)−

k+
1
p+

1
(ti + ξiI1i)

]2

+ mρ

4
∑
i

ξ2
i

[
k+2

2
p+2

2
(1 + u)

(
J2i − I2

2i

)
+ k+2

1
p+2

1
(1− u)

(
J1i − I2

1i

)]
. (4.107)

And the contribution to the cross section is given by

σnndd
0 (x+) = Im

p+
2 +p+

1∫
0

dk+
1

(
− r2

em
6

4Ip+
2 p

+
1 p

+2
3 (p+

2 + p+
1 )

)

×
1∫
−1

dv
∞∫
0

dρ
∞∫
0

dτ τρ exp
[
iΦdd

]
T̃ nndd, (4.108)

where Im denotes the imaginary part and T̃ nndd is given by Eq. (4.71).

4.6.2 The ‘indd’ and ‘nidd’ terms

As can be seen from Eqs. (4.98) and (4.99), we need to sum four terms. We notice
that upon changing ρ → −ρ the quantities Zµ1 and Zµ−2 do not change, but ∆µ

1 and ∆µ
−2

change their sign, therefore:

T indd∣∣
−ρ = T nidd∣∣

ρ
, T nidd∣∣

−ρ = T indd∣∣
ρ
. (4.109)

The integration in k⊥1 is performed in the same way as for the ‘nndd’ term [see
Eq. (4.106)], and we obtain:

σ
[in]dd
0 (x+) = Re

p+
2 +p+

1∫
0

dk+
1

(
− r2

em
6

4Ip+
2 p

+
1 p

+2
3 (p+

2 + p+
1 )

) ∞∫
0

dρ
∞∫
0

dτ

×
[
exp

(
iΦdd
−1

)
T̃ indd∣∣

ρ
+ exp

(
iΦdd

1

)
T̃ nidd∣∣

ρ

]
, (4.110)

where T̃ indd and T̃ nidd are given by Eqs. (4.73) and (4.74), respectively.
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4.6.3 The ‘iidd’

For the ‘iidd’ term, the integral in k⊥1 can be exchanged with the integral in ρ, after
we shift the integration in ρ off the real axis [Dinu, 2013], then one obtains the following
result:

σiidd
0 (x+) =

p+
2 +p+

1∫
0

dk+
1

(
− r2

em
2

2I(p+
2 + p+

1 )

) ∞∫
0

dρ
ρ

(
sin Φiidd − sin Φiidd

0

)
+ π

 , (4.111)

where

Φiidd = ρ+ ρ
∑
i

(ti + ξiIi)2 + ρ
∑
i

ξ2
i (Ji − I2

i ), (4.112)

Φiidd
0 = ρ+ ρ

∑
i

[ti + ξiψi(φ)]2. (4.113)

4.7 Discussion of the result
The steps, that we have performed in order to obtain the cross section, are inspired

by the analogous calculations for electron-positron annihilation into one photon and the
polarization operator in a plane-wave field, that we have done in Chapters 2 and 3. The
result, of course, bears some similarities with the ones, obtained before [compare, e.g., the
phases (2.59), (4.107), and (4.112)], though is more complicated.

Let us check that the result is finite as |p+
3 | → 0. For the ‘iidd’ contribution this

statement is obvious since the contribution does not depend on p+
3 [see Eqs. (4.111),

(4.112), and (4.113)].
Let us consider the other contributions. From Eq. (4.24) it follows that k+

1 → p+
1 and

k+
2 → p+

2 as |p+
3 | → 0, therefore, δ+

2 → −δ+
1 [see Eq. (4.84)]. Also note that δ+ → 0 as

|p+
3 | → 0 [see Eqs. (4.81) and (4.95)]. It is easy to find the asymptotics in the case of

vanishing ρ and τ . One obtains that

Zi1 ≈ Zi−2 ≈ pi1 − eAi(φ), ∆i
1 ≈ ∆i

−2 ≈ 0, (4.114)

where φ = mx+ [see Eq. (4.5)].
Then, to leading order in p+

3 , we obtain for the ‘nndd’ term [see Eq. (4.71)]:

T̃ nndd ≈ −4p+
2 p

+
1 p

+2
3

m4 , (4.115)

For the ‘indd’ term, the leading order is given by [see Eq. (4.73)]

T̃ indd ≈ −2p+
2 p

+
1 p

+2
3

m4 − (p+
2 + p+

1 )2p+2
3

m6 (m2 +Z⊥2
1 ), (4.116)

and the same expression is obtained for the ‘nidd’ term. Note that the asymptotics are
the same for the vacuum case, with the replacement Zi1 → pi1. In the case of general ρ
and τ , the expressions are less trivial, but the scaling ∝ p+2

3 for the leading terms does
not change. Also note that the phases remain finite as |p+

3 | → 0. Therefore, we conclude,
that the direct-direct contribution to the cross section is finite in the limit |p+

3 | → 0.
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Another question is the finiteness of the result with respect to the integration in τ
and ρ. The integrals in τ and ρ are related to the initial integrals in the light-cone
time variables (4.5) [see Eqs. (4.83), (4.81), and (4.95)], therefore, we require that they
converge in a sufficiently small region, such that we can neglect the change of the wave-
packet distribution densities. As might be expected, this is not satisfied, in particular
with respect to the integral in τ , even in the constant-crossed field limit. The integral in
τ does not converge for the ‘nndd’ term [see Eq. (4.108)] as v → 0.

One of the solutions to this problem is the use of the full expression (4.4). Another
solution is to single out the two-step contribution, i.e., the part which corresponds to the
combination of the two diagrams (nonlinear Compton scattering and annihilation into
one photon), summed over the states of the intermediate fermion. A naive assumption,
which needs to be verified, is that the ‘nndd’ term is in fact the two-step contribution.
An investigation of a proper way of excluding the two-step contribution is a subject for a
future work.
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The front-form formulation of quantum field theory has several advantages with respect
to the instant-form one, and it allows to tackle some problems which seem to be very
complicated in the instant-form approach. For QED in an intense plane-wave background,
the front-form approach appears to be the most natural way of formulating the theory.

With the lightfront formulation, the coordinate system accounts for the conservation
laws in a plane-wave field. Moreover, the lightfront treatment of the bispinor part allows
for a significant simplification of the structure of the interaction vertices. In fact, we
have seen that the theory becomes somewhat similar to vacuum QED, the change is
the replacement of vacuum four-momenta with their dressed counterparts. Results for
probabilities of scattering processes can be conveniently expressed via scalar products of
photon and dressed fermion momenta, analogous to the Mandelstam variables in vacuum
QED. The developed techniques allow to see QED in a plane-wave field from a different
perspective, and could be very useful for studing higher-order processes.

Vacuum polarization effects have been a subject of many theoretical and experimental
endeavors. With upcoming laser technologies, it seems possible to finally detect vacuum
birefringence and also, though with greater challenges, study vacuum dichroism. We have
discussed the physical background and evaluated the main stages of a high-energy vacuum
birefringence/dichroism experiment, based on Compton scattering for the generation of
probe gamma photons and pair production in a screened Coulomb field for the detection
of the probe photon polarization change after the propagation through an intense laser
pulse. Our estimations have shown that for high-power laser systems, the verification of
the QED prediction at the 5σ significance level is possible on a timescale of a few days. As
we have seen, an improvement of about two orders of magnitude for the required statistics
in the vacuum birefringence experiment is achieved, if circularly polarized gamma photons
are used to probe the vacuum. Two variations of the setup have been considered, one em-
ploys two high-power lasers and relies on laser-wakefield acceleration for the production
of a high-energy electron beam, the other employs a conventional electron accelerator and
a high-power laser. We have assessed different sets of the parameters and both afore-
mentioned options turn out to be viable for the vacuum birefringence experiment. Of
course, a more detailed numerical evaluation, taking into account effects like focusing of
the high-power laser pulse and possible noise, would be necessary if a high-energy vacuum
birefringence/dichroism experiment were to be performed. Such experiment would allow
to test QED in the nonperturbative regime and possibly improve our understanding of the
foundations of the model, that we use for the electromagnetic interaction.

Two-particle scattering processes inside a laser field are qualitatively different from
the ones in vacuum. First of all, the former are in fact three-body collision processes,
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in comparison with the latter being two body ones. In the lightfront formulation, the
field tensor for a laser field, approximated as a plane wave, is a function only of the time
variable. Therefore, a relative advance or delayed arrival of the laser pulse at the two-
particle collision point can be included simply as the corresponding shift in the argument.
A more complex feature of collisions inside a laser field is the fact that particles become
unstable. Photons decay via nonlinear Breit-Wheeler process and electrons “decay” via
nonlinear Compton scattering. If the laser pulse is sufficiently long, then in general, a
possible decay should be taken into account, also for the intermediate particles. One more
peculiarity is the fact that an intermediate particle in, e.g., a tree-level process can become
real. Therefore, a tree-level matrix element in a laser field includes two contributions: a
two-step process with the intermediate particle being real and a one-step process with
the intermediate particle being virtual. The former contribution, in principle, should be
possible to reconstruct as the sum of the corresponding lower-order diagrams, the latter
needs to be evaluated directly.

Finally, as we have seen, in general, the evolution of colliding wave packets can not
be factorized out in expressions for probabilities, in contrast to the vacuum case. This
feature is related to the conservation of only three asymptotic momentum components in a
plane-wave field and seems to be the most troublesome one, since it forbids the definition
of a cross section in a way, analogous to the one for quantum field theory in vacuum.
For first-order processes, however, we have managed to construct a cross section for the
case of the highly nonlinear regime (ξ � 1). For second-order processes, the idea, which
is expected to be checked in a subsequent work, is that a cross section is also possible
to define for one-step contributions in highly nonlinear regime, but one needs to exclude
explicitly the two-step contribution for a considered process. It is important to note that
in the present work the cross section has been introduced in a physically transparent way,
it reduces to the usual vacuum one in the absence of the field, and therefore, the definition
allows for a consistent separation of the vacuum and external-field parts. Moreover, the
defined cross section for one-step processes is, in principle, suitable for the inclusion into
laser-plasma interaction simulation tools, e.g., particle-in-cell routines. Hopefully, in the
future, the current work will be finished to produce a complete picture of two-particle
scattering in a laser field.

We have considered two examples of scattering in a plane-wave field: electron-positron
annihilation into one and two photons, respectively. For the annihilation into one photon,
the final photon four-momentum is completely defined by the initial electron and positron
four-momenta. Consequently, a nonnegligible probability is obtained for a very limited set
of the initial four-momenta. This fact renders the annihilation into one photon insignificant
for laser-plasma interactions. For the annihilation into two photons, on the contrary, the
phase space of the final states is much larger and this process, despite being a second-order
one, may become sizable at a sufficiently high plasma density. In this work, an important
step of the analytical evalution of the direct-direct contribution to the annihilation into
two photons has been made. In the future, it is planned to complete the calculation and
to assess the significance of this process for laser-plasma interactions.
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Appendices

A Derivation of the lightfront Hamiltonian

Here we show some details of the derivation of the lightfront Hamiltonian, presented
in Section 1.4. We start with Eq. (1.52), which we reproduce here:

T+− = Ψ[γ+i∂+ − (γi∂ −m)]Ψ− F̂+σ∂+Âσ + 1
4 F̂µνF̂

µν − Jσ(Aσ + Âσ). (A.1)

Let us consider the gauge-field part first:

HG =
∫

d2x⊥dx−
(
− F̂+σ∂+Âσ + 1

4 F̂µνF̂
µν
)

=
∫

d2x⊥dx−
[
− 1

2(∂−Â−)2 − (∂kÂ−)(∂−Ak) + 1
2(∂1A2 − ∂2A1)2

]
. (A.2)

After writing Â− as Â− = A−+α−, performing a couple of integration by parts and using
the constraint relation, one obtains:

HG = 1
2

∫
d2x⊥dx−

[
(∂−A−)2 + 1

2(∂1A2 − ∂2A1)2 − J+ 1
(i∂−)2J

+
]
. (A.3)

The fermionic part is given by

HF =
∫

d2x⊥dx−Ψ[γ+i∂+ − (γi∂ −m)]Ψ

=
∫

d2x⊥dx−Ψ
{− γ−i∂− + [−γk(i∂k − eAk − eÂk) +m]

}
Ψ. (A.4)

Again, with the use of some integration by parts and the constraint relation, it can be
shown that∫

d2x⊥dx−Ψ[−γk(i∂k − eAk − eÂk) +m]
}
Ψ = 2

∫
d2x⊥dx−Ψγ−i∂−Ψ, (A.5)

therefore

HF =
∫

d2x⊥dx−Ψγ−i∂−Ψ

=
∫

d2x⊥dx−
(
ψγ−i∂−ψ + χγ−i∂−χ+ eψγkψAk

)
. (A.6)

Finally, after combining the gauge-field, fermionic and interacting parts together, we
obtain the final expression (1.53) for the lightfront Hamiltonian.

99



Appendices

B Contraction identities for the dressed vertices

B.1 Three-point dressed vertex contraction identities

General relations for all momenta being different are given by:

1. UU contraction:

1
2U

κ
43im(2)γiγm 1

2U
µ
21ks(1)γkγsgκµ = [Sκ

43(2)Sµ21(1)− Tκ
43(2)Tµ21(1)] gκµ

+ [Sκ
43(2)Tµ21(1) + Tκ

43(2)Sµ21(1)] gκµγ1γ2,
(B.1)

where

[Sκ
43(2)Sµ21(1)− Tκ

43(2)Tµ21(1)] gκµ = 1
2p+

4 p
+
3 p

+
2 p

+
1

×
[
p+

4 p
+
1 π3(2)π2(1) + p+

3 p
+
2 π4(2)π1(1)

− p+
4 p

+
3 π2(1)π1(1)− p+

2 p
+
1 π4(2)π3(2)

+ p+
4 p

+
3 m

2 + p+
2 p

+
1 m

2
]
,

[Sκ
43(2)Tµ21(1) + Tκ

43(2)Sµ21(1)] gκµ =− 1
2p+

4 p
+
3 p

+
2 p

+
1
εij

×
[
p+

4 p
+
1 π

i
3(2)πj2(1)− p+

3 p
+
2 π

i
4(2)πj1(1)

+ p+
4 p

+
3 π

i
2(1)πj1(1) + p+

2 p
+
1 π

i
4(2)πj3(2)

]
.

(B.2)

2. V V contraction:

V iκ
43 γiV

kµ
21 γkgκµ = m2

2p+
4 p

+
3 p

+
2 p

+
1

(p+
4 − p+

3 )(p+
2 − p+

1 ). (B.3)

3. UV contraction:

1
2U

κ
43im(2)γiγmV kµ

21 γkgκµ

= m

2p+
4 p

+
3 p

+
2 p

+
1

[
(p+

2 − p+
1 )p+

3 π
k
4 (2)− p+

4 p
+
3 (pk2 − pk1)

]
γk. (B.4)

4. V U contraction:

V iκ
43 γi

1
2U

µ
21ks(1)γkγsgκµ

= m

2p+
4 p

+
3 p

+
2 p

+
1

[
(p+

4 − p+
3 )p+

2 π
i
1(1)− p+

2 p
+
1 (pi4 − pi3)

]
γi. (B.5)

Then:[1
2U

κ
43im(2)γiγm + V iκ

43 γi

] [1
2U

µ
21ks(1)γkγs + V kµ

21 γk

]
gκµ

= S4321(21) + V i
4321(21)γi + T4321(21)γ1γ2,

(B.6)
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where

S4321(21) = [Sκ
43(2)Sµ21(1)− Tκ

43(2)Tµ21(1)] gκµ + V iκ
43 γiV

kµ
21 γkgκµ

= 1
2p+

4 p
+
3 p

+
2 p

+
1

[
p+

4 p
+
1 π3(2)π2(1) + p+

3 p
+
2 π4(2)π1(1)

− p+
4 p

+
3 π2(1)π1(1)− p+

2 p
+
1 π4(2)π3(2)

+ p+
4 p

+
3 m

2 + p+
2 p

+
1 m

2 + p+
4 p

+
2 m

2 + p+
3 p

+
1 m

2

− p+
3 p

+
2 m

2 − p+
4 p

+
1 m

2
]
,

V i
4321(21)γi =

[1
2U

κ
43im(2)γiγmV kµ

21 γk + V iκ
43 γi

1
2U

µ
21ks(1)γkγs

]
gκµ

= m
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1

[
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2 π
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4 p
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2 p
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]
γi,
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4 p
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3 p

+
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+
1
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3 π
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2 π
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]
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(B.7)

B.2 Mixed three-point and seagull dressed vertex contraction
identities

General relations for all momenta being different are given by:

Sλ3S
µ
21(1)gλµ = m

p+
3
,

Sλ3V
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21 gλµ = Sλ3T
µ
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1
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(B.8)
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Then:[
Sλ3 + V jλ

3 (2)γj
] [1

2U
µ
21ks(1)γkγs + V kµ

21 γk

]
gλµ = S321 + V j
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