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ABSTRACT: Over the last 20 years, both naturalistic decision making and fast and frugal

heuristics programs have radically broken with mainstream decision science, moving

beyond the confines of artificial tasks and safe academic laboratories. We document

commonalities of these programs and discuss ways in which a synthesis could con-

tribute to a more relevant, precise, predictive, and effective decision science. We begin

by reviewing the common roots and philosophies of the two programs, such as their

respect for the capable decision maker and their acknowledgment of the importance

of task ecology. We then identify four specific areas of synergetic potential, including

ecological rationality and metacognition. Our review culminates in a case study of 

naturalistic heuristics based on a particular class of fast and frugal heuristics. These fast

and frugal trees provide examples of effective, well-specified decision-making algo-

rithms applied in a naturalistic domain: emergency medical diagnosis. By leveraging

the strengths of each program, we point out some of the ways in which more sustain-

able progress can be fostered on issues that matter the most—for example, decisions

that save and transform lives.

Introduction

OVER THE LAST 2 DECADES, TWO RESEARCH PROGRAMS HAVE MADE MAJOR CONTRIBUTIONS

to the understanding of decision making in the world. These programs have radi-
cally broken with mainstream traditions that are limited to “small worlds” in the
artificial confines of simple and safe academic laboratories. The first program, nat-
uralistic decision making (NDM), is the focus of this special issue reviewing 20
years of decision-making research in the most taxing environments, including
firefighting (Klein, Calderwood, & Clinton-Cirocco, 1986), critical care units
(Crandall & Getchell-Reiter, 1993), and combat information centers (Kaempf,
Wolf, & Miller, 1993). The second, called the fast and frugal heuristics (FFH) pro-
gram, has documented the many ways in which simple decision algorithms can
make people smarter, safer, and more efficient in medical, legal, engineering, and
other applied domains (Galesic, Garcia-Retamero, & Gigerenzer, 2009;
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Gigerenzer & Engel, 2006; Gigerenzer, Todd, & the ABC Research Group, 1999;
Katsikopoulos, 2009; Wegwarth, Gaissmaier, & Gigerenzer, 2009).

In what follows, we suggest that after decades of largely independent develop-
ment, the two programs can learn a great deal from each other. We begin by pro-
viding an introduction to each program and a brief overview of their origins and
commonalities. We next discuss differences with special emphasis on those that
harbor synergetic potential (i.e., aspects that can be used to advance joint goals).
Finally, we present a detailed case study of naturalistic heuristics: fast and frugal
decision trees.

Fast and Frugal Heuristics
The FFH program investigates “simple heuristics that make us smart” (Gigerenzer

et al., 1999). The program places emphasis on identifying the repertoire of heuris-
tics (i.e., simple decision algorithms or rules of thumb) that people have at their
disposal for adaptive decision making in this fundamentally risky and uncertain
world. We define a heuristic as a computational algorithm that can be imple-
mented in an information-processing system (human, animal, or machine). The
approach takes opposition to the popular notion that heuristic decision processes
are a dangerous cause of systematic error that must be stamped out. Instead, it
embraces the analytically provable fact that no single decision process can always
guarantee a good solution, given real-world constraints on computation and com-
plexity. Thus, the investigation of superior decision making hinges on under-
standing the fit among task goals, contexts, and decision processes.

Just as there is no single effective decision-making strategy for all problems,
there is no single normative benchmark for all environments. Hence, FFH analy-
ses specify a normative benchmark relative to the structure and constraints of task
ecology. This benchmark reflects the ecological rationality of a decision mecha-
nism—that is, the way in which a particular decision-making heuristic can exploit
the fit between the structure inherent in an environment (e.g., redundancies among
cues) and the mind’s evolved and developed cognitive capacities (Gigerenzer &
Brighton, 2009; Gigerenzer & Selten, 2001).

In investigating ecological rationality, the FFH program has prioritized both the
precision and predictive accuracy of its models (Marewski, Schooler, & Gigerenzer,
2010). The precise definition of a decision-making strategy (e.g., formalization as a
computer program) fosters transparency and facilitates cumulative theory building
and testing. The focus on precision is also a result of the desire to rectify the bad
image of heuristics: Within the heuristics and biases program (Tversky & Kahneman,
1974), regions of good and bad performance were never defined, which led to mis-
understandings as well as vague and untestable theory (Gigerenzer, 1996).

To avoid such obstacles, FFH specifies heuristics at the level of their con-
stituent processes: (a) rules for information search, (b) rules for stopping search,
and (c) decision rules. We refer to these as the building blocks of a heuristic. To
date, the program has identified a number of ecologically rational (i.e., well suited
to specific ecologies) and psychologically plausible decision-making processes
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that can be used to engineer decision aids or design better decision environments
(Cokely, Schooler, & Gigerenzer, 2010; Todd & Gigerenzer, 2007).

One extensively studied heuristic is called take-the-best (Gigerenzer & Goldstein,
1996). When asked which of two objects has a higher value on a criterion (e.g.,
“Which of two stock portfolios will give me higher returns 1 year from now?”) and
the exact values are not immediately available, people are assumed to go through a
number of cues (e.g., “Do I recognize the company names in the portfolio?”) that
might serve as indicators to the criterion. If people are well attuned to the informa-
tion structure in their environment, they will search through these cues in the
order of their validity (i.e., a measure of cue goodness). This is take-the-best’s
search rule. Take-the-best searches through this cue order until it finds the first 
cue that discriminates (“I recognize the companies in Portfolio A but not in Portfolio
B.”). This is take-the-best’s stopping rule. Put simply, take-the-best chooses the
object that was discriminated (“Choose Portfolio A”). This is take-the-best’s deci-
sion rule.

The assumption that humans are sensitive to environmental frequencies is a
well-studied phenomenon (e.g., Hasher & Zacks, 1979). Reference to this capacity
in conjunction with the fact that only one cue is deliberated upon at a time makes
take-the-best psychologically plausible. The effectiveness of the heuristic relies on
its fit to the environment (e.g., accurate ordering of cues, sufficient cue validity),
thus defining its regions of good and bad performance—its ecological rationality.

Naturalistic Decision Making
NDM is concerned with decisions outside the laboratory, investigating the

most taxing and complex environments. Early NDM research drew heavily on
work in expertise and skill acquisition (e.g., de Groot, 1946/1978), and this con-
tinues to be a primary focus of the approach. For example, the intuitive situation-
action matching or recognition processes (Lipshitz, 1994) that come about as a
result of expertise form the core of one flagship theory: recognition-primed deci-
sion making (Klein, 1993). NDM is interested in the macrocognitive processes
that lead expert decision makers to recognize effective courses of actions, rather
than merely investigate response (outcome) deviations from prespecified norms.

Moreover, NDM research stresses that decision accuracy (e.g., hit rate) is not all
that is important in a decision (Hoffman & Militello, 2008). Being able to reach con-
sensus among team members or to hedge against worst-case scenarios may nega-
tively impact a decision strategy’s accuracy in one particular case. However, such
aspects are nonetheless desirable in many complex situations. A decision takes place
in a dynamic context in which decision makers interact with a rapidly changing
environment. Because of this, many NDM theories describe parallel processes.

Given complex actor-environment interactions, as expert knowledge is highly
domain specific, and stressing that decision makers are sensitive to semantic as well
as syntactic content, NDM develops context-bound informal models (Lipshitz, Klein,
Orasanu, & Salas, 2001a). Critically, NDM’s primary goal is applicability: improv-
ing decision making where it matters. Embracing empirically based prescription



(Lipshitz et al., 2001a), it investigates best practices from experts in the field and
develops training and decision aids based on field research. Indeed, in this regard,
NDM is a world leader (Klein, 1998; Lipshitz et al., 2001a).

An illustrative example of an NDM theory is recognition/metacognition (R/M).
In R/M, “recognitional” activation of expectations and associated responses are
supervised by metacognitive processes of “critiquing” and “correcting.” A higher
level process called “quick test” considers factors such as available time, the costs
of an error, and the degree of uncertainty or novelty in a situation to judge
whether correcting and critiquing are likely to be effective and/or feasible. Note
that although all these processes occur in parallel, they are not assumed to be
simultaneously available to consciousness. R/M processes are highly dynamic:
Problems exposed by critiquing lead to corrective steps, which involve modifica-
tion and elaboration of situations and plans, which can lead to detection of further
problems, and so forth. R/M has been developed to describe the cognitive
processes of expert decision makers when they need to go beyond their recogni-
tional capacities to solve a problem. This was done by empirically based descrip-
tion of the decision makers in their natural decision context (e.g., ship-based
tactical defense; Cohen, Freeman, & Wolf, 1996).

Origins and Commonalities

With the work of von Neumann and Morgenstern (1947) and Savage (1954/
1972), subjective expected utility (SEU) became the dominant normative frame-
work in the domain of decision making under risk after World War II. In the same
year that Savage’s SEU was published, Meehl (1954) published his influential 
critique of clinicians’ judgments in comparison with multiple regression-based
“actuarial” methods. Combining these two lines of thought, Howard (1966, 1968)
developed decision analysis to provide prescriptive guidelines for decision makers
in order to adhere to the norms of SEU.

However, in the 1970s data emerged indicating that decision makers seemed
largely incapable of behaving according to either normative concepts or prescrip-
tive aids. Accordingly, the influential heuristics and biases program (Tversky &
Kahneman, 1974) documented an extensive map of deficiencies in “rational” think-
ing. This map, in turn, might provide directions for decision analysis. Together,
these programs offered the hope that scientists could identify, catalogue, and
repair the limited and flawed nature of human decision making. However, things
were not as straightforward as that. People and organizational teams were often
resistant to “debiasing” attempts (Fischhoff, 1982). As Dawes, Faust, and Meehl
(1989) lamented 35 years after Meehl’s (1954) initial call for greater reliance on
decision support tools, many of the interventions had little impact and were not
effectively adopted by professional decision makers.

In part, both NDM and FFH programs grew out of frustration with these failed
interventions and distorted visions of people’s capabilities. Both programs objected
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to the view of human decision making as fundamentally irrational and flawed,
and both argued that the efficacy of intuitive aspects of decision making had been
badly distorted by separating the laboratory from the natural ecology. Whereas
NDM responded to the growing need to improve decision making in fast-paced,
dynamic, high-stress, and high-stakes environments, the FFH program began to
build precise models of simple heuristic processes, mapping out their environ-
mental constraints and ecological rationality. Despite these different paths, how-
ever, the two approaches retain core commonalities.

The Capable Decision Maker
Human decision making is not essentially flawed and limited. Instead, FFH

and NDM have documented how human decision making can be highly effective.
At the time of their emergence 20 years ago, there was a huge gap in the literatures
on judgment and decision making (JDM) and expertise (Shanteau, 1992). Spear-
headed by the heuristics and biases program, research in JDM painted an almost
uniformly abysmal picture of human decision making, both for novices and
experts. Quite to the contrary, much of the expertise literature in cognitive science
marveled at experts’ superiority over novices in nearly every aspect of domain spe-
cific cognitive functioning, particularly when expertise was verified rather than
assumed (Anderson, 1982; Chi, Feltovich, & Glaser, 1981; Ericsson, Prietula, &
Cokely, 2007; Klein & Weitzenfeld, 1982; Lesgold, Feltovich, & Glaser, 1980).
Having been used in the study of experts from the very beginning, NDM has
adopted the expert literature’s admiration of the efficacy of skilled human decision
making (Lipshitz et al., 2001a; Zsambok, 1997).

The FFH approach extends the notion of the capable decision maker, arguing
that laypeople can also be well attuned to the environments with which they inter-
act (Gigerenzer, 1996; Gigerenzer, Hoffrage, & Kleinbölting, 1991). The assumption
of a capable decision maker was key to the success of the theory of probabilistic
mental models (PMMs)—a theory of overconfidence (Gigerenzer et al., 1991). At
the time, overconfidence had been extensively studied following a heuristics and
biases approach and was considered to be extremely robust and resistant to debi-
asing (Fischhoff, 1982). A typical way to study overconfidence was to ask partici-
pants a series of general knowledge questions, subsequently ask what percentage
they thought they got right, and then compare that percentage with the percent-
age of correct answers.

The PMM theory is similar to the take-the-best heuristic: If direct knowledge is
not available, people construct a reference class over which probabilistic cues are
defined and searched in order of validity. People’s overconfidence depends on how
representative the sampled stimuli are of the constructed reference class. Gigerenzer
et al. (1991) showed that in their drive to catalogue human deficiency, many previ-
ous studies on overconfidence had sampled unrepresentatively difficult or mislead-
ing questions. When representative questions were sampled, the overconfidence
effect disappeared. When unrepresentatively easy questions were sampled, the effect
could even be reversed, inducing people to display underconfidence.
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Ecology Is Crucial
A major criticism of the traditional approach to human decision making, cham-

pioned by both NDM and the FFH programs, is the disregard for task ecology in
laboratory studies. In most of the decision sciences, concern for selecting represen-
tative stimulus samples has lagged far behind the concern for selecting either repre-
sentative participant samples (e.g., Einhorn & Hogarth, 1981) or tractable laboratory
problems (Klein, 1998). NDM has tackled these issues head-on, using and devel-
oping methods of cognitive field research (Hoffman & Militello, 2008) to observe
cognition where it actually takes place in the world and where there is no question
as to the representativeness of the environmental stimulus. The FFH program took
a more theory-driven approach. It attempted to bring representative stimulus sam-
ples reflecting the underlying structure of a particular task ecology into the labora-
tory (e.g., the statistical structure of environmental cues), where environments and
decision algorithms could be subjected to extensive, controlled analyses. Both
methods have their virtues, and both have proven effective in confronting and
revealing serious limitations of other nonecological methodologies.

Differences and Synergy

No single approach can cover every facet of the decision sciences. Even the most
innovative methods and approaches have their limits. Whether or not criticisms are
merited, major concerns should be acknowledged, examined, and addressed. We
believe that such efforts can be greatly helped by utilizing the synergetic potential
between the study of the FFH program and NDM. We argue that at least four areas
hold such synergetic potential:

1. using ecological rationality as a normative benchmark for NDM;
2. emphasizing that dynamic processes (e.g., situation awareness, macrocogni-

tion) are essential for an understanding of heuristic selection;
3. using FFH’s theoretical and methodological tools to specify and test NDM

models with greater precision; and
4. using NDM methodology and theory to provide orientation when performing

field studies concerning FFH.

Ecological Rationality as a Normative Benchmark for NDM
Ecological rationality is the normative concept of rationality used by the FFH

program (Gigerenzer & Brighton, 2009; Gigerenzer & Selten, 2001; Gigerenzer 
et al., 1999). It refers to the fit between evolved (and developed) cognitive capacities,
the heuristics that build on them, and the structure of the environment in which
these heuristics are applied. Perhaps one of the most exciting and unexpected
findings in the last 100 years of research in the decision sciences is the less-is-more
effect—a crucial piece of evidence favoring ecological rationality vis-à-vis classical
rationality as a normative principle. By analyzing the fit between cognition and
environment, research has shown how, where, and why simple heuristics can pro-
vide not merely good enough but superior decision performance, outperforming
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even the most sophisticated optimization processes (Gigerenzer & Brighton, 2009;
Gigenerzer et al., 1999). This can be well illustrated with the recognition heuristic
(Goldstein & Gigerenzer, 2002).

The recognition heuristic simply states that if one object is recognized and the
other is not, infer that the recognized object has a higher value on the criterion. In the
classic study of the heuristic, two student populations, German and American, were
asked which of two cities was larger: San Diego or San Antonio. Of the American stu-
dents, 66% gave the correct answer (San Diego). Of the German students, almost all
of whom had not heard of San Antonio, 100% gave the correct answer. As absence of
information is not unstructured, the German students could make use of the fact that
they did not recognize one of the cities to infer that it is smaller. The American stu-
dents’ greater knowledge (most had heard of both cities and knew additional infor-
mation about them) actually interfered with their accuracy.

Although the city task may seem artificial, it provides a simple and powerful
existence proof of the less-is-more effect. The recognition heuristic has successfully
been extended to multialternative inference, used to predict political elections
(Marewski, Gaissmaier, Schooler, Goldstein, & Gigerenzer, 2010) and the outcome
of sports events (Serwe & Frings, 2006), and shown to beat far more complex models
in stock portfolio selection (Gigerenzer & Brighton, 2009).

All previous interpretations of rationality operated under the assumption of an
effort-accuracy trade-off: More computation, time, and information were always
assumed to be better; simplifying heuristics could only provide approximate, sec-
ond-best solutions. The less-is-more effect proves that improved decision accuracy
is possible under conditions of less information, computation, or time (Gigerenzer,
2008). Note that “less is more” does not mean “the less, the better.” It refers to the
fact that there is often a point beyond which more knowledge or computation will
not result in increased accuracy and may even result in decreased accuracy. Again,
decision performance is about the fit between cognition and environment. Identi-
fying when and under what conditions less-is-more effects occur is an essential
part of research conducted within the FFH program.

In real-life decision making one often has to infer future states of the world from
sparse, noisy information samples. Within the FFH program, “robustness” refers to
small losses in performance (e.g., accuracy) when an inference has to be made for
previously unencountered tasks. Many heuristics have been shown to be robust and
outperform more complex models traditionally deemed as “optimal” decision-making
benchmarks (multiple regression, classification and regression trees, naive Bayes,
etc.), particularly when generalizing from limited amounts of data. These more sen-
sitive algorithms (e.g., given their higher number of parameters) may overfit the
available sample and fit noise rather than real patterns in the data.

Recently, insights from artificial intelligence have helped to specify under
which conditions less-is-more effects can be expected to occur and their relation
to overfitting. The prediction error of an algorithm, after having attempted to
learn an underlying (true) environmental function from data samples, has three
sources: bias, variance, and irreducible noise. Even a completely unbiased algorithm
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can still suffer from high variance error, and even a more biased algorithm can
increase overall predictive accuracy by reducing the variance component of error
(Gigerenzer & Brighton, 2009). Depending on the true underlying environmental
function and the number of samples available, an organism can be better off with
an induction process that is biased but avoids excessive variance.

The NDM community’s decision to reject the notion of normativity altogether
and opt for expert decisions as the benchmark has received criticism, as previous
work has shown that experts can err in many situations (e.g., LeBoeuf & Shafir,
2001). A counterargument is that traditional decision-making research had been
almost exclusively based on college freshmen. NDM has also responded by (a)
pointing out that NDM studies do not take expert opinion at face value (Lipshitz,
Klein, Orasanu, & Salas, 2001b); (b) specifying the necessary conditions for expertise
to occur in greater detail (Kahneman & Klein, 2009—note that this is conceptually
similar to specifying regions of good and bad performance of heuristics within the
FFH program); and (c) pointing to its substantial track record of real improvements
in decisions (e.g. Klein, 2008). The absence of any normative criteria for decision
making in and of itself, however, remains a theoretical concern.

Investigating the ecological rationality of NDM models requires further speci-
fication of the conditions under which they are applied as well as the cognitive
capacities upon which they build. But it would also allow NDM researchers to
predict their models’ performance across varied environments and test them against
other, “rival” decision-making models or classical “optimal” benchmarks (Gigerenzer
& Brighton, 2009).

Dynamic Processes Are Essential for an Understanding of 
Heuristic Selection

Metacognitive processes (e.g., cognitive regulation of performance via moni-
toring and control processes; Flavell, 1979) deeply influence both the development
and the expression of problem solving and expertise. For example, metacognition
is a crucial aspect of deliberate practice, which is widely accepted as a prerequisite
for the development of superior and reproducible expert performance (Ericsson,
2006; Ericsson, Krampe, Teschromer, 1993). It is also the hallmark of expert per-
formers’ ability to “know what they don’t know”—that is, to have an acute aware-
ness of the limits of their knowledge and its applicability within or removed from
a particular context (Kahneman & Klein, 2009). The NDM community has exten-
sively studied sensemaking (Klein, Moon, & Hoffman, 2006a, 2006b), situation
awareness (Endsley, 1995a, 1995b; Zsambok & Klein, 1997), and other metacog-
nitive processes such as critical thinking (Cohen & Freeman, 1997; Cohen et al.,
1996) and team decision making (Cannon-Bowers, Salas, & Converse, 1993; Salas,
Cooke, & Rosen, 2008).

Understanding metacognition is highly relevant for the study of heuristics. For
example, in a test of the recognition heuristic, Oppenheimer (2003) presented
people with pairs of cities of which one was familiar but, because of reasons unre-
lated to their size (e.g., Chernobyl), another was unfamiliar but could be assumed
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to be larger (it had a Chinese name). The participants did not apply the heuristic.
Thus, even if the recognition heuristic builds on a relatively simple process, its
effective use involves an awareness of how dynamic mind-environment interac-
tions change the validity of cues or strategies.

Indeed, such metacognitive processes are necessary for successful heuristic
application and performance. Schooler and Hertwig (2005) have shown how flu-
ency (e.g., the speed of memory retrieval in an ACT-R framework) can provide an
accurate basis for judgment. Recognition and memory-retrieval dynamics reflect a
crucial aspect of the cognitive capacities of humans. Knowledge and dynamic
interaction with such capacities provides a basis for the evaluation of the validity
of particular cues. Similarly, other fast and frugal research has examined how
memory and decision strategies shape judgment and alter cognitive abilities (Cokely
& Kelley, 2009; Cokely, Kelley, & Gilchrist, 2006; Gaissmaier, Schooler, & Rieskamp,
2006).

Any multiple-strategy approach brings with it a strategy selection problem: how
to decide which decision strategy to use. This problem is currently a major focus
of investigation within the FFH program (e.g., Gaissmaier et al., 2006; Rieskamp
& Otto, 2006). The extensive experience NDM researchers have with metacogni-
tive processes offers the opportunity to better inform aspects of strategy selection
in the natural world that are essential to a science of heuristics.

FFH’s Theoretical and Methodological Tools Specify and Test NDM
Models With Greater Precision

The heuristics and biases program has been criticized for having poorly defined
and unspecified heuristics (e.g. Einhorn & Hogarth, 1981; Gigerenzer, 1998). This
underspecification enabled the same heuristics to explain (but not predict) oppos-
ing, inconsistent phenomena (e.g., the representativeness heuristic; see Ayton &
Fisher, 2004). The use of vague decision biases that explain everything and nothing
was also a concern raised by Klein (1989, 1998) in response to the official evalua-
tions of the Vincennes incident of 1988 (Fogarty, 1988). To avoid the major issues
associated with vague theory, the FFH program emphasizes precise, computational
models of heuristics that can be submitted to extensive testing and analysis (see
Gigerenzer & Brighton, 2009; Marewski, Schooler, & Gigerenzer, 2010).

One standard of the fast and frugal heuristic program is specification of the
building blocks of a heuristic (i.e., information search, stopping, decision). Although
there have been efforts to formalize some NDM theories as computational models
(e.g., Warwick, McIlwaine, Hutton, & McDermott, 2001), there is little if any
work attempting to clarify the major NDM theories in terms of their building
blocks or their ecological niches. Consider R/M: The “quick test” within the model
surely is a heuristic process that could be fleshed out usefully. For example, the
order in which the important factors (time, stakes, novelty) are “ticked off” and
how knowledge, goals, and environmental factors (e.g., missing information)
influence this order could be specified. Also, the devil’s advocate technique or the
STEP (construct a story, test, evaluate, and plan) procedure, which was developed
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from the R/M model (Cohen et al., 1996), at times run the risk of reverting to old,
implausible, and—in light of the findings we noted previously on the less-is-more
effect and robustness—possibly ineffective ideals of full information search and
integration (Todd & Gigerenzer, 2001).

Greater specification allows more detailed reference to evolved cognitive
capacities and environmental constraints, and therefore it is crucial if one wishes
to map out the ecological rationality of decision processes. Furthermore, it opens
up a new set of methodological tools: competitive testing of multiple postulated
models under varying environmental conditions or the possibility of making specific
predictions (e.g., regarding information search times). The use of such methods
may help further address concerns that NDM studies suffer from low experimental
control (Jungermann, 2001; Roelofsma, 2001) or produce only data that favor NDM
models (e.g., Caverni, 2001; Jungermann, 2001; but see Lipshitz et al., 2001b, for
a discussion).

NDM Methodology and Theory Provide Orientation When Venturing Into
the Field to Study FFH

After disappointing progress on the development of decision aids and training
methods based on formal standards, NDM researchers made major contributions
by moving from theory-based laboratory evaluations to careful and precise field-
work. In the process, they developed highly effective methodologies for the expli-
cation of cognitive processes, such as the critical decision method (Crandall,
Klein, & Hoffman, 2006; Klein, Calderwood, & McGregor, 1989), the knowledge
audit (Klein & Militello, 2005), applied cognitive task analysis (Militello & Hutton,
1998), and goal-directed task analysis (Endsley, Bolte, & Jones, 2003), which cover
complementary aspects of proficient decision makers’ domains of work and deci-
sion strategies.

Identifying a useful and ecologically rational heuristic for a particular decision
initially requires a significant amount of information (Gigerenzer et al., 1999).
Particularly in dynamic environments, it will be at the very least uneconomical, and
often impossible, to model all relevant decision-making processes and their interac-
tions at the level of FFH. The cognitive field research (CFR) methods developed and
employed by NDM could greatly help here by, for example, identifying vital cues or
“leverage points” (Klein, 1998; Klein & Wolf, 1998). What information is accessible
to the decision maker at critical decision nodes? What are the motivations and
goals? What alternative courses of action exist to achieve these goals?

CFR methods also provide important information on aspects of decision mak-
ing that the FFH program has so far investigated comparatively less (e.g., metacog-
nitive functions and group decision making). The bird’s-eye view of CFR methods
eases the appreciation of dynamic interactions between choices made and the envi-
ronment. Currently, many of the scenarios tested and decision rules postulated for
FFH are akin to one-shot situations. They do not necessarily acknowledge a deci-
sion maker actively influencing his or her environment or using his or her experi-
ence to shape it toward a state that allows for implementation of a preferred action.
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At this level of analysis, the classical distinctions between the different postu-
lated types of mechanisms for strategy selection—decision/metacognition, learn-
ing, and context—become porous. Multiple mechanisms of strategy selection can
therefore constrain the application of decision-making processes within a single
meaningful event for the decision maker. CFR methods could reveal how conflicts
and interdependencies among goals, available information, and alternative courses
of action shape the heuristics used or constrain the selection of particular heuris-
tics over others.

What is the promise of a science that synthesizes both programs’ methodolo-
gies and theoretical strengths to assess critical decisions? In the next section, we
present a family of fast and frugal decision mechanisms that we believe harbors
major opportunities for integration: fast and frugal trees. These algorithms have
already been applied to a number of fields, including biology, educational train-
ing, engineering, medicine, and legal decision making (for an introduction to the
construction of fast and frugal trees, see Martignon, Katsikopoulos, & Woike, in
press).

Naturalistic Heuristics Via Fast and Frugal Trees:A Case Study

Doctors are regularly faced with a difficult decision: Does a patient with
intense chest pain have a high or low risk of heart failure? In one Michigan hospi-
tal, the doctors sent about 90% of patients with this symptom to the coronary care
unit. This was a “defensive” strategy that was believed could only benefit patients
while simultaneously protecting doctors against the risk of lawsuits (Gigerenzer &
Engel, 2006). However, the resultant overcrowding of the coronary care unit led to
excessive costs, decreased the quality of care provided, and introduced risks (e.g.,
secondary infections) for patients who should not have been there.

To solve this problem, physicians were trained to use the Heart Disease Predictive
Instrument (HDPI), which consists of a chart with more than 50 probabilities and
a pocket calculator with a logistic regression program. Unsurprisingly, physicians
were unhappy using this instrument, and it was never successfully adopted. It was
regarded as too opaque and appeared to make clinical judgment dependant on a
pocket calculator. Subsequently, Green and Mehr (1997) constructed a fast and
frugal tree as decision aid, with much better results. For one, the doctors found it
very easy to internalize, freeing them of the need to use physical decision aids. In
addition, however, the resultant accuracy in classification was equal to the optimal
use of the HDPI.

Given the complexities of this situation, at the core of this decision lays a cate-
gorization task: Is the patient at high risk or low risk? A categorization tree can be
graphically represented by the root node, the tree’s first level, and subsequent lev-
els with one cue processed at each level (see Figure 1). There are two types of
nodes: nodes in which a question is asked about the value of the object on a cue,
and exit nodes, at which point the object is categorized and the process stops. A
categorization tree is fast and frugal if and only if it has at least one exit at each
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level (Martignon, Katsikopoulos, & Woike, 2008). If a second question had been
asked for all patients with an elevated ST segment, the tree in Figure 1 would not
have been fast and frugal.

The labels “fast” and “frugal” have precise meanings: The frugality of a tree for
a set of objects is the mean number of cues it uses for making a categorization,
across these objects. The speed of a tree, also for a set of objects, is the mean num-
ber of basic operations—arithmetic and logical—used for making a categoriza-
tion. By these definitions, changing question nodes into exits makes a tree faster
and more frugal.

The Robustness of Fast and Frugal Trees
Figure 2 compares the accuracy of two types of fast and frugal trees (called Zig

and Max; for details see Martignon et al., 2008) with two classic benchmarks from
statistics and artificial intelligence: logistic regression (LR) and the classification and
regressiontrees (CARTs)ofBreiman,Friedman,Stone,andOlshen(1984).Martignon
et al. (in press) used 11 medical categorization problems from the Machine Learning
Repository at the University of California, Irvine. The accuracy of the four models
was assessed in four cases each. In the first case, the parameters of the models were
estimated based on all data—that is, the models were fitted to the whole data set. In
the other three cases, the parameters of the models were estimated based on a subset
of the data (90%, 50%, or 15% of the whole data set), and the same parameters were
used to assess how well the models predicted the remaining data.

Figure 1. A fast frugal tree for categorizing patients as having a high or low risk of
ischemic heart disease. (For background information, see Green & Mehr, 1997.) The ST
segment is an electrocardiographic measure (the portion between the QRS segment and
the beginning of the T wave) indicative of ischemic heart disease.



268 Journal of Cognitive Engineering and Decision Making / Fall 2010

As is often the case, the more complex models (LR and CART) did much better
in fitting. If it is to be used in the real world, however, a good categorization model
needs to predict unknown cases, not explain the past by hindsight. Here, the simple
Zig trees match or come close to the accuracy of CART and logistic regression,
whereas Max lags a few percentage points behind. Zig even outperforms CART and
LR when there is little available information (15% of the whole data set).

The Synergetic Potential of Fast and Frugal Trees
Fast and frugal trees have been readily accepted by decision makers in the field,

have been shown themselves to be more robust (predict better) than more complex
models using more information, and are transparent and can be easily conveyed. The
heuristic’s ecological rationality has been spelled out precisely. The analysis defines
conditions regarding good and bad performance as well as the heuristic building
blocks of searching, stopping, and decision making in detail. Fast and frugal trees are
also psychologically plausible, assuming prediction and limited information search
rather than fitting and optimization. That it beats some of the classical “optimal”
benchmarks in prediction could be ascertained only through the new methodological
tools that were made available as a result of greater specification. Last, the trans-
parency and psychological satisfaction of fast and frugal trees is the primary reason
they have been so successfully adopted by decision makers in the field.

However, in bringing decisions from the wild into the laboratory, it is impor-
tant to ascertain at every stage whether or not crucial aspects of the decision and

Figure 2. Average performance of four categorization models (classification and regression
trees, or CART; logistic regression, or LR; and two types of fast and frugal trees, called Zig
and Max; see Martignon et al., 2008 for details), across 11 medical problems, in fitting
and three cases of prediction (training set was 90%, 50%, or 15% of the whole data set).
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its environment have been lost in the process. Some of these aspects are nigh
impossible to recreate in the lab, such as the level of motivation that comes about
as a result of a threat to one’s own or other people’s lives. Others, such as the fre-
quent occurrence of distracting factors or issues of vigilance, are often overlooked
in laboratory research or studied in unstructured isolation. A thorough Cognitive
Field Research analysis can provide a map of such factors, ensuring they are not
neglected in the final analysis.

Regarding the case study discussed previously, the critical decision method
may reveal that it is much more common for doctors to be able to detect the “chest
pain” cue prior to the “ST segment” cue in a natural setting. It may also give hints
as to how the tree could be adapted to changing circumstances on the fly or at
which points such trees could be usefully incorporated into the larger decision-
making process. A goal-directed task analysis may identify that a deeper problem
lies somewhere else entirely (e.g., that the goal of working without fear from law-
suit interferes with the goal of providing appropriate care). The synergetic potential
between NDM and fast and frugal trees arises from the possibility that researchers
of the microcognitive and researchers of the macrocognitive, with similar attitudes,
may study cognition in coherence.

Conclusion

In fundamental and important ways, NDM and FFH are already intercon-
nected. The two approaches to decision making share common roots, philoso-
phies, and values. Critically, however, the two programs substantively diverge in
their methods, strengths, and limitations. As such, we have argued that there is
considerable yet-to-be-realized synergetic potential offering opportunities for those
who might endeavor toward a tighter integration of methods and approaches.
Some 20 years after its first conference, NDM as a scientific endeavor is perform-
ing a difficult, perhaps even dangerous, balancing act. NDM has the admirable
goal of making its results relevant for decision making in this fundamentally com-
plex and uncertain world; accordingly, its practitioners have opted to study deci-
sion making in highly specific environments. However, this need not come at the
cost of theoretical specification. To be clear, NDM has many, many achievements
to show for its efforts. Nonetheless, as has been documented here and elsewhere
(Gigerenzer, 1996, 1998; Simon, 1990), the loss of theoretical precision and pre-
dictive accuracy can potentially undermine what is actually dearest to this pro-
gram, its applicability.

As the NDM and FFH programs prepare to welcome a new generation of
researchers, we feel it is crucial to acknowledge the necessity of creating a science
that is precise, sustainable, and makes a difference. A call for integration is a call to
reflect upon and distill one’s core values—to bring them to the fore. We hope that
the present effort contributes to the sustainability of the ecological decision sci-
ences, and we offer an open invitation to other decision researchers, in NDM and
beyond, willing to join us in this integrative endeavor.
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