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We derive the entanglement entropy of chiral fermions on the circle at arbitrary temperature. The spin-
sector contribution depends only on the total length of the entangling region, regardless of the configuration
of the intervals. Thus, three-partite information provides a global indicator for the spin boundary
conditions. Together with the modular Hamiltonian, our results provide a systematic way of obtaining
relative entropy on the torus.
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I. INTRODUCTION

Entanglement is perhaps the most characteristic feature
of quantum theory. Although there exist many measures for
it, the most important one is the entanglement entropy.
Given a global state defined via a density matrix ρ and a
subsystem A of it, the reduced density matrix on A is
defined as ρA ≔ trBðρÞ, where B is the complement of A.
Then, the entanglement entropy between A and B is simply
the von Neumann entropy of the subsystem,

SðAÞ ¼ −TrA½ρA log ρA�: ð1Þ

In practice, however, computing the logarithm in (1) is
generically very challenging. Therefore, it is customary in
QFT to resort to the replica trick. This consists of first
computing a closely related quantity—the Rényi entropy
for integer index n:

SnðAÞ ¼
1

1 − n
log TrρnA: ð2Þ

This requires computing the partition function of the
theory on the n-fold cover of the manifold of interest, where
the n copies are glued cyclically along the entangling
region A. In order for this strategy to work, it is crucial that
we are able to find the analytic continuation of the Rényi
entropy (2) away from integer n and take the limit n → 1.
To the best of our knowledge, such analytic continuation

for the entanglement entropy of free fermions on the torus
(finite temperature on the circle) is not known for an
arbitrary torus modulus.
In this paper, we derive the entanglement entropy of the

chiral fermion on the torus via a different route—by
computing the entropy directly from the resolvent. This
avoids the need to find the analytic continuation of the
Rényi entropies. For the free fermion on the circle at finite
temperature, the Rényi entropies for integer n were first
computed in Ref. [1] for a single interval and in Ref. [2] for
multiple intervals. The analytic continuation to the entan-
glement entropy, however, was obtained for the high and
low temperature expansions only.
The resolvent for the chiral fermion on the torus was

recently obtained in Ref. [3] and also in Ref. [4]. For direct
applications of the resolvent and modular Hamiltonian,
we study entanglement entropy, mutual information, three-
partite information, and relative entropy. Interestingly,
while three-partite information vanishes for fermions in
the plane [5], it is generally nonzero on the torus. Instead,
we find that it is a global indicator of the boundary
conditions, in the sense that its value does not depend
on the precise configuration of the intervals involved.
The paper is organized as follows. In Sec. II, we review

the resolvent method, the main tool that we will apply
to later computations. In Sec. III, we go straight to the
calculation of the entanglement entropy and discuss the
mutual information. In Sec. IV, we consider relative
entropy and illustrate some properties taking a small
interval expansion. We summarize and discuss our results
in Sec. VI.

II. REVIEW OF THE RESOLVENT

Let us quickly summarize the definition of the resolvent
and the main steps involved in its derivation for the
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fermions on the torus [3]. A global state ρ for the system on
a generic Riemann surface determines the equal-time
correlation function Gðx; yÞ ≔ hψðxÞψ†ðyÞi. The resolvent
of the correlator is defined via

RðξÞ ≔ ½Gþ ξ − 1=2�−1; ð3Þ
where we always leave the space-time dependence of R
implicit. In (3), the inverse must be understood in the sense
of distributions, i.e., as integrated against regular test
functions. Equation (3) thus involves solving an integral
equation for R.
One of the central results of Ref. [3] is the resolvent of a

single chiral fermion on the torus for an arbitrary number
p of disjoint intervals A ¼∪p

j¼1 ðaj; bjÞ, with both ν ¼ 2

(real periodic, complex antiperiodic) and ν ¼ 3 (doubly
antiperiodic) boundary conditions. We shall not focus on its
derivation but rather quickly review its structure and
explain its properties. Explicitly, it is given by

RðξÞ ¼ δðx − yÞ
ξ − 1=2

−
Fðx; y; ξÞ
ðξ − 1=2Þ2 ; ð4Þ

where x; y ∈ A are any two points on the entangling region,
and

Fðx; y; ξÞ ¼ ξ − 1=2
ξþ 1=2

Gνðx − yjτ; LhÞ
�
ΩðxjτÞ
ΩðyjτÞ

�
ih
; ð5Þ

where each term is defined as

h ¼ 1

2π
log

ξþ 1=2
ξ − 1=2

ð6Þ

Gνðzjτ; μÞ ¼
η3ðτÞ

iϑ1ðzjτÞ
ϑνðz − iμjτÞ
ϑνð−iμjτÞ

; ð7Þ

ΩðxjτÞ ¼ −
Yp
j¼1

ϑ1ðx − ajjτÞ
ϑ1ðx − bjjτÞ

: ð8Þ

Here, L ¼ P
j jbj − ajj is the total length of all intervals,

and our conventions for the Dedekind eta and the Jacobi
elliptic functions are described in the Appendix. Note the
appearance of Gνðzjτ; LhÞ, which is the propagator on the
torus with a chemical potential μ ¼ Lh as we will show in
Sec. V. As usual, we fix by convenience the periods of the
torus to be 1, τ—physics on the torus depends only on τ,
and we can always recover the result for a different spatial
circle by rescaling. We shall restrict to purely imaginary
modulus τ ¼ iβ where β is the inverse temperature, keeping
in mind that the general case can be recovered by analytic
continuation.
The knowledge of the resolvent was further used to

derive the modular Hamiltonian for an arbitrary number of
intervals on the torus. The modular Hamiltonian K of a
density matrix is defined via

ρ ¼ e−K

Tre−K

and has found numerous applications in many-body quan-
tum systems [6–8], quantum information [9–11], quantum
field theory [12–17], modular theory [18,19], and the
AdS=CFT correspondence [20–25].
The modular Hamiltonian for the chiral fermion on the

torus exhibits a surprisingly interesting structure. Even for a
single interval, the modular flow couples any given point to
an infinite but discrete set of other points. These accumu-
late near the boundaries of the interval, where their
contribution becomes increasingly damped or “redshifted”
as they approach the end points. In the limit of zero
temperature, these points “condense” regularly in the
interval, giving rise to continuous nonlocality [3].

III. ENTANGLEMENT ENTROPY

We now determine the entanglement entropy on the torus
of an arbitrary set of disjoint intervals. As mentioned above,
once the resolvent is obtained, the entanglement entropy
follows by a trace formula [12]:

S ¼ −Tr
Z

∞

1=2
dξ

�
ðξ − 1=2Þ½RðξÞ − Rð−ξÞ� − 2ξ

ξþ 1=2

�
:

Replacing the resolvent (4), one finds

S ¼
Z
A
dxlim

y→x

Z
∞

1=2
dξðξ − 1=2Þ

�
FðξÞ

ðξ − 1=2Þ2 −
Fð−ξÞ

ðξþ 1=2Þ2
�
:

ð9Þ

Next, we substitute F from (5), and the integrand
becomes

1

ξþ 1=2
lim
y→x

�
Gνðx − yjτ; LhÞ

�
ΩðxjτÞ
ΩðyjτÞ

�
ih
− ðh → −hÞ

�
:

In the limit y → x, Gðx − yjτ; LhÞ diverges like the UV
propagator 1=2πiðx − yÞ, but this leading divergence can-
cels in the above difference, leaving a well-defined expres-
sion. To extract the finite contribution, we use the Laurent
series (B1) and (B2) provided in the Appendix. Then, the
integrand in (9) is

1

ξþ 1=2

�
h
π
∂x logΩðxjτÞ þ 2ΣνðΛjτÞ

�
: ð10Þ

Here, the first term is position dependent but identical for
each spin sector, whereas the second term is spin dependent
but spatially constant. It is given by a Laurent expansion
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Σ3ðΛjτÞ ¼
X
k≥1
k odd

�
qk

Λ−1 þ qk
−

qk

Λþ qk

�
; ð11Þ

Σ2ðΛjτÞ ¼
1

2

Λ − 1

Λþ 1
þ
X
k≥2

k even

�
qk

Λ−1 þ qk
−

qk

Λþ qk

�
; ð12Þ

where we used the convenient variable

Λ ¼ e2πLh ¼
�
ξþ 1=2
ξ − 1=2

�
L

and q ¼ eiπτ.
Thus, we learn from (10) that the entanglement entropy

decomposes into a spin-independent part Sð0Þ and a spin-
dependent one SðνÞ,

S ¼ Sð0Þ þ SðνÞ:

In the next subsections, we consider them separately.

A. Spin-independent entropy

We start by rederiving the known results from
Refs. [1,2]. Let us start by focusing on the first contribution
in (10), which does not depend on the boundary conditions.
Introducing it back into (9), the two integrals decouple as

Sð0Þ ¼ 1

2π2

Z
∞

1=2
dξ

log ξþ1=2
ξ−1=2

ξþ 1=2

Z
A
dx∂x logΩðxjτÞ:

We see that only boundary terms from the spacial
integral contribute, one per each end point of the intervals.
This gives the final result for the spin-independent entropy

Sð0Þ ¼ 1

6

�X
i;j

log jϑ1ðbi − ajjτÞj

−
X
i<j

log jϑ1ðbi − bjjτÞϑ1ðai − ajjτÞj

− p log jϑ1ðϵjτÞj
�
; ð13Þ

which takes a form very reminiscent of the one described in
Ref. [12], but with respect to the Jacobi ϑ1 function. Note
that we introduced a UV regulator ϵ > 0, integrating only
within ðai þ ϵ; bi − ϵÞ, to avoid the infinite pileup of
entanglement at the end points of each interval.

B. Spin-dependent entropy

In this section, we derive our first new result: the
contribution to entanglement entropy that does depend
on the choice of boundary conditions. As mentioned above,
we restrict to the sectors ν ¼ 2, 3. Let us start with ν ¼ 3 or

(doubly antiperiodic), which has no zero mode. Plugging
the second term of (10) back into (9), we have

Sð3Þ ¼ 2L
Z

∞

1=2

dξ
ξþ 1=2

Σ3ðΛjτÞ:

Notice that we performed the trivial integral over the
entangling region right away to yield a global prefactor of
L, the total length of the regions. The remaining integral is,
however, much more challenging, and finding a closed
form goes beyond the scope of this paper. In order to bring
it into a more explicit form, we can change the variable of
integration to Λ, so that

Sð3Þ ¼2
X
k≥1
odd

Z
∞

1

dΛ
ΛðΛ1=L−1Þ

�
qk

Λ−1þqk
−

qk

Λþqk

�
: ð14Þ

Notice the integral is completely regular since L < 1, as we
fixed the length of the spatial circle to unity. We have found
no analytic expression for (14), but it can easily be dealt
with numerically.
The case ν ¼ 2 or (real periodic, complex antiperiodic) is

special, for it has a zeromode. Thismanifests in the presence
of the additional term in (12) and gives an entropy of

Sð2Þ ¼
Z

∞

1

dΛ
ΛðΛ1=L − 1Þ

×

"
Λ − 1

Λþ 1
þ 2

X
k≥2
even

�
qk

Λ−1 þ qk
−

qk

Λþ qk

�#
; ð15Þ

which can again be computed numerically.
The main result of this section is that the spin-dependent

contribution to the entropy depends only on the total length
of the entangling region—a feature also present for the
Rényi entropies [2].

C. Mutual and three-partite information

The mutual information between two disjoint intervals A
and B is another important information theory quantity.
It it a measure of the correlation between two distributions,
here the two reduced density matrices ρA and ρB, and is
defined via

IðA;BÞ ≔ SðAÞ þ SðBÞ − SðABÞ:
From (13), the spin-independent part of the mutual

information between two nonintersecting intervals A ¼
ða1; b1Þ and B ¼ ða2; b2Þ is explicitly given by

IðA; BÞ ¼ 1

6
log

����ϑ1ða2 − a1jτÞϑ1ðb2 − b1jτÞ
ϑ1ðb2 − a1jτÞϑ1ðb1 − a2jτÞ

����: ð16Þ

In Fig. 1, we plot this expression for different temperatures,
as we continuously vary the separation between the two
intervals.
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Remarkably, as pointed out in the previous section, the
spin-dependent part to the entropy depends on the entan-
gling region only via its total length L. Therefore, its
contribution to the mutual information does not depend on
the distance between the intervals but only on their size

SðνÞðAÞ þ SðνÞðBÞ − SðνÞðABÞ ¼ fðLA; LBÞ:
This is one the main results of this paper; mutual

information is insensible to the fermion boundary con-
ditions up to a global term. This was also shown in Ref. [2]
for the Rényi mutual information InðA;BÞ for n ≥ 2 ∈ Z.
This property, together with the spin-independent

entropy (13), implies that on the torus—in contrast to
the plane [5]—the three-partite information [26]

IðA;B;CÞ ≔ SðAÞ þ SðBÞ þ SðCÞ − SðABÞ
− SðACÞ − SðBCÞ þ SðABCÞ ð17Þ

does not vanish but rather presents a global indicator for the
boundary conditions, in the sense that it does not depend on
the specific layout of the intervals.

IV. RELATIVE ENTROPY

Another essential concept in information theory is
relative entropy, also known as the Kullback-Leibler
divergence. It is a measure of the distinguishability between
two probability distributions ρ and σ. Although it is not
symmetric, it has a number of properties that make it
fundamental due to its connection to many other informa-
tion functions. It is defined by

DðρjσÞ ¼ Tr½ρ log ρ� − Tr½ρ log σ�:
Relative entropy is always positive and vanishes only if

ρ ¼ σ. As is well known, it can also be rewritten as

DðρjσÞ ¼ ΔhKi − ΔS ð18Þ

in terms of the variations of the modular Hamiltonian Kσ ¼
− log σ − logZσ and the entanglement entropy

ΔhKi ¼ hKσiρ − hKσiσ
ΔS ¼ SðρÞ − SðσÞ:

Here, σ is the reference state since we used the modular
Hamiltonian associated to σ instead of ρ. The convenience
of (18) is that presented in this form it closely resembles the
first law of thermodynamics. Given that we have both the
modular Hamiltonian from Ref. [3] and the entanglement
entropy from Sec. III, we are in a position to compute the
relative entropy directly using (18).
Consider the following class of density distributions.

Given a global thermal state at some modulus τ, the reduced
density matrix on the subregion A provides a reference state
σ ¼ fðτÞ. If we now start from a global state at some
different modulus τ0 and reduce to the same region A, this
will produce another state ρ ¼ fðτ0Þ. We will consider the
relative entropy between two such states.
We start by reviewing the structure of the modular

Hamiltonian and then computing its expectation value.
As referred to in the Introduction, an explicit expression of
the modular Hamiltonian for chiral fermions on the torus
was found in Ref. [3]. It contains a local and a bilocal term:

K ¼ Kloc þ Kbi-loc:

As an operator, the local part is spin independent and
takes the standard geometric form,

Kloc ¼
Z
A
dxβðxÞTðxÞ; ð19Þ

where the stress tensor of the fermion is

TðxÞ ¼ i
2
½ψ†∂xψ − ψ∂ψ†�ðxÞ ð20Þ

and βðxÞ is known as the entanglement temperature,
given by

βðxÞ ¼ 2πβ

2π þ β∂x logΩðxjτÞ
:

The entanglement temperature is the natural generaliza-
tion of the more familiar Unruh temperature measured by
an accelerated observer in the vacuum. Close to the end
points of each interval, βðxÞ ∼ x, and the modular
Hamiltonian resembles that of Rindler space.
The bilocal term was the novel feature found for

fermions on the torus. It couples a given point x to an
infinite but discrete set of other points xkðxÞ on the
entangling region via

FIG. 1. Spin-independent part of the mutual information
between the intervals A ¼ ð0; 0.2Þ and B ¼ ð0.2þ x; 0.4þ xÞ
as we vary their separation x, for β ¼ 3 (solid black), β ¼ 0.16
(dashed purple), and β ¼ 0.07 (dotted blue).
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Kbi-loc
� ¼

Z
A
dx
X
k∈Z

ð�1Þkβ̃ðx; xkðxÞÞψ†ðxÞψðxkðxÞÞ;

where þ;− correspond to the spin sectors ν ¼ 2, 3,
respectively. Here, the points xk are solutions to the
transcendental equation

x − xk þ βgðx; xkÞ − k ¼ 0 ð21Þ

with

gðx; yÞ ¼ 1

2πL
log

ΩðxjτÞ
ΩðyjτÞ

and ΩðzjτÞ as defined in (8). The bilocal entanglement
temperature is

β̃ðx; yÞ ¼ iπ
Lð1þ β∂xgðx; yÞÞ sinh πgðx; yÞ

:

Now, we consider the expectation value of each term in
the modular Hamiltonian, which we will eventually replace
back into the relative entropy (18). We start with the local
term (19). Notice that the expectation value acts only on the
operator T in (20), while the entanglement temperature
βðxÞ is fixed by the reference state σ (at modulus τ) and
remains the same for the perturbed state ρ. As expected, hTi
is divergent due to operators evaluated at identical space-
time positions, but relative entropy is well defined since
these UV divergences cancel in (18). Using the shorthand
notation

ΔGνðzÞ ¼ Gνðzjτ0Þ −GνðzjτÞ; ð22Þ

the variation of the local term reads

ΔhKloci ¼ −i∂zΔGνðzÞjz¼0

Z
A
dxβðxÞ: ð23Þ

Although we have not found a closed expression for the
integral, it is easy to compute it numerically. Notice that,
while Kloc as an operator is independent of the spin sector,
its expectation value is not. Indeed, the prefactor depends
on the derivative of the propagator Gν. As we comment in
the discussion, this implies that relative entropy is not spin
independent.
On the other hand, the variation of the bilocal contri-

bution is

ΔhKbi-loci ¼
X
k∈Z

Z
A
dxð�1Þkβ̃ðx; xkðxÞÞ

× ΔGνðx − xkðxÞÞ: ð24Þ

This integral is technically difficult to deal with; one
must first determine the solutions xkðxÞ to (21)—a

transcendental equation involving elliptic functions—and
then perform the integration.
Finally, the variation of the entanglement entropy also

has two contributions,

ΔS ¼ Sðτ0Þ − SðτÞ:

Putting everything together, the relative entropy is given by

DðρjσÞ ¼ ΔhKloci þ ΔhKbi-loci − ΔSð0Þ − ΔSðνÞ; ð25Þ

where each term is given in (23), (24), (13), (14), and (15).
As emphasized above, in practice, the evaluation of (25) is
very challenging, and we leave it as future work.

A. Example: The thermal cylinder

In order to illustrate how to compute in principle this
relative entropy, let us simplify things and perform the
explicit calculation for a single interval of length L, in the
limit when the size of the spatial circle is much larger than
both the entangling region and the temporal cycle. We view
this as an exercise combining known tools rather than a new
result. Then, our expressions for the modular Hamiltonian
and entanglement entropy on the torus reduce to the well-
known universal result on the thermal cylinder [14]

KðβÞ ¼ β

Z
L

0

dx
sinh πðL−xÞ

β sinh πx
β

sinh πL
β

TðxÞ;

SðβÞ ¼ 1

6
log

�
β

πϵ
sinh

πL
β

�
;

where TðxÞ is again the fermionic stress tensor. Notice that
in this case the modular flow is purely local. As described
above, by varying the inverse temperature β of the parent
state, we get a one-parameter family of states defined on A.
We can compute the relative entropies between such states.
For this simplified case, it is easy to obtain (23) from the

fermionic propagator and find an explicit expression for the
relative entropy:

Dðβjβ0Þ ¼ β

24

�
1

β02
−

1

β2

��
−β þ πL coth

πL
β

�

þ 1

6
log

β sinh πL
β

β0 sinh πL
β0
:

Finally, it is illustrative to plot this function for a fixed
reference β ¼ 2 and interval length L ¼ 1, while we vary
β0; see Fig. 2.
As can be seen from the figure, the distribution obtained

from a parent state at low β0 (high temperature) is very
distinguishable from the finite temperature state. On the
other hand, the relative entropy with respect to the vacuum
β0 → ∞ asymptotes to a constant. Relative entropy only
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vanishes at β0 ¼ β, as it should, and the fact that the curve
has vanishing slope at that point is the first law of
entanglement. Again, we take this as a pedagogical first
step in the explicit computation of relative entropy and
leave for future work the more involved calculations on
the torus.

V. RESOLVENTWITH A CHEMICAL POTENTIAL

In order to repeat the calculations for the two remaining
cases ν ¼ 1, 4 (doubly periodic and real antiperiodic,
complex periodic), let us derive the resolvent in these
sectors. We will do this explicitly for ν ¼ 1; the other case
is entirely analogous. Consider first the Green’s function

Gðzjτ; μÞ ¼
X
k∈Z

e−2πikz

1 − e2πðikτ−μÞ
; ð26Þ

where we introduced a chemical potential μ to regularize
the divergent term at k ¼ 0. The above series does not
converge pointwise; however, it does converge in the sense
of distributions: Starting from the geometric series

1

2i
cot πz ¼ 1

2

eiπz þ e−iπz

eiπz − e−iπz
¼ 1

2
þ
X
k≥1

e−2πikz

for ℑ½z� < 0, we find

Gðzjτ;μÞ ¼ 1

2i
cotπz−

1

2
þ 1

1− e−2πμ

þ
X
k≥2
even

�
eiπkz

1− e−2πμq−k
þ e−iπkz

1− e−2πμqk
− e−iπkz

�
;

which can be rewritten as

Gðzjτ; μÞ ¼ 1

2i
cot πzþ 1

2

1þ e−2πμ

1 − e−2πμ

−
X
k≥2
even

�
eiπkzqk

e−2πμ − qk
−

e−iπkzqk

e2πμ − qk

�
:

The right-hand side is now absolutely convergent on the
strip −ℑ½τ� < ℑ½z� < ℑ½τ� and yields

Gνðzjτ; μÞ ¼
η3ðτÞ

iϑ1ðzjτÞ
ϑνðz − iμjτÞ
ϑνð−iμjτÞ

ð27Þ

for general spin structure ν ¼ 1, 2, 3, 4.
As can be readily seen from the quasiperiodicities of the

theta functions, Eq. (27) satisfies the generalized Kubo-
Martin-Schwinger boundary condition

Gðzþ τjτ; μÞ ¼ �e−2πμGðzjτ; μÞ: ð28Þ

We can thus use the methodology of Ref. [3] to derive the
resolvent as (4) with

Fðx; y; ξÞ ¼ ξ − 1=2
ξþ 1=2

�
ΩðxÞ
ΩðyÞ

�
ih
Gðx − yjτ; μþ LhÞ: ð29Þ

Note that, unlike the Green’s function (27), the resolvent is
well defined in the limit μ → 0.
Having found the resolvent, we can now in principle

repeat our calculations for the cases ν ¼ 1, 4. However,
there is one caveat: because of the Bose statistics in (26), G
has an unbounded spectrum, and thus we have to find new
valid formulas for the modular Hamiltonian, entanglement,
and relative entropy in terms of the resolvent. While this is
easy for the modular Hamiltonian, we have yet to find good
expressions for the entropies.

VI. CONCLUSIONS

In this short paper, we have described some applications
of the modular Hamiltonian found in Ref. [3] for the chiral
fermion on the circle at finite temperature. First, we found
an exact expression for the entanglement entropy for
multiple intervals, valid for any torus modulus τ, i.e.,
generic spatial and thermal circles. This is a generalization
of the results in Refs. [1,2], where the authors provided the
entanglement entropy in the high and low temperature
expansions. Whereas the spin-independent contribution to
the entanglement entropy was known from these works, the
novel result of this paper was to derive the analytic
continuation of the spin-dependent term for an arbitrary
torus.
Remarkably, this piece depends on the entangling

intervals only via the total length of the region
L ¼ P

j jbj − ajj, and not the details of its configuration.
This implies that the three-partite information of three

FIG. 2. Relative entropy between the states obtained by
reducing a thermal state on the line at temperature β0 and β,
respectively, to a single interval of length L ¼ 1. The reference
temperature associated to σ is β ¼ 2.
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intervals is a, generally nonvanishing, global indicator of
the spin structure.
The third result of this paper is an explicit formula for the

relative entropy DðρjσÞ of the free fermion on the torus. As
the reference state, we chose the reduced density matrix σ
on multiple intervals coming from a global state on the
torus of modulus τ ¼ iβ. The target state is obtained in the
same way, but starting from a different temperature β0. This
provides a one-parameter family of states for computing
relative entropy. Although in practice the integrals involved
in the computation are very challenging, mainly due to the
nonlocal terms involved, the final expression (25) is explicit
and can be investigated numerically.
Moreover, we also observed that, while both the modular

Hamiltonian as an operator and the entanglement entropy
separate into a universal and spin-dependent parts, this does
not hold for the relative entropy. This is simply because the
computation of relative entropy involves expectation val-
ues, which yields Green’s functions in the modular
Hamiltonians. Since relative entropy is a measure of the
distinguishability of two distributions, this implies that
fermions with some boundary conditions are more distin-
guishable than others.
Finally, we showed that the propagator of the fermion on

the torus with a chemical potential allows us to compute the
resolvent for the spin sectors ν ¼ 1, 4 which were not
considered in Ref. [3]. Moreover, the propagatorlike term
that appears in the resolvent corresponds precisely to the
propagator with a chemical potential. This is due to the
identical boundary conditions imposed in both problems.
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APPENDIX A: CONVENTIONS

Our definition for the Dedekind eta function is

ηðτÞ ≔ eπiτ=12
Y
k≥1

ð1 − q2kÞ

in terms of

q ≔ eiπτ:

Furthermore, we define the Jacobi theta function by

ϑ3ðzjτÞ ≔
X
k∈Z

qn
2

e2πiz;

while the auxiliary thetas are given by

ϑ4ðzjτÞ ¼ ϑ3ðzþ 1=2jτÞ;
ϑ2ðzjτÞ ¼ q1=4eiπzϑ3ðzþ τ=2jτÞ;
ϑ1ðzjτÞ ¼ −iq1=4eiπzϑ4ðzþ 1=2þ τ=2jτÞ:

APPENDIX B: LAURENT SERIES
OF THE PROPAGATOR

The propagators appearing in (7) are given by the
following Laurent series,

G3ðzjτ; LhÞ ¼
1

2i sin πz

þ
X
k≥1
odd

�
eiπkqk

Λ−1 þ qk
−
e−iπkqk

Λþ qk

�
ðB1Þ

G2ðzjτ; LhÞ ¼
1

2i
cot πzþ 1

2

Λ − 1

Λþ 1

þ
X
k≥2
even

�
eiπkqk

Λ−1 þ qk
−
e−iπkqk

Λþ qk

�
; ðB2Þ

where again Λ ¼ e2πLh.
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