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We demonstrate that a recently proposed classical double-copy procedure to construct the effective
action of two massive particles in dilaton-gravity from the analogous problem of two color-charged
particles in Yang-Mills gauge theory fails at next-to-next-to-leading order perturbative expansions, i.e., in
the third order of the post-Minkowskian and the second order in the post-Newtonian expansions.
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I. INTRODUCTION AND CONCLUSIONS

A spectacular success in fundamental physics has been
the detection of gravitational waves at the LIGO/Virgo
detectors since 2015 [1]. This detection and analysis
hinges crucially on waveform templates emerging from
high-precision theoretical predictions in general relativity
including higher-order perturbative computations of
the two-body effective potential in the post-Newtonian
(PN), i.e., weak gravitational field and slow motion, and
post-Minkowskian (PM), i.e., weak gravitational field,
regimes. These predictions build on established perturba-
tive formalisms in general relativity [2—6] as well as on the
effective field theory approach [7,8] yielding a quantum
field theoretical diagrammatic expansion for the classical
effective potential (for introductory reviews see [9—11]).
The present state of the art in the PN expansion is the
conservative effective potential at 4PN [12—18], at SPN
for the static part [19,20] as well as 3PN [21] for the
gravitational radiation emitted from a quasicircular inspi-
ral. In particular the effective-one-body waveform model
[22-25] relies on accurate theoretical predictions for the
potential of the binary.

In the past decade important progress in the study
of scattering amplitudes in gauge theories and gravity
occurred based on innovative perturbative on-shell tech-
niques and discovered mathematical structures that
greatly increased the ability to compute gravitational
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scattering amplitudes at high perturbative orders. In
particular the efficient double-copy construction based
on the Bern-Carrasco-Johansson color-kinematical duality
[26-28] yields the integrands of gravitational scattering
amplitudes from the simpler quantities in Yang-Mills
theories, allowing for high-order results in (super)gravity
(see, e.g., the recent [29,30]). In view of these innovations
it is natural to ask to what extent these modern scattering
amplitude techniques may be put to work to the classical
scattering problem in general relativity and in turn to
the perturbative construction of effective potentials dis-
cussed above.

The question how the classical two-body gravitational
potential may be extracted from the quantum scattering
amplitude of (say) massive scalars has a long history
[31-33]. Recent works have updated these results by
employing the above-mentioned modern unitarity methods
for amplitudes [34-38], also including higher curvature
terms [39,40], leading to the 2PM [41,42] and the first 3PM
[43] results for the effective gravitational potential very
recently. A 2PM Hamiltonian matched to the classical
scattering angle [6] was obtained in [44,45].

In parallel there are indications for the existence of a
classical double copy of gauge theory to gravity beyond the
realm of scattering amplitudes. In a series of works [46-51]
a selection of gravitational solutions were shown to be
double copies of Yang-Mills ones. Relevant for the problem
of classical gravitational radiation has been the approach of
Goldberger and Ridgway [52] generating perturbative
solutions to the equations of motion for a binary pair of
spinless massive particles in dilaton-gravity via the double
copy of binary color-charged point particle solutions in
Yang-Mills theory [53-57]. Here color-kinematic replace-
ment rules were employed and refined in [58], thereby
pushing this perturbative double-copy technique to the
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next-to-next-to-leading order in the coupling constant
expansion. In these works a certain challenge lies in the
clean identification of the kinematic numerators and
propagators in order to perform the double copy in analogy
to the procedure known from scattering amplitudes, where
a factorization into color factors, kinematic numerators and
propagators is manifest. This approach was lifted from the
level of equations of motion to the effective action by
Wormsbecher and two of the present authors [59] recently.
Here an adapted version of the double-copy construction
was presented that enabled a direct computation of the
classical effective action for two massive particles in
dilaton-gravity from the corresponding quantity for
color-charged particles coupled to the Yang-Mills gauge
field. It was shown that this modified prescription to
compute the gauge dependent and off-shell effective
potential yields the known result in dilaton-gravity [60]
at 2PM level (at the integrand level) as well as 1PN
(explicitly) in a much simpler fashion than the traditional
approaches in general relativity. This proof of principle thus
led us to the hope that it could provide a highly efficient
tool to perform higher-order perturbative computations
within gravity in a systematic fashion. This motivated
the present work to push this expansion to the next order,
i.e., 3PM (at the integrand level) and 2PN (exactly),
respectively.

Unfortunately, we have to report that the effective
action generated by the proposed double-copy procedure
of [59] fails to agree with the desired dilaton-gravity
result at this next-to-next-to-leading order. The dilaton-
gravity potential at 2PN we sought to reproduce is
available in the literature [61] and we have also checked
its static contributions from a probe limit while compar-
ing to the Janis-Newman-Winicour (JNW) naked singu-
larity [62] as well as through a direct Feynman
diagrammatic computation in order to be certain of the
discrepancy. It is important to stress that this breakdown
of the double-copy procedure applies to a gauge variant
and off-shell quantity—the effective action. This might
be the root of the breakdown. Similar problems should
arise at higher orders for the double-copy construction of
perturbative spacetimes going beyond the order consid-
ered in [48]. Note that there as well a comparison to the
JNW solution occurs, which failed in our scenario. It is
also conceivable that the double copy for scattering
amplitudes involving massive external particles breaks
down at the considered order (the leading order works
fine [36]). If this is the case, then problems would also
appear for the classical double copy at the next pertur-
bative order for the emitted radiation at the level of the
equations of motion [i.e., the order beyond [58] which is
equivalent to the effective action at next-to-leading order
(NLO) [59] plus an emitted gluon/graviton accounting
for an additional factor of the coupling constant]. These
interesting questions are left for future work.

II. THE CLASSICAL DOUBLE COPY FOR THE
EFFECTIVE POTENTIAL AT LEADING
ORDERS IN PM

The double copy of pure Yang-Mills theory is the
massless sector of bosonic string theory defined by the
action

Siw ==z [ Pr/IR=20,000) (1

where k = myp = /327G is the gravitational coupling
(with Newton’s constant G and Planck mass mp), ¢ is a
real scalar field known as the dilaton. The theory in
question also contains an axion field which will be,
however, irrelevant for our considerations. The worldline
action of a point mass m moving along its worldline
trajectory x#(z) reads in the first-order formalism (we
employ the conventions of [59])

sm:—/mwwuaﬂwwwmm—mm,<m

where 4 is a Lagrange multiplier. The effective potential for
two point masses m and /m may be computed in a weak-
field (or post-Minkowskian) expansion by perturbing the
metric around a flat Minkowski background g,,(x) =
N + kh,,(x) and perturbatively integrating out the grav-
iton field 4, and the dilaton ¢ in the path integral. This
yields the effective action S 4o

ei‘Scff.dg bt e%Spm.frchdg

=c- / DhDpehSustSa+Som+Sm) (3)

using a suitable gauge fixing term Sy. Here the normali-
zation constant c is chosen such that Mg, = 1 for k — 0.
Spm.free 18 the sum of the worldline actions for masses m and
m of Eq. (2) for g,, = 1,, and ¢ = 0. At leading order in k
it is easy to see that Mg, takes the form

- iK? . - \2
T1 1T = —?/dﬁi (p1-p1)"Dyg » (4)

with the four-dimensional scalar propagator D;; :=
D(x; — x;), abbreviating x; = x(z;) and with (ID(x — y) =
—5(x —y). Moreover, we denote d% := A(7)dzr, as well
as dij = dt,d7y.

The double-copy counterpart to Eq. (2) in Yang-Mills
theory is a color-charged point particle moving along its
worldline x#(z) with color charge ¢%(z) = W' (7)T“¥(7)
where ¥(7) is a scalar worldline field. It couples to the
gauge field Af(x) with strength g through the first-order
action (for details see [59])
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Spe = — / de(p, " — iyt
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Note that the gauge field couples at most quadratically to
the worldline, whereas the graviton has all order couplings
in Eq. (2). In complete analogy to the gravitational case we
define the effective potential for the color charge S.¢ vy by
integrating out the gluon field in the path integral via

e%scﬂ'.YM — e%scl'llrrcc MYM

=c'- /DAe%(SYM+ng+Spc+§P°). (6)

The leading-order term in g for My, takes the form

O 4ig? [ } N
TIMH = hg /dTli(cl'Cl)(pl'pl)Dli' (7)

Comparing this with Eq. (3) the double-copy structure is
obvious: Replacing the color factor (c;-¢;) with the
kinematical numerator (p;- p;) in Eq. (7) along with
the coupling replacement 2g — ik yields the leading-order
(LO) contribution to the dilaton-gravity effective potential.
In [59] it was shown that the double-copy prescription
extends to NLO, i.e., (29)* = (ik)*. Here the relevant
graph topologies on the Yang-Mills side are collected
in Fig. 1.
The double-copy procedure proposed in [59] amounts to
the following steps:
(1) Transform the Yang-Mills (YM) graphs to a trivalent
structure: For the double gluon couplings to the
worldline this amounts to the replacement

7'1*&21; — (11 —T2) - LN\'bV

TlTM 12

2ig°

29 dry c(m) & (m) ™ —

2ig? o o(m =T

7719 dTu(/\l(TQ) 2) (1) e (r2) .

(8)

In addition, one should seek a color-kinematic duality
respecting representation of the bulk graphs dissolving the
four-gluon vertex into three-gluon ones. However, this only

o

FIG. 1. Relevant graphs at NLO for the YM effective action.

arises at the next-to-next-to-leading-order (NNLO) level
and will be discussed in the following.
(2) Replace color factors with kinematics: Having
established the trivalent representation the resulting
form of My takes the general form

C/N
2n A 41 Vi
oy [T [

ler,

N" LO _

where I, represents the set of trivalent graphs at
the considered order in perturbation theory, C; the
occurring distinct color factors, D; the associated
propagators and N, the numerators, while S; is the
symmetry factor of graph I';. Importantly, we keep
the 2 dependence in all expressions, i.e., propagators
come with a factor of 7/i whereas vertices carry a
uniform factor of i/%. Once such a representation is
established the double copy is performed by simply
replacing C; — N, i.e.,

N;N

21 A 41 IV

(ix) ’E /lildri,/d lx—SIDI,
1

Iel,

NLO

which should be the exponentiated effective action
of dilaton-gravity.

(3) Establish classical effective action: To find the
classical effective potential one takes the logarithm
of Mg, and sends # to zero, i.e.,

lim — ln [Z MN"LO] = Setrdg = Spm.free-  (9)

h—0 [

In this classical limit ill-defined terms arising from
squaring 5-functions in the N; [such as 25(0)] are
suppressed. It is expected that they cancel with other
quantum contributions.

(4) Integrate or perform PN expansion: Finally, in
order to establish the PM potential one should
perform the bulk and 7; integrals. For the PN
approximation one first takes this limit and thereafter
integrates.

The resulting effective action from Eq. (9) was shown to
agree with the result in the literature on scalar-tensor
theories [60] up to and including 1PN order. Moreover,
it was shown in [59] that the double-copy result also agrees
at the 2PM order at the level of integrands.

III. YANG-MILLS COMPUTATION AT NNLO

We now turn to the discussion of the NNLO computation
via the double copy. To begin with consider the group of the
diagrams that, with the introduction of the appropriate delta
functions in the sense of Eq. (8), share the color factor of
the three ladder diagram, i.e., (c - ¢)°.
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.\ 3
% = é <;> (29)6/d%123”3(p1 ’ﬁl)(pQ '132)(173 '133)(01 '51)(02 '52)(03 : 53)D11D2§D3S ) (10)

S\ 3
m = é (;) (29)6/65%123153%? {6(7&7;72)(151 -P2)(ps - Ps) + 6<T2/\7;T3)(252 - P3)(p1 - P1)

(5(7’3 — Tl)
A1

(11)

(1 - P3)(p2 '152)} (c1-¢1)(c2 - 2)(c3 - E3) D17 Dg5 D5

1/i\° 1 (a\?[6(r — ) §(F1 — 72) I
=_(= 2 G/d% 155 = <> ———Zph + eyelic(1, 2,3) | | ——=—2p4 + cyclic(1,2,3) 1,
M 6 <h> (29) 1231235 \ [ A P3 yelie( )H N P3 yelic( )] Uy

x (c1-¢1)(e2 - Ea)(cz - €3) D17 Dy3 D3 -
(12)

Note that there is also a mirrored graph to Eq. (11) obtained by swapping tilded and nontilded quantities. Also, we write the
integrands always in a completely symmetrized fashion with respect to permutations of the z; and 7; proper-time variables.
This prescription has an impact on the double copy and guarantees exponentiation as we shall see. The double copy of these
diagrams will have a nontrivial contribution at 2PN.

The second group of diagrams shares one bulk vertex and has the common color factor (¢ - [¢, ¢])(c - ¢) reading

N
1 /14 . 1 .. - - - -
m =5 (h) (29)6/657'13153 [—2\/1*% ppmplupzp] (p3 'ps)f“bccmcwczc(cg - ¢3)G173D43 (13)
1/i\? X Bl 16(F—73) - s - wbe ~ - _
M =3 (h) (29)° /dT13i§§, ~ [—4(25\33)‘/1‘% "Pr+ (1< 2)] Prupspf e crativioc(cs - 83)Gy3Dag > (14)

N 2
1/ . Ro(T1 —73) pupe ~ ~ _ Lowp -
%GQ =3 (h) (29)6/6”13123 ng *“C1aCrplac(cs - G3) _1‘/1“1 "Psubrub2p | GiizDss (15)

where VAY =yt (0) = 0,) + P (0) + 20, + n?* (=20, — 8,)" and G,i5 = [d*xD,.D;,Ds,. It turns out that the
double copy of these graphs is relevant to the 3PM, but does not contribute at the 2PN level. Here we only display their 3PM
integrals and suppressed the mirror diagrams obtained by swapping the tilded and nontilded indices.

The third group of diagrams containing bulk vertices at order ¢g> being symmetric with respect to both worldlines is
characterized by the color structures [c, ¢]%[¢,¢]* and [c, ¢]9[¢, c]?. One now has

1i ~ abe pcde ~ o~ 1 A od o
#ﬁ"o# = Zﬁ(29)6/d71212 Fe feerqeap810804 ZVfé Vi% MAsD1uP20P1pP20 | Gla.13 (16)

086006-4



BREAKDOWN OF THE CLASSICAL DOUBLE COPY FOR THE ... PHYS. REV. D 100, 086006 (2019)

5 /I: a3 ace € ~ ~ 1 vo ~ =~
t:g::# = iﬁ@g)ﬁ 7915 f FP% Cracantretaa ZVEMVQQ  MasPLuD2P1P20 | Griis o (17)

1752 A ade rbce ~ o~ 1 a v oS
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L A LT cabe pede ~ ~ ~ ~ ~
M = Zﬁ(2g)6/dﬁzi§1 [f P fe% cracanielad [(p1 - P1) (P2 - P2) — (p1 - P2)(p2 - P1)] (01 4 02)°G.is

o o N N - (19)
+ 2pf fo4e ) copéreCad [(p1 - p2)(B1 - Pa) — (p1 - Pa)(p2 - P1)] (D1 + 31)2G11;2§

+2(1 = p) f% fPCracanfieloa [(p1 - p2)(Br - P2) — (p1 - P1) (P2 - P2)] (01 + 02)°Grz,01 |-

where we have introduced the two-loop function G5 = i d4xd4yD1xD2xnyDin§y. Note that the diagrams (17)
and (18) are numerically identical under a relabeling of the worldline variables 7;. However, they will lead to different
double copies. This ambiguity is captured by introducing the parameter £. The same applies to the last two lines of Eq. (19),
whose ambiguity we parametrize with p. Of course, the right choice should be dictated by requiring the color-kinematic
algebra, i.e., kinematical Jacobi identity, to hold for the numerators—thereby possibly adding vanishing terms to these
expressions, reflecting generalized gauge transformations [27]. We will postpone this analysis to the post-Newtonian limit
in the next section.

The final group of bulk diagrams is nonsymmetric in the two worldlines and carries the color structures [c, ¢]“[c, ¢]* and
mirrors [c, ¢]¢[¢, ¢]¢. They also contribute to 2PN and read

11 . 1 . N -
M =5 ﬁ(29)6 / dT 57 1 [CH fabef°d601a02bcscc1dVféw\‘@’310677,\5]01up2up3pp1aGlg;gi

ace € ~ vo ~ (20)
+ ap foce fod ClaczbcsccldeQp’\Véi 577A5p1up2up3pp10G13;21
+(B—-a — ag)f“defbceC1a02b63c51dVﬁm\Vzlép(s??AépluP2uP3pﬁlaG11;23} ;
14 6 A 1 abe pede ~ ~ ~ 2
Zgﬁ@g) dTugiZ [51f [ cracapcscCra [(p1 - pa)(p2 - P1) — (p1 - P1) (P2 - p3)] (01 + 02)°Gg.37
+ Ba 2 fP%Cracapeseia [(p1 - p2)(ps - Br) — (1 B1)(p2 - p3)] (01 + 93)°G 301 (21)

+ (3= B1 — Ba) f% fPcracanesctra [(pr - p2)(p3 - B1) — (p1 - p3)(p2 - $1)] (01 + 51)2G11;32]

Again, we use ay, ,, 31, f, to parametrize the ambiguity of relabeling the worldline variables z;. Naturally, there is also the
set of mirrored graphs swapping tilded and nontilded quantities.

IV. DOUBLE-COPY PRESCRIPTION AT NNLO

In order to clearly spell out the double-copy prescription for NNLO that we applied we do this in greater detail for the first
group of diagrams with color structure (¢ - ¢)* from Egs. (10)—(12). The sum of these graphs takes the form
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)’ 1 i 3 A
M%(M) —g(ﬁ> (29)6/d7123T§3N(c~5)3C(c~5)3DliDziDaé (22)

with the color factor C(,..p = (¢; - ¢1)(c; - &)(c3 - €3) and the kinematic numerator

Nicgp = (p1- P1)(p2- P2)(p3 - P3) (23)
1A |6(zy—1) . . B . 6t —7 - e ox o
+57 [% (P1 - P2)(p3 - P3) + cyelic(1,2,3) +%(m - p2)(p3 - p3) + cyclic(1,2,3)
2
3 (h\26(z1 — 1) 8(7 — Ty) N
(2 _ S By). 24
+5(5) AR g, ) 24)

The double copy is then performed by replacing C..z» = N .z» and 2g — ix in Eq. (22) thereby constructing the putative

dilaton-gravity contribution MSZ'E)S from Yang-Mills theory. The obtained expressions indeed exponentiate:

i (ix)*
T2

s i (i) [ .
Mt(ig) =exp[_( ) /dTIQ(Per)lei

i (ix)® 1
+_(n<) 1
n 2 2
P 1
+ﬁ("<) dtyizsy

Note that the first and third terms in the above are mirror
symmetric, hence the factor of % Importantly also the
suppressed quantum terms at O(#°) exponentiate, which
is only true if one symmetrizes all the z; integrands in the
YM representation. They contain ill-defined expressions
proportional to §(0). We hence consistently recover the
exponentiated LO and NLO order results of [59] at this
order in k% The contributions at NNLO to the effective
action from this sector are thus given by the last two lines
in Eq. (25). Performing the double copy of the other
groups of graphs, i.e., the symmetric bulk graphs stemming
from Egs. (16)—(19) as well as the nonsymmetric bulk
graphs arising from Egs. (20)-(21), proceeds along the
same lines. Under the double copy one then produces
the NNLO topologies displayed in Fig. 2. They indeed
match the topologies present in gravity at the 2PN order,

Sisjais
<

FIG. 2. Topologies generated by the double copy at NNLO.

/d%1i§<171 “P2)(p1 - P3)(P2 - P3)Dy3Dy5

(25)

6

|

see, e.g., [63]. The total effective action at 3PM order
produced via the double copy would follow by performing
the worldline and bulk integrals. We shall, however,
proceed to work out the 2PN expansion whose integrals
are more straightforward to obtain.

Finally, we remark that the double-copy prescription that
we applied here, notably the rewriting of the worldline-bulk
vertices in trivalent ones using o-functions, also follows
from a systematic treatment employing the bifundamental
scalar field theory as the seed to define the kinematic
numerators and denominators. This route was advocated
for in [58] for the analogous radiation problem at the level
of the equations of motion. This fact essentially hinges on
the simple observation that the worldline only interacts
linearly with the bulk fields in bifundamental scalar field
theory also in the first-order worldline formalism.

V. PN EXPANSION AND KINEMATICAL
JACOBI IDENTITY

Details of performing the PN expansion were discussed
in [59]. The expansion combines a weak-field and
slow-motion approximation for bound binaries. The virial
theorem in this setup states

v K (m + A

aptn, (20
c ¢ 32nr

where r = |x —X| is the distance and v, the relative

velocity of the two particles, with the speed of light ¢
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restored. Just as in [59] the post-Newtonian expansion
parameter is ¢! and the 2PN order amounts to the order
c®. We note the scaling properties

(py) = (E.=p) ~ (O(c). O(c™)),
k~O(ch), A~0(cY), 9, ~O(c™h. (27

The post-Newtonian expansion of the propagator becomes
local in time and is expanded as

d4 k e—ikux“
D(x) = / —_—
(27:)4 k, k" + ie
Pk ekx o o
=— [ ——— 1=+ 4. 500). 28
/(271)3 k2 { k2+k4+ () (28)
The diagrams with the color factor (c-¢)® have a
contribution to the double-copy effective action and are
extracted from the last three terms in Eq. (25). We further
eliminate the Lagrange multipliers 4;, 4; and worldline
energies E;, E; using their equations of motion. At 2PN, we
only need the leading-order terms, and we get

oy 32GPmPm?  8GPwiPm 8GPmin®
L) = . e (29)

where we have also replaced x with v/32zG.
Similarly, the symmetric bulk graphs from Eqgs. (16)—(19)
yield

(i) [
0 d21515(N3G 215 + NiGiigs + NiGisap),  (30)

where
1 ~ s HUAy 7p08
Ny = ZplﬂPZDpl/)pzo'[vlz i3 s
+ (0 =) (9 + 0,)%], (31)

1 . i
N, = ZplyPZyplpPQU [25‘/’1”{ V;%(S’h&

+ 200 — ) (0, + 01)*.  (32)

1

~ o~ Ay upd
N, = Zplup2up1pp20’[2(1 — VISV s

+2(1=p)(“n? — "7 ) (0, + D)%) (33)

In the PN limit Eq. (31) reduces to Ny = L E\E,E\E5 (9, —
d5) - (0 — 0,) + O(c™") at leading order, i.c., the last two
terms in Eq. (31) do not contribute at this order. Similar
reductions apply to N, and N, with an extra factor 2 in N,
and 2(1 = ¢) in N,. The surviving terms may indeed be
made to obey the kinematical Jacobi identity at the PN level
through a suitable choice of the parameter £&. One has

N,—N,+N,

1 . o - -
= ZE1E2E1E2 X [2(1 =¢)(0) = 0,) - (02— 04)

—28(0; = 0y) - (9, — 05) + (0) — D) - (D) — D)]
+O(c™), (34)

dropping subleading terms at O(c™!'). Demanding the
vanishing of the above relations fixes & = % The second
introduced parameter p for the symmetric bulk graphs
remains unfixed at the 2PN level. In fact one checks that
the higher-order terms in ¢~! pertaining to the PM level
cannot be made to vanish for any choice of p. Hence, it
appears necessary to add generalized gauge transformation—
like terms at the 3PM level, which would, however, nont
affect the 2PN level considered here, as is shown in the
Appendix.

Hence, we take & = % and perform the resulting two-loop
integrals for the G,.34 functions in Eq. (30) using TARCER
[64] and FeynCalc [65,66] to find the contribution

8G 3 m?im?
s (35)

Ly =2
Turning to the nonsymmetric bulk graphs of Egs. (20)
and (21) we have

(iK)® [
6 d2123iN%G a1 + N3G o

+ N2,G i3 + (mirrored), (36)
where

1 A )
Ny = 2 Pupapypio @ ViE Vi s

+ B (1P = o) (0 + 32)2} . (37)

N, and N, have similar expressions that can be read off
from Egs. (20) and (21). The above argument for the
kinematical Jacobi identity of the symmetric bulk graphs
also applies to the nonsymmetric graphs. This fixes
aj, = 1 and leaves f3; , arbitrary. In the leading PN limit
of Eq. (36) again the terms arising from the quartic vertex
cancel leaving us with

AGPm3im 4GP min?
nonsym __
Leff - 3,,3 - 3r3 ’ (38)

after performing the integrals. Together with the diagrams
up to 2PM, already given in [59] but now expanded to
2PN, we may assemble the double-copy prediction for the
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effective action. We further solve the equations of motion
for A;, 4; and E;, E; order by order to rewrite the action in
terms of the worldline coordinates and their derivatives.
The resulting expression for the effective action may
now be compared to the known result due to Mirshekari
and Will [61], suitably adjusting their parameters. For a

|

2Gmm 1

L ~+1 v2+1~92+
=-m—-m-+—-m —m
eff 2 2 8

1
+—mv* +§ﬁz€74 -

1
—mv

16

comparison it is, however, important to realize that the
effective action itself is gauge variant and subject to
possible field redefinitions. Applying field redefinitions
and adding total derivatives, in order to match the velocity-
dependent terms up to 2PN with the result of [61] we finally
find the central result of this work:

5 <6

)—%v%-n#—%(ﬁ-n)(n-v)2+%(n-v)(ﬁ-v)>

Gmir 1
+ mm[V2+Vz—3v-€f—(n-v)(n~€')]+Emvf’+
Gmm (1 3 7 3
n ":m <§(V~V)2+ZV4+ZVZVZ+Zv4—2V2(v-V)—2Vz(v-\7)
3 2m ey 3 2,3 20 w)2 - -
-7 (n-V) -2 (n-v) +Z(n'v) m-¥) 4+ (v-¥)(n-v)(n - V)
+ Gmin évza n—l(a n)(n V)z—g(a V)(n-v
4 4 2
Grmn s 2 V)2 —4 V) + 3my - ¥ — 2mv>
+ 2 (5m(n-v)*+mm-¥)* —4m(n -v)(n- V) 4+ 3mv -V —2mv
+5mmn-v)?2 +mm-v)2 —4dinm-v)(n- V) + 3mv- v —2mv?)
LG 14m3ﬁz+26m2ﬁ12+14mﬁ13
373 r 3 )

Indeed, the 2PN static terms are seen to differ from the

result LYY of Mirshekari and Will [61] by ALy =
Mw 1
Leff - Leff 5
2G3*min(m + in)?
AL = 53 ) . (40)

This disagreement cannot be removed by either field
redefinition or adding total derivatives. It is conceivable
that an adjustment of the gauge fixing condition in the
original Yang-Mills theory (at higher orders in g), which
would modify the double-copy result, could remedy this
disagreement. The important point here is that the effective
action is a gauge variant quantity. However, such a
remedy would question the usefulness of the double-copy
procedure.

We have also performed an independent check of the
validity of the effective potential of [61] by performing a
probe limit. Here one takes m < iz and compares to the
potential experienced by a test particle of mass m in the
JNW solution of dilaton-gravity [62] which is the relevant
black hole solution in this setup as shown in [48]. We found
agreement with the static terms linear in m of [61] and

. "Their parameters are adjusted as @ = 1, 7 = —1, f;, =0,
010 = 41_1’ ¥12 = 0. Also note that converting to our convention
needs to take GMW — 2G.

(39)

|

disagreement with our double-copy results in Eq. (39). On
top we also performed a full perturbative computation
in dilaton-gravity at 2PN order of the static terms again
reproducing [61]. In summary, the breakdown of the
double-copy procedure for the effective potential is there-
fore on firm ground.
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APPENDIX: IMPLEMENTING THE KINEMATIC
JACOBI IDENTITY AT THE 3PM LEVEL

In Sec. V we showed that the kinematic numerators of
the symmetric bulk graphs as well as the nonsymmetric
ones obey the kinematic Jacobi identities only at the
leading order in the PN limit, Ny, — N, + N, = O(c7!).
We shall now construct an explicit representation of these
bulk graphs that obeys the Jacobi identity by a generalized
gauge transformation [27] and prove that it will not affect
the 2PN answer (39) above.
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After a Fourier transform of the bulk degrees of
freedom the symmetric graphs in Yang-Mills theory equa-
tions (16)—(19) take the form

c,N c¢,N, c¢,N
[ym — dlﬁA/dA . stts vt u''u
/ q Tois | = + p + »
1
X

555> (A1)
1959395
with s = (1 + ¢2)% t = (g1 + q1)% u = (q1 + ¢3)%
d%qg= [ d*qe'r~ (A2)
i=12.1.2
and
g = faPefedec e84,
¢, = foeftdec) e, 800,
e = [ felec ) 00pT 1 Cag. (A3)

Moreover, the kinematical numerators N;,, in the
above are given by the expressions (31)—(33) with the
substitution 9; — ig;. Clearly, the color factors obey
the Jacobi identity
cs—c¢,+¢,=0. (A4)
However, the kinematical numerators fail to fulfill this
identity,
NS_NI+Nu:A(pi7Qi)! (AS)
with a lengthy expression A(p;,¢;) following from

Egs. (31)—(33). We now introduce the generalized gauge
transformations

N,=N,+A,, a=s,tu, (A06)
which need to obey two conditions: The first one is
A=A+ A, =-A, (A7)

securing the Jacobi identity for the N,. The second
condition demands to leave /*¥™ invariant

A A A A
0= d16A/dA . s 0 Zu oy Tt
/ q Ttz G5 |7 +t + ¢y » + ;
1
X

55 (A8)
1959395
having replaced c¢; = ¢, + ¢, with Eq. (A4). Demanding

the vanishing of this at the integrand level yields the simple
solutions

sA A= tA B ul
s+t+u’ Ys+r4u’ s+t4u
(A9)

N

u

Of course, the vanishing of Eq. (A8) would in principle also
allow for total derivative contributions in the integrands.
However, all solutions will lead to identical double-copy
results so it is sufficient to stick with the simple ones of
Eq. (A9). Now as A = O(c~!)—as was shown in Eq. (34)
for the choice &= é—and the fact that s, ¢, u are
independent of ¢ or x we immediately conclude that the
kinematical Jacobi relation respecting numerators N,
differs from the original N, only by terms of order
O(c™"). This implies in turn that the contributions from
the double copied symmetric graphs to the putative
effective action of dilaton gravity obtained from the N,
does not differ from the one constructed by the N,
computed in Eq. (39) at the 2PN level,

/d%IZTZ(NgGIZ;TQ + N%Gﬁ;zi + NiGli;ZT)

= /d%lzii(N%Glz;ii + N7G 105 + NiGi3,7)

+ O(c7h). (A10)
The analogous argument goes through for the nonsym-
metric bulk graphs.

In summary, we have thus shown that implementing the
kinematical Jacobi identity at the 3PM level does not affect
the 2PN results reported in the main text.
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