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ABSTRACT. A driving question in (quantum) cohomology of flag varieties is to find non-recursive,
positive combinatorial formulas for expressing the product of two classes in a particularly nice ba-
sis, called the Schubert basis. Bertram, Ciocan-Fontanine and Fulton provided a way to compute
quantum products of Schubert classes in the Grassmannian of k-planes in complex n-space by doing
classical multiplication and then applying a combinatorial rim hook rule which yields the quantum
parameter. In this paper, we provide a generalization of this rim hook rule to the setting in which
there is also an action of the complex torus. Combining this result with Knutson and Tao’s puzzle
rule then gives an effective algorithm for computing all equivariant quantum Littlewood-Richardson
coefficients. Interestingly, this rule requires a specialization of torus weights modulo n, suggesting a
direct connection to the Peterson isomorphism relating quantum and affine Schubert calculus.

1. INTRODUCTION

Quantum cohomology grew out of string theory in the early 1990s. Physicists Candelas, de
la Ossa, Green, and Parkes proposed a partial answer to the Clemens conjecture regarding the
number of rational curves of given degree on a general quintic threefold, and this brought enor-
mous attention to the mathematical ideas being used by string theorists. A rigorous formulation
of (small) quantum cohomology as the deformation of cohomology in which the structure con-
stants count curves satisfying certain incidence conditions was soon developed and extended to
a wide class of algebraic varieties and symplectic manifolds; see the survey by Fulton and Pand-
haripande [FP]. In the mid-1990s Givental proved the conjecture proposed by physicists counting
the number of rational curves of given degree on a general quintic threefold [Giv]. Simultane-
ously, Givental and Kim introduced equivariant Gromov-Witten invariants and the equivariant
quantum cohomology ring [GK1].

1.1. Equivariant quantum cohomology of the Grassmannian. When studying the special case of
the Grassmannian of k-dimensional subspaces of Cn, the four variants of generalized cohomology
discussed here (classical cohomology, quantum cohomology, equivariant cohomology and quan-
tum equivariant cohomology), all have a basis of Schubert classes indexed by partitions with at
most k parts each of size at most n − k. There are beautiful combinatorial Littlewood-Richardson
rules for computing the structure constants in products of this favored basis in classical cohomol-
ogy. These Littlewood-Richardson coefficients are known to be non-negative integers, and there is an
analog of this positivity result in each of the other three contexts. Since the structure constants for
(small) quantum cohomology are enumerative, counting the number of stable maps from rational
curves to Gr(k, n) with three marked points mapping into three specified Schubert varieties, they
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are clearly positive. Graham proved an analog of classical positivity in the equivariant case [Gra],
and Mihalcea proved an analogue for equivariant quantum Littlewood-Richardson coefficients [Mih1].

Prior to the completion of this paper, all known algorithms for computing arbitrary equivariant
quantum Littlewood-Richardson coefficients were either recursive or relied on doing computa-
tions in a related two-step flag variety. Mihalcea gave the first algorithm for calculating equi-
variant quantum Littlewood-Richardson coefficients in [Mih1] in the form of a (non-positive) re-
cursion. An extension of the puzzle rule of Knutson and Tao [KT] to two-step flag varieties has
been proved in [BKPT], and Buch recently generalized this two-step puzzle rule to the equivariant
case [Buc]. The two-step puzzle rule can thus be combined with Buch and Mihalcea’s equivari-
ant generalization in [BM] of the “quantum equals classical” phenomenon of Buch, Kresch, and
Tamvakis [BKT], in order to compute Schubert structure constants inQH∗T (Gr(k, n)) in a positive,
non-recursive manner. While this paper was near completion, the authors discovered that Gor-
bounov and Korff had established a different non-recursive formula for the equivariant quantum
Littlewood-Richardson coefficients, which also does not appeal to two-step flags [GK2].

In addition to nice Littlewood-Richardson rules, there are analogs of the ring presentation for
H∗(Gr(k, n)) in terms of Schur polynomials in each of the equivariant and/or quantum contexts.
For an overview of the Schur presentation in the classical case, we refer the reader to Fulton’s book
and the references therein [Ful]. The equivariant presentation is also established via the Borel
isomorphism, but with the additional perspective of GKM theory as in [KT]. Bertram proved
a quantum analogue of the Giambelli and Pieri formulas for the quantum cohomology ring of
the Grassmannian [Ber], while the equivariant quantum ring presentation was given by Mihalcea
[Mih2]. In that paper, Mihalcea proves a Giambelli formula which shows that the factorial Schur
polynomials of [MS] represent the equivariant quantum Schubert classes.

1.2. Statement of the main theorem. In [BCFF], Bertram, Ciocan-Fontanine, and Fulton proved
a delightful rule for computing the structure constants in the quantum cohomology of Gr(k, n)
from the structure constants of the classical cohomology ring of Gr(k, 2n). More specifically, they
provide an explicit formula for the quantum Littlewood-Richardson coefficients as signed sum-
mations of the classical Littlewood-Richardson coefficients cνλ,µ that appear in the expansion of a
product of Schubert classes in terms of the Schubert basis. The algorithm involves removing rim
hooks from the border strip of the Young diagram for ν in exchange for picking up signed powers
of the quantum variable q, and thus became known as the rim hook rule.

The main theorem in this paper is an equivariant generalization of the rim hook rule in [BCFF].
In contrast to the pre-existing methods for computing equivariant quantum Littlewood-Richardson
coefficients, the method presented in this paper is not recursive and does not rely on related cal-
culations in any two-step flag variety. In particular, this equivariant rim hook rule can be used
together with any method of computing equivariant Littlewood-Richardson coefficients, includ-
ing the Knutson-Tao puzzle package for the computer program Sage [S+]. The following is an
informal statement of Theorem 2.6 in the body of this paper.

Theorem 1.1. The equivariant quantum product of two Schubert classes σλ ? σµ in QH∗T (Gr(k, n)) can
be obtained by computing the equivariant product of corresponding classes in H∗T (Gr(k, 2n− 1)) and then
reducing in a suitable way. This reduction involves both rim hook removal and a specialization of the torus
weights modulo n.

Here the choice to lift classes to Gr(k, 2n − 1) is actually quite deliberate, made for reasons of
computational convenience in the proof. This is discussed in Remark 2.4.

To prove this theorem we show that the product defined by this lift and reduction is both asso-
ciative and coincides with equivariant quantum Chevalley-Monk formula for multiplying by the
class corresponding to a single box. Mihalcea’s Theorem 3.1 says that these two conditions suffice
to yield a ring isomorphic to QH∗T (Gr(k, n)). The proof of the equivariant quantum Chevalley-
Monk rule is straightforward; the real difficulty lies in proving the associativity statement. There
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are two key combinatorial ingredients in the proof of associativity. The first tool is the abacus
model for Young diagrams, which we use to understand the reduction modulo n on the torus
weights in Section 4. In addition, in Section 5 we develop a modification of factorial Schur poly-
nomials, which we call cyclic factorial Schur polynomials, in order to relate the classical product in
H∗T (Gr(k, 2n− 1)) to the quantum product in QH∗T (Gr(k, n)).

1.3. Directions for future work. A stunning result of Peterson proved by Lam and Shimozono
[LS1] proves that the equivariant quantum cohomology of any partial flag variety G/P is related
to the equivariant homology of the affine Grassmannian. In particular, Peterson’s isomorphism
says that, up to localization, there is an algebra homomorphism

HT∗(GrG)loc � QH∗T (Gr(k, n))loc.

The reduction of torus weights modulo n in the main theorem of this paper also appears in Lam
and Shimozono’s work [LS2] relating double quantum Schubert polynomials to k-double Schur
polynomials, which are known to represent equivariant homology classes of the affine Grassman-
nian [LS3]. It is the expectation of the authors that cyclic factorial Schur polynomials are the image
of the k-double Schur polynomials under the Peterson isomorphism. This connection suggests
that the equivariant rim hook rule is a shadow of Peterson’s isomorphism and can shed further
light on what has become known as the “quantum equals affine” phenomenon.

The authors expect this work to yield equivariant generalizations of several results of Postnikov
in [Pos] connecting quantum and affine Schubert calculus. For example, Postnikov provides a
quantum Pieri formula, expressed as a sum over cylindric shapes using the Jacobi-Trudi formula
and an algebraic formulation of the rim hook rule in [BCFF]. While the authors’ equivariant rim
hook rule can be combined with any available equivariant Pieri rule for the Grassmannian (e.g.
from [San], [Lak], [LR], among others) to obtain an equivariant quantum Pieri rule, this approach
does not provide a non-negative combinatorial formula. Instead, the goal would be to find an
appropriate combinatorial object which generalizes cylindric shapes to the equivariant context. In
fact, the authors suspect that the cyclic factorial Schur polynomials introduced in this paper are
the equivariant analog of the toric Schur polynomials in [Pos], which yield quantum Littlewood-
Richardson coefficients when expressed in terms of the usual Schur polynomials.

Gorbounov and Korff take an integrable systems approach to studying the equivariant quan-
tum cohomology of the Grassmannian, including an explicit determinantal formula for the equi-
variant quantum Littlewood-Richardson coefficients; see Corollary 6.29 in [GK2]. It is consistent
with our rim hook rule and illuminates another aspect of the connection between these non-
recursive formulas for equivariant quantum Littlewood-Richardson coefficients and integrable
systems. Moreover, Gorbounov and Korff prove that their vicious and osculating walkers have a
concrete representation in the affine nil-Hecke ring, which plays a key role in the proof of Peter-
son’s isomorphism in [LS1].

1.4. Organization of the paper. We begin with a brief review of Schubert calculus on the Grass-
mannian, with particular emphasis on the equivariant and quantum cohomologies and their poly-
nomial representatives. In Section 2, we discuss the rim hook rule of [BCFF], and then provide a
precise statement of the equivariant generalization, which is the main result of the paper. The
proof of Theorem 2.6 is contained in Section 3, although we postpone the proofs of three key
propositions required for associativity in order not to interrupt the flow of the exposition. Abacus
diagrams, which are the first of two important tools for proving associativity, are introduced in
Section 4. Cyclic factorial Schur polynomials are then defined in Section 5.

1.5. Acknowledgements. Part of the work for this paper was completed during the semester pro-
gram on “Automorphic Forms, Combinatorial Representation Theory, and Multiple Dirichlet Se-
ries” at the Institute for Computational and Experimental Research in Mathematics (ICERM). The
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2. THE EQUIVARIANT RIM HOOK RULE

2.1. The Grassmannian and factorial Schur polynomials. The GrassmannianGr(k, n) is the com-
plex variety whose points are k-planes in Cn. In this paper, we are interested in the equivariant
quantum cohomology of the Grassmannian.

The cohomology of the Grassmannian is governed by the intersection theory of Schubert vari-
eties. A Schubert variety Xλ is a subvariety of Gr(k, n) satisfying the condition:

Xλ := {V ∈ Gr(k, n) : dim(V ∩ Cn−k−λi+i) ≥ i, ∀ i}.

The Schubert varieties of Gr(k, n) are indexed by partitions λ = (λ1, . . . , λn) with n − k ≥ λ1 ≥
λ2 ≥ . . . ≥ λk ≥ 0. We denote the set of such partitions by Pkn. We visualize partitions λ as
Young diagrams of k rows with λi boxes in the ith row, counting the top row as the first row (this
is the English convention), and we shall use this correspondence between partitions and Young
diagrams freely. A semi-standard Young tableaux (SSYT) of shape λ is a filling of the boxes in the
Young diagram with the numbers 1 to k, one number per box, such that the numbers are weakly
increasing in rows proceeding left to right and strictly increasing in columns proceeding top to
bottom. Define the Schur polynomials sλ in the variables x1, . . . , xk as

sλ =
∑
T

∏
α∈T

xT(α),

where the T are all of the semi-standard fillings of shape λ by the numbers 1 through k, the number
T(α) is the filling in the box α, and the product runs over all boxes in the SSYT. Define ei to be the
elementary symmetric polynomials in x1, . . . , xk, which can be thought of as s(1)i , and define hi to
be the homogeneous symmetric polynomials s(i). Then there is an isomorphism

H∗(Gr(k, n)) ∼= Z[e1, . . . , ek]/〈hn−k+1, . . . , hn〉(2.1)
σλ 7→ sλ.(2.2)

There is a natural (C∗)n-action on Gr(k, n). Let Tn ∼= (C∗)n act on Gr(k, n) with weight ti on
the ith coordinate of Cn. The Tn-equivariant cohomology ring H∗Tn(Gr(k, n)) is an algebra over
the ring Λ := Z[t1, . . . , tn]. As a Λ-module, HTn(Gr(k, n)) again has an additive basis indexed by
λ ∈ Pkn, which we will also denote by {σλ}. The factorial Schur polynomial sλ(x|t) corresponding
to a Schubert class σλ can then be defined as follows.

Definition 2.1. The factorial Schur polynomial sλ(x|t) corresponding to σλ ∈ H∗Tn(Gr(k, n)) is

sλ(x|t) =
∑
T

∏
α∈T

(xT(α) − tT(α)+c(α)).

The sum is again over all SSYT of shape λ filled by the numbers 1 through k, and the product is
over all boxes α in T . Again T(α) gives the filling of α in T , and c(α) = j − i when α is the box in
the jth column and ith row.
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We can then define the factorial elementary symmetric functions ei(x|t) = s(1)i(x|t) and the
factorial homogeneous complete symmetric functions hi(x|t) = s(i)(x|t). Notice that if all ti = 0,
then the polynomial sλ(x|t) specializes to sλ(x). Corollary 5.1 and Proposition 5.2 [Mih2] then give
an isomorphism which generalizes (2.1) to the equivariant setting:

H∗Tn(Gr(k, n))
∼=

Λ[e1(x|t), . . . , ek(x|t)]

〈hn−k+1(x|t), . . . , hn(x|t)〉
(2.3)

σλ 7→ sλ(x|t).(2.4)

In Theorem 1.1 of [Mih2], Mihalcea proves that the Tn-equivariant quantum cohomology ring
QH∗Tn(Gr(k, n)) of the Grassmannian Gr(k, n) is isomorphic to the quotient ring:

(2.5) QH∗Tn(Gr(k, n))
∼=

Λ[q, e1(x|t), . . . , ek(x|t)]

〈hn−k+1(x|t), . . . , hn−1(x|t), hn(x|t) + (−1)kq〉
.

In this case we realize the sλ(x|t) as elements of QH∗Tn(Gr(k, n)) using the factorial Jacobi-Trudi
formula due to Chen and Louck; see Theorem 3.3 in [CL], or alternatively p. 56 in [Mac] for this
particular formulation:

(2.6) sλ(x|t) = det (hλi+j−i(x|t))1≤i,j≤k .

• • • • •
•
•
•
•
•
•
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FIGURE 2.1. An 11-hook (left) and the corresponding 11-rim hook (right).

2.2. The rim hook rule. In [BCFF], Bertram, Ciocan-Fontanine, and Fulton established a de-
lightful rule presenting quantum Littlewood-Richardson coefficients as signed sums of classical
Littlewood-Richardson coefficients. The rim hook algorithm as phrased in [BCFF] does not use
the language of lifting Schubert classes, rather carrying out multiplication in the ring of Schur
polynomials in the variables x1, . . . , xk. We rephrase the main result from [BCFF] below to draw
the most natural parallel to our result.

First we briefly review some required combinatorial terminology. Any box in a Young digram
has an associated hook, consisting of all boxes to the right and below the given box, including
the box itself. If the number of boxes in such a hook equals n, then we call this an n-hook. Each
n-hook corresponds to an n-rim hook, consisting of the n contiguous boxes running along the
border of the Young diagram, starting from the top rightmost box and ending at the bottom-most
box of the n-hook; see Figure 2.1 for an example. Removing all possible n-rim hooks from a
partition γ in any order results in the n-core for γ. We illustrate the process of obtaining the n-
core of a partition in Figure 2.2. Note that there are often multiple ways to remove n-rim hooks
from a Young diagram; however, the n-core is unique.
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FIGURE 2.2. The 11-core for (10, 9, 6, 5, 5, 3, 2, 2, 2, 1) is the partition (1).

Definition 2.2. Defineϕ : H∗(Gr(k, 2n−1))→ QH∗(Gr(k, n)) to be the Z-module homomorphism
determined by

σγ 7−→ {∏d
i=1

(
(−1)(εi−k)q

)
σν if ν ∈ Pkn,

0 if ν /∈ Pkn,
(2.7)

for any γ ∈ Pk,2n−1. Here, we define ν to be the n-core of γ, noting that ν = γ if γ ∈ Pkn. If
γ ∈ Pkn, the index set for the product is empty, and so the product is 1 in this case. The integer d
is the number of n-rim hooks removed to get from γ to ν, and εi is the height of the ith rim hook
removed.

Choose the identity map to lift classes in H∗(Gr(k, n)) to H∗(Gr(k, 2n − 1)) and denote this lift
of σλ by σ̂λ. We also denote by σλ ?σµ the quantum product inQH∗(Gr(k, n)). The theorem below
then follows from [BCFF].

Theorem 2.3 (Main Lemma and Corollary in [BCFF], rephrased). Consider λ, µ ∈ Pkn, and write
σ̂λ · σ̂µ =

∑
c
γ
λ,µσγ in H∗(Gr(k, 2n− 1)). Then,

(2.8) σλ ? σµ =
∑

γ∈Pk,2n−1

c
γ
λ,µϕ (σγ) ∈ QH∗(Gr(k, n)).

Remark 2.4. The choice to lift to H∗(Gr(k, 2n − 1)) is quite deliberate, but not obvious from the
combinatorial description using Young diagrams. When expressingQH∗(Gr(k,m)) using genera-
tors and relations analogous to (2.1), the relations in the quantum ideal include the homogeneous
function of degree m. If we were to lift to H∗(Gr(k, 2n)), the reduction map from H∗(Gr(k, 2n))
to QH∗(Gr(k, n)) would require that h2n ≡ 0 ∈ H∗(Gr(k, 2n)) map to 0 6= q2 ∈ QH∗(Gr(k, n)).
Choosing 2n − 1 avoids this problem. These same subtleties arise implicitly in Rietsch’s descrip-
tion of a subvariety of GLn(C) whose coordinate ring is isomorphic to QH∗(Gr(k, n)); indeed,
Definition 3.2 and Remark 3.3 in [Rie] provided the inspiration for many of the ideas in Section 5.

2.3. The equivariant generalization. Our theorem generalizes the rim hook rule of [BCFF] to the
context in which there is also an action of the torus Tn = (C∗)n. The equivariant cohomology ring
H∗Tn(Gr(k, n)) also has a Schubert basis indexed by Young diagrams, and (using the conventions
adopted in this paper) the equivariant Littlewood-Richardson coefficients are homogeneous ex-
pressions in non-negative sums of polynomials in Z[t2−t1, . . . , tn−tn−1]. There are combinatorial
formulas for explicitly computing the expansions

(2.9) σλ · σµ =
∑
ν

cνλ,µσν ∈ H∗Tn(Gr(k, n)),
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where now each of the cofficients cνλ,µ is a homogeneous polynomial in Λ. One combinatorially
pleasant formula is the equivariant puzzle rule of Knutson and Tao [KT], illustrated in Figure 2.3.
The three puzzles shown correspond to the three terms, respectively, in the following product:

FIGURE 2.3. Puzzles for computing products in H∗T (Gr(2, 4))

σ · σ = σ + (t4 − t3)σ + (t4 − t3)(t4 − t2)σ .

In particular, the yellow puzzle pieces correspond to the three terms of the form ti − tj appearing
in this expansion. (Note that our conventions on the indices for the torus weights are the reverse
of those of Knutson and Tao.)

We again denote the lift of σλ from H∗Tn(Gr(k, n)) to H∗T2n−1
(Gr(k, 2n− 1)) by σ̂λ. We define this

lift algebraically using factorial Schur polynomials. Namely, the lift σ̂λ ∈ H∗T2n−1
(Gr(k, 2n − 1)) of

σλ ∈ H∗Tn(Gr(k, n)) corresponds to the factorial Schur polynomial sλ(x|t) in the quotient from (2.3)
isomorphic toH∗T2n−1

(Gr(k, 2n−1)). By our choice of conventions for the torus weights, if λ ∈ Pkn
then none of the weights tn+1, . . . , t2n−1 appear in the expansion given by (2.5) for the factorial
Schur polynomial sλ(x|t). Therefore, on factorial Schur polynomials, our lift is again simply the
identity map.

We will now extend the map of Z-modules ϕ : H∗(Gr(k, 2n − 1)) → QH∗(Gr(k, n)) given
in [BCFF] to a map on equivariant cohomology

(2.10) ϕ : H∗T2n−1
(Gr(k, 2n− 1)) −→ QH∗Tn(Gr(k, n)).

In the equivariant case, the structure constants inH∗T2n−1
(Gr(k, 2n−1) are polynomials in t1, . . . t2n−1,

but in QH∗Tn(Gr(k, n)) the structure constants are polynomials in only t1, . . . tn, so we cannot
merely use the identity on the structure constants; instead, we use the map ti 7→ ti(mod n).

Definition 2.5. For any ti with i ∈ {1, 2, . . . , 2n − 1} and γ ∈ Pk,2n−1, define the map ϕ from
Equation (2.10) to be the Z-module homomorphism determined by

ti 7−→ ti(mod n)

σγ 7−→ {∏d
i=1

(
(−1)(εi−k)q

)
σν if ν ∈ Pkn,

0 if ν /∈ Pkn,
(2.11)

Here, we take the representatives of the congruence classes mod n to be {1, 2, . . . , n}. The partition
ν and the statistics d and εi are defined exactly as in Definition 2.2.

This map ϕ is precisely the same as the non-equivariant version in Definition 2.2 except that we
now also act on the torus weights which appear in the structure constants; this fact justifies our
use of the same notation for both maps.

We now state our main result, which we refer to as the Equivariant Rim Hook Rule.
7



Theorem 2.6 (Equivariant Rim Hook Rule). Let Tn = (C∗)n and T2n−1 = (C∗)2n−1. Consider any
partitions λ, µ ∈ Pkn, and the product expansion σ̂λ · σ̂µ =

∑
c
γ
λ,µσγ in H∗T2n−1

(Gr(k, 2n− 1)). Then,

(2.12) σλ ? σµ =
∑

γ∈Pk,2n−1

ϕ
(
c
γ
λ,µ

)
ϕ (σγ) ∈ QH∗Tn(Gr(k, n)).

In Section 5, we also provide an algebraic interpretation of Theorem 2.6 and the map ϕ in terms
of corresponding rings of factorial Schur polynomials, including providing a direct equivariant
analog of the original statements from [BCFF] in Proposition 5.3.

Example 2.7. We now provide an example which illustrates how to use this theorem to compute
quantum equivariant Littlewood-Richardson coefficients. The computations in equivariant coho-
mology to provide these examples were done using the Knutson-Tao puzzles package in Sage [S+].

For example, to compute σ ? σ ∈ QH∗T (Gr(2, 4)), we first lift the classes to H∗T (Gr(2, 7)) via
the identity map. We then use Knutson and Tao’s equivariant puzzle method to compute this
product in H∗T (Gr(2, 7)) :

σ̂ · σ̂ = (t4 − t3)(t4 − t2)σ + (t4 − t3)σ + σ(2.13)

+ (t5 + t4 − t3 − t2)σ + σ + σ .

The map ϕ on torus weights takes ti 7→ ti(mod4), so that t5 7→ t1 while the rest of the torus weights
are unchanged. Now, ϕ acts as the identity on σ , σ , and σ , since all three of these Young
diagrams already fit into a 2 × 2 box. On the other hand, σ 7→ 0, since this Young diagram
neither fits into a 2 × 2 box nor contains any removable 4-rim hooks. Finally, our rim hook rule
says that

(2.14) σ 7→ (−1)2−2q = q and σ 7→ (−1)1−2q = −q.

Altogether, Theorem 2.6 says that in QH∗T (Gr(2, 4)),

σ ? σ = (t4 − t3)(t4 − t2)σ + (t4 − t3)σ + σ + 0+ q− q(2.15)

= (t4 − t3)(t4 − t2)σ + (t4 − t3)σ + σ .(2.16)

3. EQUIVARIANT LITTLEWOOD-RICHARDSON COEFFICIENTS

We prove Theorem 2.6 using the following slight strengthening of Corollary 7.1 in [Mih1]. This
result follows directly by combining several statements in [Mih1], but we provide a short proof
for the sake of completeness.

Theorem 3.1 (Mihalcea [Mih1]). Let Λ = Z[t1, . . . , tn]. Suppose that (A, �) is a graded, commutative,
possibly non-associative Λ[q]-algebra with unit satisfying the following three properties:

(a) A has an additive Λ[q]-basis {Aλ | λ ∈ Pkn}.
(b) The equivariant quantum Pieri rule holds; i.e.

(3.1) A �Aλ =
∑
µ→λAµ + c

λ
λ, Aλ + qAλ− ,

where µ→ λ denotes a covering relation in Pkn, and we define

(3.2) cλλ, =
∑
i∈U(λ)

ti −

k∑
j=1

tj,

where U(λ) indexes the upward steps in the partition λ, recorded from southwest to northeast.
Here, Aλ− equals the basis element corresponding to λ with an (n− 1)-rim hook removed if such a
partition exists, and Aλ− equals 0 if such a partition does not exist.

8



(c) Multiplication by one box is associative; i.e.

(3.3) (A �Aλ) �Aµ = A � (Aλ �Aµ).

Then A is canonically isomorphic to QH∗T (Gr(k, n)) as Λ[q]-algebras.

Proof. IfA is a commutativeΛ[q]-algebra with an additiveΛ[q]-basis indexed by λ ∈ Pkn in which
the equivariant quantum Pieri rule (3.1) and one box associativity (3.3) both hold, then the proof of
Proposition 5.1 in [Mih1] shows that the equivariant quantum Littlewood-Richardson coefficients
satisfy the recursion in Equations (5.2) and (6.1) in [Mih1]. If further A is a graded algebra with
unit, then Theorem 2 in [Mih1] implies that A is canonically isomorphic to QH∗T (Gr(k, n)). �

In this paper, we denote by ◦ our multiplication in QH∗Tn(Gr(k, n)) carried out by lifting basis
classes, which are the same as the basis classes in H∗Tn(Gr(k, n)), to H∗T2n−1

(Gr(k, 2n − 1)) and
reducing to QH∗Tn(Gr(k, n)). That is, for λ, σ ∈ Pkn,

(3.4) σλ ◦ σµ = ϕ(σ̂λ · σ̂µ).

As before, the notation · denotes classical equivariant multiplication in the appropriate ring, and
? will denote the quantum product. An alternative interpretation of Theorem 2.6 is that ◦ = ?.

We will therefore be interested in the algebraAwith additive basis {σλ} indexed by λ ∈ Pkn, and
the operation defined by this lift-reduction map ◦. To prove that (A, ◦) satisfies the hypotheses of
Theorem 3.1, we have two primary tasks: to prove the Pieri rule and one box associativity.

3.1. The equivariant quantum Pieri rule. We begin by reviewing Mihalcea’s quantum equivari-
ant Pieri rule, and we then show that our lift and reduction map agrees with Mihalcea’s formula.
Denote by λ− the Young diagram obtained by removing an (n − 1)-rim hook from λ. Through-
out this paper, we shall use the convention that if no such rim hook exists, then σλ− = 0. When
λ1 = n− k, we also need the related partition λ := ((n− k+ 1), λ2, . . . , λk). Note that λ and λ− are
related by removal of a single n-rim hook.

Theorem 3.2 (Theorem 1 [Mih1]). The following Pieri formula holds in QH∗Tn(Gr(k, n)):

(3.5) σ ? σλ =
∑
µ→λ
µ∈Pkn

σµ + c
λ
λ, σλ + qσλ−

In particular, specializing q = 0 in (3.5) recovers the equivariant Pieri rule in H∗Tn(Gr(k, n)).

Proposition 3.3 (Equivariant rim hook Pieri). For any Young diagram λ ∈ Pkn, we have:

(3.6) ϕ(σ̂ · σ̂λ) = σ ? σλ.

Proof. If λ1 6= n− k then the result is immediate: we appeal to the non-quantum equivariant Pieri
rule by setting q = 0 in Theorem 3.2 to say that

(3.7) ϕ(σ̂ · σ̂λ) =
∑
µ→λ
µ∈Pkn

σµ + c
λ
λ, σλ = σ ? σλ.
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If λ1 = n− k, recall that λ is the Young diagram (n− k+ 1) ≥ λ2 ≥ . . . ≥ λk in Pk,2n−1. Then

ϕ(σ̂ · σ̂λ) = ϕ

 ∑
µ→λ

µ∈Pk,2n−1

σµ + c
λ
λ, σ̂λ

(3.8)

= ϕ

 ∑
µ→λ
µ∈Pkn

σ̂µ + c
λ
λ, σ̂λ + σλ

(3.9)

=
∑
µ→λ
µ∈Pkn

σµ + c
λ
λ, σλ + qσλ−(3.10)

= σ ? σλ.(3.11)

�

3.2. One box associativity. Recall that we denote by ◦ the composition of lifting two Schubert
classes from H∗Tn(Gr(k, n)) to H∗T2n−1

(Gr(k, 2n− 1)), multiplying the classes, and then performing
n-rim hook reduction as in Equation (3.4).

Theorem 3.4. For any Young diagrams λ and µ in Pkn, we have

(3.12) (σ ◦ σλ) ◦ σµ = σ ◦ (σλ ◦ σµ) .

The proof of Theorem 3.4 requires three fairly serious technical results, which we state now and
prove later in order not to interrupt the flow of the exposition.

Proposition 3.5. Suppose that γ rim hook reduces to ν by removing d rim hooks each of size n. Let cγγ, be
a coefficient in H∗T2n−1

(Gr(k, 2n− 1)) and cνν, be a coefficient in H∗Tn(Gr(k, n)). Then

ϕ(cγγ, ) = c
ν
ν, = cν,0ν, ∈ Λ.

In particular, this implies

(3.13) ϕ

 ∑
i∈U(γ)

ti

 =
∑
i∈U(ν)

ti.

Proposition 3.6. Suppose that γ ∈ Pk,2n−1 reduces to the n-core ν ∈ Pkn by removing d rim hooks. Then

(3.14)
∑
δ→γ

δ∈Pk,2n−1

ϕ(σδ) =
∑
ε→ν
ε∈Pk,n

qdσε + q
d+1σν− = qd

∑
ε→ν

ε∈Pk,2n−1

ϕ(σε).

In particular, note that if ε→ ν and ν ∈ Pk,n, then the n-core of ε equals ν− if and only if ν1 = n− k and
νi > 0 for all 1 ≤ i ≤ k and ε = ν; otherwise, ε is an n-core.

Proposition 3.7. In QH∗Tn(Gr(k, n)), when λ1 = n− k, then we have ϕ
(
σλ · σ̂µ

)
= qσλ− ◦ σµ.

The proof of Propositions 3.5 and 3.6 require the use of abacus diagrams, which we discuss in
Section 4. Proving Proposition 3.7 inspired the authors to develop a new polynomial model for
equivariant quantum cohomology, which we call cyclic factorial Schur polynomials. Cyclic factorial
Schur fuctions are discussed in Section 5. Assuming these propositions for the moment, we will
now proceed with the proof of one box associativity.
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Proof of Theorem 3.4. First we establish some notation. Suppose that λ, µ ∈ Pkn. We will write

(3.15) σ̂λ · σ̂µ =
∑

γ∈Pk,2n−1

c
γ
λ,µσγ,

and then define the coefficients c̃ν,dλ,µ via rim hook reduction as

(3.16) ϕ

 ∑
γ∈Pk,2n−1

c
γ
λ,µσγ =

 =
∑
ν∈Pkn
d≥0

c̃ν,dλ,µq
dσν.

We will do a direct calculation, using the two previously stated crucial lemmas, in order to prove
the desired equality. We have

(σ ◦ σλ) ◦ σµ

=

∑
δ→λ
δ∈Pkn

σδ + qσλ− + cλλ, σλ

 ◦ σµ Prop. 3.3 & Thm. 3.2

=
∑
δ→λ
δ∈Pkn

σδ ◦ σµ + qσλ− ◦ σµ + cλλ, σλ ◦ σµ

=
∑
δ→λ
δ∈Pkn

σδ ◦ σµ +ϕ (σλ̄ · σµ) + cλλ, σλ ◦ σµ. Prop. 3.7.

Note that this middle term equals zero if λ− does not exist, so this last step is nontrivial only when
λ1 = n− k. Now since µ ∈ Pkn, then we may replace σµ by σ̂µ to obtain

∑
δ→λ
δ∈Pkn

σδ ◦ σµ +ϕ (σλ̄ · σ̂µ) + cλλ, σλ ◦ σµ

= ϕ

∑
δ→λ
δ∈Pkn

σ̂δ · σ̂µ

+ϕ (σλ̄ · σ̂µ) +ϕ
(
cλλ, σ̂λ · σ̂µ

)

= ϕ


 ∑

δ→λ
δ∈Pk,2n−1

σδ + c
λ
λ, σ̂λ

 · σ̂µ


= ϕ ((σ̂ · σ̂λ) · σ̂µ) .

Multiplication in the classical cohomology ring H∗T (Gr(k, 2n− 1)) is associative, and so here we
may write
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ϕ ((σ̂ · σ̂λ) · σ̂µ)
= ϕ (σ̂ · (σ̂λ · σ̂µ))

= ϕ

σ̂ · ∑
γ∈Pk,2n−1

c
γ
λ,µσγ

 Eq. (3.15)

= ϕ

 ∑
γ∈Pk,2n−1

c
γ
λ,µ(σ̂ · σγ)



= ϕ

 ∑
γ∈Pk,2n−1

c
γ
λ,µ

 ∑
δ→γ

δ∈Pk,2n−1

σδ + c
γ
γ, σγ


 Thm. 3.2

= ϕ

 ∑
γ∈Pk,2n−1

c
γ
λ,µ

∑
δ→γ

δ∈Pk,2n−1

σδ

+ϕ

 ∑
γ∈Pk,2n−1

c
γ
λ,µc

γ
γ, σγ



= ϕ

 ∑
γ∈Pk,2n−1

c
γ
λ,µ

∑
δ→γ

δ∈Pk,2n−1

σδ

+
∑

ν∈Pkn,d

c̃ν,dλ,µq
dcνν, σν Prop. 3.5 & Eq. (3.16)

=
∑

ν∈Pkn,d

c̃ν,dλ,µq
dϕ

 ∑
ε→ν

ε∈Pk,2n−1

σε

+
∑

ν∈Pkn,d

c̃ν,dλ,µq
dcνν, σν Prop. 3.6

=
∑

ν∈Pkn,d

c̃ν,dλ,µq
dϕ

 ∑
ε→ν

ε∈Pk,2n−1

σε + c
ν
ν, σ̂ν


=
∑

ν∈Pkn,d

c̃ν,dλ,µq
dϕ (σ̂ · σ̂ν) Thm. 3.2

=
∑

ν∈Pkn,d

c̃ν,dλ,µq
d (σ ◦ σν)

= σ ◦
∑

ν∈Pkn,d

c̃ν,dλ,µq
dσν

= σ ◦ϕ

 ∑
γ∈Pk,2n−1

c
γ
λ,µσγ

 Eq. (3.16)

= σ ◦ (σλ ◦ σµ). Eq. (3.15)

Altogether we have thus shown that (σ ◦ σλ) ◦ σµ = σ ◦ (σλ ◦ σµ) , as desired. �

Proof of Theorem 2.6. Consider the graded, commutative Λ[q]-algebra (A, ◦) with an additive basis
of Schubert classes σλ for all λ ∈ Pkn and product defined by σλ ◦ σµ = ϕ(σ̂λ · σ̂µ). By Proposition
3.2, the equivariant quantum Pieri rule holds in (A, ◦). Theorem 3.4 says that multiplication by
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the class of a single box is associative. Therefore, by Theorem 3.1, the algebra (A, ◦) is canonically
isomorphic to QH∗Tn(Gr(k, n)). �

4. ABACUS DIAGRAMS AND CORE PARTITIONS

4.1. Abacus diagrams, partitions, and n-cores. This section is devoted to the proof of the first
two key propositions in the proof of one box associativity, Propositions 3.5 and 3.6. The main tool
for proving these propositions is the abacus model for a Young diagram; see Section 2.7 in [JK] for
more details. The abacus model links covers in Young’s lattice to the n-cores in Pkn, the two key
players in Propositions 3.5 and 3.6.

Definition 4.1. An abacus is an arrangement of the integers into n columns called runners, to-
gether with a placement of beads on the integers. The integers are written in order, from left to
right and top to bottom, so that each runner is labelled by an equivalence class of the integers
modulo n. Our convention is to place zero on the left-most runner. The beads satisfy the condi-
tion that there exists an integerN so that there is a bead on every integer before −N and no beads
afterN. A gap is any non-beaded integer gwhich precedes some beaded integer b ≥ g. Note that
consecutive non-beaded integers count as multiple gaps, not just one. A bead is said to be active
if there exist gaps preceding it. In our context, only the last k beads are permitted to be active, as
this paper only concerns Gr(k, n).

Figure 4.1 illustrates two examples of abacus diagrams on n = 3 runners. The left abacus has
gaps at 2 and 4 with active beads on 3 and 5 , while the right abacus has no active beads.

...
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3

0

−3

...

...

7

4

1

−2

...

...

8

5

2

−1

...

...

6

3

0

−3

...

...

7

4

1

−2

...

...

8

5

2

−1

...

FIGURE 4.1. An abacus for λ = (2, 1) on the left, and an abacus for λ = (0, 0) on the right.

To obtain the Young diagram λ corresponding to an abacus A, we define its parts by counting
the number of gaps before each of the last k beads. More precisely, λi is the number of gaps before
the bead which has exactly i−1 beads after it, allowing us to construct a partition λ = (λ1, . . . , λk).
For example, counting the number of gaps before each of the two active beads in the left abacus in
Figure 4.1 gives λ = (2, 1). Note that if m of the last k beads are inactive, as in the right abacus in
Figure 4.1, then the lastm parts of λwill equal 0. Conversely, one way to create an abacus A from
a partition λ = (λ1, . . . , λk) is to place a bead on every negative integer, and then for i from 1 to k,
place a bead on location λk−i+1 + i− 1.

Remark 4.2. There are many abaci which correspond to the same partition λ. For example, con-
structing an abacus for the partition λ = (2, 1) by beading the negative integers and placing beads
at λk−i+1 + i− 1 as just described, gives a different abacus than the one shown in Figure 4.1. Sim-
ilarly, any abacus in which we translate all beads on the abacus vertically by the same amount
produces the same partition. Often any abacus diagram corresponding to a fixed partition will
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suffice for our purposes, but later we do refine this construction in order to make the correspon-
dence one-to-one; see Lemma 4.7 below, which constructs a unique preferred abacus diagram for
elements of Pkn.

We can now translate much of the requisite combinatorics on partitions into the language of
abaci. For example, the following lemma describes in terms of abacus diagrams the covering
relation in Young’s lattice given by adding a single box to a partition.

Lemma 4.3. When λ = (λ1, . . . , λk) and λ ′ = (λ1, . . . , λi−1, λi + 1, λi+1, . . . , λk) are both valid Young
diagrams, an abacus for λ ′ can be obtained from an abacus for λ by moving a bead on the abacus for λ to the
next integer.

Proof. The number of boxes in row i of a Young diagram λ corresponds to the number of gaps
before the ith from the last active bead in an abacus for λ. We can add a box in the ith row if and
only if there are at least λi + 1 boxes in the (i+ 1)th row of λ. This is the case if and only if there is
a gap between the ith and (i+ 1)th active bead in the abacus for λ. �

Definition 4.4. An abacus is called flush if each bead has another bead directly above it.

For example, the abacus on the left in Figure 4.1 is not flush, but the abacus on the right in
Figure 4.1 is flush. The abacus shown for λ = (0, 0) is obtained by making the abacus for λ = (2, 1)
in Figure 4.1 flush by moving a bead upwards from 5 to 2. As the following result shows, this
corresponds to removing a 3-rim hook from the partition (2, 1), resulting in the partition (0, 0).

Theorem 4.5 (Lemma 2.7.13 and Theorem 2.7.16 [JK]). λ is an n-core if and only if every (equivalently
any) abacus corresponding to λ is flush. Additionally, removing a single n-rim hook from λ corresponds to
moving one bead up one row on an abacus runner.

We now present two lemmas which use this connection between n-cores and abacus diagrams.
Lemma 4.6 gives a necessary criterion on abaci for a partition to have n-core in Pkn, and Lemma
4.7 shows that it is possible to choose a unique preferred abacus diagram for elements of Pkn. We
remark that Lemma 4.7 is part of a more general phenomenon, and we refer the interested reader
to the discussion of balanced, flush abaci in [JK].

Lemma 4.6. If a Young diagram γ of at most k parts has n-core in Pkn then any abacus for γ has each of
its last k beads on distinct runners.

Proof. First suppose that γ is itself a Young diagram in Pkn, and hence an n-core. Assume one
of the last k beads occurs on the same runner as another of the last k beads. With at most k − 2
remaining beads between them, we know that there are n− 1− (k− 2) = n− k+ 1 gaps between
them, giving a partition of width greater than n − k. This contradicts the assumption that the
partition was in Pkn.

If γ /∈ Pkn, we first observe by Theorem 4.5 that taking an n-core does not change the runners
on which the active beads of an abacus appear. Therefore, if γ has n-core in Pkn, the active beads
on γ’s abacus must also be on distinct runners, and therefore so must the last k beads. �

Lemma 4.7. If ν ∈ Pkn then there is a unique abacus for ν with the last k beads in the row containing 0
and the last bead on integer n − 1. Further, such an abacus must necessarily have inactive beads at every
integer j for j ≤ −1.

Proof. By Lemma 4.6, the last k beads in any abacus for ν are on k different runners. Build an
abacus Aν for ν by starting with an unbeaded set of runners. Place a bead on integer n− 1. Then,
for each i from 2 to k place a bead on location n − 1 − (ν1 − νi) − (i − 1). Note that we have now
placed k beads on integers between n− 1 and n− 1− (ν1 − νk) − (k− 1). Since ν1 − νk ≤ n− k,
the k beads we have placed are between n − 1 and n − 1 − (n − k) − (k − 1) = 0, all on the row
containing 0. Finally, place an inactive bead on every integer j for j ≤ n− 1− ν1 − k.
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We have now created an abacus Aν for ν with last bead at location n − 1 and all beads in the
row containing 0. There is also an inactive bead at every location j ≤ n − 1 − ν1 − k, and since
ν1 ≤ n− k, there is an inactive bead at every integer j ≤ −1. Further, if A ′ν is another abacus for ν
with last bead at integer n− 1, it must be exactly the same abacus as Aν. �

4.2. Coefficients in equivariant cohomology and n-cores. We are now prepared to prove two
of the three key propositions which arise in the course of our proof of one box associativity in
Section 3.2. In the proof of Proposition 3.5, we describe the equivariant Littlewood-Richardson
coefficient cγγ, as sums over active beads on abacus diagrams and hence prove that the equivariant
Littlewood-Richardson coefficient cγγ, behaves predictably under the map ti 7→ timodn. As a
reminder, Proposition 3.5 says that if γ ∈ Pk,2n−1 rim hook reduces to ν by removing d rim hooks
of size n, then

(4.1) ϕ(cγγ, ) = c
ν
ν,

and in particular,

(4.2) ϕ

 ∑
i∈U(γ)

ti

 =
∑
i∈U(ν)

ti.

Proof of Proposition 3.5. Recall that U(γ) indexes vertical steps for the Young diagram γ. The jth

element of U(γ) is j − 1 + g(j), where g(j) is the number of gaps before the jth active bead in any
abacus for γ. Recall that we count active beads in the same order as the integers they are placed on,
and so the first active bead gives the smallest nonzero part in the partition. Thus, the equivariant
Littlewood-Richardson coefficient cγγ, can be written as a sum over locations of active beads on
an abacus, independently of the number of runners:

(4.3) c
γ
γ, =

k∑
j=1

(tj−1+g(j) − tj) =

 k∑
j=1

tj−1+g(j)

− (t1 + · · · tk).

Notice that the sum t1 + · · · + tk is constant under the map ϕ. By Theorem 4.5, removing
an n-rim hook corresponds to moving a bead up one row on its runner. We therefore see that
moving a bead up or down one row on a runner changes the index j − 1 + g(j) of a torus weight
by n. Thus, under rim hook reduction indices are constant modulo n, and under the map ϕ the
two summands of cγγ, remain constant. Since ϕ does nothing in the case the abacus is flush, we
conclude that ϕ(cγγ, ) = cνν, . �

Finally, we prove Proposition 3.6. Recall that Proposition 3.6 states that if γ ∈ Pk,2n−1 reduces
to the n-core ν ∈ Pkn by removing d rim hooks each of size n, then

(4.4)
∑
δ→γ

δ∈Pk,2n−1

ϕ(σδ) =
∑
ε→ν
ε∈Pk,n

qdσε + q
d+1σν− = qd

∑
ε→ν

ε∈Pk,2n−1

ϕ(σε).

Proof of Proposition 3.6. We show the first equality in Equation (4.4) by showing that each term in
the second expression appears in the first expression and that each term appears at most once.

Let Aγ be an abacus for γ on n runners. We obtain an abacus Aν for ν by making Aγ flush as in
Theorem 4.5. From Aν we can obtain Aε for any cover ε→ ν by moving an active bead on Aν one
runner to the right, according to Lemma 4.3. This will be an n-core unless it is the last bead that is
moved, making the largest part of the partition ε of length n−k+1. In this case, taking the n-core
of εwe must get ν−. In either case, for each εwe can reverse the process of obtaining Aν from Aγ
to obtain an abacus for a partition δwhich is a cover of γ and has n-core ε.

Now we show that each term in the second expression appears at most once in the first expres-
sion. We assume for sake of contradiction that two distinct covering partitions δ1 → γ and δ2 → γ
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both rim hook reduce to the same ε ∈ Pkn. Consider an abacus Aν for ν as constructed in Lemma
4.7, and fix Aγ an abacus for γ that reduces to Aν by making the abacus flush. By Lemma 4.3, abaci
Aδ1 and Aδ2 corresponding to δ1 and δ2 can be obtained by moving a bead from Aγ one runner to
the right.

If neither bead moved was on the nth runner in Aγ, then when Aδ1 and Aδ2 are made flush to
obtain an abacus for ε, we must get the unique abacus for ε constructed in Lemma 4.7. Since Aδ1
and Aδ2 differed only in two beads, in order to satisfy Lemma 4.6 we must have Aδ1 = Aδ2 and
hence δ1 = δ2, a contradiction.

Now suppose that to create Aδ1 we move the bead on the nth runner in Aγ to the leftmost
runner, while to create Aδ2 we only moved a bead right one runner in the same row. If there is no
inactive bead on integer 0 in Aγ, then again all of the active beads will be in row 0 when Aδ1 and
Aδ2 are made flush. However, these two flush abaci will have unequal kth parts and thus cannot
rim hook reduce to the same ε, contradicting our assumption. If there is an inactive bead at 0 in
Aγ, then the bead moved to the first runner to form Aδ1 will still correspond to the largest part
of ε when Aδ1 is made flush. In this case the n-cores of δ1 and δ2 do not have equal first parts,
contradicting the assumption that both rim hook reduce to ε.

The second equality in Equation (4.4) follows from the proof of Proposition 3.3. �

5. CYCLIC FACTORIAL SCHUR POLYNOMIALS

5.1. Polynomial presentations for equivariant cohomology. The technical heart of much of this
paper is the proof of Proposition 3.7, for which we introduce the concept of cyclic factorial Schur
polynomials. To complete our proof of the equivariant rim hook rule, we use the fact that the
reduction map ϕ on the equivariant cohomology ring with the Schubert basis gives rise to a cor-
responding map on factorial Schur polynomials.

Applying the isomorphism from Equation (2.3) to Gr(k, 2n− 1), we have

(5.1) H∗T2n−1
(Gr(k, 2n− 1)) ∼=

Λ[e1(x|t), . . . , ek(x|t)]

〈h2n−k(x|t), . . . , h2n−1(x|t)〉.
As discussed in Section 2, the ei(x|t) are the factorial elementary symmetric polynomials, and the
hi(x|t) are the factorial homogenous complete symmetric polynomials in the variables x1, . . . , xk
and t1, . . . , t2n−1. For brevity, we denote the relevant polynomial ring and ideal by

R̃ = Λ[e1(x|t), . . . , ek(x|t)](5.2)

J̃ = 〈h2n−k(x|t), . . . , h2n−1(x|t)〉(5.3)

so thatH∗T2n−1
(Gr(k, 2n−1)) ∼= R̃/̃J. Note that R̃ is generated by the factorial elementary symmetric

polynomials in x1, . . . , xk and t1, . . . , t2n−1. Similarly, recall from Equation (2.5) that

(5.4) QH∗Tn(Gr(k, n))
∼=

Λ[q, e1(x|t), . . . , ek(x|t)]

〈hn−k+1(x|t), . . . , hn(x|t) + (−1)kq〉
,

where now the ei(x|t) and hi(x|t) are the factorial elementary symmetric and homogenous com-
plete symmetric polynomials in the variables x1, . . . , xk and t1, . . . , tn. We will often write this
polynomial ring and its associated “quantum ideal” as

R = Λ[q, e1(x|t), . . . , ek(x|t)](5.5)

J = 〈hn−k+1(x|t), . . . , hn(x|t) + (−1)kq〉(5.6)

so that QH∗Tn(Gr(k, n))
∼= R/J. Note that R is generated by the factorial elementary symmetric

polynomials in x1, . . . , xk and t1, . . . , tn. Under each of the isomorphisms (5.1) and (5.4), we know
by Proposition 5.2 in [Mih2] that the class σλ corresponds to the factorial Schur polynomial sλ(x|t).
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Definition 5.1. Given a partition λ ∈ Pk,2n−1, we define the cyclic factorial Schur polynomial
corresponding to λ to be the polynomial in R̃ obtained from the factorial Schur polynomial sλ(x|t)
in the variables t1, t2, . . . , t2n−1 by applying the reduction ti 7→ timodn. We denote the cyclic
factorial Schur polynomial corresponding to λ by sλ(x|t) to differentiate it from the original sλ(x|t).

Algebraically, the reduction map from Definition 2.5

ϕ : H∗T2n−1
(Gr(k, 2n− 1)) −→ QH∗Tn(Gr(k, n))

then corresponds to a surjective Z-module homomorphism ϕ̃ : R̃ −→ R determined by

ti 7−→ ti(mod n)

sγ(x|t) 7−→ {∏d
i=1

(
(−1)(εi−k)q

)
sν(x|t) if ν ∈ Pkn,

0 if ν /∈ Pkn,
(5.7)

where ν is the n-core of γ. This map passes to a map on the quotient, which we also denote
by ϕ̃ : R̃/̃J −→ R/J. Notice that ti 7→ timodn acts as the identity on any sλ(x|t) in R̃ with λ ∈
Pkn, since the torus weight with largest index occurring in a such a factorial Schur polynomial is
k + n − k − 1 = n − 1 (the filling T(α) of a box α in the Young diagram is bounded by k and
the content c(α) is bounded by n − k − 1). Thus we can view sλ(x|t) as an element of both R
and R̃ whenever λ ∈ Pkn. To clarify the domain when necessary, we write ŝλ(x|t) to denote the
polynomial sλ(x|t) viewed as an element of the larger ring R̃.

Example 5.2. We illustrate the construction of the cyclic factorial Schur polynomials by rewriting
Example 2.7 in these terms. In R̃/̃J with k = 2 and n = 4, which is isomorphic to the equivariant
cohomology ring of Gr(2, 2 · 4− 1) = Gr(2, 7), we multiply s · s to obtain

s · s = (t4 − t3)(t4 − t2)s + (t4 − t3)s + s(5.8)

+ (t5 + t4 − t3 − t2)s + s + s .

Then, we reduce the ti via ti 7→ timod 4

(t4 − t3)(t4 − t2)s + (t4 − t3)s + s + (t1 + t4 − t3 − t2)s + s + s ,

where sλ denotes the cyclic factorial Schur polynomial corresponding the partition λ obtained by
reducing the torus weights present in sλ. In the ring R/J, which is isomorphic to the equivariant
quantum cohomology ring of Gr(2, 4), this expression is equal to

(t4 − t3)(t4 − t2)s + (t4 − t3)s + s + (t1 + t4 − t3 − t2)0+ q+ (−q)

This example thus illustrates how cyclic factorial Schur polynomials provide a system of poly-
nomial representatives for equivariant quantum cohomology which do not explicitly contain a
quantum parameter.

5.2. Direct analog of the rim hook rule. As a reminder, the remaining Proposition 3.7 states that
in QH∗Tn(Gr(k, n)), we have

(5.9) ϕ
(
σλ · σ̂µ

)
= qσλ− ◦ σµ,

where µ, λ ∈ Pkn with λ1 = n − k. Here we prove a reformulation of this proposition in terms of
factorial Schur polynomials.

Recall that Theorem 2.6 aims to provide a way to calculate the product of two Schubert classes
σλ ? σµ in QH∗Tn(Gr(k, n)) using the reduction map ϕ. In particular,

σλ ? σµ = σλ ◦ σµ = ϕ (σ̂λ · σ̂µ)
where σ̂λ is the lift of σλ to H∗T2n−1

(Gr(k, 2n − 1)). This perspective gives rise to the following
commutative diagram:
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H∗T2n−1
(Gr(k, 2n− 1))⊗H∗T2n−1

(Gr(k, 2n− 1))
·−−−−→ H∗T2n−1

(Gr(k, 2n− 1))

·̂
x ϕ

y
H∗Tn(Gr(k, n))⊗H

∗
Tn
(Gr(k, n))

◦−−−−→ QH∗Tn(Gr(k, n))

The square above can be viewed as the front side of the following three-dimensional diagram. The
front face of the cube is connected to the corresponding square in terms of cyclic factorial Schur
polynomials on the back side of the diagram by the isomorphisms from (2.3), (5.1), and (5.4) and
the definition of ϕ̃ in (5.7).

H∗Tn ⊗H
∗
Tn QH∗Tn◦

//

H∗T2n−1
⊗H∗T2n−1

H∗Tn ⊗H
∗
Tn

·̂

��

H∗T2n−1
⊗H∗T2n−1

H∗T2n−1

· // H∗T2n−1

QH∗Tn

ϕ

��

R/J⊗ R/J R/J◦
//

R̃/̃J⊗ R̃/̃J

R/J⊗ R/J

·̂

��

R̃/̃J⊗ R̃/̃J R̃/̃J
· // R̃/̃J

R/J

ϕ̃

��

H∗T2n−1

R̃/̃J

��

??�����
H∗T2n−1

⊗H∗T2n−1

R̃/̃J⊗ R̃/̃J

{{

;;wwwwww

H∗Tn ⊗H
∗
Tn

R/J⊗ R/J

��

??��������
QH∗Tn

R/J

��

CC�������

As discussed in Section 2, we choose the unique lift of the factorial Schur polynomial sλ(x|t) from
R to R̃ given by the identity map. Note that in the diagram above we abbreviate H∗Tn(Gr(k, n)) by
H∗Tn and QH∗Tn(Gr(k, n)) by QH∗Tn .

In order to prove Proposition 3.7, we reformulate Equation (5.9) using cylic factorial Schur poly-
nomials. For such a reformulation to suffice, we need to know that the rightmost square in the
above three-dimensional diagram commutes. To this end, we first prove the following equivariant
analog of a key lemma of Bertram, Ciocan-Fontanine, and Fulton. The referenced version of the
Main Lemma is phrased in terms of cohomology classes σλ; we use the commutative cube above
to discuss polynomial representatives sλ(x|t) instead.

Proposition 5.3. [Equivariant generalization of Main Lemma in [BCFF]] Let λ be any partition. In the
ring R/J,

(a) If λ1 > n− k and λ contains no n-rim hook, then sλ(x|t) = 0.
(b) If λk+1 > 0, then sλ(x|t) = 0.
(c) If λ contains an illegal n-rim hook, then sλ(x|t) = 0. (An illegal n-rim hook is one which starts at

the end of a row, moves down and to the left, and ends at an inner corner; namely, when removed it
leaves a non-valid partition.)

(d) If ν is the result of removing an n-rim hook from λ, then

sλ(x|t) = (−1)n−hqsν(x|t),

where h is the height of the n-rim hook removed.

From part (d) in particular, we see that the following diagram commutes:
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H∗T2n−1
(Gr(k, 2n− 1)) - R̃/̃J

QH∗Tn(Gr(k, n))

ϕ

?
- R/J

ϕ̃

?

Since this fact implies that the entire three-dimensional diagram above is commutative, to con-
clude our proof of Theorem 3.4, it suffices to prove the following reformulation of Proposition 3.7
using cyclic factorial Schur polynomials.

Proposition 5.4. For µ, λ ∈ Pkn with λ1 = n− k,

(5.10) ϕ̃(sλ(x|t)ŝµ(x|t)) = qϕ̃(ŝλ−(x|t)ŝµ(x|t)).

5.3. Jacobi-Trudi formulas and cyclic factorial Schur polynomials. This section relies heavily on
the Jacobi-Trudi formula for expanding factorial Schur polynomials in terms of factorial complete
homogeneous polynomials. Set τ−st to be the shifted torus weights τ−sti = t−s+i. Recall the
factorial Jacobi-Trudi formula from Equation (2.6), which states that

sλ(x|t) = det(hλi+j−i(x|τ
1−jt))1≤i,j≤k.

For brevity, let Mν denote the matrix appearing in the Jacobi-Trudi formula for sν(x|t). The
proofs of Propositions 5.3 and 5.4 first require a lemma on quantum invariance under a shift in
torus weights. We then proceed to an argument using an expansion of the matrices obtained by
multiplying the Jacobi-Trudi expansions of factorial Schur polynomials under consideration.

Lemma 5.5 (Quantum invariance under shift). In the ring R/J,

(5.11) hm(x|τ
−st) = 0

for all s and allm such that n− k < m < n, and

(5.12) hn(x|τ
−st) = (−1)k+1q

for all s.

Proof. First we establish the base case, invariance under shift of the polynomial hn−k+1(x|τ−st). By
Equation 1.1 in [Mih2], it is true for all s and givenm that

(5.13) hm(x|τ
−st) = hm(x|τ

−s+1t) + (tm+k−s − t−s+1)hm−1(x|τ
−s+1t).

Substitutingm = n− k+ ` gives the useful equation

(5.14) hn−k+`(x|τ
−st) = hn−k+`(x|τ

−s+1t) + (tn−k+`+k−s − t−s+1)hn−k+`−1(x|τ
−s+1t).

Notice that for ` = 1, this simplifies to

(5.15) hn−k+1(x|τ
−st) = hn−k+1(x|τ

−s+1t) + (tn−s+1 − t−s+1)hn−k(x|τ
−s+1t).

Reducing indices on torus weights modulo n, the difference tn−s+1 − t−s+1 is zero, giving

(5.16) hn−k+1(x|τ
−st) = hn−k+1(x|τ

−s+1t)

for cyclic factorial Schurs. Because hn−k+1(x|t) = hn−k+1(x|t) ∈ J, we see that any shift by τ is also
in J. This is the base case for induction.

For 1 < ` < k we use Equation (5.14) and the assertion that hn−k+`−1(x|τ−s+1t) = 0 mod J
under the inductive hypothesis (invariance of the polynomial under shifting τ−s). Note that
hn−k+`−1(x|t) ∈ J. This establishes the first statement in the lemma.
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For the second statement, j = n implies

hn(x|τ
−st) = hn(x|τ

−s+1t) + (tn+k−s − t−s+1)hn−1(x|τ
−s+1t),

but by our previous computations hn−1(x|τ−s+1t) is zero modulo J and so

hn(x|τ
−st) = hn(x|τ

−s+1t).

Therefore, in R/Jwe have
hn(x|τ

−st) = hn(x|t) = (−1)k+1q,

for all s. �

We now prove the two key propositions in this section, starting with the equivariant general-
ization of the rim hook rule from [BCFF].

Proof of Proposition 5.3. Let λ be any partition.
(a) Suppose λ does not contain an n-rim hook and the width of the partition λ1 > n − k. If ` is

the height of the partition (the number of non-zero parts in λ), we must have λ1 + ` < n, else λ
would contain an n-rim hook. The Jacobi-Trudi formula

sλ(x|t) = det(hλi+j−i(x|τ
1−jt))1≤i,j≤k

reduces to
sλ(x|t) = det(hλi+j−i(x|τ

1−jt))1≤i,j≤`

by repeated Laplace expansion along the bottom k− ` rows of the matrix. Since n−k < λ1 < n− `,
the first row of this reduced Jacobi-Trudi matrix consists of the polynomials hλ1+j−1(x|τ

1−jt) for
1 ≤ j ≤ `, which are all elements of J and so zero in the ring R/J.

(b) If λk+1 > 0, we have sλ(x|t) = 0 by definition.
(c) If λ contains an illegal n-rim hook, a determinantal argument shows sλ(x|t) = 0. If an n-rim

hook is removed from λ starting in row r and ending in row s, the resulting shape has row lengths

(λ1, . . . , λr−1, λr+1 − 1, λr+2 − 1, . . . , λs − 1, λr − r+ s− n, λs+1, . . . , λk).

As discussed in Equation (12) of [BCFF], the n-rim hook is illegal when λr − r+ s− n = λs+1 − 1.
Define a factorial Jacobi-Trudi identity

Υm(x|t) = det(hmi+j−i(x|τ
1−jt))1≤i,j≤k

for any composition m = (m1, . . . ,mk). Apply it to the shape resulting from removing the illegal
n-rim hook from λ. Row s in the Jacobi-Trudi matrix is

[hλr−r+s−n+1−s(x|t), hλr−r+s−n+2−s(x|τ
−1t), . . . , hλr−r+s−n+k−s(x|τ

1−kt)].

Row s+ 1 is

[hλs+1+1−s−1(x|t), hλs+1+2−s−1(x|τ
−1t), . . . , hλs+1+k−s−1(x|τ

1−kt)].

Since λs+1 = λr − r+ s− n+ 1, these are the same, and so the determinant is zero.
(d) If λ reduces to ν ∈ Pkn by removing d rim hooks of length n, we prove that the factorial

Schur polynomial sλ(x|t) ∈ R̃ reduces via ϕ̃ to qdsν(x|t) in R/J.
We first prove a version of a formula on page 2295 of [Mih2]:

(5.17) ϕ̃(sλ̄(x|t)) = qsλ−(x|t)

By the factorial Jacobi-Trudi formula,

(5.18) sλ̄(x|t) = det


hn−k+1(x|t) hn−k+2(x|τ

−1t) · · · hn(x|τ
1−kt)

hλ2−1(x|t)
. . . hλ2+k−1(x|τ

1−kt)
...

. . .
...

hλk−k+1(x|t) · · · · · · hλk(x|τ
1−kt)

 .
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Modulo the relations in the ideal J, every entry in the top row is zero except for hn(x|τ1−kt) =
(−1)n−kq. Expanding the determinant along the top row then gives

ϕ̃(sλ̄(x|t)) = (−1)k+1qdet

 hλ2−1(x|t) · · · · · · hλ2+k−2(x|τ
1−kt)

...
. . . . . .

...
hλk+1−k(x|t) · · · · · · hλk−1(x|τ

1−kt)

 ,
where the matrix is k− 1×k− 1. Recall that hn(x|t)+ (−1)kq = 0mod J, and the two factors (−1)k

cancel. As λ− = (λ2 − 1, λ3 − 1, . . . , λk − 1, 0), this right-hand side is exactly qsλ−(x|t) by factorial
Jacobi-Trudi. This proves that the map ϕ̃ satisfies Mihalcea’s statement (5.17).

Part (d) goes further and says that if λ rim hook reduces to ν ∈ Pkn by removing one rim hook
of size n, then

ϕ̃(sλ(x|t)) = (−1)n−hqsν(x|t)

in R/J. Assume λ1 ≥ n− k+ 1. It is easiest to prove this statement by showing that

(5.19) ϕ̃(hnd+j(x|t)) = (−1)d(n−k−1)qdhj(x|t).

We prove (5.19) inductively below in Lemma 5.6.
Following the proof of the Main Lemma in [BCFF], let m be a sequence of integers m =

(m1, . . . ,mk) and set

(5.20) Υm(x|t) = det(hmi+j−i(x|t))1≤i,j≤k.

By assumption, there is some λ` for which λ` > n − k; take one of these rows and call it s. Apply
Lemma 5.6 to row s, as every entry in that row will either have n−k < `− i+ j < n or `− i+ j ≥ n
and so each entry will be zero or will be a multiple of q by Lemma 5.6.

Factor out one q from all such rows, and then notice that then we will have the identity

(5.21) Υm(x|t) = (−1)n−k−1qΥm ′′(x|t),

where m ′′ = (m1, . . . ,ms−1,ms − n,ms+1, . . . ,mk). Rearrange the rows of the matrix to put them
”back in order”, recalling that if 1 ≤ r < s ≤ k and the rth row of the matrix is swapped with the
(r+ 1)st, then the (r+ 2)nd, and so on until the sth row, we have

(5.22) Υm(x|t) = (−1)s−rΥm ′(x|t),

wherem ′ = (m1, . . . ,mr−1,mr+1 − 1, . . . ,ms − 1,mr − r+ s,ms+1, . . . ,mk). Combining these two
processes of factoring out q and rearranging rows so that the resulting m ′′′ is strictly decreasing,
we get

(5.23) Υm(x|t) = (−1)n−k−1+s−rqΥm ′′′(x|t),

withm ′′′ = (m1, . . . ,mr−1,mr+1 − 1, . . . ,ms − 1,mr − r+ s−n,ms+1, . . . ,mk) – λwith a rim hook
removed. (If at any point there was no rim hook to remove, the process would halt, and an illegal
rim hook would result in determinant zero.) If another rim hook can be removed, repeat. This
gives part (d). �

Lemma 5.6. In the ring R/J,

ϕ̃(hnd+j(x|t)) = (−1)d(n−k−1)qdhj(x|t).

Proof. First we present relevant identities and a short example, and then we induct on the degree
of the homogeneous polynomial using degree n as the base case. We know that hn(x|t) = (−1)kq
in R/J as this is a relation in J.

Use formula (2.10) in [Mih2] to formally write

(5.24)
k∑
r=0

(−1)rer(x|t)hs−r(x|τ
1−st) = 0
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for each positive s. An alternative and equivalent formulation is

(5.25)
k∑
r=0

(−1)rer(x|τ
s−1t)hs−r(x|t) = 0.

As an example of how the proof will go, look at the case s = n+ 1. Then,

k∑
r=0

(−1)rer(x|t)hn+1−r(x|τ
−nt)(5.26)

= hn+1(x|t) − hn(x|t)e1(x|t) + . . .± hn−k+1(x|t)ek(x|t) = 0.

The relations in the ideal J eliminate most terms in the middle expression and give

(5.27) hn+1(x|t) = hn(x|t)e1(x|t).

This can be rewritten using the quantum relation to give

(5.28) ϕ̃(hn+1(x|t)) = (−1)kqe1(x|t).

We now induct. Letm > n, and writem = nd+ j for positive d and 0 ≤ j ≤ n−1. Use equation
(5.25) again to write

(5.29)
k∑
r=0

(−1)rer(x|τ
m−1t)hm−r(x|t) = 0.

Move hm(x|t) to the left-hand side to write

(5.30) hm(x|t) =

k∑
r=1

(−1)r+1ei(x|τ
i−1t)hr−i(x|τ

1−it).

Use the inductive hypothesis on r to write each polynomial hr−i(x|τ1−it) on the right-hand side in
terms of q. The above calculations were all written out in the ring of symmetric functions; in our
context this implies

(5.31) ϕ̃(hnd+j(x|t)) = (−1)d(k−1)qdhj(x|t).

�

Proof of Proposition 5.4. To establish Proposition 5.4, we use the Jacobi-Trudi formula to expand the
products of the Schur polynomials sλ(x|t)ŝµ(x|t) and ŝλ−(x|t)ŝµ(x|t). Then

Mλ =


hn−k+1(x|t) hn−k+2(x|τ

−1t) · · · hn(x|τ
1−kt)

hλ2−1(x|t)
. . . hλ2+k−1(x|τ

1−kt)
...

. . .
...

hλk+1−k(x|t) · · · · · · hλk(x|τ
1−kt)

 ,(5.32)

Mµ =


hµ1(x|t) hµ1+1(x|τ

−1t) · · · hµ1+k−1(x|τ
1−kt)

hµ2−1(x|t)
. . . hµ2+k−1(x|τ

1−kt)
...

. . .
...

hµk+1−k(x|t) · · · · · · hµk(x|τ
1−kt)

 ,(5.33)
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and so we can compute that

sλ(x|t)ŝµ(x|t) = det
(
MλMµ

)
(5.34)

= det

(
k∑
`=1

hλ̄i+i−`(x|τ
1−`)hµ`+j−`(x|τ

1−jt)

)
1≤i,j≤k

.(5.35)

Using Lemma 5.5 above, notice that hn−k+1+i−`(x|τst) is zero modulo the quantum ideal J when
n − k + 1 + i − ` takes values between n − k + 1 and n − 1. Since λ1 = n − k + 1, the only entry
in the first row of the matrix MλMµ that is non-zero modulo J is the last entry. Expanding the
determinant along the first row of the matrix then gives

(5.36) (−1)khn(x|τ
1−kt)det

(
k−1∑
`=1

hλi+1−1+`−i+1(x|τ
1−`t)hµ`−`+j(x|τ

1−jt)

)

= (−1)kqdet

(
k−1∑
`=1

hλi+1−1+`−i+1(x|τ
1−`t)hµ`−`+j(x|τ

1−jt)

)
where the equality is given by the second part of Lemma 5.5.

By contrast, expanding ŝλ−(x|t)ŝµ(x|t) in a similar fashion gives

ŝλ−(x|t)ŝµ(x|t) = det (Mλ−Mµ)(5.37)

= det

(
k∑
`=1

hλi+1−1+`−i+1(x|τ
1−`t)hµ`−`+j(x|τ

1−jt)

)
.

Since λk+1 = 0, the last row of the matrix Mλ−Mµ consists of k − 1 zeroes followed by a one.
Expanding the determinant then gives

(5.38) ŝλ−(x|t)ŝµ(x|t) = (−1)k det

(
k−1∑
`=1

hλi+1−1+`−i+1(x|τ
1−`t)hµ`−`+j(x|τ

1−jt)

)
.

The reduction ϕ̃ applied to equation (5.36) is the identity, since the indices of ti range only between
1 and n (see the definition of factorial Schur polynomial for λ). Thus

ϕ̃(ŝλ(x|t)ŝµ(x|t))(5.39)

= (−1)kqdet

(
k−1∑
`=1

hλi+1−1+`−i+1(x|τ
1−`t)hµ`−`+j(x|τ

1−jt)

)
.

We see that ŝλ−(x|t)ŝµ(x|t) = ϕ̃(ŝλ−(x|t)ŝµ(x|t)) and ϕ̃(sλ(x|t)ŝµ(x|t)) differ by exactly q. Thus,

ϕ̃(sλ(x|t)ŝµ(x|t)) = qϕ̃(ŝλ−(x|t)ŝµ(x|t)),

as desired. �
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