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The parabolic exotic t-structure
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Abstract. Let G be a connected reductive algebraic group over an algebraically closed field k,
with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag
variety T ∗(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major
results in geometric representation theory, including the proof of the graded Finkelberg–Mirković
conjecture. In this paper, we study (under mild technical assumptions) an analogous t-structure on
the cotangent bundle of a partial flag variety T ∗(G/P ). As an application, we prove a parabolic
analogue of the Arkhipov–Bezrukavnikov–Ginzburg equivalence. When the characteristic of k
is larger than the Coxeter number, we deduce an analogue of the graded Finkelberg–Mirković
conjecture for some singular blocks.
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Titre. La t-structure exotique parabolique. Soit G un groupe algébrique réductif connexe sur
un corps k algébriquement clos. La t-structure exotique sur le fibré cotangent de sa variété de
drapeaux T ∗(G/B), introduite à l’origine par Bezrukavnikov, a été un outil clé pour de nombreux
résultats majeurs en théorie géométrique des représentations, en particulier la démonstration de
la conjecture de Finkelberg–Mirković graduée. Dans cet article, nous étudions (sous de légères
hypothèses techniques) une t-structure analogue sur le fibré cotangent de la variété de drapeaux
partiels T ∗(G/P ). Comme application, nous prouvons un analogue parabolique de l’équivalence
de Arkhipov–Bezrukavnikov–Ginzburg. Lorsque la caractéristique de k est supérieure au nombre
de Coxeter, nous déduisons un analogue de la conjecture de Finkelberg–Mirković graduée pour
certains blocs singuliers.
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1. Introduction

1.A. The exotic t-structure

Let Ġ be a connected reductive algebraic group over an algebraically closed field k, and let Ḃ ⊂ Ġ be
a Borel subgroup. (The undecorated letter G is reserved for another group, to be introduced later.) Let
Ñ = T ∗(Ġ/Ḃ) be the cotangent bundle of its flag variety, and consider the derived category DbCohĠ×Gm(Ñ )
of (Ġ ×Gm)-equivariant coherent sheaves on Ñ . The exotic t-structure is a remarkable t-structure on this
category, originally defined in [14]. This t-structure has close connections to derived equivalences coming
from the geometric Langlands program [9, 8, 23], to the cohomology of tilting modules for Lusztig’s
quantum groups [14] and algebraic groups [2], and other topics in representation theory (see [1] and the
references therein). It is defined using a so-called exceptional set of objects in DbCohĠ×Gm(Ñ ).

An important and rather nontrivial feature of this t-structure is that the higher t-cohomology of every excep-
tional object vanishes. This theorem (which was implicit in [14] and proved in different ways in [8, 22]) implies
that the heart of this t-structure has the familiar structure of a highest weight category. For representation-
theoretic applications, this fact plays a similar conceptual role to the Kempf vanishing theorem (for reductive
groups) or to the Artin vanishing theorem (for direct images of perverse sheaves under affine maps). In
particular, this vanishing theorem plays a crucial role in the proof of the graded Finkelberg–Mirković con-
jecture [7], which relates the principal block of a reductive group to perverse sheaves on the Langlands dual
affine Grassmannian, hence also in the proof of the tilting character formula for reductive groups [3].

1.B. Parabolic analogue

The main result of this paper is a parabolic version of this vanishing theorem. Namely, for any parabolic
subgroup Ṗ ⊂ Ġ, the first and third authors have defined in [7] a certain exceptional set in the triangulated
category DbCohĠ×Gm(T ∗(Ġ/Ṗ )) which generalizes that defined by Bezrukavnikov in the case Ṗ = Ḃ. As in
this special case, our exceptional set determines a t-structure on DbCohĠ×Gm(T ∗(Ġ/Ṗ )), which we again
call the exotic t-structure. In Theorem 2.2 we show that, with respect to this t-structure, the higher t-
cohomology of every exceptional object vanishes. As a consequence, its heart is a highest weight category;
see Corollary 2.3.

Unlike the case of the full flag variety as treated in [22], our proof is indirect, and requires a translation
of the problem to the realm of constructible sheaves and “mixed derived categories” in the sense of [6].

1.C. Applications

As an application, we prove a modular parabolic version of a derived equivalence originally due to
Arkhipov–Bezrukavnikov–Ginzburg, relating DbCohĠ×Gm(T ∗(Ġ/Ṗ )) to a category of constructible sheaves
on the affine Grassmannian of the Langlands dual group.
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Then, under the additional assumption that the characteristic of k is larger than the Coxeter number
of Ġ, we combine this result with [7] to deduce a singular version of the graded Finkelberg–Mirković
conjecture, relating a certain block (whose “singularity” is controlled by Ṗ ) for the reductive group whose
Frobenius twist is Ġ to a suitable category of Whittaker perverse sheaves on the dual affine Grassmannian.

1.D. Contents

In Section 2 we state our main result more precisely, and outline our strategy of proof. This result is proved
in Section 4, after some preliminaries in Section 3. The applications are deduced in Section 5. Finally, in
Appendix A we extend certain results on parity complexes and “mixed derived categories” to the case of
Whittaker sheaves. (These results play a technical role in some of our proofs.)

Acknowledgements

We thank G. Williamson for useful discussions.

2. Statement of the main result

2.A. Notation

Let Ġ be a connected reductive algebraic group over a field k of characteristic `, with maximal torus and
Borel subgroup Ṫ ⊂ Ḃ ⊂ Ġ. (The reason why we decorate our notation with a dot should become clear
in §5.E below. It does not play any role in earlier subsections.) Let also Ḃ+ be the Borel subgroup which
is opposite to Ḃ (with respect to Ṫ ), R be the root system of (Ġ, Ṫ ), and R+ ⊂ R be the system of positive
roots given by the nonzero Ṫ -weights in Lie(Ḃ+). We will denote by X the character lattice of Ṫ , and by S
the set of simple reflections of the Weyl group W of (Ġ, Ṫ ) determined by our choice of R+. For s ∈ S , we
will denote by αs the corresponding simple root, and by α∨s the associated coroot.

We will make the following assumptions on Ġ and k:

(1) ` is very good for Ġ;

(2) the derived subgroup of Ġ is simply connected.

By [21, Proposition 2.5.12], our assumption (1) implies the following property:

Lie(Ġ) admits a nondegenerate Ġ-invariant bilinear form. (2.1)

These assumptions and this property will in particular allow us to use the results of [8]. (Note that, by [23,
Corollary 1.6], the condition that ` is a “JMW prime” used in [8] is equivalent to the condition that ` is
good for Ġ.)

Our assumption (2) allows us to choose weights (ςs)s∈S such that

〈ςs,α∨t 〉 = δs,t

for any s, t ∈ S . For any subset I ⊂ S , we then set ςI :=
∑
s∈I ςs.

The main players of this article will be the “partial Springer resolutions”

ÑI := Ġ ×ṖI ṅI

for I ⊂ S , where ṖI ⊂ Ġ is the standard (with respect to Ḃ) parabolic subgroup corresponding to I , and ṅI
is the Lie algebra of its unipotent radical. Note that Ñ

∅
is the usual Springer resolution of Ġ, and that ÑI

identifies with the cotangent bundle to Ġ/ṖI (thanks to (2.1)).
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We let the multiplicative group Gm act on ṅI by z · x = z−2x. This induces an action on ÑI that
commutes with the natural Ġ-action, so we may consider Ġ ×Gm-equivariant coherent sheaves. We will
denote by

〈1〉 : CohĠ×Gm(ÑI )→ CohĠ×Gm(ÑI )
the functor of tensoring with the tautological 1-dimensional Gm-module, and by 〈n〉 the nth-power of this
functor (for n ∈Z).

2.B. A graded exceptional set

Following the notation and conventions of [7, §9], we fix a subset I ⊂ S , and consider the objects ∆I (λ) and
∇I (λ) in DbCohĠ×Gm(ÑI ) characterized in [7, Proposition 9.16].1 Here λ ∈ X+,reg

I where

X+,reg
I := {λ ∈ X | ∀s ∈ I, 〈λ,α∨s 〉 > 0}.

In order to define these objects one needs to choose an order ≤′ on X. Here we will assume that ≤′ is
constructed as in [7, §9.4]. Then the objects one obtains are independent of the choices involved in this
construction, by [7, Proposition 9.19(1) and Proposition 9.24].

Remark 2.1. In the case I = ∅, the objects ∆I (λ) and ∇I (λ) are the same (up to shift) as those introduced
by Bezrukavnikov (for characteristic-0 coefficients) in [14]. The general case is similar, replacing characters
of Ṫ by standard or costandard modules for the Levi factor of ṖI containing Ṫ . In particular, when I = S ,
the object ∆S(λ) is the Weyl module of highest weight λ− ςS , and ∇S(λ) is the induced module of highest
weight λ− ςS .

According to [7, Proposition 9.16], the objects (∇I (λ) : λ ∈ X+,reg
I ) form a graded exceptional set of

objects with respect to the order ≤′ and the “shift functor” 〈1〉, in the sense of [14, §2.1.5]. That is, we have

HomDbCohĠ×Gm (ÑI )
(∇I (λ),∇I (µ)〈n〉[m]) = 0 (2.2)

if µ �′ λ or if λ = µ and (n,m) , (0,0), and moreover

HomDbCohĠ×Gm (ÑI )
(∇I (λ),∇I (λ)) = k. (2.3)

The dual exceptional set is given by (∆I (λ) : λ ∈ X+,reg
I ). In other words, these objects form the unique

collection of objects satisfying

HomDbCohĠ×Gm (ÑI )
(∆I (λ),∇I (µ)〈n〉[m]) = 0

if µ <′ λ and

∆I (λ) � ∇I (λ) modDbCohĠ×Gm(ÑI )<′λ. (2.4)

Here DbCohĠ×Gm(ÑI )<′λ is the full triangulated subcategory of DbCohĠ×Gm(ÑI ) generated by the objects
∇I (µ)〈n〉 for µ <′ λ and n ∈ Z, and the condition (2.4) means that the images of ∆I (λ) and ∇I (λ) in the
Verdier quotient

DbCohĠ×Gm(ÑI )/DbCohĠ×Gm(ÑI )<′λ
are isomorphic. These objects in fact satisfy

HomDbCohĠ×Gm (ÑI )
(∆I (µ),∇I (ν)〈n〉[m]) �

k if µ = ν and n =m = 0;

0 otherwise,
(2.5)

see [7, Corollary 9.18]. Moreover, both of the families (∇I (λ)〈n〉 : λ ∈ X+,reg
I , n ∈ Z) and (∆I (λ)〈n〉 : λ ∈

X+,reg
I , n ∈Z) generate DbCohĠ×Gm(ÑI ) as a triangulated category.

1 ↑ In [7] we work under the running assumption that ` is bigger than the Coxeter number of Ġ. However, as noticed in [7,
Remark 9.1], the results of this particular section hold in the present generality.
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2.C. The exotic t-structure

By the general theory of (graded) exceptional sets (see [14, Proposition 4]), the following pair of subcategories
defines a bounded t-structure on the triangulated category DbCohĠ×Gm(ÑI ):

DbCohĠ×Gm(ÑI )≤0 = 〈∆I (λ)〈n〉[m] : λ ∈ X+,reg
I , n ∈Z, m ∈Z≥0〉ext;

DbCohĠ×Gm(ÑI )≥0 = 〈∇I (λ)〈n〉[m] : λ ∈ X+,reg
I , n ∈Z, m ∈Z≤0〉ext.

Here, 〈A〉ext means the smallest strictly full additive subcategory containing the objects A and closed under
extensions. This t-structure is called the exotic t-structure, and its heart will be denoted by

ExCoh(ÑI ).

It is clear from the definitions that the functor 〈1〉 is t-exact for this t-structure.
The main result of this paper is the following.

Theorem 2.2. The objects ∆I (λ) and ∇I (λ) (λ ∈ X+,reg
I ) belong to ExCoh(ÑI ).

This result can be rephrased as a cohomology-vanishing statement as follows: since ∇I (λ) belongs to
DbCohĠ×Gm(ÑI )≥0 by definition, Theorem 2.2 is equivalent to the statement that

tHi(∇I (λ)) = 0 for i > 0, (2.6)

along with a similar vanishing statement in negative degrees for ∆I (λ) (where tHi means the i-th cohomol-
ogy with respect to the exotic t-structure).

Once Theorem 2.2 is established, standard arguments (see e.g. [13], [22, §3.5] or [6, Proposition 3.11])
then imply the following claim, which formed our main motivation for studying this question.

Corollary 2.3. The category ExCoh(ÑI ) is a graded highest weight category in the sense of [26, §7], with weight
poset (X+,reg

I ,≤′), standard objects (∆I (λ) : λ ∈ X+,reg
I ), costandard objects (∇I (λ) : λ ∈ X+,reg

I ), and shift
functor 〈1〉.

2.D. Strategy of proof

The proof of Theorem 2.2 will be given in Section 4. In the case I = ∅, this theorem is one of the main
results of [23] (see also [8] for a different proof). This special case plays a crucial role in the proof for I , ∅.

Broadly speaking, the strategy of the proof is to carry out a kind of categorical “diagram chase” using
the categories and functors on the second, third and fourth columns in the diagram of Figure 2.1. (Precise
definitions of all the notation in this diagram will be given in the following sections; we only mention here
that the categories in the third and fourth columns are certain “mixed derived categories” in the sense
of [6], and that the dashed arrow is not an equivalence but an identification of the right-hand side with
a certain summand in the left-hand side; see §4.C for details.) The leftmost column of this figure is only
defined under the stronger assumption that ` is larger than the Coxeter number of Ġ, but it motivates our
constructions even when it is not available. Each category carries one or two t-structures, which in some
cases are already known to satisfy analogues of (2.6). Table 2.2 lists the t-structures that will come up in
this paper. In this table, t-structures appearing in the same row correspond to one another under one of
the horizontal functors in Figure 2.1.

In more detail, we begin in Section 3 by defining and studying a second t-structure on DbCohĠ×Gm(Ñ
∅

),
and relating both t-structures to the affine Grassmannian Gr′ of the Langlands dual group. In Section 4, we
transfer the problem to the rightmost column of Figure 2.1. Specifically, we will reduce the proof of (2.6) to a
similar claim for the perverse t-structure on the category Dmix

IW (FlI ,k). This claim is proved in Appendix A,
using variations on some arguments in [27, 3, 6]. (In a sense, the problem is easier for this category because
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DbRep
∅

(G) DbCohĠ×Gm(Ñ
∅

) Dmix
(Iw)(Gr′ ,k) Dmix

IW (Fl,k)

DbRepI (G) DbCohĠ×Gm(ÑI ) Dmix
IW (FlI ,k)

T I
∅

Ψ
∼

Φ
∅

ΠI

κ

(qI )∗T ∅I

ΦI

ΠI (qI )∗

Figure 2.1: Setting for the proof of Theorem 2.2

DbRepI (G) DbCohĠ×Gm(ÑI ) Dmix
(Iw)(Gr′ ,k) Dmix

IW (FlI ,k)
exotic adverse perverse

natural representation-theoretic perverse

Table 2.2: t-structures arising in the proof

one can use the categories of Bruhat-constructible sheaves on Fl and FlI , which have no counterparts in
the world of coherent sheaves.)

Once the proof of Theorem 2.2 is complete, we will be in a position to obtain an analogue on the
bottom line of Figure 2.1 of the equivalence “Ψ ” of the upper line. We do this in Section 5, and thereby
obtain the parabolic version of the Arkhipov–Bezrukavnikov–Ginzburg equivalence (Theorem 5.5). (The
space Gr′ appearing in Figure 2.1 is the “right coset” version of the affine Grassmannian, but in Section 5
we will switch to the traditional “left coset” version, denoted by Gr.) Finally, when ` is larger than the
Coxeter number, we can combine this equivalence with the results of [7] to obtain the singular version of
the graded Finkelberg–Mirković conjecture (Theorem 5.7).

3. Representation-theoretic t-structure and translation functors

3.A. The representation-theoretic t-structure

In this subsection, we will introduce and study a different t-structure on DbCohĠ×Gm(ÑI ), which is “Koszul
dual” (in an appropriate sense) to the exotic t-structure.

Lemma 3.1. The objects (∇I (λ) : λ ∈ X+,reg
I ) form a graded exceptional set of objects in DbCohĠ×Gm(ÑI ) with

respect to the order ≤′ and the shift functor 〈1〉[1].

Proof. The claim follows from the observation that the definition of a graded exceptional set does not
depend on the choice of “shift functor.” More precisely, in our case the assertion we must prove states that

HomDbCohĠ×Gm (ÑI )
(∇I (λ),∇I (µ)〈n〉[m+n]) = 0

if µ �′ λ or if λ = µ and (n,m) , (0,0), and moreover that

HomDbCohĠ×Gm (ÑI )
(∇I (λ),∇I (λ)) = k.

But these are clearly equivalent to (2.2) and (2.3).

Of course the dual exceptional set is again (∆I (λ) : λ ∈ X+,reg
I ). Using once again [14, Proposition 4], we

obtain that the following pair of subcategories forms a bounded t-structure on DbCohĠ×Gm(ÑI ):

DbCohĠ×Gm(ÑI )≤0
RT = 〈∆I (λ)〈n〉[n+m] : λ ∈ X+,reg

I , n ∈Z, m ∈Z≥0〉ext;
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DbCohĠ×Gm(ÑI )≥0
RT = 〈∇I (λ)〈n〉[n+m] : λ ∈ X+,reg

I , n ∈Z, m ∈Z≤0〉ext.

This t-structure will be called the representation-theoretic t-structure, and its heart will be denoted

grRep(ÑI ).

By construction, the functor 〈1〉[1] is t-exact with respect to this t-structure.

Remark 3.2. The motivation for our terminology and notation should become clear in §5.E below.

3.B. Geometric translation functors

Now we will make use of the “translation functors”

DbCohĠ×Gm(Ñ
∅

) DbCohĠ×Gm(ÑI )
ΠI

ΠI

defined in [7, §9.2] as follows. Set Ñ
∅,I := Ġ ×Ḃ ṅI and nI := dim(ṖI /Ḃ). The inclusion ṅI ↪→ ṅ

∅
induces a

Ġ-equivariant morphism
eI : Ñ

∅,I ↪→ Ñ∅.

There is also a smooth proper map
µI : Ñ

∅,I → ÑI
with fibers isomorphic to ṖI /Ḃ. We define:

ΠI (F ) := (µI )∗(eI )
∗
(
F ⊗OÑ∅ OÑ∅

(−ςI )
)
,

ΠI (F ) := (eI )∗(µI )
∗(F )⊗OÑ∅ OÑ∅

(ςI − 2ρI )〈−nI〉,

where ρI is the halfsum of the positive roots which belong to the sublattice of ZR generated by the simple
roots αs with s ∈ I . (Here, as in [7], all the functors are understood to be derived.)

Lemma 3.3. The functor ΠI is t-exact with respect to both the exotic and representation-theoretic t-structures,
and it does not kill any nonzero object.

For the t-exactness statement in this lemma, one should equip both categories DbCohĠ×Gm(Ñ
∅

) and
DbCohĠ×Gm(ÑI ) with the exotic t-structure, or both with the representation-theoretic t-structure. In the
proof below we denote by WI ⊂W the subgroup generated by I .

Proof. To show that ΠI is left t-exact, by definition it suffices to show that the object ΠI (∇I (µ)) belongs to

DbCohĠ×Gm(Ñ
∅

)≥0 and to DbCohĠ×Gm(Ñ
∅

)≥0
RT. In view of [14, Proposition 4(c)], we require that

HomDbCohĠ×Gm (Ñ
∅

)

(
∆
∅

(λ)〈n〉[r],ΠI (∇I (µ))
)

= 0 (3.1)

for any λ ∈ X and any n,r ∈Z with r > 0 (for the exotic case) or r −n > 0 (for the representation-theoretic
case). By adjunction (see [7, Remark 9.5]), we have

Hom(∆
∅

(λ)〈n〉[r],ΠI (∇I (µ))) �Hom(ΠI (∆∅(λ))〈nI +n〉[nI + r],∇I (µ)).

By [7, Corollary 9.21 and Proposition 9.24(2)], we have

ΠI (∆∅(λ))〈nI +n〉[nI + r] �

∆I (λ′)〈m+n〉[m+ r] for some λ′ ∈ X+,reg
I and m ≥ 0 if λ ∈WIX

+,reg
I ;

0 if λ <WIX
+,reg
I .
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Using (2.5), we deduce that (3.1) holds under the present assumptions on n and r, so ΠI is left t-exact. An
analogous argument using the adjunction (ΠI〈−nI〉[−nI ],ΠI ) shows that ΠI is also right t-exact.

The fact that ΠI does not kill any nonzero object follows from similar arguments: if F is a nonzero
object in DbCohĠ×Gm(ÑI ), then there exists λ ∈ X+,reg

I and r,n ∈Z such that

HomDbCohĠ×Gm (ÑI )

(
∆I (λ)〈n〉[r],F

)
, 0.

As above we have

HomDbCohĠ×Gm (Ñ
∅

)

(
∆
∅

(λ)〈n〉[r],ΠI (F )
)
�HomDbCohĠ×Gm (ÑI )

(
∆I (λ)〈n〉[r],F

)
, 0,

so that ΠI (F ) , 0.

Lemma 3.4. The functor ΠI is t-exact with respect to the representation-theoretic t-structure.

Proof. We must show that ΠI (∆∅(λ)) belongs to DbCohĠ×Gm(ÑI )≤0
RT and that ΠI (∇∅(λ)) belongs to

DbCohĠ×Gm(ÑI )≥0
RT. Both of these assertions follow from [7, Proposition 9.24] and the definition of the

representation-theoretic t-structure.

3.C. Mixed derived category of the affine Grassmannian

The proof of Theorem 2.2 will require a “translation” of the problem to a setting involving constructible
sheaves on affine flag varieties. This will require in particular an equivalence of categories obtained in [8, 23]
(which adapts a result obtained by Arkhipov–Bezrukavnikov–Ginzburg [9] for characteristic-0 coefficients),
that we explain now.

Let K = C((t)) be the field of formal Laurent series in an indeterminate t, and let O = C[[t]] be the
ring of formal power series in t. Let Ġ∨ be the complex reductive algebraic group which is Langlands dual
to Ġ. By definition this group comes with a maximal torus Ṫ ∨ whose cocharacter lattice is X, and such
that the root system of (Ġ∨, Ṫ ∨) identifies with the coroot system of (Ġ, Ṫ ). We will also consider the Borel
subgroup Ḃ∨ ⊂ Ġ∨ containing Ṫ ∨ and associated with the negative coroots of Ġ.

Let Waff := W nX be the extended affine Weyl group and let WCox
aff ⊂ Waff be the “true” affine Weyl

group, i.e. the subgroup W nZR. (The image of λ ∈ X in Waff will be denoted tλ.) Then WCox
aff has a

natural structure of Coxeter group (such that S is a subset of the set of simple reflections), and whose length
function extends to Waff. We will denote by 0Waff ⊂Waff the subset of elements w which are minimal in
the coset Ww. This subset is in bijection with X, via the map sending λ ∈ X to the minimal element wλ in
Wtλ. (See e.g. [22, §2.2] for details and references on this subject.)

Consider the (left version of the) affine Grassmannian

Gr′ := Ġ∨(O )\Ġ∨(K ).

We denote by Iw ⊂ Ġ∨(O ) the Iwahori subgroup associated with Ḃ∨, i.e. the inverse image of Ḃ∨ under
the “evaluation at t = 0” morphism Ġ∨(O ) → Ġ∨. We consider the action of Iw on Gr′ induced by
right multiplication in Ġ∨(K ). The orbits for this action are parametrized in a natural way by the subset
0Waff ⊂Waff, and we will denote by Gr′w the orbit associated with w. Since each of these orbits is isomorphic
to an affine space, following [6] we can consider the mixed derived category

Dmix
(Iw)(Gr′ ,k) := KbParity(Iw)(Gr′ ,k)

and its perverse t-structure, where Parity(Iw)(Gr′ ,k) is the category of parity complexes on Gr′ with
respect to the stratification by Iw-orbits, in the sense of [19]. In particular, this theory provides standard and
costandard (mixed) perverse sheaves2 ∆mix

w and ∇mix
w for all w ∈ 0Waff, and indecomposable tilting perverse

2 ↑ In the general setting for the construction from [6] it is not known if the standard and costandard objects are perverse; but
this is true in the case of affine Grassmannians by [6, Corollary A.8].
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sheaves Tmix
w . We will denote by {1} the autoequivalence of Dmix

(Iw)(Gr′ ,k) induced by the cohomological

shift in Parity(Iw)(Gr′ ,k), and by [1] the usual shift of complexes; then the “Tate twist” 〈1〉 := {−1}[1] is
t-exact for the perverse t-structure.

The results of [8, 23] provide an equivalence of triangulated categories

Ψ :DbCohĠ×Gm(Ñ
∅

)
∼−→Dmix

(Iw)(Gr′ ,k)

which satisfies Ψ ◦ 〈1〉 � 〈1〉[−1] ◦Ψ and

Ψ (∆
∅

(λ)) � ∆mix
wλ , Ψ (∇

∅
(λ)) � ∇mix

wλ . (3.2)

From these properties we see that Ψ is t-exact if DbCohĠ×Gm(Ñ
∅

) is equipped with the representation-
theoretic t-structure and Dmix

(Iw)(Gr′ ,k) is equipped with the perverse t-structure.

Remark 3.5. See [7, Remark 11.3] for a comparison of the conventions used in [8] and in [23]. The assump-
tions in §2.A come from [8]; in [23], there are slightly more restrictive conditions on the group. Note that [8]
and parts of [23] work instead with the “left coset” affine Grassmannian Ġ∨(K )/Ġ∨(O ), but as explained
in [23, §3.2] it is straightforward to pass back and forth between this variety and Gr′ . We will use Gr′ for
now because it is more convenient for the arguments in Section 4, but in Section 5, we will switch to (a
positive characteristic analogue of) Ġ∨(K )/Ġ∨(O ).

The triangulated category Dmix
(Iw)(Gr′ ,k) also admits a second interesting t-structure, called the adverse

t-structure, defined in [8, §A.2]. This t-structure consists of the subcategories

aDmix
(Iw)(Gr′ ,k)≤0 = 〈∆mix

w 〈n〉[m] : w ∈ 0Waff, n,m ∈Z with n+m ≥ 0〉ext;
aDmix

(Iw)(Gr′ ,k)≥0 = 〈∇mix
w 〈n〉[m] : w ∈ 0Waff, n,m ∈Z with n+m ≤ 0〉ext.

From this definition we see that the functor 〈−1〉[1] is t-exact with respect to the adverse t-structure
and (using also (3.2)) that Ψ is t-exact if DbCohĠ×Gm(Ñ

∅
) is equipped with the exotic t-structure and

Dmix
(Iw)(Gr′ ,k) is equipped with the adverse t-structure.

3.D. Highest weight structure

The following analogue of Theorem 2.2 for the representation-theoretic t-structure turns out to be much
easier to prove.

Lemma 3.6. The objects ∆I (λ) and ∇I (λ) (λ ∈ X+,reg
I ) belong to grRep(ÑI ).

Proof. Let us first treat the case where I = ∅. In this case, we can use the equivalence of categories Ψ in-
troduced in §3.C. Since this equivalence takes the representation-theoretic t-structure on DbCohĠ×Gm(Ñ

∅
)

to the adverse t-structure on Dmix
(Iw)(Gr′ ,k), it suffices to prove that the objects ∆mix

w and ∇mix
w (w ∈ 0Waff)

belong to the heart of the adverse t-structure. This claim holds by [8, Proposition A.16].
Now suppose that I , ∅, and let λ ∈ X+,reg

I . By [7, Proposition 9.24] we have ∆I (λ) �ΠI (∆∅(λ))〈nI〉[nI ].
By Lemma 3.4 and the previous paragraph, we conclude that ∆I (λ) ∈ grRep(ÑI ). Similar reasoning applies
to ∇I (λ).

Remark 3.7. Under the assumption that ` is bigger than the Coxeter number of Ġ, one can alternatively
prove Lemma 3.6 by using the fact that the functor ΦI considered in §5.E is t-exact if DbCohĠ×Gm(ÑI ) is
endowed with the representation-theoretic t-structure and DbRepI (G) with its tautological t-structure, and
sends standard, resp. costandard, objects to standard, resp. costandard, objects.
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As in §2.C, this lemma implies that the category grRep(ÑI ) is a graded highest weight category in the
sense of [26, §7], with weight poset (X+,reg

I ,≤′), standard objects (∆I (λ) : λ ∈ X+,reg
I ), costandard objects

(∇I (λ) : λ ∈ X+,reg
I ), and shift functor 〈1〉[1]. In particular, we can consider the tilting objects in grRep(ÑI ).

The indecomposable tilting object associated with λ will be denoted TRT
I (λ), and the multiplicity of a

standard, resp. costandard, object ∆I (λ)〈m〉[m], resp. ∇I (λ)〈m〉[m], in a tilting object T will be denoted

(T : ∆I (λ)〈m〉[m]), resp. (T : ∇I (λ)〈m〉[m]).

Note that, in the case I = ∅, the isomorphisms in (3.2) imply that for λ ∈ X we have

Ψ (TRT
∅

(λ)) � Tmix
wλ . (3.3)

Remark 3.8. In the case I = ∅, the object TRT
∅

(λ) coincides with the indecomposable exotic parity object

in DbCohĠ×Gm(Ñ
∅

) associated with λ studied in [2]. Once Corollary 2.3 is established, this claim can be
generalized to any subset I ⊂ S .

3.E. Compatibility with translation functors

We are now in a position to refine some claims from Lemma 3.3.

Lemma 3.9. For any λ ∈ X+,reg
I , the objectΠI (∆I (λ)), resp.ΠI (∇I (λ)), belongs to grRep(Ñ

∅
), and it admits a

filtration whose subquotients are the objects of the form ∆
∅

(µ)〈m〉[m], resp. ∇
∅

(µ)〈−m〉[−m], where µ ∈WI (λ)
and m is the length of the unique element w ∈WI such that µ = w(λ) (each appearing once).

Proof. The first assertion follows from Lemma 3.3 and Lemma 3.6. We will prove the second one for the
object ∆I (λ); the case of ∇I (λ) is similar.

By general properties of graded highest weight categories (see e.g. [26, §7.4]), we know that an object
F ∈ grRep(Ñ

∅
) admits a filtration whose subquotients are standard objects if and only if

Ext1
grRep(Ñ

∅
)
(F ,∇

∅
(µ)〈n〉[n]) = HomDbCohĠ×Gm (Ñ

∅
)(F ,∇∅(µ)〈n〉[n+ 1]) = 0 (3.4)

for all µ ∈ X and all n ∈ Z. Moreover, if F admits such a filtration, then the number of occurences of a
specific standard object ∆

∅
(µ)〈n〉[n] as a subquotient in such a filtration is the dimension of

HomDbCohĠ×Gm (Ñ
∅

)(F ,∇∅(µ)〈n〉[n]). (3.5)

We apply this criterion to F =ΠI (∆I (λ)). As in the proof of Lemma 3.3 we have

Hom(ΠI (∆I (λ)),∇
∅

(µ)〈m〉[n]) �Hom(∆I (λ),ΠI (∇∅(µ))〈m−nI〉[n−nI ])

�

Hom(∆I (λ),∇I (wµ)〈m− `(w)〉[n− `(w)]) if w ∈WI and wµ ∈ X+,reg
I ;

0 if wµ < X+,reg
I for all w ∈WI .

Using (2.5), we deduce that Hom(ΠI (∆I (λ)),∇
∅

(µ)〈m〉[n]) vanishes unless m = n = `(w) and λ = wµ for
some w ∈WI , and is 1-dimensional otherwise. In particular, we have confirmed (3.4) for F = ΠI (∆I (λ)),
and we have shown that the space (3.5) is 1-dimensional if µ ∈ WI (λ) and m is the length of the unique
element w ∈WI such that µ = w(λ), and 0-dimensional otherwise.

Lemma 3.10. For any λ ∈ X+,reg
I , the object ΠI (TRT

I (λ)) is a tilting object in grRep(Ñ
∅

). It admits TRT
∅

(λ) as
a direct summand, and all its other direct summands are of the form TRT

∅
(ν)〈m〉[m] with ν <′ λ and ν <WI (λ).
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Proof. It follows from Lemma 3.9 that the functor ΠI sends tilting objects in grRep(ÑI ) to tilting objects in
grRep(Ñ

∅
). Hence indeed ΠI (TRT

I (λ)) is tilting, and Lemma 3.9 gives us information on the multiplicities
(ΠI (TRT

I (λ)) : ∆
∅

(ν)〈m〉[m]). More precisely, using also the construction of the order ≤′ (see in particular [7,
Equation (9.9)]), this information shows that

(ΠI (TRT
I (λ)) : ∆

∅
(ν)〈m〉[m]) , 0 ⇒ ν ≤′ λ,

and that (ΠI (TRT
I (λ)) : ∆

∅
(λ)〈m〉[m]) = δm,0. We deduce that TRT

∅
(λ) is a direct summand of ΠI (TRT

I (λ)),
with multiplicity 1, and that all the other indecomposable direct summands are of the form TRT

∅
(µ)〈m〉[m]

with µ <′ λ. If an object TRT
∅

(µ)〈m〉[m] with µ ∈WI (λ)r {λ} was also a direct summand, then we would
have

(ΠI (TRT
I (λ)) : ∆

∅
(µ)〈m〉[m]) , 0 and (ΠI (TRT

I (λ)) : ∇
∅

(µ)〈m〉[m]) , 0.

The first condition would imply that m > 0, and the second one that m < 0; a contradiction.

Remark 3.11. We expect (but do not prove in general) that in fact ΠI (TRT
I (λ)) � TRT

∅
(λ). See Remark 5.6

for more details.

4. Proof of Theorem 2.2

4.A. Reduction to a claim about adverse sheaves

For λ ∈ X+,reg
I , set

Xλ :=
⊔
µ≤′λ

Gr′wµ , Uλ :=
⊔

µ∈WI (λ)

Gr′wµ .

By definition of the order ≤′ , Xλ is a closed subvariety of Gr′ , and Uλ is open in Xλ. We will consider the
open and closed embeddings

jλ :Uλ ↪→ Xλ, iλ : Xλ rUλ ↪→ Xλ.

The definition of the mixed derived category in [6] applies to locally closed unions of Iw-orbits in
Gr′ also; in particular we can consider the categories Dmix

(Iw)(Xλ,k) and Dmix
(Iw)(Uλ,k), these categories

possess perverse t-structures, and they are related by functors (iλ)∗, (iλ)∗, (iλ)!, (jλ)∗, (jλ)!, (jλ)∗ which
satisfy the usual adjunction properties. Moreover, we have a fully faithful and t-exact pushforward functor
Dmix

(Iw)(Xλ,k) → Dmix
(Iw)(Gr′ ,k) associated with the closed embedding Xλ → Gr′ , whose essential image

contains Tmix
wλ . Therefore we may (and will) consider this object as belonging to Dmix

(Iw)(Xλ,k).
In §4.C below we will prove the following claim.

Lemma 4.1. For any λ ∈ X+,reg
I , the objects (jλ)!(jλ)∗Tmix

wλ and (jλ)∗(jλ)∗Tmix
wλ belong to the heart of the adverse

t-structure.

In the rest of this subsection we show that Lemma 4.1 implies Theorem 2.2. We fix λ ∈ X+,reg
I , and will

prove that ∆I (λ) belongs to ExCoh(ÑI ). The case of ∇I (λ) can be treated similarly.
By general properties of highest weight categories (see e.g. [26, Theorem 7.14]), we have an exact se-

quence
∆I (λ) ↪→ TRT

I (λ)� coker

in grRep(ÑI ), where coker is an extension of objects of the form ∆I (µ)〈m〉[m] with m ∈Z and µ ∈ X+,reg
I

such that µ <′ λ. Applying the exact functor ΠI (see Lemma 3.3) we deduce an exact sequence

ΠI (∆I (λ)) ↪→ΠI (TRT
I (λ))�ΠI (coker) (4.1)
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in grRep(Ñ
∅

). In view of Lemma 3.10, we can choose an isomorphism

ΠI (TRT
I (λ)) � TRT

∅
(λ)⊕T ,

where T is a direct sum of objects of the form TRT
∅

(ν)〈m〉[m] with ν <′ λ and ν < WI (λ). Using
Lemma 3.9 we see that Hom(ΠI (∆I (λ)),T ) = 0, so that the first arrow in (4.1) factors through an em-
bedding ΠI (∆I (λ)) ↪→ TRT

∅
(λ) whose cokernel is a direct summand of the third term in (4.1). In conclusion,

we have constructed a distinguished triangle

ΠI (∆I (λ))→ TRT
∅

(λ)→F
[1]
−−→ (4.2)

in DbCohĠ×Gm(Ñ
∅

), whose first term belongs to the triangulated subcategory generated by the objects of
the form ∆

∅
(µ)〈n〉 with µ ∈WI (λ), and whose third term belongs to the triangulated subcategory generated

by the objects of the form ∆
∅

(ν)〈n〉 with ν <′ λ and ν <WI (λ).
Applying Ψ to (4.2) and using (3.3) we obtain a distinguished triangle

Ψ
(
ΠI (∆I (λ))

)
→ Tmix

wλ → Ψ (F )
[1]
−−→ . (4.3)

The comments above and (3.2) show that all three objects in this triangle are supported on Xλ, and that

(iλ)∗Ψ
(
ΠI (∆I (λ))

)
= 0, (jλ)∗Ψ (F ) = 0. (4.4)

Now, consider the natural distinguished triangle

(jλ)!(jλ)∗Tmix
wλ → Tmix

wλ → (iλ)∗(iλ)∗Tmix
wλ

[1]
−−→, (4.5)

where the first two arrows are the adjunction maps. Adjunction and the first equality in (4.4) show that
the composition of the first arrow in (4.3) with the second arrow in (4.5) vanishes. In view of [12, Proposi-
tion 1.1.9], this implies that there exists a unique morphism of triangles

Ψ
(
ΠI (∆I (λ))

)
Tmix
wλ Ψ

(
ΠI (coker)

)

(jλ)!(jλ)∗Tmix
wλ Tmix

wλ (iλ)∗(iλ)∗Tmix
wλ

[1]

[1]

whose middle morphism is the identity. (Here, the upper line is (4.3), and the lower line is (4.5).) Similar
considerations using the second property in (4.4) produce a morphism of triangles in the reverse direction,
and applying the uniqueness claim in [12, Proposition 1.1.9] to both compositions of these morphisms we
see that they are isomorphisms, inverse to each other.

In particular, we have shown that there exists an isomorphism

Ψ
(
ΠI (∆I (λ))

)
� (jλ)!(jλ)∗Tmix

wλ .

By Lemma 4.1 the right-hand side belongs to the heart of the adverse t-structure. By t-exactness of Ψ
(see §3.C), it follows that ΠI (∆I (λ)) belongs to the heart of the exotic t-structure. In view of Lemma 3.3,
this shows that ∆I (λ) belongs to the heart of the exotic t-structure, and finishes the proof of Theorem 2.2.
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4.B. Iwahori–Whittaker mixed derived categories

The proof of Lemma 4.1 will require a new “translation”, via the Koszul duality from [3] (which adapts
a characteristic-0 construction due to Bezrukavnikov–Yun [16]), to a setting involving Whittaker parity
complexes on affine flag varieties. This will require in particular a passage from the classical topology to
the étale topology. Since étale sheaves are defined only for certain choices of coefficients, in the next two
subsections we replace k by a large enough finite field of characteristic ` (or by a finite extension of Q`′ for
some prime `′ if ` = 0), that we will still denote by k for simplicity. Lemma 4.1 of course makes sense for
such coefficients, and this variant will imply the lemma as stated in §4.A.

The general theory of Whittaker parity complexes on partial flag varieties of Kac–Moody groups is
developed in Appendix A (after partial results obtained in [27, 3]). In this subsection we explain how to
apply these general results in the present case of affine flag varieties.

Let F be an algebraically closed field such that char(F ) = p > 0 and p , ` (or p , `′ if ` = 0). We now
consider the connected reductive F -group Ġ∨

F
which is Langlands dual to Ġ, and its maximal torus Ṫ ∨

F

and Borel subgroup Ḃ∨
F

, defined as in §3.C. We will also denote by H the simply-connected cover of the
derived subgroup of Ġ∨

F
. We can then consider the groups H(F ((t))) and H(F [[t]]), the Iwahori subgroup

IwH ⊂H(F [[t]]), and the affine flag variety

Fl :=H(F ((t)))/IwH .

(By our conventions, this ind-variety is connected.)
As in [27, §11.7] and [3, §7.2] we can consider the “Iwahori–Whittaker” derived category Db

IW (Fl,k)
and its “mixed” variant Dmix

IW (Fl,k) (defined again as an appropriate bounded homotopy category of parity
complexes). These categories are defined using the action of an Iwahori subgroup Iw+

H associated with a
positive Borel subgroup in H . The orbits of Iw+

H on Fl are parametrized in a natural way by WCox
aff and

we denote the orbit associated with w by Flw. If we set 0WCox
aff := 0Waff ∩WCox

aff , then the indecomposable
parity complexes in Db

IW (Fl,k) are naturally parametrized by 0WCox
aff ×Z, and we will denote by EIWw the

object corresponding to (w,0). The complex concentrated in degree 0, and with degree-0 term EIWw , is an
object of Dmix

IW (Fl,k), which will be denoted EIW ,mix
w .

The cohomological shift in the triangulated category Db
IW (Fl,k) restricts to an autoequivalence of the

subcategory of parity complexes, and thus induces an autoequivalence of Dmix
IW (Fl,k). This autoequivalence

will be denoted by {1}.
To I ⊂ S we can also associate a parabolic affine flag variety

FlI :=H(F ((t)))/P IH ,

where P IH ⊂H(F [[t]]) is the parahoric subgroup corresponding to the parabolic subgroup of H containing
the negative Borel subgroup and associated which I . The natural projection qI : Fl→ FlI is a smooth, proper
morphism. In the same way as for Fl, we can consider the Iwahori–Whittaker derived category Db

IW (FlI ,k)
and its “mixed” variant Dmix

IW (FlI ,k). The latter category admits a natural perverse t-structure, defined by
the same procedure as in [6]; see Appendix A for details.

Remark 4.2. In Appendix A, for completeness we work in the setting of (partial) flag varieties of Kac–
Moody groups. It seems very likely that the partial affine flag varieties considered above are special cases
of (products of) flag varieties of (untwisted affine) Kac–Moody groups, but we do not know of a reference
for this claim. (See, however, [20, Chap. XIII] for similar claims when the base field is C, and [25, §9.f]
for the case I = ∅.) In any case, all the properties of flag varieties of Kac–Moody groups that we use
in Appendix A have well-known analogues for affine flag varieties, so that all of our results apply in this
setting also.
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The orbits of Iw+
H on FlI are parametrized in a natural way by WCox

aff /WI , or equivalently by the subset
of WCox

aff consisting of elements w which are maximal in wWI . Let 0W I
aff ⊂Waff be the subset

0W I
aff := {w ∈Waff | w is maximal in wWI and wv ∈ 0Waff for all v ∈WI }.

Then it is well known that the orbits that support a nonzero Iwahori–Whittaker local system correspond
to the subset WCox

aff ∩
0W I

aff ⊂W
Cox
aff . Therefore, the indecomposable parity complexes in Db

IW (FlI ,k) are
parametrized by (WCox

aff ∩
0W I

aff)×Z (see §A.B for more details). For any w ∈WCox
aff ∩

0W I
aff, we will denote

by EIW ,Iw the indecomposable parity complex associated with (w,0), and by EIW ,I ,mix
w the corresponding

object of Dmix
IW (FlI ,k). Similarly, for such w’s we have standard and costandard objects in Dmix

IW (FlI ,k),
which will be denoted ∆IW ,I ,mix

w and ∇IW ,I ,mix
w respectively.

Remark 4.3. In Appendix A we label orbits in FlI by minimal representatives in cosets wWI instead of
maximal representatives. Thus, if wI0 is the longest element in WI , then the orbit labelled by w in the
present section would be labelled by wwI0 with the conventions of Appendix A.

The following claim is a counterpart in the present setting of Lemma A.12, and follows from similar
considerations.

Lemma 4.4. For any w ∈WCox
aff ∩

0W I
aff, the objects (qI )∗∆

IW ,I ,mix
w {`(wI0)} and (qI )∗∇

IW ,I ,mix
w {`(wI0)} belong

to the heart of the perverse t-structure.

4.C. Proof of Lemma 4.1

Using Lemma 4.4, we can now prove Lemma 4.1. In fact we will treat the case of (jλ)!(jλ)∗Tmix
wλ ; the case of

(jλ)∗(jλ)∗Tmix
wλ is similar and left to the reader.

We first remark that all the connected components of Gr′ are isomorphic as ind-varieties stratified by
the Iw-orbits. Hence we can assume that λ belongs to ZR, or equivalently that wλ ∈ WCox

aff , or in other
words that Tmix

wλ is supported on the connected component (Gr′)0 of the base point.
Now, recall the “Koszul duality” equivalence

κ :Dmix
(Iw)

(
(Gr′)0,k

) ∼−→Dmix
IW (Fl,k)

from [3, Theorem 7.4]. This equivalence satisfies κ ◦ 〈1〉 = 〈1〉[1]◦κ, and sends standard, resp. costandard,
perverse sheaves to standard, resp. costandard, perverse sheaves (in a way compatible with labellings).
Hence it is t-exact if Dmix

(Iw)((Gr′)0,k) is endowed with the adverse t-structure and Dmix
IW (Fl,k) is endowed

with the perverse t-structure. By [3, Theorem 7.4], it also satisfies

κ(Tmix
w ) � EIW ,mix

w (4.6)

for any w ∈WCox
aff ∩

0Waff.

Fix λ ∈ X+,reg
I , and recall the distinguished triangle (4.5) in Dmix

(Iw)

(
(Gr′)0,k

)
. Applying κ and using (4.6)

we deduce a distinguished triangle

κ((jλ)!(jλ)∗Tmix
wλ )→EIW ,mix

wλ → κ((iλ)∗(iλ)∗Tmix
wλ )

[1]
−−→ . (4.7)

On the partial affine flag variety FlI , let (FlI )wλ be the Iw+
H -orbit corresponding to wλ, and consider

the embeddings
jIλ : (FlI )wλ ↪→ (FlI )wλ , iIλ : (FlI )wλ r (FlI )wλ ↪→ (FlI )wλ .
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As in §4.A we have pullback and pushforward functors between mixed derived categories associated with
these maps, and using these functors we obtain a canonical distinguished triangle

∆IW ,I ,mix
wλ →EIW ,I ,mix

wλ → (iIλ)∗(i
I
λ)∗EIW ,I ,mix

wλ

[1]
−−→ . (4.8)

Now by [7, Lemma 10.2] we have wλ ∈ 0W I
aff. Hence by Lemma A.5 (see also Remark 4.3) we have an

isomorphism EIW ,mix
wλ � (qI )∗E

IW ,I ,mix
wλ {`(wI0)}; therefore applying the triangulated functor (qI )∗{`(wI0)}

to (4.8) gives a distinguished triangle

(qI )
∗∆IW ,I ,mix
wλ {`(wI0)} → EIW ,mix

wλ → (qI )
∗(iIλ)∗(i

I
λ)∗EIW ,I ,mix

wλ {`(wI0)}
[1]
−−→ . (4.9)

We now want to identify the triangles (4.7) and (4.9). Applying κ−1 to the composition of the first arrow
in (4.7) and the second arrow in (4.9) gives a map

(jλ)!(jλ)∗Tmix
wλ → κ−1((qI )

∗(iIλ)∗(i
I
λ)∗EIW ,I ,mix

wλ {`(wI0)}).

This map is 0 by adjunction, since the second term is supported on XλrUλ. Hence our original composition
also vanishes, and as in §4.A we obtain a unique morphism of triangles

κ((jλ)!(jλ)∗Tmix
wλ ) EIW ,mix

wλ κ((iλ)∗(iλ)∗Tmix
wλ )

(qI )∗∆
IW ,I ,mix
wλ {`(wI0)} EIW ,mix

wλ (qI )∗(i
I
λ)∗(i

I
λ)∗EIW ,I ,mix

wλ {`(wI0)}

[1]

[1]

whose second vertical arrow is the identity. Consider now the space of maps between the first object in (4.9)
and the third object in (4.7): we have

HomDmix
IW (Fl,k)

(
(qI )

∗∆IW ,I ,mix
wλ {`(wI0)},κ((iλ)∗(iλ)∗Tmix

wλ )
)

�HomDmix
IW (FlI ,k)

(
∆IW ,I ,mix
wλ {`(wI0)}, (qI )∗κ((iλ)∗(iλ)∗Tmix

wλ )
)
.

By Lemma A.8, the object (qI )∗κ((iλ)∗(iλ)∗Tmix
wλ ) belongs to the triangulated subcategory of Dmix

IW (FlI ,k)

generated by the objects ∇IW ,I ,mix
v with v , wλ; hence this Hom-space vanishes. There is thus a unique

morphism of triangles from (4.9) to (4.7) whose middle arrow is the identity and, as in §4.A, applying [12,
Proposition 1.1.9] to both compositions of these morphisms gives that they are inverse isomorphisms. We
have finally identified (4.7) and (4.9), hence proved in particular that there exists an isomorphism

κ((jλ)!(jλ)∗Tmix
wλ ) � (qI )

∗∆IW ,I ,mix
wλ {`(wI0)}. (4.10)

We can finally conclude: Lemma 4.4 guarantees that the right-hand side of (4.10) is perverse; hence
(jλ)!(jλ)∗Tmix

wλ is adverse, which finishes the proof.

5. Application: a singular version of the mixed Finkelberg–Mirković con-
jecture

In this section we assume that k is an algebraic closure of F` .
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5.A. Whittaker perverse sheaves on Gr

We continue with the notation of §4.B. We also denote by Ḃ∨,+
F

the Borel subgroup of Ġ∨
F

which is opposite
to Ḃ∨

F
with respect to Ṫ ∨

F
. (In other words, as the notation suggests, Ḃ∨,+

F
is the positive Borel subgroup of

Ġ∨
F

.) We will now work with the F -version of the affine Grassmannian (in its usual incarnation in terms of
cosets for right multiplication), defined by

Gr := Ġ∨
F

(
F ((t))

)
/Ġ∨

F

(
F [[t]]

)
.

We have a natural embedding
X = Ṫ ∨

F

(
F ((t))

)
/Ṫ ∨
F

(
F [[t]]

)
→Gr,

and we will denote by Lλ the image of λ ∈ X.
Let again I ⊂ S be a subset, and consider the associated parabolic subgroup Ṗ ∨,+

F ,I ⊂ Ġ
∨ containing

Ḃ∨,+
F

. Let also L̇∨
F ,I be the Levi factor of Ṗ ∨,+

F ,I containing Ṫ ∨
F

, and set U̇∨
F ,I := U̇∨

F
∩ L̇∨

F ,I , where U̇∨
F

is the
unipotent radical of the (negative) Borel subgroup Ḃ∨

F
⊂ Ġ∨

F
. We set

QI := ev−1
(
(Ṗ ∨,+
F ,I )u · U̇∨F ,I

)
,

where ev : Ġ∨
F

(
F [[t]]

)
→ Ġ∨

F
is the natural morphism, and (Ṗ ∨,+

F ,I )u is the unipotent radical of Ṗ ∨,+
F ,I . Fix-

ing an Artin–Schreier local system on U̇∨
F ,I and pulling it back to QI , we obtain a notion of “Whit-

taker” complexes on Gr (see e.g. §A.B);3 we denote the corresponding category of parity complexes by
ParityWh,I (Gr,k), and the associated mixed derived category by Dmix

Wh,I (Gr,k). (In case I = ∅, this con-
struction recovers the familiar Iwahori-constructible categories.) As in §4.B, this category is endowed with
a natural “perverse” t-structure, whose heart will be denoted Pervmix

Wh,I (Gr,k), and the corresponding stan-
dard and costandard objects are perverse (by an appropriate analogue of Proposition A.9). By standard
arguments (see e.g. [6]), this implies that the realization functor (see [12, §3.1] or [11, Appendix]) induces an
equivalence of categories

DbPervmix
Wh,I (Gr,k)

∼−→Dmix
Wh,I (Gr,k). (5.1)

The orbits of QI on Gr are parametrized in a natural way by X, where λ corresponds to the orbit
of Lλ. To understand the combinatorics of orbits on (partial) affine flag varieties, it is usually simpler to
work with the negative Iwahori subgroup Iw

F
(defined as ev−1(Ḃ∨

F
)). But here, because we will eventually

want to combine our constructions with those of [8] and [7, Section 11], we instead work with the positive
Iwahori subgroup Iw+

F
, defined as ev−1(Ḃ∨,+

F
). We now explain how to compare the resulting combinatorics

of orbits.
We set

Gr′
F

:= Ġ∨
F

(
F [[t]]

)
\Ġ∨

F

(
F ((t))

)
and Fl′

F
:= Iw

F
\Ġ∨

F

(
F ((t))

)
.

Then the Iw
F

-orbits on Fl′
F

(for the action induced by right multiplication) are parametrized in a natural
way by Waff, and those on Gr′

F
by 0Waff. Consider a “Cartan” anti-automorphism of Ġ∨

F
which acts as

the identity on Ṫ ∨
F

and sends Ḃ∨
F

to Ḃ∨,+
F

. (With the notation of [7, Remark 11.3(2)], this antiautomorphism
can be chosen as the composition of the F -version of the automorphism ϕ with the map g 7→ g−1.) This
map induces an isomorphism Gr′

F
→Gr, which sends the Iw

F
-orbit corresponding to wλ to the Iw+

F
-orbit

of Lλ.

Lemma 5.1. For λ ∈ X, theQI -orbit on Gr labelled by λ supports a nonzero local system which isQI -equivariant
against the pullback of the Artin–Schreier local system iff λ ∈ −X+,reg

I .

3 ↑ Here we understand the étale derived category of k-sheaves on Gr as the direct limit of the categories of k0-sheaves, where
k0 runs over finite subfields of k.
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Proof. We translate our problem in terms of Gr′
F

following the principles presented above. We will denote
by Q−I the analogue of QI where the roles of positive and negative roots are switched (so that Q−I is the
appropriate analogue in the present setting of the subgroup U K ·U #

K of §A.B). Then we have to show that
the Q−I -orbit labelled with wλ supports a (nonzero) Whittaker local system iff λ ∈ −X+,reg

I . By the general
considerations in §A.B, the latter condition holds iff vwλ is minimal in vwλWI for any v ∈W .

First, we assume that wλ satisfies this property. Then `(vwλw) = `(vwλ) + `(w) = `(v) + `(wλ) + `(w)
for any v ∈ W and w ∈ WI . In particular, wλw

I
0 belongs to 0Waff; it must then coincide with wwI0(λ). In

view of [7, Lemma 10.2], this implies that wI0(λ) belongs to X+,reg
I , so that λ ∈ −X+,reg

I .
Conversely, assume that λ ∈ −X+,reg

I . Then, by the converse implication in [7, Lemma 10.2], wwI0(λ)w
I
0

belongs to 0Waff, hence coincides with wλ; moreover we have `(vwλw) = `(v)+`(wλw) = `(v)+`(wλ)+`(w)
for any v ∈W and w ∈WI . This implies that vwλ is minimal in vwλWI for any v ∈W , and finishes the
proof.

For λ ∈ −X+,reg
I , we will denote by EWh,I (λ), JWh,I

! (λ), JWh,I
∗ (λ), JWh,I

!∗ (λ), T Wh,I (λ) the corre-
sponding normalized indecomposable parity complex, standard mixed perverse sheaf, costandard mixed
perverse sheaf, simple mixed perverse sheaf and indecomposable mixed tilting perverse sheaf associated
with λ respectively; see [6] for details on these notions. We will also denote by EWh,I ,mix(λ) the object of
Dmix

Wh,I (Gr,k) consisting of the complex with EWh,I (λ) in degree 0, and 0 in other degrees. (When I = ∅,
we will sometimes omit the superscripts.)

5.B. Averaging functor

We have a natural “averaging” functor

AvI :Db
Wh,∅(Gr,k)→Db

Wh,I (Gr,k),

defined by the same procedure as in §A.C.
In the following lemma we use the notion of the “naive” quotient of an additive category by a full

additive subcategory as in §A.C.

Lemma 5.2. The functor AvI sends parity complexes to parity complexes. Moreover, it induces an equivalence of
additive categories

ParityWh,∅(Gr,k) // 〈E(λ) : λ < −X+,reg
I 〉⊕,Z

∼−→ ParityWh,I (Gr,k),

where 〈E(λ) : λ < −X+,reg
I 〉⊕,Z is the full subcategory of ParityWh,∅(Gr,k) whose objects are direct sums of shifts

of objects of the form E(λ) with λ < −X+,reg
I .

Proof. In view of Lemma 5.1, this statement is the analogue in the present context of Proposition A.6.

From Lemma 5.2 we obtain in particular that AvI induces a functor

Avmix
I :Dmix

Wh,∅(Gr,k)→Dmix
Wh,I (Gr,k)

on bounded homotopy categories.

Lemma 5.3. For λ ∈ −X+,reg
I we have

Avmix
I (J!(λ)) � JWh,I

! (λ), Avmix
I (J∗(λ)) � JWh,I

∗ (λ).

Proof. These claims are special cases of the analogue in the present context of Lemma A.11. In particular,
from the proof of Lemma 5.1, for λ ∈ −X+,reg

I , wλ is minimal in wλWI and so the shifts appearing in the
second statement of Lemma A.11 are 0.
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5.C. Study of tilting objects in ExCoh(ÑI )

We denote by Tilt(ExCoh(ÑI )) the full additive subcategory of ExCoh(ÑI ) whose objects are the tilting
objects. (This notion does make sense now that Corollary 2.3 is proved.) By the general theory of (graded)
highest weight categories, we know that the isomorphism classes of indecomposable objects in this category
are in a natural bijection with X+,reg

I × Z. For any λ ∈ X+,reg
I , we will denote by Texo

I (λ) the object
associated with the pair (λ,0); then the object associated with (λ,n) is Texo

I (λ)〈n〉. It is also known that the
“realization” functor

KbTilt(ExCoh(ÑI ))→DbCohĠ×Gm(ÑI ) (5.2)

provided by [3, Proposition 2.2] is an equivalence of categories. (To construct this functor one needs to
choose a “filtered version” of DbCohĠ×Gm(ÑI ); here we take the filtered version constructed in [12, §3.1].)

Lemma 5.4. (1) For any T in Tilt(ExCoh(Ñ
∅

)), the object ΠI (T ) belongs to ExCoh(ÑI ), and is tilting
therein.

(2) If λ < −X+,reg
I we have ΠI (T

exo
∅

(λ)) = 0.

Proof. (1) Let T ∈ Tilt(ExCoh(Ñ
∅

)). Then T is an extension of objects of the form ∆
∅

(λ)〈n〉 for λ ∈ X and
n ∈Z. By [7, Corollary 9.21 and Proposition 9.24(2)], we deduce that ΠI (T ) is an extension (in the sense of
triangulated categories) of objects of the form ∆I (µ)〈n〉[m] for µ ∈ X+,reg

I , n ∈Z and m ∈Z≤0, hence that

Hom(ΠI (T ),∇I (ν)〈n〉[m]) = 0 if m > 0. (5.3)

Now, T is also an extension of objects ∇
∅

(λ)〈n〉 for λ ∈ X and n ∈ Z. Using now [7, Corollary 9.21 and
Proposition 9.24(1)], we deduce similarly that

Hom(∆I (ν),ΠI (T )〈n〉[m]) = 0 if m > 0. (5.4)

By [14, Lemma 4], the properties (5.3) and (5.4) imply that ΠI (T ) belongs to ExCoh(ÑI ), and is tilting
therein.

(2) As observed in the proof of Lemma 5.1, if λ < −X+,reg
I then there exists v ∈W such that vwλ is not

minimal in vwλWI , or in other words such that vwλ admits a reduced expression ending with a simple
reflection s ∈ I . In view of [22, Proof of Corollary 4.2] this shows that Texo

∅
(λ) is then a direct summand of

an object which is killed by ΠI .

5.D. Exotic sheaves and mixed perverse sheaves

Recall now the equivalence Ψ from §3.C. Here we will rather consider the variant of this equivalence
considered in [7, §11.3], which will be denoted

P :Dmix
Wh,∅(Gr,k)

∼−→DbCohĠ×Gm(Ñ
∅

).

Note that in [7] the affine Grassmannian is defined over the complex numbers, while here we work with
étale sheaves on the F -version of this variety. The fact that these two constructions give rise to equivalent
categories follows from the general principles from [12, §6.1].

We now denote by
Pervsph(Gr,k)

the abelian category of Ġ∨
F

(
F [[t]]

)
-equivariant k-perverse sheaves on Gr. This category is equipped with

a symmetric monoidal structure given by the convolution product ?; moreover if we denote by Repf(Ġ)
the category of finite-dimensional algebraic Ġ-modules, then the geometric Satake equivalence provides an
equivalence of abelian monoidal categories

S :
(
Pervsph(Gr,k),?

)
→

(
Repf(Ġ),⊗

)
;
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see [24] for the original source and [10] for a more detailed exposition of the proof. The same considerations
as in [7, §11.2] (see also [15, §4.4]) show that the convolution construction also provides an action of the
monoidal category (Pervsph(Gr,k),?) on Dmix

Wh,I (Gr,k) on the right, which will also be denoted ?.
The following theorem is a “parabolic version” of the main results of [8] and [23].

Theorem 5.5. There exists an equivalence of triangulated categories

PI :Dmix
Wh,I (Gr,k)

∼−→DbCohĠ×Gm(ÑI )

such that

(1) there exists an isomorphism of functors PI ◦ 〈1〉 � 〈1〉[1] ◦ PI ;

(2) for any λ ∈ −X+,reg
I there exist isomorphisms

PI (J
Wh,I

! (λ)) � ∆I (w
I
0(λ)), PI (JWh,I

∗ (λ)) � ∇I (wI0(λ)),

PI (EWh,I ,mix(λ)) � Texo
I (wI0(λ));

(3) for any F in Dmix
Wh,I (Gr,k) and G ∈ Pervsph(Gr,k), there exists a bifunctorial isomorphism

PI (F ? G) � PI (F )⊗S(G);

(4) the following diagram commutes up to isomorphism:

Dmix
Wh,∅(Gr,k) DbCohĠ×Gm(Ñ

∅
)

Dmix
Wh,I (Gr,k) DbCohĠ×Gm(ÑI ).

P
∼

Avmix
I

ΠI

PI
∼

Proof. The equivalence P restricts to an equivalence of additive categories

P ′ : ParityWh,∅(Gr,k)
∼−→ Tilt(ExCoh(Ñ

∅
))

sending E(λ) to Texo
∅

(λ), see [8, Proposition 8.4]. Lemma 5.2 and Lemma 5.4 imply that ΠI ◦ P ′ factors
through a functor

P ′I : ParityWh,I (Gr,k)→ Tilt(ExCoh(ÑI )).

Passing to bounded homotopy categories and composing with the equivalence (5.2) we deduce a functor

PI :Dmix
Wh,I (Gr,k)→DbCohĠ×Gm(ÑI )

which satisfies (1).
Consider now the diagram

Dmix
Wh,∅(Gr,k) KbParity(Iw)(Gr,k) KbTilt(ExCoh(Ñ

∅
)) DbCohĠ×Gm(Ñ

∅
)

Dmix
Wh,I (Gr,k) KbParityWh,I (Gr,k) KbTilt(ExCoh(ÑI )) DbCohĠ×Gm(ÑI )

Avmix
I

P

KbAvI

KbP ′
∼

KbΠI

real
∼

ΠI

PI

KbP ′I real
∼
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where the maps labelled “real” are the functors (5.2). The leftmost square in this diagram commutes by
definition, and the middle square commutes by construction of P ′I . The rightmost square commutes by [3,
Proposition 2.3]. (To be able to apply this result we need to check that the functor ΠI admits a “lift” to the
filtered versions. This however follows from [11, Example A.2].) The bottom part of the diagram commutes
by definition of PI .

We claim that the top part of the diagram also commutes (up to isomorphism). This will again follow
from [3, Proposition 2.3] once we justify that the functor P lifts to filtered versions. (Here, the filtered version
of Dmix

Wh,∅(Gr,k) that we consider is the same as in [3, Comments preceding Lemma 2.4]; the corresponding
realization functor is then the identity.) In fact, P is defined (see [8, §7]) by applying an additive functor

P 0 : ParityWh,∅(Gr,k)→ CohĠ×Gm(Ñ
∅

)

termwise to complexes of parity complexes. Using the filtered version of the category Dmix
Wh,∅(Gr,k) con-

structed in [4, §2.5] and that of DbCohĠ×Gm(Ñ
∅

) constructed in [12, §3.1], we can again apply P 0 termwise
to filtered objects formed from ParityWh,∅(Gr,k) to obtain filtered objects formed from CohĠ×Gm(Ñ

∅
),

and hence obtain the required lift. This finishes the justification of the commutativity of the diagram in (4).
For λ ∈ −X+,reg

I , by [7, Proposition 9.24] we have

ΠI (∆∅(λ)) � ∆I (w
I
0(λ)), ΠI (∇∅(λ)) � ∇I (wI0(λ)).

Comparing this with Lemma 5.3 we deduce that

PI (J
Wh,I

! (λ)) � ∆I (w
I
0(λ)) and PI (JWh,I

∗ (λ)) � ∇I (wI0(λ)).

Then standard arguments (see e.g. [3, Theorem 6.5]) show that PI is an equivalence of categories. In partic-
ular, this functor must send indecomposable objects to indecomposable objects, and the third isomorphism
in (2) follows.

To conclude, it only remains to prove (3). By construction of the convolution action of Pervsph(Gr,k) on
Dmix

Wh,I (Gr,k), it suffices to construct such an isomorphism when G is parity (in addition to being perverse),

i.e. when S(G) is a tilting Ġ-module. In this case the functor (−)⊗S(G) stabilizes Tilt(ExCoh(Ñ
∅

)) by [22,
Proposition 4.10]. The equivalence P intertwines the functors (−)?G and (−)⊗S(G) (see [8, Proposition 7.2]);
therefore the same property holds for its restriction P ′ .

The functor ΠI clearly commutes with the functors (−)⊗S(G); from this we deduce that (−)⊗S(G) also
preserves the subcategory Tilt(ExCoh(ÑI )). Now the functor AvI commutes with (−)?G (see e.g. [27, (11.1.1)]
for a similar statement); hence the latter functor preserves the kernel of the former, namely the subcategory
〈E(λ) : λ < −X+,reg

I 〉⊕,Z of ParityWh,∅(Gr,k). By construction of the functor P ′I out of P ′ , AvI and ΠI ,
we finally deduce that this functor also intertwines the functors (−) ? G and (−) ⊗ S(G). And using [3,
Proposition 2.3] once again we deduce (3).

5.E. Relation with representations of reductive groups

From now on we fix a connected reductive group G over k with simply-connected derived subgroup, and
assume that ` > h, where h is the Coxeter number of G. We also fix a maximal torus and a Borel subgroup
T ⊂ B ⊂ G. We then assume that Ġ, resp. Ḃ, resp. Ṫ , is the Frobenius twist of G, resp. B, resp. T . (Of
course, Ġ is a reductive group that is isomorphic to G, but it plays a different conceptual role.) Note that `
is automatically very good for Ġ, so that the assumptions of §2.A hold.

We will identify the lattice of characters of T with X, in such a way that the composition of the Frobenius
morphism T → Ṫ with the character λ ∈ X = X∗(Ṫ ) is the character `λ of T . We will consider the “dilated
and shifted” action of Waff on X defined by

w ·` µ = w(µ+ ρ)− ρ, tλ ·` µ = µ+ `λ
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for w ∈W and λ,µ ∈ X. (Here, ρ ∈ 1
2X is as usual the halfsum of the positive roots.)

Denote by Rep
∅

(G) the “extended principal block" of the category Repf(G) of finite-dimensional alge-
braic G-modules, that is, the Serre subcategory generated by the simple modules whose highest weight has
the form w ·`0 with w ∈Waff. Here the weight w ·`0 is dominant iff w belongs to the subset 0Waff ⊂Waff. In
particular, Rep

∅
(G) contains the Weyl and induced modules of highest weight w ·` 0 for w ∈ 0Waff, denoted

M(w ·` 0) and N(w ·` 0) respectively. The corresponding simple object will be denoted L(w ·` 0).
Given a subset I ⊂ S , we let RepI (G) be the Serre subcategory of Repf(G) generated by the simple

modules whose highest weight has the form w ·` (−ςI ) for w ∈Waff. This category is a direct summand of
Repf(G) and is “singular at I" in that the stabilizer of −ςI under the dot action of Waff is the subgroup WI

of W generated by I . Here, the weight w ·` (−ςI ) is dominant iff w belongs to 0W I
aff ⊂Waff (see [7, §10.1]).

In particular, RepI (G) contains the Weyl and induced modules of highest weight w ·` (−ςI ) for w ∈ 0W I
aff,

denoted M(w ·` (−ςI )) and N(w ·` (−ςI )) respectively, and the corresponding simple module L(w ·` (−ςI )).
Recall the bijection X

∼−→ 0Waff considered in §3.C. As explained in [7, Lemma 10.2], this bijection
restricts to a bijection X+,reg

I
∼−→ 0W I

aff. Recall also the functor

ΦI :DbCohĠ×Gm(ÑI )→DbRepI (G)

constructed in [7, §10.3]. (In the notation of [7], we have ΦI := ΩI ◦κI .) According to [7, Proposition 10.6],
this is a degrading functor with respect to 〈1〉[1]: that is, there exists a natural isomorphism ΦI◦〈1〉[1]

∼−→ ΦI ,
such that ΦI induces an isomorphism⊕

n∈Z
HomDbCohĠ×Gm (ÑI )

(F ,G〈n〉[n])
∼−→HomDbRepI (G)(ΦI (F ),ΦI (G)) (5.5)

for all F ,G ∈DbCohĠ×Gm(ÑI ). Moreover, by [7, Proposition 10.3] we have

ΦI (∆I (λ)) �M(wλ ·` (−ςI )), ΦI (∇I (λ)) � N(wλ ·` (−ςI )). (5.6)

It is clear from these properties that ΦI is t-exact if DbCohĠ×Gm(ÑI ) is endowed with the representation-
theoretic t-structure, and DbRepI (G) with its tautological t-structure. In particular, this provides a grading
on the category RepI (G) in the sense of [13, Definition 4.3.1] (see also [7, Definition 11.5]); in other words,
under our present assumptions grRep(ÑI ) is a “graded version” of RepI (G).

Remark 5.6. In view of [7, Theorem 8.16, Remark 8.17 and Proposition 9.25], the functors Φ
∅

and ΦI
intertwine the “geometric translation functors”ΠI andΠI and the usual translation functors for G-modules,
denoted T I

∅
and T ∅I in [7]. Using [18, Proposition E.11], it follows that in the setting of Lemma 3.10 we in

fact have ΠI (TRT
I (λ)) � TRT

∅
(λ) under the present assumptions.

5.F. The singular Mirković–Vilonen conjecture

The following theorem is a “singular analogue” of [7, Proposition 11.6 and Theorem 11.7]. Here we denote

by ForĠG : Repf(Ġ)→ Repf(G) the restriction functor associated with the Frobenius morphism G→ Ġ.

Theorem 5.7. (1) For any F in Pervmix
Wh,I (Gr,k) and G in Pervsph(Gr,k), the object F ? G belongs to

Pervmix
Wh,I (Gr,k).

(2) There exists an exact functor
QI : Pervmix

Wh,I (Gr,k)→ RepI (G)

together with an isomorphism εI : QI
∼−→QI◦〈1〉 such that the triple (Pervmix

Wh,I (Gr,k),QI , εI ) is a grading
on RepI (G). In addition,
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(a) for any λ ∈ −X+,reg
I we have

QI (J
Wh,I

! (λ)) �M(wwI0(λ) ·` (−ςI )), QI (JWh,I
∗ (λ)) � N(wwI0(λ) ·` (−ςI )),

QI (J
Wh,I

!∗ (λ)) � L(wwI0(λ) ·` (−ςI )), QI (T Wh,I (λ)) � T(wwI0(λ) ·` (−ςI ));

(b) for any F in Pervmix
Wh,I (Gr,k) and G in Pervsph(Gr,k), there exists a bifunctorial isomorphism

QI (F ? G) �QI (F )⊗ForĠG(S(G)).

Proof. The proof is the same as for [7, Theorem 11.7] but for completeness we repeat it. We first construct
a functor QI : Dmix

Wh,I (Gr,k) → DbRepI (G) as the composition ΦI ◦ PI . Using the isomorphism from

Theorem 5.5(1) and the natural isomorphism ΦI◦〈1〉[1]
∼−→ ΦI we obtain an isomorphism εI : QI

∼−→QI◦〈1〉.
By the first two isomorphisms in Theorem 5.5(2) and (5.6), we also obtain isomorphisms

QI (J
Wh,I

! (λ)) �M(wwI0(λ) ·` (−ςI )), QI (JWh,I
∗ (λ)) � N(wwI0(λ) ·` (−ςI )) (5.7)

for any λ ∈ −X+,reg
I . In particular, this shows that the complexes QI (J

Wh,I
! (λ)) and QI (J

Wh,I
∗ (λ)) be-

long to RepI (G), which implies that QI is t-exact if the category Dmix
Wh,I (Gr,k) is endowed with the

perverse t-structure and DbRepI (G) with its tautological t-structure. We will still denote by QI the re-
striction of this functor to the hearts of these t-structures; this functor provides the wished-for exact functor
Pervmix

Wh,I (Gr,k)→ RepI (G). By (5.1), Theorem 5.5, and (5.5), this functor induces isomorphisms⊕
n∈Z

Extk
Pervmix

Wh,I (Gr,k)
(F ,G〈n〉) ∼−→ ExtkRepI (G)(QI (F ),QI (G)) (5.8)

for any F and G in Pervmix
Wh,I (Gr,k) and any k ∈ Z. In particular, this implies that QI is faithful. Now

JWh,I
!∗ (λ) is the image of any nonzero morphism JWh,I

! (λ)→JWh,I
∗ (λ) and L(wwI0(λ) ·` (−ςI )) is the image

of any nonzero morphism M(wwI0(λ) ·` (−ςI ))→ N(wwI0(λ) ·` (−ςI )). Combining these facts with (5.7) gives that

QI (J
Wh,I

!∗ (λ)) � L(wwI0(λ) ·` (−ςI )), hence finally that (Pervmix
(Wh,I)(Gr,k),QI , εI ) gives a grading on RepI (G).

As QI is exact and given the isomorphisms (5.7), one sees that, for any λ ∈ −X+,reg
I , QI (T Wh,I (λ))

is a tilting G-module, and that it admits T(wwI0(λ) ·` (−ςI )) as a direct summand. The isomorphism (5.8)
provides a ring isomorphism⊕

n∈Z
HomPervmix

(Wh,I)(Gr,k)

(
T Wh,I (λ),T Wh,I (λ)〈n〉

)
∼−→ EndRepI (G)(QI (T Wh,I (λ))). (5.9)

Since the left-hand side is local by [17, Theorem 3.1], this shows that QI (T Wh,I (λ)) is indecomposable, and
so isomorphic to T(wwI0(λ) ·` (−ςI )).

By Theorem 5.5(3), for F in Dmix
Wh,I (Gr,k) and G in Pervsph(Gr,k) we have

QI (F ? G) � ΦI (PI (F )⊗S(G))

Combining this with the isomorphisms in [7, Theorem 1.1 and Theorem 1.2], we deduce a bifunctorial
isomorphism

QI (F ? G) �QI (F )⊗ForĠG(S(G))

in DbRepI (G). If F is in Pervmix
Wh,I (Gr,k) then this implies that QI (F ? G) belongs to RepI (G). Since QI

is t-exact and does not kill any nonzero object, this in turn implies that F ? G is perverse, which proves
Points (1) and (2b), and finishes the proof.
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Appendix A. Whittaker mixed perverse sheaves on partial flag varieties

In this appendix we assume that the reader is familiar (to a certain extent at least) with the theory of
parity complexes (from [19]) and of mixed derived categories (from [6]). Our aim is to study such objects
and categories in the case of Whittaker sheaves on partial flag varieties of Kac–Moody groups. The case
of Bruhat-constructible sheaves on partial flag varieties (corresponding, in the notation used below, to the
case when K = ∅) is known, mainly from [19, 6], as is that of Whittaker sheaves on the full flag variety
(corresponding to the case J = ∅), mainly from [27, 3]. The general case will usually be deduced from one
of these special cases.

A.A. Notation

In this section we consider the setting of [27, Part III] or [3, §§6.1–6.2]. In particular, we consider an
algebraically closed field F of characteristic p > 0 and a Kac–Moody root datum (I,X, {αi}i∈I , {α∨i }i∈I ).
(Note that the symbol “I” used here is unrelated to the set I considered in the body of the paper.) Let G
be the associated Kac–Moody group over F in the sense of Mathieu. We also denote by B ⊂ G the Borel
subgroup, and by X := G /B the associated flag variety. (See [27, §9.1] for a reminder on this construction,
and for references to the original sources.) If W is the Weyl group of G , and if S ⊂ W are the simple
reflections (in canonical bijection with I ), then we have a decomposition into B -orbits

X =
⊔
w∈W
Xw,

where Xw is a locally closed subvariety isomorphic to an affine space of dimension `(w).
For any subset J ⊂ I of finite type we also have a partial flag variety X J . We will denote by WJ ⊂W

the (finite) subgroup generated by the simple reflections corresponding to elements in J , and by W J ⊂W
the subset of elements w such that w is minimal in wWJ . Then we have a stratification

X J =
⊔
w∈W J

X J
w

with X J
w �A

`(w). We also have a natural proper morphism of ind-schemes qJ :X →X J . For any w ∈W J

and v ∈WJ , we have qJ (Xwv) =X J
w , and the morphism Xwv →X

J
w induced by qJ identifies with the natural

projection from A
`(w)+`(v) to A`(w). (Note however that it is not known—at least to us—if qJ is a smooth

morphism in general; see [27, Remark 9.2.1] for details on this question.)

A.B. Whittaker derived categories

We let ` be a prime number different from p, and k be either a finite field of characteristic `, or a finite
extension of Q` . Then it makes sense to consider étale k-sheaves on X J (for J ⊂ I of finite type). We will
assume that k contains a primitive p-th root of unity; after fixing a choice of such a root of unity we can
consider the associated Artin–Schreier local system LAS on Ga,F .

Let now K ⊂ I be another subset of finite type, and consider the associated parabolic subgroup PK
of G , and its pro-unipotent radical U K . Let also LK ⊂ PK be the Levi subgroup, and U #

K ⊂ LK be the
unipotent radical of the Borel subgroup of LK which is opposite to B ∩LK with respect to the canonical
maximal torus. Then the orbits of U K ·U #

K on X J are also in a natural bijection with W J . We will denote

by KX J
w the orbit associated with w. (When J or K is ∅, we will usually omit the corresponding superscript.

This convention will be applied more generally to any notation used in this appendix and involving J or
K .)

After choosing an identification of each simple root subgroup of U #
K with the additive group Ga,F , the

quotient U #
K /[U

#
K ,U

#
K ] identifies with a product of #K copies of Ga,F . Composing with the addition map



24 Appendix A. Whittaker mixed perverse sheaves on partial flag varieties24 Appendix A. Whittaker mixed perverse sheaves on partial flag varieties

to Ga,F , we obtain a group homomorphism U #
K /[U

#
K ,U

#
K ]→Ga,F . The composition of this morphism with

the projection
U K ·U #

K �U
#
K �U

#
K /[U

#
K ,U

#
K ]

will be denoted χK .
We will denote by

Db
Wh,K (X J ,k)

the (étale) (U K ·U #
K , (χK )∗LAS)-equivariant derived category of k-sheaves on X J . (See [5, Appendix A] for

a brief review of the construction of this category. When K = ∅, one recovers the usual Bruhat-constructible
derived category.)

In the case J = ∅, as explained in [27, §11.1] (see also [16, Lemma 4.2.1] for more details), the orbit KXw
supports a nonzero (U K ·U #

K , (χK )∗LAS)-equivariant local system iff w is minimal in WKw. The subset of
W consisting of elements satisfying this condition will be denoted KW . For the orbits on X J , we observe
that, for w ∈W J , the orbit KX J

w supports a nonzero (U K ·U #
K , (χK )∗LAS)-equivariant local system iff each

orbit in (qJ )−1(KX J
w ) supports a (U K ·U #

K , (χK )∗LAS)-equivariant local system, i.e. iff w belongs to

KW J := {w ∈W J | ∀v ∈WJ , wv ∈ KW }.

In fact, using standard combinatorics of Coxeter groups one can check that

KW J = {w ∈W J | wwJ0 ∈
KW }, (A.1)

where wJ0 is the longest element in WJ .
For any element w ∈ KW J , we have standard and costandard perverse sheaves in Db

Wh,K (X J ,k), de-

noted K∆
J
w and K∇Jw respectively, and obtained as !- and ∗-extensions of the perversely shifted rank-1

(U K ·U #
K , (χK )∗LAS)-equivariant local system on KX J

w . (The fact that these objects are perverse sheaves is
guaranteed by [12, Corollaire 4.1.3].)

The following lemma is an extension of [27, Lemma 11.1.1], with an essentially identical proof.

Lemma A.1. Let w ∈ KW , and write w = wJwJ with wJ ∈W J and wJ ∈WJ . (Then w
J automatically belongs

to KW .)

(1) If wJ < KW J , then we have
(qJ )∗

K∆w = 0 = (qJ )∗
K∇w.

(2) If wJ ∈ KW J , then we have

(qJ )∗
K∆w �

K∆
J
wJ [−`(wJ )], (qJ )∗

K∇w � K∇JwJ [`(wJ )].

Sketch of proof. We have (qJ )(KXw) = KX J
wJ . By compatibility of the pushforward functors with com-

position, (qJ )∗K∆w and (qJ )∗K∇w are respectively the ∗- and !-pushforward of the object on KX J
wJ ob-

tained as the ∗- and !-pushforward under the restriction of qJ of the perversely shifted rank-1 (U K ·
U #
K , (χK )∗LAS)-equivariant local system on KXw. If wJ < KW J , then KX J

wJ does not support any nonzero

(U K ·U #
K , (χK )∗LAS)-equivariant object, proving (1). If wJ ∈ KW J , then the map KXw → KX J

wJ induced by

qJ is a trivial fibration with fiber A`(wJ ), and the restriction of our local system to this fiber is trivial; this
implies (2).

As in [27, §11.2], we can consider the ∗-even, ∗-odd, !-even, !-odd, and parity complexes in Db
Wh,K (X J ,k).

The same arguments as for [27, Lemma 11.2.1], using Lemma A.1 as a starting point instead of [27,
Lemma 11.1.1], implies the following.
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Proposition A.2. Let F ∈Db
Wh,K (X ,k).

(1) If F is ∗-even, then (qJ )∗F is ∗-even.

(2) If F is !-even, then (qJ )∗F is !-even.

(3) If F is parity, then (qJ )∗F is parity.

The general theory of parity complexes from [19] guarantees that, for any w ∈ KW J , there exists at most
one indecomposable parity complex which is supported on the closure of KX J

w and whose restriction to
KX J

w is a perversely shifted rank-1 local system. Proposition A.2 guarantees that such an object indeed
exists: in fact by [27, Remark 11.2.4] there exists a parity complex in Db

Wh,K (X ,k) supported on KXw and

whose restriction to KXw is a perversely shifted rank-1 local system. The image of this object under (qJ )∗
then admits a direct summand with the appropriate properties. As in [19] we deduce that isomorphism
classes of indecomposable parity complexes in Db

Wh,K (X J ,k) are parametrized (in the obvious way) by
KW J ×Z. These comments also show that any parity complex in Db

Wh,K (X J ,k) is a direct summand of an

object of the form (qJ )∗F with F parity in Db
Wh,K (X ,k).

Proposition A.3. Let F ∈Db
Wh,K (X J ,k). If F is parity, then (qJ )∗F and (qJ )!F are parity.

Sketch of proof. The comments before the statement of the proposition show that it suffices to prove a similar
statement for the functors (qJ )∗(qJ )∗ and (qJ )!(qJ )∗. Now it follows from Proposition A.2 and the definitions
that the first, resp. second, of these functors sends ∗-even, resp. !-even, complexes to ∗-even, resp. !-even,
complexes (and similarly for odd). But the same considerations as in [27, Lemma 9.4.2] show that these
functors differ only by a cohomological shift; hence they send parity complexes to parity complexes.

A.C. Averaging functor

We have a natural “averaging” functor

AvJK :Db
Wh,∅(X J ,k)→Db

Wh,K (X J ,k)

which can be defined as in [5, §A.2]. More precisely, a priori there exist two versions of this functor:
a ∗-version AvJK,∗ (defined in terms of a ∗-pushforward) and a !-version AvJK,! (defined in terms of a !-

pushforward). However there exists a canonical morphism AvJK,!→ AvJK,∗. The composition of each of these

functors with the forgetful functor from theB -equivariant derived category to Db
Wh,∅(X J ,k) identifies with

the convolution product with the object K∆∅id = K∇∅id; therefore our morphism is an isomorphism on objects
in the essential image of this functor. Since this essential image generates Db

Wh,∅(X J ,k) as a triangulated

category, the 5-lemma then implies that the morphism AvJK,!→ AvJK,∗ is an isomorphism. Our notation AvJK
stands for either of these isomorphic functors.

Lemma A.4. The functor AvJK sends parity complexes to parity complexes.

Proof. The case J = ∅ is treated in [27, Corollary 11.2.3]. The general case follows, using the facts that

(qJ )∗ ◦AvK � AvJK ◦ (qJ )∗,

that (qJ )∗ sends parity complexes to parity complexes (see Proposition A.2) and that any parity complex in
Db

Wh,K (X J ,k) is a direct summand of an object of the form (qJ )∗F with F parity in Db
Wh,K (X ,k) (see the

comments before Proposition A.3).
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We now denote by ParityWh,K (X J ,k) the full subcategory of Db
Wh,K (X J ,k) whose objects are parity.

Lemma A.4 shows that AvJK restricts to a functor ParityWh,∅(X J ,k)→ ParityWh,K (X J ,k), which will also

be denoted AvJK . For w ∈ W J , we will denote by EJw the indecomposable object of ParityWh,∅(X J ,k)
parametrized by w (see the comments following Proposition A.2). We will also denote by

〈EJw : w ∈W J
r
KW J〉⊕,Z

the full subcategory of ParityWh,∅(X J ,k) whose objects are the direct sums of cohomological shifts of

objects of the form EJw with w ∈W J
r
KW J . Then we consider the “naive” quotient

ParityWh,∅(X J ,k) // 〈EJw : w ∈W J
r
KW J〉⊕,Z,

i.e. the additive category whose objects are those of ParityWh,∅(X J ,k), and whose morphisms are obtained
from those in ParityWh,∅(X J ,k) by quotienting by the morphisms which factor through an object of

〈EJw : w ∈W J
r
KW J〉⊕,Z.

Lemma A.5. For any w ∈W J we have

(qJ )
∗EJw[`(wJ0)] � EwwJ0 .

Proof. The proof is copied from [28, Proposition 3.5]. By Proposition A.3, the complex (qJ )∗E
J
w[`(wJ0)] is

parity. The orbit XwwJ0
is open in the support of this object, and its restriction to this stratum is k[`(wwJ0)].

Hence
(qJ )

∗EJw[`(wJ0)] � EwwJ0 ⊕G

for some parity complex G in Db
Wh,∅(X ,k). This isomorphism also shows that the restriction of EwwJ0

to any stratum Xx with x ∈ wWJ is k[`(wwJ0)]; it follows (using distinguished triangles associated with

open/closed decompositions) that the restriction of (qJ )∗EwwJ0 to X J
w is

⊕
z∈WJ

k[`(wwJ0) − 2`(z)]. Since

this stratum is open in the support of this object, we deduce that

(qJ )∗EwwJ0 �
⊕
z∈WJ

EJw[`(wJ0)− 2`(z)]⊕G′

for some parity complex G′ in Db
Wh,∅(X J ,k), and then that

(qJ )∗(qJ )
∗EJw[`(wJ0)] �

⊕
z∈WJ

EJw[`(wJ0)− 2`(z)]⊕G′ ⊕ (qJ )∗G.

On the other hand, by the projection formula we have

(qJ )∗(qJ )
∗EJw[`(wJ0)] �

⊕
z∈WJ

EJw[`(wJ0)− 2`(z)],

proving that G′ = (qJ )∗G = 0. From this one can deduce that G = 0, which completes the proof.

Proposition A.6. Assume that char(`) , 2.4 The functor AvJK vanishes on 〈EJw : w ∈ W J
r
KW J〉⊕,Z, and

induces an equivalence of categories

ParityWh,∅(X J ,k) // 〈EJw : w ∈W J
r
KW J〉⊕,Z

∼−→ ParityWh,K (X J ,k).
4 ↑ As should be clear from the proof, this assumption can be refined to the one considered in [27, Theorem 11.5.1].
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Proof. The case J = ∅ is equivalent to [27, Theorem 11.5.1]. Let us now explain how the general case can
be deduced from this one. Let w ∈W J

r
KW J . By Lemma A.5 we have (qJ )∗E

J
w � EwwJ0 . Here wwJ0 <

KW

by (A.1), so that AvK (EwwJ0) = 0. We deduce that

AvK ((qJ )
∗EJw) � (qJ )

∗AvJK (EJw) = 0,

which implies that AvJK (EJw) vanishes. This proves the first claim of the statement, and hence also that AvJK
factors through a functor

ParityWh,∅(X J ,k) // 〈EJw : w ∈W J
r
KW J〉⊕,Z→ ParityWh,K (X J ,k).

We will now argue that this functor is fully faithful; essential surjectivity is then easy to see.
We need to show that for any F ,G in ParityWh,∅(X J ,k), the functor AvJK induces an isomorphism

between the quotient of Hom(F ,G) by the morphisms factoring through an object of the subcategory
〈EJw : w ∈W J

r
KW J〉⊕,Z and Hom(AvJK (F ),AvJK (G)). The comments after Proposition A.2 (in the special

case K = ∅) show that we can assume that G = (qJ )∗H for some H in ParityWh,∅(X ,k); then we have

AvJK (G) = (qJ )∗AvK (H), and using adjunction and the obvious isomorphism (qJ )∗ ◦ Av
J
K � AvK ◦ (qJ )∗ we

obtain isomorphisms

Hom(F ,G) �Hom((qJ )
∗F ,H),

Hom(AvJK (F ),AvJK (G)) �Hom(AvK ((qJ )
∗F ),AvK (H)).

Moreover, under these identifications our morphism is induced by AvK . Taking into account the known
case J = ∅, it therefore suffices to prove that the isomorphism

Hom(F ,G)
∼−→Hom((qJ )

∗F ,H) (A.2)

identifies the subspace V1 of the left-hand side consisting of morphisms factoring through an object of
〈EJw : w ∈ W J

r
KW J〉⊕,Z with the subspace V2 of the right-hand side consisting of morphisms factoring

through an object of 〈Ew : w ∈W r
KW 〉⊕,Z.

From Lemma A.5 and (A.1) it is clear that (A.2) maps V1 into V2. On the other hand, if w < KW then Ew
is annihilated by AvK , so the same is true for (qJ )∗(qJ )∗Ew. Hence (qJ )∗Ew cannot admit as direct summands

objects of the form EJx[n] with x ∈ KW J ; in other words this object belongs to 〈EJw : w ∈W J
r
KW J〉⊕,Z. It

follows that the inverse map of (A.2) sends V2 into V1, as desired.

Proposition A.7. It follows in particular from Proposition A.6 that the functor AvJK sends indecomposable
parity complexes to indecomposable parity complexes.

A.D. Mixed derived category

Following [6], we define the “mixed derived category”

Dmix
Wh,K (X J ,k) := KbParityWh,K (X J ,k).

As in [6] the autoequivalence induced by the cohomological shift in the category ParityWh,K (X J ,k) will be
denoted by {1}, and the cohomological shift (of complexes of objects of ParityWh,K (X J ,k)) will be denoted
by [1]. This category also admits a “Tate twist” autoequivalence 〈1〉 defined as {−1}[1].

The “recollement” formalism constructed in [6] applies in this setting (see also [3, §6.2]), and we have
“mixed” standard and costandard objects

K∆
J,mix
w and K∇J,mix

w .
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The category Dmix
Wh,K (X J ,k) also admits a natural “perverse” t-structure, which can be characterized in

terms of these objects as in [6, Proposition 3.4]: we have

pDmix
Wh,K (X J ,k)≤0 = 〈K∆J,mix

w 〈n〉[m] : w ∈ KW J , n ∈Z, m ∈Z≥0〉ext,

pDmix
Wh,K (X J ,k)≥0 = 〈K∇J,mix

w 〈n〉[m] : w ∈ KW J , n ∈Z, m ∈Z≤0〉ext,

where 〈−〉ext means the subcategory generated under extensions by the given objects.
The functors (qJ )∗, (qJ )∗, (qJ )! and AvJK send parity complexes to parity complexes by Proposition A.2,

Proposition A.3 and Lemma A.4 respectively. Therefore they induce functors between the corresponding
mixed derived categories, which will be denoted by the same symbol.

We can now prove the “mixed analogue” of Lemma A.1.

Lemma A.8. Let w ∈ KW , and write w = wJwJ with wJ ∈W J and wJ ∈WJ . (Then w
J automatically belongs

to KW .)

(1) If wJ < KW J , then we have
(qJ )∗

K∆mix
w = 0 = (qJ )∗

K∇mix
w .

(2) If wJ ∈ KW J , then we have

(qJ )∗
K∆mix

w � K∆
J,mix
wJ {−`(wJ )}, (qJ )∗

K∇mix
w � K∇J,mix

wJ {`(wJ )}.

Proof. The proof is identical to that of Lemma A.1, once we have proved the appropriate compatibility
statement, in mixed derived categories, for the functor (qJ )∗ and the ∗- or !-pushforward functor under the
embedding of a statum in X and X J . However, by adjunction it suffices to prove a similar statement for
pullback functors. In turn, this property is clear from the Whittaker analogue of [6, Remark 2.7].

A.E. Standard and costandard objects

The goal of this subsection is to prove the following claim.

Proposition A.9. For any w ∈ KW J , the objects K∆J,mix
w and K∇J,mix

w belong to the heart of the perverse t-
structure.

For the proof of this claim we need some preliminary lemmas.

Lemma A.10. Let w ∈W , and write w = wKwK with wK ∈WK and w
K ∈ KW . Then we have

AvK (∆mix
w ) � K∆mix

wK 〈−`(wK )〉, AvK (∇mix
w ) � K∇mix

wK 〈`(wK )〉.

Proof. In the case wK = id, these isomorphisms are proved in [3, Lemma 6.1]. We deduce the general case
as follows. We will only give the details for the first isomorphism; the second one can be treated similarly.
Recall from [6, Lemma 4.9] that there exists a morphism

∆mix
id 〈−`(wK )〉 → ∆mix

wK

whose cone is an extension (in the sense of triangulated categories) of objects which belong to the essential
image of the forgetful functors from some equivariant mixed derived categories for some parabolic sub-
groups of the form PL with ∅ , L ⊂ K . Convolving with ∆mix

wK on the right and using [6, Proposition 4.4(1)]
we deduce a morphism

∆mix
wK 〈−`(wK )〉 → ∆mix

w

whose cone satisfies a similar property. It is easily seen that this cone is killed by AvK ; see e.g. [16,
Lemma 4.4.6] for similar considerations. Therefore we obtain an isomorphism

AvK (∆mix
wK )〈−`(wK )〉 ∼−→ AvK (∆mix

w ),

which concludes the proof.
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Lemma A.11. Let w ∈W J . If WKw∩ KW J = ∅, then

AvJK (∆J,mix
w ) = 0 and AvJK (∇J,mix

w ) = 0.

Otherwise, write w = wKwK with wK ∈WK and w
K ∈ KW (so that wK belongs to KW J ). Then we have

AvJK (∆J,mix
w ) � K∆

J,mix
wK 〈−`(wK )〉, AvJK (∇J,mix

w ) � K∇J,mix
wK 〈`(wK )〉.

Proof. As in the non-mixed setting, the functor (qJ )∗ commutes with averaging functors. Hence using
Lemma A.8 (in case K = ∅) we have

AvJK (∆J,mix
w ) � AvJK ◦ (qJ )∗(∆

mix
w ) � (qJ )∗ ◦AvK (∆mix

w ).

Now we write w = wKwK with wK ∈WK and wK ∈ KW . Applying Lemma A.10 we deduce that

AvJK (∆J,mix
w ) � (qJ )∗(

K∆mix
wK 〈−`(wK )〉).

Here wK automatically belongs to W J . If WKw ∩ KW J = ∅ then wK < KW J , so that (qJ )∗(K∆
mix
wK ) = 0 by

Lemma A.8 (applied now with our choice of K ). Otherwise we have wK ∈ KW J , and (qJ )∗(K∆
mix
wK ) = K∆

J,mix
wK

again by Lemma A.8. The claims for costandard objects can be proved in a similar way.

Proof of Proposition A.9. The special case K = ∅ is treated in [6, Theorem 4.7]. As written in [6] this proof
seems to use the fact that qJ is smooth; to convince the reader that in fact this property does not play any

crucial role, let us recall its main steps for the objects ∆J,mix
w (the other case is similar). This proof uses

the B -equivariant mixed derived category Dmix
B (X ,k) defined as above but starting from the equivariant

parity complexes; see [6, §3.5]. As above we let wJ0 be the longest element in WJ ; then XwJ0
is a smooth

closed subvariety of X , so that the shifted constant sheaf kX
wJ0

{`(wJ0)} defines an object of Dmix
B (X ,k);

see [6, Lemma 3.7]. We remark that

(qJ )
!∆
J,mix
w {−`(wJ0)} � (qJ )

!(qJ )∗∆
mix
w {−`(w

J
0)} � ∆mix

w ?B kX
wJ0

{`(wJ0)}

where the convolution product ?B is as in [6, §4.3]. Here the first isomorphism uses Lemma A.8 (in the
special case K = ∅), and the second one uses [6, Lemma 4.3] (see also [27, Lemma 9.4.2]). By [6, Lemma 3.7],
kX

wJ0

{`(wJ0)} is perverse. Using then [6, Proposition 4.6(2)], we deduce that (qJ )!∆
J,mix
w {−`(wJ0)} belongs to

pDmix
Wh,∅(X ,k)≥0. Considering the !-pullback of this object to strata XxwJ0

with x ∈ W J , we deduce that

∆
J,mix
w belongs to pDmix

Wh,∅(X J ,k)≥0. Since, by definition of the perverse t-structure, this object also belongs

to pDmix
Wh,∅(X J ,k)≤0, we finally conclude that it is perverse.

Now, let us deduce the case of a general subset K (of finite type). In view of the characterization of
the perverse t-structure in terms of standard and costandard objects (see §A.D), Lemma A.11 implies that
the functor AvKJ is t-exact for the perverse t-structures. Since the objects ∆J,mix

w and ∇J,mix
w are known to

be perverse, we deduce that AvJK (∆J,mix
w ) � K∆

J,mix
w and AvJK (∇J,mix

w ) � K∇J,mix
w are perverse too (where the

isomorphisms follow from Lemma A.11 again).

Let us also note the following property.

Lemma A.12. For any w ∈ KW J we have isomorphisms

(qJ )
!
(
K∆

J,mix
w {−`(wJ0)}

)
� (qJ )

∗
(
K∆

J,mix
w {`(wJ0)}

)
,

(qJ )
!
(
K∇J,mix

w {−`(wJ0)}
)
� (qJ )

∗
(
K∇J,mix

w {`(wJ0)}
)
.

Moreover, these objects are perverse.
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Proof. As usual we only treat the case of standard objects; the case of costandard objects is similar.
We begin with the case K = ∅. Here we have

∆
J,mix
w = (qJ )∗∆

mix
w

by Lemma A.8, so the isomorphism between our two objects follows from the comparison of the two iso-
morphisms in [27, Lemma 9.4.2(1)]. We have already observed in the course of the proof of Proposition A.9
that these objects belong to pDmix

Wh,∅(X ,k)≥0. Now it is clear that the ∗-pullback of (qJ )∗
(
∆
J,mix
w {`(wJ0)}

)
to a stratum Xx vanishes unless x ∈ wWJ and that in this case it is isomorphic to k{`(w) + `(wJ0)}. Since

`(w) + `(wJ0) ≥ `(x), we deduce that this object also belongs to pDmix
Wh,∅(X ,k)≤0.

The case of a general subset K follows from the case K = ∅ by applying the functor AvJK , as in the
proofs of Lemma A.11 and Proposition A.9.
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