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ABSTRACT
Searching for reaction pathways describing rare events in large systems presents a long-standing challenge in chemistry and physics. Incor-
rectly computed reaction pathways result in the degeneracy of microscopic configurations and inability to sample hidden energy barriers.
To this aim, we present a general enhanced sampling method to find multiple diverse reaction pathways of ligand unbinding through non-
convex optimization of a loss function describing ligand-protein interactions. The method successfully overcomes large energy barriers using
an adaptive bias potential and constructs possible reaction pathways along transient tunnels without the initial guesses of intermediate or
final states, requiring crystallographic information only. We examine the method on the T4 lysozyme L99A mutant which is often used
as a model system to study ligand binding to proteins, provide a previously unknown reaction pathway, and show that by using the bias
potential and the tunnel widths, it is possible to capture heterogeneity of the unbinding mechanisms between the found transient protein
tunnels.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5108638

Molecular dynamics (MD) simulations provide sufficient tem-
poral and spatial resolution to study physical processes. Unfortu-
nately, MD fails to reach high energy barriers (≫kBT) that dictate
mechanisms and kinetics of rare events. Transport in heterogeneous
media, such as ligand unbinding, cannot be simulated directly, and
even biased MD methods often fail to find possible reaction path-
ways along complex transient tunnels of proteins that form sponta-
neously during dynamics.1–3 Although many general purpose meth-
ods have been developed to sample rare events,4–6 finding multiple
reaction pathways of ligand unbinding is especially difficult. Also,
experimental methods used currently to quantify ligand binding,
e.g., time-resolved crystallography and xenon binding, focus primar-
ily on gaseous species, providing indirect evidence for the migration
of larger ligands, which makes most details of reaction pathways
unresolved.

The main computational limitations that render the recon-
struction of reaction pathways for ligand unbinding difficult stem
from accounting for internal topological features of proteins (e.g.,
tunnels), which is related to the degree of coupling between protein
dynamics and ligand conformational states. The structural flexibility

of protein tunnels allows proteins to facilitate binding by adapting
to binding partners along possible multiple pathways to the binding
site. This intrinsic dynamics poses a severe challenge to straightfor-
ward biased MD methods that have been used to sample reaction
pathways in ligand unbinding.6–9 Typically, such methods either
approximate reaction pathways by linear Cartesian coordinates10 or
probe protein tunnels randomly.7,11

An additional and ubiquitous obstacle in describing ligand
unbinding is the overestimation of energy barriers and thus the
underestimation of exponentially dependent kinetic rates arising
from the sampling of crude reaction pathways. In other words, an
inadequate initial guess of reaction pathways leads to false thermo-
dynamics and kinetics. Another problem is related to the degen-
eracy of microscopic configurations originating from the inability
to capture intrinsic degrees of freedom, which is likely to shadow
hidden energy barriers.12,13 As emphasized by Elber and Gibson,14

sampling should not overestimate preference to more direct and
geometrically shorter reaction pathways. Producing and exploring
multiple reaction pathways of a complex system remains a huge
challenge.15
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In this letter, we consider a specific part of ligand bind-
ing/unbinding problem that is very relevant and not yet fully
solved.16 To our knowledge, this is the first work to show that sam-
pling multiple transient ligand tunnels in proteins leads to hetero-
geneous mechanisms of unbinding between the sampled reaction
pathways. We present a general enhanced sampling MD method
to find multiple diverse reaction pathways of ligand unbinding
along transient protein tunnels. The method does not require many
parameters and does not require initial guesses of intermediate
states,17,18 which is a major challenge for existing methods. Its
only prerequisite is knowledge of the initial bound state without
requiring the initial reactive trajectory. The method also takes into
account protein dynamics, which is important to observe transient
tunnels.

To estimate ligand-protein interaction, we introduce the con-
cept of a loss function. The method minimizes a loss function
s(x, y) during MD simulations of a 3X set of ligand coordinates
x ≡ (x1, . . ., x3X) and a 3Y set of protein coordinates y ≡ (y1, . . ., y3Y ),
where X and Y are the numbers of ligand and protein atoms, respec-
tively. To this aim, we propose that the loss function must fulfill
three important criteria, e.g., (i) describe physical interactions in
a ligand-protein system, (ii) tend to infinity as the ligand moves
too close to the protein, and (iii) decrease as the ligand unbinds
from the protein; (ii) prohibits the method from sampling ligand
configurations that clash with a protein, and (iii) provides a coarse
estimate of how ligand conformations are buried within a protein
tunnel.

For a schematic depiction of the method, see Fig. 1. The method
follows a procedure: (i) it finds a minimum of the chosen loss func-
tion in the neighborhood of the current position of the ligand, and
(ii) the position of the ligand is biased in the direction of the localized
minimum of the loss function. The minimization is repeated during
the MD simulation every ∆t MD steps, and the biasing is performed
until a new solution in the neighborhood of the current position is
calculated. In what follows, we explain in detail the above general
outline.

We start off by describing the loss function and the mini-
mization procedure which provides a possible ligand configuration
sampled in the proximity of the current ligand conformation from
the MD simulation, which corresponds to the lowest loss function
score, and by explaining how the neighborhood is defined for such
an optimization problem. Next, we move on to the adaptive bias-
ing procedure which enforces the ligand conformation to dissociate
toward the conformation selected by the minimization procedure.
The method is then summarized and used to model the benzene
unbinding reaction pathways from the T4 lysozyme L99A mutant
that is often used as a model system to study ligand unbinding
processes.

Loss Function—Because empty space in proteins and its intrin-
sic fluctuations constitute a key feature of tunnels,1,3 we use a coarse
physical model for ligand-protein interactions, which accounts for
steric effects only. We motivated our decision by the simplicity of
this approach. For the ith pair of ligand-protein atoms, we define
a partial loss function as e−ri

ri
, where the rescaled distance between

FIG. 1. Sampling of ligand unbinding pathways using the presented biased MD method. As an example, the unbinding of benzene from T4 lysozyme L99A along a reaction
pathway is shown. The unbinding is initiated from the bound state (X-ray binding site) of the T4L-benzene complex and ends once the ligand reaches the solvent. (a)
The cross section through the X-ray structure of T4L shows no apparent tunnels for benzene to leave the protein, which means that the protein must undergo structural
changes to open possible exits. (b) A reaction pathway characterizing atomistically the unbinding along the transient exit tunnel is identified locally during the MD simulations.
(c) Namely, to determine the (k + 1)th intermediate, the conformations of benzene are sampled in the neighborhood of the kth intermediate (constrained by the sampling
radius). Then, from the sampled ligand conformations, the optimal direction of biasing is calculated by selecting the ligand conformation which has the lowest loss function
score.
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the atoms is given by ri = λ∥xk − yl∥. The λ constant sets length
scale in the loss function and is equal to 1 when using angstroms,
i.e., λ = 1 Å−1. Hence, we used the loss function of the following
form:

s =
Pl
∑
i=1

e−ri

ri
, (1)

where Pl is the number of ligand-protein atom pairs in the local
neighborhood of the ligand (see the supplementary material for
details). The sum over all pairs meets the criteria of the loss func-
tion for ligand unbinding presented here. The aim of the proposed
method is to efficiently sample the configurational space of the
ligand-protein complex and optimize Eq. (1) during MD simulations
so that the reconstructed reaction pathways of ligand unbinding
minimize the loss function along multiple tunnels. We also allow
the ligand to be flexible during the unbinding simulations. In this
method, many MD simulations are required to sample multiple
reaction pathways.

Minimization—Such an optimization problem can be solved by
any method suitable for nonconvex loss functions.19–21 Here, for the
sake of simplicity, the minimization of the loss function is performed
using simulated annealing.22 To this end, the method checks if a ran-
domly chosen neighboring position of the ligand x′ is preferred in
terms of the loss function. The neighbor is selected as a next solution
according to the Metropolis-Hastings algorithm23 with the Boltz-
mann factors (we omit protein coordinates y only in the notation),

p =
⎧⎪⎪⎨⎪⎪⎩

e−βj(s(x′)−s(x)), if s(x′) > s(x),
1, otherwise,

(2)

where βj = 1/Tj is a parameter introduced to decrease the probability
of acceptance of a worse solution as the minimization scheme pro-
ceeds. Tj is reduced according to the recursive formula, Tj = kTj−1,
where j is the iteration number during the optimization phase to
promote convergence to an optimum.24 The minimization proce-
dure is reiterated to find an optimal solution. For details concern-
ing the parameters for simulated annealing, see the supplementary
material.

Next, we describe how the neighborhood is defined in our
method. The minimization procedure needs constraints to opti-
mize the loss function locally (in the current neighborhood). In our
method, intermediate ligand unbinding states are searched sequen-
tially to get an optimal transition between the X-ray structure and
the unbound state. A global minimization of the loss function with-
out a specific definition of the neighborhood would identify only the
final state of ligand unbinding. A naive approach20,25,26 is to sam-
ple ligand conformations constrained to a sphere with a constant
radius and positioned at the center of mass of the ligand, but this
requires an estimate of the radius, which is clearly system-dependent
and should change as protein dynamics is simulated. To alleviate
this issue, we take the sampling radius equal to the minimal distance
between the ligand-protein atom pairs, e.g., rs = miniri. By doing so,
the method dynamically adjusts the conformational space available
for the sampling. We underline that the protein neighborhood of the
ligand changes as the ligand dissociates during the simulation and so
does the number of ligand-protein atom pairs Pl, which makes the
identification of the next minimum possible.

Adaptive Biasing—Once the optimal ligand-protein conforma-
tion x′ = minxs(x) is calculated in the minimization scheme, the con-
formation of the ligand is biased in the direction of x′ along transient
protein tunnels. This stage is performed by biasing the conformation
of the ligand using an adaptive harmonic potential,

V(x) = α(v∆t − (x − x′i−1) ⋅
x′i − x′i−1

∥x′i − x′i−1∥
)

2

, (3)

where x′i is the ith optimal solution, v is the biasing rate, ∆t is the
MD time between subsequent loss function minimizations, and α
is the force constant. The bias potential [Eq. (3)] is a generaliza-
tion of the harmonic biasing potential introduced by Heymann and
Grubmüller10 to curvilinear reaction pathways. The biasing potential
from Ref. 10 uses a constant direction of biasing, but in Eq. (3), this
direction is approximated as the normalized difference between the
subsequent minima of the loss function. In contrast to this method,
several recently introduced approaches used a constant bias to sam-
ple complex reaction pathways.11,20,25 The bias potential shown by
Eq. (3) is adaptive and dependent on the optimal reaction pathways
calculated by minimizing Eq. (1).

The harmonic bias potential used in this study is selected
to be simple as the potential energy in MD simulations already
includes bonded terms for interaction of atoms that are linked
by covalent bonds and nonbonded terms that describe long-range
electrostatics and van der Waals forces. Clearly, the bias potential
should not be expected to be quantitative as a method to calculate
energy barriers along the reaction pathways, but it was employed
to enforce the process of ligand unbinding with a constant veloc-
ity as in Ref. 10. The bias potential, however, may serve as a means
to shorten the time scale of ligand unbinding and as a qualitative
measure to estimate relative differences of bias between the reaction
pathways.

Our enhanced sampling method is outlined as follows:
1. Initialize the MD simulation,
2. Sample ligand conformations within the protein tunnel using

constraints defined as the minimal distance between the
ligand-protein atom pairs,

3. Minimize the loss function using a nonconvex optimization
algorithm, and set the biasing direction toward the found
minimum,

4. Bias the ligand conformation using Eq. (3) during ∆t steps of
the MD simulation,

5. Repeat steps 2–4 during the MD simulation until the loss
function reaches zero,

6. Stop the MD simulation,
which concludes the introduction of the method components, e.g.,
loss function, minimization, and adaptive biasing, needed to sample
ligand unbinding reaction pathways.

Unbinding Benzene from T4 Lysozyme L99A—We illustrate the
method on T4 lysozyme L99A (T4L) with bound benzene, which is
considered as a model system to study ligand unbinding from pro-
teins. In this example, 300 10-ns trajectories were run to reconstruct
the reaction pathways of benzene unbinding from the protein. We
used the biasing rate v = 0.02 Å/ps with the force constant in the
stiff-spring regime,10 α = 3.6 kcal/(mol Å). The optimal position of
the ligand was recalculated by minimizing the loss function every
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FIG. 2. Reaction pathways of ben-
zene unbinding from T4L. Only the T4L
C-terminal domain is depicted, but the
complete protein was used in all simu-
lations. The crystallographic bound con-
formation of benzene is shown. Benzene
conformations sampled during the MD
simulations are biased by the adaptive
bias potential to find multiple exits of T4L
via the reaction pathways. The reaction
pathways are named pwa-e, which cor-
responds to the T4L tunnels indicated by
helices, i.e., D/F/G tells that the unbind-
ing pathway is located near the D, F, and
G helices.

∆t = 200 ps. We found that for lower biasing rates, the method is
unable to find the reaction pathways in the desired span of 10 ns for
a single simulation. This is, however, only a technical nuisance that
can be overcome by sampling longer MD trajectories. The method is
implemented in the official Plumed-2.5 repository27 which is avail-
able on Github28 and described in Ref. 29. For details concerning the
model of T4L with bound benzene and the MD simulations, see the
supplementary material.

We directly compared our results with reaction pathways found
in previous studies. The method identified five reaction pathways
for benzene exit from the binding cavity buried in T4L. These
reaction pathways correspond to five tunnels of T4L, named pwa–
D/F/G (tunnel through helices D, F, and G), pwb–C/D, pwc–F/G/H,
pwd–H/J, and pwe–D/G (Fig. 2). The reconstructed reaction path-
ways pwa–d are mostly in agreement with a recent study by Nunes-
Alves et al.30 in which the reaction pathways of benzene unbind-
ing were sampled using temperature-accelerated MD simulations.30

Other studies also reported pwa8 and pwc.9 To our knowledge, the
benzene unbinding via pwe is first identified in this study.

Apart from the work of Nunes-Alves et al.,30 other studies
found only one reaction pathway, probably because of the employed
biased MD methods. Biased MD methods employed by Wang et al.9
and Miao et al.8 may limit the search in configuration space to a
most optimal solution. Wang et al. used metadynamics31 to bias a
reaction pathway identified initially by self-penalty walk,32 which
agrees with the observation that such methods strongly rely on
the initial guess of a pathway.33,34 Thus, it may not be possible
to identify all possible reaction pathways that exist in the form
of transient sparse tunnels in the studied ligand-protein complex.
Interestingly, the reaction pathways identified here agree mostly
with exit tunnels retrieved by Nunes-Alves et al.,30 where MD sim-
ulations with elevated temperature were used to overcome large

energy barriers along reaction pathways and increase the proba-
bility of the rare event. In both temperature-accelerated MD35 and
the method presented in this article, there is no need for initial
guess of trajectories, which clearly improves sampling of diverse
pathways.

The detailed characteristics of the reaction pathways for ben-
zene unbinding from T4L are shown in Table I. We found an
additional reaction pathway that, to the best of our knowledge,
was not identified previously. This pathway corresponds to the
benzene unbinding along the T4L tunnel between helices D and
G. The method is able to provide the atomistic characterization
of unbinding pathways. If, however, one is interested in knowing
estimates of the energy barriers along unbinding pathways, a post-
processing procedure is needed to analyze the data. For instance,

TABLE I. Reaction pathways of benzene unbinding from T4L. Quantities describ-
ing the reaction pathways were calculated from an ensemble of trajectories for the
identified exits. These quantities include the number of trajectories (out of 300) that
proceed through each pathway, the mean of the distribution of unbinding times that it
takes for benzene to unbind in the biased simulations, and its standard deviation, and
the average radius of each identified tunnel rs and its standard deviation. Errors were
estimated by a bootstrapping procedure (see the supplementary material).

No. of Unbinding rs
Pathway Tunnel trajectories time (ns) (Å)

pwa D/F/G 65 3.37 ± 0.01 2.37 ± 0.01
pwb C/D 82 2.61 ± 0.07 2.31 ± 0.01
pwc F/G/H 34 2.68 ± 0.09 2.41 ± 0.02
pwd H/J 27 2.29 ± 0.08 2.36 ± 0.03
pwe D/G 92 2.45 ± 0.11 2.34 ± 0.01
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FIG. 3. Averaged bias potentials V(s) from all the simulations that took a specific pathway projected along the reconstructed reaction pathways. Here, we used the loss
function s to project the bias potential to depict in what stage of unbinding the bias is higher. The high value of the loss function indicates that the ligand is bound (b) to the T4L
matrix (in the X-ray structure, the loss function reaches about 4.5), whereas the low value an unbound (u) state (at the end of MD simulations, the loss function decreases to 0).
As can be seen, the characterization of the reaction pathways is heterogeneous between the different classes, showing different mechanisms of the benzene unbinding, and
indicates different bias potential barriers for the reaction pathways close to one another, for instance, pwa and pwe near the D helix.

one way to further understand the results is to look at the averaged
bias potential V(s). We followed this approach and averaged the
bias potential along each pathway projecting it on the loss function
(Fig. 3) using the following relation:

V(s) = ⟨δ(s − s(x))V(x)⟩p, (4)

where the average ⟨⋅⟩p is taken over all trajectories classified as a
particular reaction pathway p and s is the loss function defined in
Eq. (1). This way, we were able to identify energy bottlenecks in tun-
nels indicated by high values of the averaged bias potential V(s) or
the sparsity of conformational space available for sampling. Treating
the loss function as a collective variable, although may be not intu-
itive, provides a simple formula to check which transient tunnels are
biased the most. Despite roughly the same level of the bias along
each reaction pathway (Fig. 3), it is clear that the pathways employ
different mechanisms of unbinding without the need to reconstruct
free energies. This is underlined by the bias barriers along pwd and
pwe and a rather smooth decrease in the bias along pwa, pwb, and
pwc. Moreover, it is perhaps possible to explain the bias barriers by
inspecting the average radius of each tunnel which is used as the
sampling radius rs. For instance, pwd and pwe have rs at about 2.36 Å
and 2.34 Å, respectively, and the highest barriers among pathways.
This is an indication that the reaction pathways are heterogeneous
with respect to each other, and their specific atomistic mechanism
of unbinding would not be obvious by calculating averages of the
full ensemble of the unbinding trajectories without decomposition
into classes first.

As recently underlined in Ref. 36, multiple pathways for ben-
zene escape from the T4L crystallographic binding site exist if one
of the end states consists of multiple substrates.37 Interestingly, the
reaction pathway via the F/G/H tunnel identified by Feher et al.36

is argued to be the most probable in their study. Our results show
that this result may be due to the highest tunnel width in compar-
ison with the other pathways (Table I). As it is shown in Table I,
the sampled trajectories that yield the same reaction pathways (same
tunnels) are similar to each other as it is underlined by the small
standard deviations of the unbinding time and the sampling radius
estimated using bootstrapping (see the supplementary material).

It should be noted that the method lends itself to use as an
optimal initial guess of reaction pathways in other biasing MD

methods to estimate thermodynamic and kinetic quantities, i.e.,
metadynamics6,38 or variationally enhanced sampling.39 We point
out that computing reaction pathways for the T4L-benzene complex
is not needed when calculating the mean-first-passage times of bind-
ing and unbinding as shown by Wang;40 however, it is important in
estimating how the mechanisms of binding vary between the calcu-
lated reaction pathways, including free energies and conformational
changes. Recently, it was shown that some protein-ligand systems
can exhibit pathway hopping,41,42 and the method presented here
can be used to quantify this process.

We note that the reaction pathways of ligand unbinding sam-
pled using the method presented here diverge to diverse suboptimal
basins. This is the feature that enables sampling multiple heteroge-
neous reaction pathways and allows us to overcome the problem of
the intrinsic dynamics of protein tunnels. This is due to the used
sampling which is constrained by the protein structure to provide
a local minimum. Also, the probability of selecting a new solution
given by the Metropolis-Hastings algorithm is important for the het-
erogeneity of the reaction pathways. The method searches for an
optimal ligand conformation locally to extend the current reaction
pathway step by step. This way, the method is able to sample multiple
possible unbinding pathways, which for a rare event as with ligand
unbinding is necessary to explore configurational space of tunnels
exhaustively.

In conclusion, we have presented a general method for finding
reaction pathways of ligand unbinding, starting only from available
crystallographic information. The method does not need any prereq-
uisite guesses of intermediate states. The introduced approach uses
an adaptive bias to drive the ligand to unbind from the fluctuating
protein, in the direction effectively calculated by minimizing a sim-
ple loss function. The methods adapt to transient tunnels of proteins
by estimating the configurational space from which it samples plau-
sible ligand conformations (i.e., it can be also used to determine the
tunnel widths). We think that the method should be applicable to
proteins in which prominent structural motions on a larger scale are
important for ligand unbinding (e.g., trypsin43).

Various enhanced sampling techniques have been tested for
characterization of rare events and long-time scale dynamics. The
method proposed here was suitable to sample a rare conforma-
tional event such as benzene escape that occurs on the millisecond
time scale experimentally. We provided a rigorous method to find
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possible reaction pathways, which can be used as an initial reference
trajectory to reconstruct thermodynamic and kinetic data. Over-
all, our results from studies of ligand unbinding from T4L suggest
that the method presented here can improve the reconstruction of
reaction pathways along transient tunnels and serve as an optimal
choice for other biasing methods, limiting overestimation of hid-
den free energy barriers. With some adaptations, the method can be
also used to study other transport processes, e.g., diffusion through
a membrane.

Note. At the submission stage, we became aware of Ref. 44 in
which the benzene unbinding pathways from the T4L protein are
also studied. Capelli et al. found various reaction pathways that they
classified into eight reaction pathways using different criteria than
we use here. In particular, the benzene unbinding pathways marked
by Capelli et al. as C, F, G, and H44 are subclasses of pwc, while
another four are the same as the ones we have identified here.

See supplementary material for the model of T4 lysozyme
L99A, MD simulations, loss function, neighborhood for the loss
function, minimization procedure, adaptive biasing to a loss func-
tion minimum, classification of the reaction pathways, biased
unbinding times, and software.
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