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Abstract.

An analytic 1D approximation for the divertor broadening S is introduced,

depending only on the electron temperature between X-point and target. It is

compared to simulations solving the 2D heat diffusion equation, in order to describe

the divertor broadening along a field line solely by the ratio of the perpendicular

to the parallel diffusivities. By assuming the temperature dependence of these two

diffusivities an integral form of S is derived for the area along the separatrix between

X-point and target. Integration along the separatrix results in an approximation for

S, being in agreement with the 2D simulations.

This approximation is furthermore compared to recent studies, which find a power

law with negative exponent to describe S in terms of target temperature. This

dependence is not reproduced in a pure conductive description, which instead shows

a finite S for zero target temperature. This points to other mechanisms changing the

shape of the heat flux profile – by additional widening or radiation losses – not included

in the presented reduced approximation.

Keywords— Nuclear Fusion, Tokamak, Scrape-Off-Layer, Power Exhaust, Heat

Transport, Divertor Broadening
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1. Introduction

The description of the power load profile on the divertor targets relies on the knowledge

of heat transport in the scrape-off layer (SOL), especially in the divertor volume. There

the perpendicular transport into the private flux region (PFR) can significantly reduce

the peak power load onto the divertor target [1, 2]. Recent studies show a scaling of

the divertor broadening with a power law with negative exponent to the target electron

temperature Tt, suggesting that lower Tt could distribute the power entering the divertor

volume onto a larger surface area.

By describing the temperature dependence of the parallel and perpendicular heat

transport an integral form of the divertor broadening S is derived, relying only on the

electron temperature distribution along the separatrix between X-point and target. The

results are in agreement with 2D simulations of diffusive transport and allow to discuss

the benefit of a larger divertor broadening with respect to the effort needed to achieve

lower target temperatures. Iterative numerical methods allow to use this approach for

scenarios including heat losses between X-Point and divertor target, although this is not

pursued in the work presented here.

Convective transport can not be neglected for high recycling conditions, hence the

derived expression for S has to be treated with care.

Section 2 introduces a 1D approximation describing target heat load in experiments,

and its connection to the parallel and perpendicular heat diffusivities for pure conductive

transport. Section 3 introduces basic diffusion models used to describe the heat diffusion

in the SOL. A scaling for S with the electron temperature is derived. Section 4 explains

the 2D simulations used as reference for the analytic analysis presented in Section 5.

In Section 5 an analytic expression for S depending on the target temperature and

target heat flux is derived. Neglecting other transport mechanisms – like convection,

charge exchange or radiative losses – an expression for a divertor averaged temperature is

given. The temperature dependence of S obtained by the 1D approximation is compared

to 2D simulations.

Section 6 shows the authors interpretation of the introduced work.

Section 7 provides a summary and conclusions.

2. The Divertor Broadening S

To describe the heat flux density profile on the divertor target, a model assuming only

diffusive parallel and perpendicular electron conduction is commonly used [3]. All

temperatures and densities in this paper refer to the electrons, being the dominant

species for parallel diffusive transport for comparable ion and electron temperatures, as

seen in the Braginski equations [4]. For diffusive transport parallel to the field lines in

the divertor volume the transport time

τ‖ =
L2

χ‖

(1)
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is an expression of connection length L – from the divertor entrance to the target – and

parallel diffusivity χ‖. The parallel diffusion time is equivalent to the perpendicular

diffusion time for heat entering the divertor region. The perpendicular diffusion length

is thus given by

S =
√

τ‖ · χ⊥ = L

√

χ⊥

χ‖

(2)

and is further called divertor broadening. Measurements of the heat flux profiles in

tokamaks like ASDEX Upgrade (AUG) in Garching and JET in Culham are done

by infrared thermography in target coordinates called s with separatrix position s0.

Quantities following the magnetic field lines can be related to the outer midplane, to

the radial coordinate called x, for comparison between different magnetic geometries

and machines. The coordinates are correlated by the effective flux expansion fx,eff =

fx,magn · fx,geom, which is the product of the magnetic flux expansion fmag
x and poloidal

inclination of the tile with respect to the field lines. The position mapped to the outer

mid plane is then

x =
s − s0

fx

(3)

with x = 0 representing the separatrix. For perpendicular transport being described as

1D diffusion, a power density profile given by a delta peak entering the divertor area is

spread to a Gaussian of width S when reaching the target without flux expansion. The

measure on the target is Star = S · fx. In this work S refers to the divertor broadening

mapped to the outer midplane if not marked otherwise.

Note that the poloidal inclination between field lines and target is not included in this

discussion, as it is only a mapping from parallel heat flux along the plasma onto what

is seen as perpendicular heat flux of the target material. For the sheath condition this

angle, which is machine and configuration dependent, has to be included. This work

focuses on the parallel transport in the plasma and therefore omits this angle.

The X-point heat flux density profile is described [5] by an exponential with peak value

q0 at the separatrix and decay length λq at the midplane with the radial coordinate x:

q(x) = q0 · exp

(

− x

λq

)

: x > 0 . (4)

Following the simplified model for perpendicular diffusion, the target heat flux profile

is described by the X-point profile convolved with a Gaussian of width S, representing

the broadening in the divertor region:

q‖(s) =
q0

2
exp





(

S

2λq

)2

−
(

s − s0

fxλq

)



 · erfc

(

S

2λq

− s − s0

fxS

)

. (5)

Figure 1 shows the flattening of the heat flux density profile from the raw exponential

in deep red – starting at the strike point at s0 = 0 – up to a value of S = 10 mm in

green in steps of 1 mm for S, keeping λq = 3 mm and q0 = 10 MW m−2 fixed.
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Figure 1. Influence of divertor broadening S: Target heat flux profiles with steps

of 1 mm in the the divertor broadening S, starting from the unperturbed X-point

distribution in red up to S = 10 mm in green.

The peak heat flux q̂ onto the target is used as design parameter and correlated to the

integrated power profile of arbitrary shape q(s) onto the target element by the integral

power decay length

λint ≡
∫ q(s)

q̂
ds . (6)

The benefit of an additional divertor broadening S on λint compared to an exponential

with decay length λq – as described in (5) – is approximated [5] by:

λint ≃ λq + 1.64 · S . (7)

Studies predict a value for the heat decay length of about λq ≈ 1 mm for future fusion

relevant machines like ITER, which is smaller than for current machines like AUG and

JET [3]. Therefore the divertor broadening gains importance to meet the material limits

of the divertor target with respect to the incoming heat flux density. Scaling laws for

S are available for AUG [6, 2], investigating S for target electron temperatures above

20 eV. Below this temperature, the increasing radiation prohibits IR measurements in

AUG to deduce S. A study including simulations done in SOLPS [1, 7, 8] shows a scaling

inverse to the target electron temperature. This will be further discussed in Section 7.

The analysis on S in this work is based on the transport model introduced in section

3 and is aimed to find a description for the divertor broadening with respect to the

temperature distribution in the divertor volume. Intent is to quantify discrepancies in

simulations and experiments for a better understanding of the transport mechanisms

including a variety of particle and heat transport processes.

3. Diffusion Models

Heat transport parallel to the magnetic field in the SOL is described by Spitzer-Härm

conduction [9] with the conductivity

κ‖ = κ‖,0T
5/2. (8)
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The factor κ‖,0 ≃ 2000 W m−1 eV−7/2 is a valid approximation for machines like AUG

and JET for Zeff ≈ 1.3 [4]. The diffusivity is connected to the conductivity by the

density [10]

χ =
κ

ρcp

∝ κ

n
. (9)

As only the ratio of the diffusivities – perpendicular versus parallel - is of interest, the

factor representing the degrees of freedom of an electron in cp is not relevant in this

work. Therefore the parallel diffusivity is given as

χ‖ =
κ‖,0

ne

T 5/2 . (10)

In the further calculations the exponent on the temperature is referred to as β, with the

value 5/2 for parallel electron conduction. Transport perpendicular to the magnetic field

is characterised by a Spitzer-Härm like conductivity for this work, with the temperature

dependence expressed by the exponent α:

χSH
⊥ =

κSH
⊥,0

ne

· T α (11)

Note that with this definition the density dependence in the ratio of the diffusivities

cancels. Bohm described the perpendicular diffusion coefficient [11] in arc discharges as

χB =
1

16

T

eB
= κB

⊥ · T (12)

being not dependent on ne but on B, as suggested by recent experiments at AUG [2].

Bohm like diffusion in this work uses the modified form

χB
⊥ = κB

⊥ · T α′

(13)

with the exponent α′ being related to α in (11) by

α′ = α + 1 . (14)

Neglecting the dependency on the total magnetic field, we find a perpendicular diffusion

coefficient scaling linearly with T . Using Bohm diffusion to describe perpendicular

transport, the density dependence of the parallel diffusivity remains in the ratio of the

diffusivities. To eliminate this explicit dependency on the density, the ideal gas law

p = nT → 1 = nT
p

is used. It allows to include the density dependence implicitly in the

temperature component for a given pressure:

χSH
⊥ = κSH

⊥,0

T α

n

= κSH
⊥,0

T α

n
· nT

p

= κSH
⊥,0

T α+1

p

= κSH
⊥,0 T α′

/p

∝ χB
⊥/p

(15)
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For clearification: α is the exponent for the temperature dependence of a Spitzer-Härm-

like perpendicular diffusion coefficient, α′ for Bohm-like diffusion with an additional 1
p
.

For example α = 0 corresponds to Spitzer-Härm-like transport with T 0 and 1/n scaling

or Bohm-like transport with T 1 (α′ = α + 1 = 1) and no density dependence. Also

note, that here κ⊥ is treated as some constant factor. The absolute values depend on

the chosen model and implicitly on the plasma parameters like the effective charge.

Of interest is furthermore how S scales with temperature and pressure. For Spitzer-

Härm-like transport we find

SSH ∝

√

√

√

√

κSH
⊥,0/n

κ‖,0/n
·
√

T α

T β
∝ T

α−β

2 (16)

which leaves a scaling with temperature and a constant exponent. For Bohm-like

transport we find

SB ∝

√

√

√

√

κB
⊥,0

κ‖,0/n
·
√

T α′

T β
=

√

√

√

√

κB
⊥,0

κ‖,0/n
·
√

p

nT
·
√

T α′

T β
∝ √

p T
α−β

2 (17)

with a temperature exponent similar to Spitzer-Härm-like transport, but with an

additional pressure dependence.

Including the density implicitly into the temperature is correct for analysing a

single field line for which pressure conservation holds. For a non-homogeneous pressure,

S scales with the square root of the pressure. Recent studies suggest a scaling of S

with about the square root of the divertor density [2]. This indicates a weak or no

density dependence of χ⊥, given the experimental uncertainty. The formulation where

the density is treated implicitly in the temperature assuming a negligible influence of the

pressure – by pressure conservation or a minor impact due to the weak scaling – is used

in the 1D approximation. For Bohm-like perpendicular transport in equation (17) this

corresponds to α′ = 1. In equation (16) for Spitzer-Härm like transport it corresponds

to α′ = 0. Therefore the plots in section 5.2 show result with α = 0. The agreement

between 1D approximation and 2D model is independent of the actual value of α.

Other numerical tools used to study the heat and particle transport in the SOL are using

similar, but not necessarily the same expressions and approximations for the diffusion

coefficients. For the SOLPS runs in [1] a constant perpendicular diffusivity throughout

the entire SOL is used.

4. Simulation of 2D Heat Diffusion Equation

As reference for the 1D analysis a 2D model in slab geometry is used, solving the

heat diffusion equation in the SOL. For parallel transport Spitzer-Härm conduction is

assumed. For perpendicular transport a Spitzer-Härm like diffusivity as described in

section 3 with a fixed temperature exponent α and inverse density dependence is used.

Operator splitting [12] is used to separate the parallel and perpendicular transport,



Analytic 1D Approximation of the Divertor Broadening 7

solving them independently. The following derivation is valid for the resulting 1D or

any isotropic case and any integrable κ(T ).

The heat diffusion equation

∂T

∂t
ρcp = ∇ · (κ(T )∇T ) (18)

with mass density ρ and specific heat capacity cp is solved using the heat potential

u(κ) =

T
∫

0

κ(T ′)dT ′ . (19)

For the heat potential the first partial derivative in space is

∂u

∂x
=

∂u

∂T

∂T

∂x
= κ

∂T

∂x
(20)

and the second spatial derivative denoted with the Laplace-operator ∇2 = ∇ · ∇

∇2u = ∇ · (κ∇T ) (21)

and the partial derivative in time

∂u

∂t
=

∂u

∂T

∂T

∂t
= κ

∂T

∂t
. (22)

This substitution leads to the semi-linear differential equation

∂u

∂t
=

κ

ρcp

∇2u = χ∇2u (23)

instead of the non-linear second order partial differential equation (18). An alternate

direction implicit Crank-Nicolson scheme [12] is implemented to solve the heat diffusion

equation. Inlcuding operator splitting leads to

∂u

∂t
=
(

∂‖χ‖ + ∂⊥χ⊥

)

u . (24)

The parallel and perpendicular term are solved sequentially, leading to two 1D equation

to be solved for a single time step.

The results shown in section 5 of the 1D approximation use pressure conservation.

For direct comparison the 2D model uses a homogeneous pressure distribution in the

divertor region. Furthermore the presented 2D results are obtained by setting the

target temperature to a fixed value. For comparison less constrained simulations were

performed, with the target electron temperature obeying the sheath heat flux criteria

for target density distributions obtained from experiments. The obtained values for

S in these refined simulations are up to 25% larger compared to the simple system.

The former one can therefore be seen as pessimistic approach to evaluate the divertor

broadening S. It should be noted, that the sheath boundary at the target effectively

prevents low peak target temperatures without changing involved parameters like q0

or L significantly. Loss terms like radiation, charge exchange, etc. can lead to target

temperatures < 5 eV. This can be taken into account in the 1D approximation, where

a numerical solution only depends on the temperature and density profiles along the

separatrix.
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a)

b)

Figure 2. a) Sketch of the poloidal cross section of a tokamak on the left. On the

right a sketch of the slab geometry showing the mapping of the regions: I) Confined

area, II) SOL, III) PFR. b) Example of the electron temperature distribution in eV

resulting from a 2D simulation, restricted to the divertor region. The vertical dashed

line marks the separatrix.

4.1. Geometric Configurations and Boundary Conditions

The numerical tool is able to solve the 2D heat diffusion equation in various topologies.

Figure 2 shows a comparison between a) the structure of the slab geometry and b)

the computational grid with a steady state temperature field. The numerical tool can

include the SOL above the X-point, but for studying S for given X-point conditions

only the divertor region is included. This is called the divertor configuration. The

divertor target is at the bottom, the divertor entrance at the top and the separatrix is

marked with a vertical line. As the diffusive model is not describing the transport in the

confined region, it is excluded from the computational domain. For the example shown

the length of the divertor leg is set to L = 7 m – based on AUG. A single connection

length for all radii is assumed.

The lateral boundary conditions – following the innermost and outermost field line –

at the sides of the computational domain describe no heat transfer through the boundary

(q⊥ ∝ ∂⊥T = 0). The perturbation of these boundaries to the parallel and perpendicular

heat flux is negligible for a sufficient width of the domain. Several radial decay length
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of the parallel heat flux λq and from the 1D approximation S1D are are used, defining

the widths width respect to the separatrix for the SOL

wSOL =
√

(3.5S1D)2 + (7λq)2 (25)

and the width from the separatrix for the PFR

wP F R =
√

(5S1D)2 + (2λq)2 . (26)

The expected S1D is obtained using the 1D approximation introduced in section 5, while

λq is a given value for a specific simulation.

The boundary condition at the X-point is set to a given parallel heat flux profile. The

parameters q0 and λq define the profile entirely.

At the target, the boundary condition is given by a fixed temperature.

In addition, to mimic the behaviour of the sheath, the temperature in front of the target

is adjusted according to a scaling taking into account the heat flux impinging from the

plasma. It is based on the sheath theory [13] describing the heat flux in the sheath

qsh = ΓeγTe (27)

by the electron particle flux Γe, the electron temperature Te and the heat transmission

factor γ at the sheath entrance. This equation holds for the same ion and electron values

Γi = Γe and Ti = Te and the total heat transmission factor γ = γe + γi. According to

the Bohm criterion the speed of incoming particles v is at least as large as the plasma

sound speed c

v ≥ c ≈
√

Te

mi

. (28)

For determining the sound speed the contribution from the ions is neglected. The

resulting particles flux – assuming v = c – is then

Γe = cne (29)

with the electron density ne. The heat flux transferred through the sheath – using again

T · n = p – is approximated with

qsh ≈ T 3/2
e√
mi

neγ = T 1/2
e p

γ
√

mi

∝ T 1/2
e p . (30)

Solving for the temperature we find the temperature where the sheath conducts a given

heat flux density to the target:

Tsh =
q2

sh

p2
· mi

γ2
∝
(

qsh

p

)2

. (31)

From the two grid cells closest to the target boundary the parallel heat flux impinging

onto the sheath is calculated. This heat flux is used as qS in equation (31) to determine
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the temperature TS. The boundary – the target temperature distribution – is updated

iteratively to find the global solution for given upstream parameter. Simulations, not

presented in this work, with this boundary condition were performed, showing similar

heat flux distributions. For peak temperatures, resulting from the sheath-boundary,

being comparable to the constant preset target temperature, the profile shape and

deduced parameters are not altered significantly. For the comparison in section 5.2 and

the temperature scan to determine the behaviour of S the fixed temperature boundary

condition is used.

The resulting target heat flux density profiles do not depend strongly on the parallel

heat flux density q0. As the computational time for convergence depends on the time

step, which is limited by the largest diffusivity, larger parameter scans were performed

for rather low parallel heat flux densities q0 ≈ 1 MW m−2 − −10 MW m−2. Reason is

the scaling of the parallel conductivity with T 5/2, being the limiting factor for the time

step. Simulations for higher values like q0 = 1000 MW m−2 were performed to confirm

the trends found for lower values. The contribution of this high-temperature area to the

target profile is however small, as presented in this work.

5. 1D Approximation of S

Equation (2)
(

S ≈ L
√

χ⊥

χ‖

)

– in which the diffusivities resemble averaged values – can

be interpreted as result of the spatial integral parallel to the magnetic field

S =
∫ L

0

√

χ⊥

χ‖

dl . (32)

With Spitzer-Härm conduction parallel (10) and Spitzer-Härm like conduction

perpendicular (11) to the magnetic field we find

S =

√

χ⊥,0

χ‖,0

∫ L

0
T (l)

α−β

2 dl =

√

κ⊥,0

κ‖,0

∫ L

0
T (l)

α−β

2 dl . (33)

For a remaining density dependence the substitution leading to (17) can be used,

changing the α in the exponent to α′ = α − 1 and adding
√

p to the temperature term

S =

√

χ⊥,0

χ‖,0

∫ L

0

√
p · T (l)

α′−β

2 dl .

Assuming pressure conservation – or negligible changes in
√

p – leads to the same form

of the integral as in (33).

For the rest of this section the Spitzer-Härm like perpendicular transport model

(χ⊥ ∝ 1/n) and equation (33) is used.

Assuming a constant parallel heat flux q‖ – implying no volume radiation and S ≪ λq

– the temperature profile along the magnetic field is described by the two point model:

T (l) =

(

T β+1
t + (β + 1)

q‖ · l

κ‖,0

)1/(β+1)

. (34)
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The plasma temperature along a field line depends on the target electron temperature

Tt and distance l from the target. For zero target temperature (Tt = 0) the temperature

at the X-point (l = L) is denoted as

TX,0 =

(

(β + 1)
q‖ · L

κ‖,0

)1/(β+1)

. (35)

With this expression equation (34) is rewritten as

T (l) =

(

T β+1
t + T β+1

X,0

l

L

)1/(β+1)

. (36)

Equation (32) is expressed by using the derived term for T (l) containing l explicitly in

the integral:

S =

√

χ⊥,0

χ‖,0

·
∫ L

0

(

T β+1
t + T β+1

X,0 · l

L

)
α−β

2(β+1)

dl (37)

Note that the exponent α−β
2(β+1)

is negative for experimental relevant SOL transport.

For −1 ≤ α ≤ +1 the exponent is in the range of -0.5 to -0.2 . As a result the integral

does not diverge when the integrand reaches zero.

The solution to the integral is

S = L ·
√

χ⊥,0

χ‖,0

· 2(β + 1)

α + β + 2
·

(

T β+1
t + T β+1

X,0

)
α+β+2
2(β+1) − T

α+β+2
2

t

T β+1
X,0

(38)

and expresses S by TX,0 – given by q‖ and L – and Tt, which are measurable quantities

in the experiment.

In the case Tt = 0 the result simplifies to

S = L

√

χ⊥,0

χ‖,0

T
− β−α

2
X,0 · 2(β + 1)

α + β + 2
. (39)

This finite value is scaling inverse with the temperature at the X-point and with the

square root of the ratio of the temperature independent diffusivity factors. The term

2(β + 1)

α + β + 2
= const (40)

is identified as a constant factor for a given transport model. A temperature

dependent expression similar to equation (2) is found after defining the effective divertor

temperature for S

TS = TX,0 ·
(

2(β + 1)

α + β + 2

)− 2
β−α

. (41)

Substituting the two last terms in equation (39) for (41) with the right exponent yields

S ≈ L ·
√

χ⊥

χ‖

= L ·
√

χ⊥,0

χ‖,0

T
− β−α

2
S . (42)
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Note the explicit linear dependence on the connection length to the X-point and the

inverse scaling with the averaged temperature. As the connection length is increased –

assuming the target temperature stays constant – the effective temperature TS increases.

As a result the divertor broadening is increasing less than linear with the divertor length.

A decrease in the target temperature – when it is significantly lower than the X-point

temperature – has little influence on S, as the relevant temperature is dominated by

TX,0 and scales only weak with the target temperature.

For a non-constant q‖(l), for example lowered due to the perpendicular diffusion, the

integral is iterated numerically to find S for given q0 and Tt. This approach also allows

to take losses, e.g. due to radiation or charge exchange, into account. From discrete

temperature and density profiles – say from numerical solvers like SOLPS – S can be

evaluated by summing over the ratio of the transport times the finite parallel path

∆S =

√

χ⊥

χ‖

· ∆l (43)

S =
N
∑

0

∆S (44)

starting with S = 0 at the divertor entrance.

Figure 3 shows the resulting value of TS for given Tt for connection length L = 7 m, α = 1

and three parallel heat flux densities. For this comparison the heat flux density q0 is

assumed to be constant along the field line to be independent of the actual broadening,

giving an upper boundary. Note that the target heat flux densities are obtained from

the parallel heat flux density in the plasma approaching the target by taking the field

line inclination angle and the geometric flux expansion into account. The higher the

target temperature, the closer is the effective temperature to the target value, as the

parallel temperature gradient decreases for increasing temperature for the same heat

flux density.

Figure 4 shows the divertor broadening relative to the value of S at Tt = 0. The decrease

of S depends on the parallel heat flux density, which is like in figure 3 kept constant.

This graph shows, that the analysis of S with the target temperature as reference is

expected to depend on the parallel heat flux density q0.

5.1. Approaches to q(l)

Taking the divertor broadening in the 1D approximation into account, the question how

to calculate q(l) arises. By definition q0 is the peak heat flux at the divertor entrance. A

decrease of the parallel heat flux density along the divertor volume reduces the parallel

temperature gradient. A pessimistic approach is to use the peak heat flux according to

the integral decay length (6) as S increases along the divertor leg:

q(l) = q0 · λq

λq + 1.64S(l)
. (45)
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Figure 3. Effective divertor broadening temperature TS for varying target

temperature Tt for different parallel heat flux densities. The effective divertor

temperature TS is scaling linearly to the target temperature for very high temperatures,

where there is virtually no gradient along the field line. For low temperatures, TS

clearly stagnates and with it S.
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Figure 4. Divertor broadening relative to S(Tt = 0) for varying target temperature

and three different parallel heat flux densities.

This approach is pessimistic, as the radial position of the peak heat flux is moving into

the SOL as the heat flux profile degrades by perpendicular transport. Using the peak

heat flux independent of its radial position leads to the steepest parallel temperature

gradient and therefore to an upper limit of the temperature evolution along the field

lines near the separatrix. As this is a robust method, it is used for the evaluation in the

next section.

A less pessimistic approach is to use the temperature profile along a single field line,

located in the SOL. Therefore equation (5) can be evaluated with S(l). The issue is

the dependence of the result on the chosen distance to the separatrix. For values much

smaller than the divertor broadening x ≪ S the parallel heat flux density drops quickly

after the X-point, due to the perpendicular transport into the PFR. For x ≈ S the

parallel profile q(l) approaches the shape of the pessimistic method described before

this method, but stays below q0 at the divertor entrance. Due to the drawback of the
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shape dependence it is not feasible to use q at a fixed radial distance to the separatrix.

5.2. Comparison to 2D Calculation and Experiment

The heat flux profiles from 2D simulation were compared to experimental data and

reproduce the shape for same λq and S, with the fit-function (5) as reference. Figure

5 shows an example of a measure profile for an L-Mode example and figure 6 a result

of the simulation for a similar profile. The resemblance includes a systematic deviation,

where the decay into the PFR is is predicted steeper by the fit than it is the data. This

deviation is also observed in some SOLPS results.

The experimental reference data are from a low-power – 0.8 MW ECRH – and low-

density – ne ≈ 1.5 × 1019 m−3 – L-Mode which yields the cleanest heat flux density

profiles. The target heat flux density – measured perpendicular to the surface –

q0,target ≈ 0.7 MW m−2 corresponds to about q0 = 15 MW m−2 parallel heat flux in

the plasma. The agreement between 1D approximation and 2D simulation remains for

higher heat flux values.

−2 0 2 4 6 8 10
(s−s0 ) / mm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

q t
/
M

W
m
−2 S = 0.26 mm

λq = 2.90 mm

q0 = 0.7 MW/m2

AUG #31617; fitted IR target heat flux, t=3.713 s

measured

1D fit

Figure 5. Divertor heat flux profile deduced from IR-Data in AUG. The target

position is divided by the flux expansion, corresponding to a mapping to the outer

midplane.

Figure 7 shows the variation of peak parallel heat flux, temperature and divertor

broadening S along the separatrix between X-point and target. On the left hand side

is the divertor entrance, with S ≡ 0 and q(l) = q0, as the first and second boundary

conditions. The temperature at the target – on the right hand side for L = 7 m is

set as the third boundary condition and the result determined numerically to obey the

constraints at both sides. Boundary conditions are q0 = 10 MW m−2, St = 1 mm and

Tt = 10 eV. The gradient of S(l) is highest near the target, as the falling temperature

reduces the parallel transport compared to the perpendicular transport. A linear

increase of S ∝ l can be a reasonable approximation for 1D models taking the parallel

heat flux density in the divertor volume into account, without treating the broadening

mechanism. Figure 8 shows a comparison between the parallel heat flux density close to

the separatrix in the SOL (sep), in the SOL and in the PFR. Relevant parameters are



Analytic 1D Approximation of the Divertor Broadening 15

−2 0 2 4 6 8 10

Radial position x / mm

0

1

2

3

4

5

6

7

8

q
∥
/
M
W

/
m

2

Simulation : λq =3 mm, q ∥,0=10 MW/m2 , α=1.5

Fit : S=0.49 mm, λq=2.98 mm, q ∥,0=9.9 MW/m2

2D simulation

1D-fit

Figure 6. Divertor heat flux profile from the 2D simulation in divertor geometry with

λq and q0 similar to the profile in 5.

q0 = 1 MW m−2, λq = 1 mm, S ≈ 0.99 mm. The deviation of the profiles at the target

is due to a mismatch between the target heat flux profile and the 1D broadening model

introduced in section 2 for the target heat flux density profile, see equation (5).
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Figure 7. Parallel profiles of parallel heat flux density q‖, electron temperature T and

divertor broadening S. Perpendicular diffusivity is temperature independent (α = 0).

A comparison of the divertor broadening S between 1D approximation and 2D

calculation is shown in figure 9 for diffusivities set to yield two different S of 1 and

2 mm for Tt = 0 in the 2D simulation. The upper graph shows the value of S for varying

target temperature. Parameters like λq and S are obtained from the 2D simulation

by performing a least-squares fit of equation (5) to the target heat flux profile of the

simulation. An example of the simulated target heat flux profile and resulting fit function
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Figure 8. Heat flux density along three field lines from the 2D simulation in

comparison to the Eich-model assuming a linear dependence of S to l. Simulation

results are shown as solid lines, 1D approximations as dashed lines.

is shown in figure 6. The lower graph of figure 9 shows the ratio of the fitted 2D data

to the 1D integral result. The approximation based on (32) underestimates S at around

25% compared to the 2D calculation, but agrees with the trend. As introduced in section

3 parameter choice α = 0 is considered closest to experimental findings and therefore

used in this comparison. Figure 10 shows the trends of 2D and 1D results for S for the

case α = 0. The values for S1D were scaled with a constant according to a least-squares

fit to match the values from the 2D simulation.
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Figure 9. Ratio of S from 2D Simulation to 1D integral for constant parallel heat

flux density q = q0 = 1 MW m−2. α = 0. Note that the same ratio for the diffusivities

is used for each temperature scan.

Figure 11 shows experimental and simulated values from [1] for S = Star

fx
based

on the value Star measured on the target. Shown are measured data from JET and

AUG. The parameters are obtained via a least-squares fit from equation (5). In the

experiment radiation from the plasma leads to additional heating of the target plates.

This results in a background, that is assumed to be constant and enters as an additional

constant background qBG in equation (5). In SOLPS typically only heating by electrons

and ions reaching the sheath is taken into account, corrected for the reflected ratio of
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Figure 10. Best fit of inverse power law to describe S based on Tt for Tt ≥ 30 eV and

Tt ≥ 20 eV, α = 0. The inverse power law reproduces S for temperatures restricted to

above 20 to 30 eV.

ions. Interaction with neutrals and volume radiation are neglected. Numerical tools like

SOLPS basically would basically allow to make a distinction of these heat sources for

better comparison to the experiment. The regression – plotted as red line – uses only

data from SOLPS simulations. The best fit for a power law is given by

S = (2.3 ± 0.2)T −0.36±0.03
e . (46)

A regression with the same model to the 2D simulation results for temperatures

starting from 30 eV the analytic function and the corresponding 2D simulation yields an

exponent of -0.87, shown in figure 10. Including temperatures down to 20 eV lowers to

exponent to -0.69. The scaling factor is not of interest, as a specific ratio of diffusivities

leading to S = 1 mm for Tt = 0 is used. Restricting the fit to higher target temperatures,

the exponent for the temperature approaches -1.25. This is expected from equation (42)

for a flat temperature profile with T (l) ≈ const from target to X-point.

This deviation in the exponent for higher temperatures probably is connected to

a simple resolution limit. A lower limit for S is the spatial resolution of the profiles,

which is about 1.7 mm on the target for the experimental data in figure 11– reference

[14] from [1] –, corresponding to 0.34 mm upstream for a flux expansion of 5. The AUG

L-mode data lie at that lower limit for temperatures around 40 eV and are consistently

below the SOLPS fit. In addition vibrations of the camera or other optical systems

as well as imperfections in the heat flux density deduction from temperature data are

candidates for an overestimation of S due to additional broadening of the profiles. In

the SOLPS data base the relevant heat flux density pattern is described by about 5-

10 flux tubes, potentially also limiting the lower limit of S that is resolvable by the

fit. The 2D simulation use radial resolutions below 0.1mm at the mid-plane. Analysis

of experimental data with higher target resolutions at AUG – a factor 3 compared to

the data behind [1] – find S values down to 0.2 mm and evidence for −5/4 being the

correct exponent [2] as expected from the 1D approximation and 2D simulation for high

temperatures.
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Figure 11. S as function of target electron temperature at the separatrix Te,tar,sep,

based on [1]. Red line corresponds to fit with optimal parameters S = (2.3 ±
0.2)T −0.36±0.03

e . Only the last three elements in the legend – in the black box - are

measurements from the machines ASDEX Upgrade (AUG) and JET. The others – in

the green box – correspond to SOLPS calculations for various Divertor configurations

contributing to the fit resulting in the red line called fit SOLPS.

The different behaviour of S for low temperatures in figures 11 and 10 is due to

different levels of physics in the models. The 1D approximation and 2D simulation are

conserving energy, allowing only for perpendicular broadening. In experiments and more

sophisticated simulations like SOLPS, other processes like radiation reduce the power

reaching the target and thereby lead to an increase of S when performing a regression

function (5) on the target heat flux profiles profiles. Another process is heating of the

target by radiation, which leads to larger values of S for reduced peak power loads by

plasma transport.

6. Interpretation

An 1D approximation for the divertor broadening S is found by integrating the

temperature profile along the separatrix between X-point and divertor target. While a

power law scaling for Tt is valid for high target temperatures, this is not true for low

target temperatures due to the strong parallel temperature gradient. This approach

implies, that it is not enough to reduce the plasma temperature close to the target for

larger machines like ITER and DEMO to achieve the required low target heat flux, but

the temperature has to be lowered in a large volume in front of the target. This could

be achieved by e.g. radiation or charge exchange in the divertor volume.

Also a faster decrease of S with high temperatures is expected from the 1D

approximation and simple 2D simulation, as SOLPS and experiments operate at the

resolution limit in terms of deducing S. For a discussion of data with higher target

resolution – finding S ∝ T
−5/4
e,target – see [2]. As it turns out, the gyro-radius has to be taken

into account, when it get’s comparable with the perpendicular transport broadening.

This is not taken into account by the 1D approximation or 2D simulation presented in
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this work.

An important consequence is, that an increase of the length of the divertor leg – in which

conduction is the dominant transport parameter – will increase the divertor broadening

less than linear – as suggested by (2) – due to the strong temperature gradient in front

of the target and therefore an almost unchanged high temperature near the X-point

with low contribution to S. Additional connection length, however, can be used to

decrease the parallel heat flux density in the divertor volume by radiation and dissipative

processes, so that the temperature gradient in front of the target is lowered, which leads

to an increase of S.

The presented 1D analysis neglects processes like convective transport, drifts and

radiation, which limits the predictive capability of the approximation, as these are

known to have an influence on the target heat flux profile. The 2D simulation used

for comparison assumes a constant pressure in the divertor volume and a homogeneous

target temperature for better comparability. Both neglect the influence of neutral

particles, known to be important for detachment, reducing heat and particle flux to

the target.

Therefore the presented approximation delivers an approximation for attached

conditions, with conduction being the dominating transport in the divertor volume.

Using the formulation introduced in this paper, an integration for arbitrary dependencies

of the diffusivities on n and T can be done numerically with little effort to find a

better suited 1D approximation. The simulation can also be seen as prediction for the

broadening due to perpendicular transport. In addition radiation and other processes

can lead to a broadening.

When analysing target heat flux density profiles, one must distinguish two mechanisms

altering its shape from the X-point to the target. Perpendicular broadening describes

an energy conserving process, which is thought to be represented by S and is due to

an-isotropic heat transport. On the other hand losses like radiation, charge exchange etc

remove heat from the plasma by other means than convective or conductive transport.

They lead to a flattening of the peak heat flux – mimicking perpendicular broadening

– and affect the deduction of transport parameters from the heat flux profiles. These

losses can lead to an overestimation of S also in simulations with codes like SOLPS

– with respect to the value of S associated with pure energy conserving perpendicular

broadening.

7. Conclusions

It is shown that for pure conductive transport in the divertor region a power law of

the divertor broadening S to the target electron temperature Tt as the suggested in

[1] is only valid for temperatures Tt above about 20 eV. The further increase of S for

lower target temperatures in experiments and SOLPS simulations seems to be driven

by heat loss processes like radiation, not conduction. This raises the question, whether
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the common analysis, using a single broadening parameter S, to explain the smoothness

of the profiles – seen as a reduction of the peak heat flux – as deviation from a pure

truncated exponential decay is enough.

However, for decreasing target temperatures (Tt < 20 eV) the increase of S stagnates

and the conductive 1D approximation results in a finite value of S even for zero target

temperature.

It is concluded that the target temperature is not a valid parameter for a power law

scaling, as it is not representative for the entire divertor volume due to the increasing

temperature gradients with decreasing temperature. This is shown in simulations

solving the 2D heat diffusion equation, which is used as reference for an analytic 1D

approximation describing the divertor broadening along a field line solely by the ratio

of the perpendicular to the parallel diffusivity. To solve this a distinction between

the conductive S – for perpendicular broadening – and an effective broadening Seff to

include heat losses is suggested.
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