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Abstract 

Tungsten has established itself as the most suitable plasma-facing material for long-term operation 
in future magnetic-confinement fusion devices, but its properties make it a poor structural material 
and complicate the manufacturing of complex components. Recent advances in additive-
manufacturing (AM) technology have begun to make the production of tungsten components with 
complex geometry more feasible. The design freedom afforded by AM could be leveraged to 
produce more resilient plasma-facing components (PFCs). A methodology to optimize the material 
distribution of composite PFCs was developed to reduce the maximum thermal stress caused by high 
heat fluxes. Its use was demonstrated for copper-infiltrated AM tungsten (WAM/Cu) structures. Stress 
reductions of 50 - 85% are predicted under nominal load conditions. Optimized designs also reduce 
stress over a wide range of off-nominal conditions. The resulting optimized structures are composed 
of a spatially heterogeneous distribution of W and Cu comprising a broad range of composite 
mixtures. A sample manufacturable component was modelled based on optimization results. 
 

Highlights 
 A methodology to optimize the material distribution of composite PFCs was developed to 

reduce the maximum thermal stress caused by high heat fluxes. 

 Stress reductions of up to 85% compared to a monolithic W block may be feasible with 
topology optimization techniques. 

 Optimized component designs are effective at reducing stress even over a wide range of off-
nominal conditions. 

 Manufacturable components can be designed based on optimization results. 
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1. Introduction 
 
One of the major design drivers for PFCs in future magnetic-confinement fusion reactors such as 
ITER and DEMO is the thermal stress produced by high heat fluxes received from the plasma. The 
nominal steady-state heat flux expected at the ITER divertor is 10 MW/m², with numerous slow 
transients up to 20 MW/m² [1]. Additionally, plasma instabilities can cause short bursts of extreme 
heat fluxes which can damage the plasma-exposed surface of components [2]. Tungsten (W) is 
currently the most promising plasma-facing material (PFM) for armoring divertor PFCs. However, 
despite the many advantages of W as a PFM, its brittleness makes it a poor structural material [3]. 
Therefore, much research has focused on combining W armor with a more suitable structural 
material, such as copper (Cu) alloys, as a heat sink. A divertor composed of W monoblocks mounted 
to Cu-alloy cooling tubes was developed for use in ITER. Though a comparatively simple concept 
such as the monoblock is believed to suffice for operation in ITER, the extreme demands placed on 
PFCs in future power-plant-grade devices such as DEMO have stimulated the investigation of 
advanced design techniques to develop more robust components [4]. One issue afflicting traditional 
designs is the concentration of stress at W/Cu interfaces caused by non-uniform temperature 
distributions and the mismatch of the thermomechanical properties of W and Cu, primarily the 
coefficients of thermal expansion [5]. For this reason, a variety of techniques to mitigate the stresses 
that develop at W/Cu interfaces in PFCs has been developed. Examples include a plain interlayer [6], 
a functionally graded layer [7], and a thermal break [8]. However, the effectiveness of these 
approaches is bound by their relatively simple geometry and limited optimization potential. 

 

 
Figure 1 – Photograph of a WAM/Cu composite based on an additively manufactured W honeycomb 

structure fabricated by infiltration with liquid Cu. 
 
Additively manufactured W (WAM) could be a valuable tool to overcome these limitations. AM 
affords substantial design freedom, which could be leveraged to design improved PFCs. Though still 
at an early stage of development, AM of W has been demonstrated using laser powder bed fusion 
(LPBF) [9]. While material with a reasonably high relative density can be consolidated, W is a 
challenging material for AM. Porosity and inter-granular cracking hamper the material’s mechanical 
performance, which preclude its use as a monolithic structure. However, the material would be 
suitable as a preform employed to reinforce a ductile matrix material. W/Cu composites are 
currently under consideration as advanced PFC heat sink materials, and it has been demonstrated 
that such materials can be produced by melt-infiltration of WAM preforms [10]. A microsection of a 
WAM/Cu composite based on an additively manufactured W honeycomb structure is illustrated in 
Figure 1. The present work addresses the second factor limiting the effectiveness of traditional PFC 
design techniques: optimization. The proposed methodology is an adaptation of structural topology 



optimization; the popularity of topology optimization has grown with the increasing use of AM and 
encompasses a wide range of techniques [11]. This methodology optimizes designs to reduce the 
peak thermal stress due to steady-state high heat fluxes by tailoring a heterogeneous W/Cu material 
distribution. In the following, the proposed optimization is described, and the results of optimizing a 
demonstration component are presented in order to illustrate the potential of this method. Finally, 
the necessary steps to address current technological limitations and knowledge gaps are discussed. 
 

2. Optimization Approach 
 
2.1 Overview 
 
An optimization algorithm relies on system equations to describe the behavior of the optimized 
physical system. The thermoelastic behavior of the optimized PFCs was described with the finite-
element (FE) method. Two FE problems must be solved to calculate stress in a thermally loaded 
component. First, the temperature field within the component was determined with a steady-state 
thermal-conduction problem. A static-equilibrium problem was solved subsequently to determine 
the displacements induced by thermal expansion. Knowing the temperature and displacement fields, 
stress was calculated. The FE formulation is detailed in Appendix A. 
 
The PFCs were meshed with elements, and each element e was assigned a design variable ρe, which 
may vary between 0.0 and 1.0. The design variable interpolates the material composition within that 
element, where 0.0 corresponds to Cu alloy and 1.0 to pure W. Intermediate values represent 
composite mixtures; the behavior of these mixtures must be determined with a model describing 
the elastic properties, thermal conductivity, and thermal expansion of the foreseen composite 
structure. These material models are described in Section 2.3. The optimization problem, detailed in 
Section 2.4, was formulated such that the peak von Mises stress in the component is minimized. In 
addition to the current stress state in the component, derivatives of stress with respect to (w.r.t.) 
the design variables must be calculated. This process, known as sensitivity analysis, is covered in 
Appendix B. Design variables of a subset of elements in the mesh can be fixed to prescribed values. 
This was used, for example, to guarantee a minimum thickness of pure W as armor at the plasma-
facing surface. Since these design variables do not change over the course of the optimization, they 
can be excluded from many portions of the calculation in order to reduce computation time (e.g. 
sensitivity analysis, optimal solution search). The remaining elements, with free design variables, 
comprise the design domain. Following optimization, the resulting material distribution must be 
realized with a manufacturable structure. Results should be considered a tool to guide the design 
process; the suitability of an optimized design must be subsequently verified with analysis and 
experimental testing. 
 
2.2 Demonstration component model 
 
Optimizations were performed using a custom-built code based on the open-source FE library 
libMesh [12]. The model shown in Figure 2 was chosen to demonstrate the methodology. The 
component was modelled in 2D with plane-stress behavior, but the optimization can be applied to 
3D domains as well. The dimensions are comparable to the geometry of an ITER monoblock (see [1]), 
and the thermal boundary conditions are a simplified representation of typical conditions. This 
greatly simplified component model served to streamline the development and demonstration of 
the methodology; an application-specific optimization for a real component should use a model with 
a higher degree of fidelity to achieve the best results. Although AM and topology optimization would 
enable designers to re-envision even the overall form of PFCs, the use of a familiar geometry allows 
a more direct comparison of the new methodology with existing concepts. A 5mm region facing the 



plasma was fixed to be pure W. Estimates for the minimum thickness of armor material required to 
achieve an acceptable erosion lifetime vary, but values of 5 to 8 mm are typical [13]. 
 

 
Figure 2 – Dimensions (in millimeters) and boundary conditions of the optimization domain. 

 
The domain represents half of the component to take advantage of its symmetry, and was 
discretized with a procedurally generated gridded mesh; examples with 14x28 (1mm element size) 
and 21x42 elements (0.67mm element size) are shown in Figure 3. The use of a gridded mesh 
simplifies post-processing of results, but an unstructured mesh can be used as well, and would be 
necessary in some cases (e.g. to accurately represent convection boundary conditions or the 
geometry of a cooling tube). Elements are 4-node quadrilaterals with first-order interpolation of 
primary variables. A steady-state heat flux QN was applied at the surface of the tungsten armor, and 
nodes at the surface of the cooling tube were fixed to 150°C. Calculation of thermal stresses requires 
knowledge of the stress state in the composite structure for at least one temperature. However, the 
post-manufacturing stress state of WAM/Cu composites is complex, being the result of residual stress 
from the AM process and solidification shrinkage during melt infiltration, and has not yet been 
characterized. Therefore, thermal stress was calculated using a temperature (T0) at which the 
material was assumed free of stress. Optimizations were performed with five stress-free reference 
temperatures ranging from 150°C to 1150°C in order to develop a qualitative understanding of how 
the optimization results depend on the residual stress state. The heat flux and stress-free reference 
temperature are important design parameters, and their influence on the optimized structure is 
discussed in detail in Section 3. 
 
 

 
Figure 3 – 14x28-element (left) and 21x42-element (right) gridded meshes. 

 



2.3 Material models 
 
Due to the lack of experimental data for WAM/Cu composites, material models for this work were 
developed using numerical homogenization. With this technique, the macroscopic properties of a 
composite microstructure are determined by spatial averaging of a representative volume element 
(unit cell) [14,15]. Models of two composite structures were used to demonstrate and characterize 
the presented methodology: Cu-alloy-infiltrated W regular honeycomb and Cu-alloy-infiltrated W 
body-centered cubic (BCC) lattice. Representative volume elements are shown in Figure 4. The 
material models are parameterized by two quantities: elemental design variables (representing the 
volume fraction of W) and temperature. Tabulated values of Young’s modulus (E), Poisson’s ratio (ν), 
thermal conductivity (κ), and thermal expansion (α) of CuCrZr and pure W at temperatures between 
20°C and 1000°C were used [16]. Since the properties of CuCrZr are generally insufficient for the 
alloy to be used at high temperatures without reinforcement, tabulated values are not available up 
to 1000°C. There are also locations in the pure-W armor region that exceed 1000°C at higher heat 
fluxes. Therefore, at temperatures above the highest tabulated values for CuCrZr and above 1000°C 
for W, properties were extrapolated using a constant value. It must be stressed that this 
extrapolation is neither appropriate for a detailed failure analysis nor entirely suitable for 
application-specific optimizations. This solution was expedient for the purpose of developing and 
demonstrating the optimization, but should be replaced with a more thorough model of the 
composite and its constituents at higher temperatures, provided that this information is available. 
Once the operational temperature range for this class of composites has been studied 
experimentally, scrutiny by the designer can identify regions where the optimization yields mixtures 
at untenable temperatures. Properties for compositions and temperatures falling between tabulated 
values were found with bilinear interpolation. 
 

 
Figure 4 – Representative volume elements of regular honeycomb (above) and BCC lattice (below, 

Cu-alloy matrix hidden). 
 
2.4 The optimization problem 
 
Although the analysis of PFCs must consider numerous variables and failure modes, optimization 
techniques generally seek to minimize or maximize a single quantity. The complex stress state in a 



PFC was therefore reduced to a single quantity in two steps. First, stress at each integration point 
within a finite element was summarized using the von Mises equivalent stress. For a 2D, plane-stress 
domain, the von Mises stress was calculated with 
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Subsequently, the optimization problem was formulated in a way that seeks to minimize the peak 
von Mises stress in the domain as calculated by the macroscopic finite element models of the 
component. Two formulations to achieve this were developed. The first formulation aims to 
minimize a global stress metric σg. Multiple metrics were considered. An example is the p-norm of 
stress values at each integration point i in all nel elements of the mesh: 
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The purpose of such metrics is to approximate the max function. For the above p-norm metric, this 
is done by choosing a large p. In practice, the value of p is limited by the floating point 
representation of large powers (20 is typical). The second formulation treats stress locally. An 
artificial variable z was minimized while the mean von Mises stress in each element was individually 
constrained to be less than or equal to z. Averaging of stress values within an element was 
performed to reduce the number of constraints in the optimization problem, as this quantity has a 
significant impact on computation time. This formulation is described by following min-max 
optimization problem: 
 
 

            min        𝑧 
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The Method of Moving Asymptotes (MMA) was chosen to solve the optimization problems. The 
MMA is a nonlinear optimization algorithm with many advantages for large, non-convex 
optimization problems with implicit system equations, and is popular for topology optimization 
[17,18]. Two forms of constraints on the material composition were tested. The first, an essential 
feature of traditional structural topology optimizations, constrains the global volume fraction to a 
maximum value: 
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Since the proportion of elements with fixed design variables was generally substantial, this 
constraint was applied only to elements in the design domain in order to avoid biasing the volume 
fraction with elements outside the region of interest. Additionally, the standard MMA optimization 
problem provides individual minimum- and maximum-value constraints for each design variable: 
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The natural values for these constraints are 0.0 and 1.0, respectively. The global volume fraction 
constraint showed little benefit and its use is not suggested. The individual constraints have a 
practical use, however. The range of allowed values can be shrunken to prevent elements from 
developing composite structures that complicate manufacturing. For example, setting values of 0.0 



and 0.7 avoids W-rich regions that may prevent the removal of residual powder after the LPBF 
process or lead to voids due to poor flow during melt-infiltration with the matrix alloy. 
 

3. Optimization results 
 
Optimizations were performed using the 14x28-element mesh in Figure 3 under a wide variety of 
conditions in order to illustrate the capabilities and characteristics of the presented optimization 
approach. The reference configuration to which optimization results were compared is a full-W 
14x28-element component. Although this excludes certain features of common PFC designs, such as 
the copper-alloy cooling tube of the ITER monoblock design, it is useful for understanding the 
behavior of the algorithm. Application-specific optimizations should be compared to established 
real-world designs. Optimizations were performed for heat fluxes (QN) of 5, 10, 15, and 20 MW/m². 
Table 1 shows the peak von Mises stress for the reference configuration at each heat flux, which was 
observed to be independent of the stress-free reference temperature (T0), and Figure 5 visualizes 
the stress and temperature fields for a heat flux of 15 MW/m². The results of optimizing with an 
assumed stress-free reference temperature of 150, 400, 650, 900, and 1150 °C were compared. The 
combination of 4 heat fluxes and 5 reference temperatures yielded a total of 20 load cases. Each 
load case is identified subsequently with a QN/T0 designation (e.g. 10/650 represents QN = 10 
MW/m² and T0 = 650°C). 
 

 

QN [MW/m²] σmax [MPa] 

5 260.5 
10 576.1 
15 922.5 
20 1264.2 

Table 1 – Peak von Mises stress in a full-W domain for different heat fluxes. 
 
 

 
Figure 5 – Von Mises stress (left) and temperature (right) fields in the reference component with a 

heat flux of 15 MW/m². 
 
 
The optimization problem based on constrained local stress values had far superior performance to 
minimization of a global stress metric. While the local-stress formulation reliably achieved stress 
reductions and yielded manufacturable material distributions, global stress metrics converged only 
occasionally and often resulted in stress increases or unmanufacturable structures. All of the tested 



metrics showed similar behavior. The results presented in the following discussion were produced 
with the local-stress formulation. 
 
 

QN [MW/m²] T0 [°C] σmax [MPa] Rel. Δσmax 

5 150 98.2 -62.3% 
5 400 42.9 -83.5% 
5 650 41.8 -84.0% 
5 900 42.6 -83.6% 
5 1150 41.6 -84.0% 

10 150 219.1 -62.0% 
10 400 84.9 -85.3% 
10 650 82.2 -85.7% 
10 900 87.2 -84.9% 
10 1150 88.4 -84.7% 

15 150 355.5 -61.5% 
15 400 177.9 -80.7% 
15 650 124.8 -86.5% 
15 900 139.7 -84.9% 
15 1150 139.9 -84.8% 

20 150 479.2 -62.1% 
20 400 370.4 -70.7% 
20 650 177.1 -86.0% 
20 900 185.6 -85.3% 
20 1150 198.8 -84.3% 

 
Table 2 – Peak von Mises stress and stress reduction for components optimized with a BCC lattice. 

 
 
Table 2 shows the peak stress reduction achieved by the optimization for each load case using the 
BCC material model. A stress reduction of roughly 85% compared to the reference configuration for 
the corresponding heat flux was typical. Optimization with an assumed stress-free temperature of 
150°C was less successful, but still achieved a stress reduction of roughly 62% for all heat fluxes. 
Figure 6 shows a progression of the material distribution and stress field for the 10/650 load case 
using the BCC material model. In this and all subsequent figures, blue represents W, and white 
represents Cu alloy. Darker shades of blue thus represent composite mixtures with higher W volume 
fractions. Within 3 iterations, the peak stress had already decreased by 76.9%, and the developing 
structure was visible. After 10 to 15 iterations, the material distribution and stress field had largely 
stabilized. 
 



 
Figure 6 – Selected iterations from the optimization of a component with QN = 10 MW/m² and T0 = 

650°C. In the material distribution (left of each pair), W is represented by blue and Cu alloy by white. 
The von Mises stress field (right of each pair) progresses to a uniform, low-stress state in fewer than 

10 iterations. 
 
 
Figure 7 illustrates the influence of the heat flux QN on the resulting optimized structure for a 
reference temperature of 650°C. Higher heat fluxes yielded designs with a greater amount of Cu 
alloy. The thermal conductivity of CuCrZr is significantly higher than that of W; the optimization 
seemed to make use of this fact to increase the conductivity of the structure, reducing temperatures 
and thus thermal expansion. Qualitatively, the structures showed many similar features. A Cu-rich 
region developed on the side of the component, for example. This likely gave the structure a degree 
of compliance that allowed the hotter armor region to expand with less resistance. 
 
 



 
Figure 7 – Influence of the heat flux QN on the resulting structure in components optimized assuming 

a stress-free reference temperature of 650°C. 
 
 
Figure 8 illustrates the influence of the stress-free reference temperature T0 on the resulting 
optimized structure for a heat flux of 10 MW/m². Higher reference temperatures yielded designs 
with a greater amount of W. Results for a reference temperature of 150°C were all qualitatively 
different than for the other, higher temperatures, and showed comparatively little variation for 
different heat fluxes. Though this correlates with the somewhat diminished stress reduction of these 
load cases, there is currently no intuitive explanation for this behavior. 
 

 
Figure 8 – Influence of the stress-free reference temperature T0 on the resulting structure in 

components optimized for a heat flux of 10 MW/m². 
 
Even at a heat flux of 20 MW/m², temperatures in the copper-containing regions of the design 
domain remained well below 1000 °C. Table 3 shows the peak temperature in elements with design 
variables below 0.95 for optimizations with the BCC material model and a stress-free reference 
temperature of 650°C. 
 
 

QN [MW/m²] 5 10 15 20 

Max. TCu [°C] 362.1 527.3 605.0 707.7 

 
Table 3 – The maximum temperature in copper-containing regions of designs optimized with the 

BCC material model and a stress-free reference temperature of 650°C. 



Optimizations proved to be insensitive to the choice of material model. In addition to the BCC 
material model, a full set of optimizations was performed with regular honeycomb. The achievable 
stress reductions were comparable, and the resulting structures were similar (see Figure 9). Table 4 
compares the stress reduction in a component optimized for a heat flux of 10 MW/m² with the BCC 
and honeycomb material models. 
 

 

T0 [°C] BCC Honeycomb 

150 -62.0% -60.7% 
400 -85.3% -87.3% 
650 -85.7% -86.2% 
900 -84.9% -86.3% 

1150 -84.7% -84.9% 

 
Table 4 – Comparison of peak von Mises stress reduction in designs optimized for 10 MW/m² with 

the BCC and honeycomb material models. 
 

 
Figure 9 – Comparison of material models. Optimization results for 10/650 load case. 

 
 
A component optimized for a particular load case experiences higher stresses when subjected to off-
nominal conditions. Table 5 compares the stress in a component optimized for the 10/650 load case 
at each of the selected heat fluxes. Clearly, relative to nominal conditions, stress increased 
considerably. However, from the rightmost column, which compares the stress to the reference 
configuration at the corresponding heat flux, it is apparent that the optimized design remained an 
improvement for all heat fluxes. Even at 20 MW/m², a component optimized for 10 MW/m² 
achieved a 46% reduction of stress compared to the full-tungsten component. Notably, the 
component optimized for 10 MW/m² performed only marginally better than the reference 
component at the lower heat flux of 5 MW/m². Table 6 shows a similar comparison for the same 
optimized component assuming deviation from the assumed stress-free reference temperature. The 
optimized design again remained an improvement over the reference component for the considered 
load cases. Optimized designs only failed to surpass the reference configuration for certain load 
cases with large differences in both design parameters QN and T0. Simulating the component 
optimized for the 10/650 load case under the 5/1150 conditions, for example, yielded a peak stress 
182% greater than that of the full-tungsten reference at a heat flux of 5 MW/m². 



QN [MW/m²] T0 [°C] σmax [MPa] σmax/σnom σmax/σref 

5 650 248.9 303% 96% 
10 650 82.2 100% 14% 
15 650 365.7 445% 40% 
20 650 679.4 827% 54% 

 
Table 5 – Comparison of peak von Mises stress in a BCC component optimized for the 10/650 load 

case at off-nominal heat fluxes (QN). 
 
 

QN [MW/m²] T0 [°C] σmax [MPa] σmax/σnom σmax/σref 

10 150 538.1 655% 93% 
10 400 280.4 341% 49% 
10 650 82.2 100% 14% 
10 900 229.4 279% 40% 
10 1150 446.1 543% 77% 

 
Table 6 – Comparison of peak von Mises stress in a BCC component optimized for the 10/650 load 

case at off-nominal stress-free reference temperatures (T0). 
 
As discussed in Section 2.4, it is possible to constrain design variables on an elementwise basis, 
which can be used to improve the manufacturability of the optimized component. However, 
constraining the solution set lead to a less optimal result. Optimizations were performed with both 
the BCC and honeycomb material models while constraining design variables to the range of 0 – 0.5 
and 0 – 0.7. Figure 10 shows the resulting structures for the 10/650 load case and Table 7 compares 
the peak stress to the unconstrained optimization. As expected, the peak stress increased. However, 
the stress reduction remained significant, at roughly 75% when constraining design variables to a 
maximum value of 0.7. 
 

 
Figure 10 – Optimization results for the 10/650 load case constraining the maximum value of design 

variables to (from left to right for each material model) 0.5, 0.7, and 1.0. 
 
 

 BCC   Honeycomb   
Max. ρe 0.5 0.7 1.0 0.5 0.7 1.0 

σmax [MPa] 239.3 145.7 82.2 266.6 145.1 79.7 

Rel. Δσmax -58.5% -74.7% -85.7% -53.7% -74.8% -86.2% 

 
Table 7 – Peak von Mises stress and relative stress reduction in components optimized for the 

10/650 load case with constrained design variables. 



 
Figure 11 – Demonstration of the optimization’s non-convexity with the 10/650 load case. 

Initialization with 1.0 (W, left) and 0.0 (Cu, right) results in different structures, but both achieve a 
stress reduction of roughly 86%. 

 
Optimizations were performed with the BCC material model using various initial material 
distributions in order to investigate the optimization problem’s non-convexity. Figure 11 compares 
the results of optimizing for the 10/650 load case with the design domain initialized to 0.0 (all Cu) 
and 1.0 (all W). The initialization biased the W content of the resulting material distribution. The 
design with all-Cu initialization had a final average volume fraction of 42.2% W in the design domain, 
while the all-W initialization yielded 60.5% W. The peak stress was comparable, however, with both 
designs achieving a stress reduction of roughly 86%. Mesh refinement did not fundamentally change 
the optimized material distribution, an issue that must be mitigated in traditional topology 
optimizations. Figure 12 compares the optimal design for the 10/400 load case on 14x28- and 21x42-
element meshes. Though the resolution of the solutions differ, the same stress-reducing features 
developed regardless of element size. 
 

 
Figure 12 – Comparison of optimization results for the 10/400 load case with a 14x28- (left) and 

21x42-element (right) mesh. 



A sample topology-optimized PFC was modelled to demonstrate the feasibility of designing a 
manufacturable component based on optimization results. Figure 13 shows a cross-section of the 
component’s geometry with the optimization results from which it was derived. The geometry of the 
BCC lattice (2mm cell size) was generated procedurally using the scripting capabilities of the SALOME 
platform. Finishing touches were applied in CATIA. The volume fraction of each cell is the average of 
the composition in four of the square 1mm elements in the 14x28-element mesh used for the 
optimization, and was rounded to the nearest tenth. Design variables were constrained to a 
maximum value of 0.7 during optimization. 
 

 
Figure 13 – A sample optimized component implemented with a BCC lattice structure (left) and the 

optimization results from which it was derived (right). 
 

4. Summary 
 
A design methodology for WAM/Cu PFCs was developed based on structural topology optimization 
techniques. The optimization uses the finite-element method to describe the thermoelastic behavior 
of the PFC. The Method of Moving Asymptotes was used to solve a min-max optimization problem 
that minimizes the peak von Mises stress in the domain. The optimization currently uses 
temperature-dependent material models developed with numerical homogenization. Preliminary 
results indicate the potential for stress reductions of up to 85% compared to an all-W reference 
component under the conditions for which a design was optimized. Optimized designs offer 
improved performance for a wide range of off-nominal conditions as well. 
 
The most significant issue currently limiting the potential of this particular optimization is a lack of 
experimental characterization and general understanding of WAM/Cu composites. As seen in the 
results, the optimal material distribution depended strongly on the stress-free reference 
temperature. Thus, a prediction of the residual stress state in the composite is essential future work. 
Likewise, a multi-scale stress model will be necessary in order to reliably analyze failure of composite 
components, and mechanical testing must be performed to determine stress limits and verify 
properties predicted by numerical homogenization. 
 
Despite these open issues, the promising initial results warrant both further research on this class of 
materials and an investigation into other, undeveloped applications of topology optimization for the 
design of PFCs. In this work, the peripheral geometry of optimized designs was limited to that of a 
traditional monoblock in order to highlight the merits of tailoring a component’s material 
composition. This is by no means the only property of PFCs that could benefit from a reexamination 
with this design approach, however. Topology optimization and AM may allow designers to re-
envision component shape, the form and distribution of cooling channels, etc. to achieve even 
further improvements. 
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Appendix A. Finite-element formulation 

The temperature field (T) in a composite PFC was modelled using the homogeneous form of 
Poisson’s equation with variable thermal conductivity tensor (κ): 
 

𝛁 ∙ (𝜿 𝛁𝑇) = 0 
 
The temperature within each element was interpolated using 
 

𝑇 = ∑ 𝑁𝑛
(𝑒)

𝜃𝑛
(𝑒)

𝑛𝑛

𝑛=1

= 𝑵(𝑒)𝑇𝜽(𝑒) 

 
where the column vectors N(e) and θ(e) contain the element shape functions and nodal 
temperatures, respectively. The temperature gradient within an element was then derived from the 
nodal temperatures as 
 

𝛁𝑇 = (𝛁𝑵(𝑒)𝑇)𝜽(𝑒) = 𝑭(𝑒)𝜽(𝑒) 

 
The matrix F(e) encapsulates the derivatives of an element’s shape functions. Element conductivity 
matrices are built from F(e) and the local thermal conductivity tensor by integration over the 
element volume Ω(e): 
 

𝑲𝑡
(𝑒)

= ∫ 𝑭(𝑒)𝑇𝜿 𝑭(𝑒) 𝑑Ω
 

Ω(𝑒)
 

 
Integration was performed with Gauss quadrature. Material composition was considered uniform 
within an element, but temperature was not. Thus, unique material properties exist at each 
integration point. Heat loads are applied to elements at the plasma-facing surface by integrating the 
prescribed heat flux QN over the plasma-facing element boundary Γ(e): 
 

𝒇𝑞
(𝑒)

= −∫ 𝑄𝑁  𝑵(𝑒) 𝑑Γ
 

Γ(𝑒)
 

 
The global conductivity matrix Kt and heat load vector fq are assembled from their element-level 
counterparts. The temperature field was then found by solving the global system: 
 

𝑲𝑡𝜽 = 𝒇𝑞 

 
Due to the temperature dependence of thermal conductivity, this problem is weakly nonlinear. To 
account for this, the linear system was solved repeatedly until the temperature field stabilized, using 
updated temperatures from the most recent solution to reevaluate the thermal conductivity. This 



very simple technique converged in a negligible amount of time and generally required at most 3-4 
solutions. Although no structural loads are applied directly to the simulated PFCs, stresses (σ) 
develop due to non-uniform thermal expansion. These stresses are calculated using the 
displacements (u) that result from the applied heat load. The system of equations for static 
equilibrium (without body loads) takes the form 
 

div 𝝈 = 0 
 
With the stress tensor σ expressed in vector form, differentiation was performed with the matrix 
operator D: 
 

𝑫𝑇 = 

[
 
 
 

𝜕

𝜕𝑥1
0

𝜕

𝜕𝑥2

0
𝜕

𝜕𝑥2

𝜕

𝜕𝑥1]
 
 
 

 

 
Stress in the body is proportional to the mechanical strain εm. This strain was found by removing the 
contribution of thermal expansion εt from the displacement-derived actual strain εu. Using the 
matrix form of the elasticity tensor C, stress was calculated as 
 

𝝈 = 𝑪𝜺𝑚 = 𝑪(𝛆u − 𝛆t) = 𝑪(𝑫𝒖 − 𝜺𝑡) 
 
Using tabulated values for the mean thermal expansion from a reference temperature of 20°C, 
thermal strain was expressed as 
 

𝜺𝑡 = 𝜶𝑇(𝑇 − 20°C) − 𝜶𝑇0(𝑇0 − 20°C) 
 
where αT and αT0 are vector representations of the (potentially anisotropic) coefficients of thermal 
expansion from 20°C to the local temperature T and to the stress-free reference temperature T0, 
respectively. Displacements are interpolated within an element using 
 

𝒖 =  [
𝑢
𝑣
] = [𝑵

(𝑒)𝑇 0

0 𝑵(𝑒)𝑇
] 𝒅(𝑒) 

 
where the vector d(e) contains the element’s nodal displacements. After combining the differential 
operator D with the matrix of element shape functions to the widely used “strain-displacement 
matrix” B, element stiffness matrices are integrated: 
 

𝑲𝑠
(𝑒)

= ∫ 𝑩(𝑒)𝑇𝑪𝑩(𝑒) 𝑑Ω
 

Ω(𝑒)
 

 
Thermal strain was applied to an element via its load vector: 
 

𝒇(𝑒) = ∫ 𝑩(𝑒)𝑇𝑪𝜺𝑡 𝑑Ω
 

Ω(𝑒)
 

 
The assembled global system was then solved: 
 

𝑲𝑠𝒅 = 𝒇 
 



Appendix B. Sensitivity analysis 

Like many optimization algorithms, the MMA uses the derivatives of objective and constraint 
functions to determine a search direction. Evaluating derivatives for thermoelastic topology 
optimization is a multi-step process, and represents a significant portion of computation time in 
each iteration of the optimization. Due to the temperature dependence of material properties, the 
properties within an element not only depend on the design variable assigned to that element, but 
are also coupled to other design variables to some degree through the temperature field. For 
example, the total derivative of the elasticity matrix would be 
 

𝐷𝑪

𝐷𝜌𝑗
= 𝛿𝑗𝑒

𝜕𝑪

𝜕𝜌𝑒
+

𝜕𝑪

𝜕𝑇
(𝑵(𝑒)𝑇 𝜕𝜽(𝑒)

𝜕𝜌𝑗
) 

 
where δje is the Kronecker delta. However, calculation of total derivatives is a very time-consuming 
operation. Testing showed that this process was also generally unnecessary, since material models 
for WAM/Cu composites exhibit a much weaker dependence on temperature than on the element 
design variables. Approximating total derivatives of an element’s material properties with partial 
derivatives w.r.t. its own design variable eliminated the dependence on the design variables of other 
elements in the mesh and yielded a dramatic decrease in computation time, no change in 
convergence behavior, and negligibly different optimization results. Sensitivities of the element 
conductivity and stiffness matrices then became 
 

𝜕𝑲𝑡
(𝑒)

𝜕𝜌𝑗
= 𝛿𝑗𝑒 ∫ 𝑭(𝑒)𝑇 (

𝜕𝜿

𝜕𝜌𝑒
)𝑭(𝑒)𝑑Ω

 

Ω(𝑒)
 

 
and 
 

𝜕𝑲𝑠
(𝑒)

𝜕𝜌𝑗
= 𝛿𝑗𝑒 ∫ 𝑩(𝑒)𝑇 (

𝜕𝑪

𝜕𝜌𝑒
)𝑩(𝑒)𝑑Ω

 

Ω(𝑒)
 

 
respectively. Note that the element shape functions depend only on the mesh discretization; their 
derivatives do not appear in the sensitivity analysis. The sensitivity of the temperature field was 
calculated with 
 

𝜕𝜽

𝜕𝜌𝑗
= −𝑲𝑡

−1 [(
𝜕𝑲𝑡

𝜕𝜌𝑗
)𝜽] 

 
The thermal load vector fq does not appear because the prescribed heat loads do not depend on the 
design variables. The presence of the global conductivity matrix’s inverse indicates that this 
calculation required the solution of the thermal FE problem once for each free design variable, with 
the square-bracketed component of the equation applied to the system as a pseudo-load vector. 
This and the subsequent sensitivity of the displacement field thus consumed a large amount of 
computation time. Since this problem amounts to the solution of a linear system with numerous 
right-hand side vectors, decomposition, storage, and reuse of the global system matrix was an 
efficient approach. Before calculating the sensitivities of the displacement field, the derivative of 
each element’s static load vector f(e) was evaluated with 
 

𝜕𝒇(𝑒)

𝜕𝜌𝑗
= ∫ 𝑩(𝑒)𝑇 [𝑪 (

𝜕𝜺𝒕

𝜕𝜌𝑗
) + (

𝜕𝑪

𝜕𝜌𝑗
) 𝜺𝑡] 𝑑Ω

 

Ω(𝑒)
 

 



using the sensitivity of the thermal strain within the element: 
 

𝜕𝜺𝑡

𝜕𝜌𝑗
= 𝜶𝑇 (𝑵(𝑒)𝑇 𝜕𝜽(𝑒)

𝜕𝜌𝑗
) + 𝛿𝑗𝑒

𝜕𝜶𝑇

𝜕𝜌𝑒
(𝑵(𝑒)𝑇𝜽(𝑒) − 20°C) − 𝛿𝑗𝑒

𝜕𝜶𝑇0

𝜕𝜌𝑒

(𝑇0 − 20°C) 

 
As for the temperature field, the sensitivities of the displacement field were calculated by solving the 
FE system with a pseudo-load vector: 
 

𝜕𝒅

𝜕𝜌𝑗
= 𝑲𝑠

−1 [
𝜕𝒇

𝜕𝜌𝑗
− (

𝜕𝑲𝑠

𝜕𝜌𝑗
)𝒅] 

 
Finally, the derivative of the stress tensor was determined with 
 

𝜕𝝈

𝜕𝜌𝑗
= 𝛿𝑗𝑒

𝜕𝑪

𝜕𝜌𝑗
(𝑩(ℯ)𝒅(𝑒) − 𝜺𝑡) + 𝑪(𝑩(ℯ)

𝜕𝒅(𝑒)

𝜕𝜌𝑗
−

𝜕𝜺𝑡

𝜕𝜌𝑗
) 

 
and that of the von Mises stress followed: 
 

2𝜎𝑉 (
𝜕𝜎𝑉

𝜕𝜌𝑗
) = 2𝜎1 (

𝜕𝜎1

𝜕𝜌𝑗
) + 2𝜎2 (

𝜕𝜎2

𝜕𝜌𝑗
) − 𝜎1 (

𝜕𝜎2

𝜕𝜌𝑗
) − (

𝜕𝜎1

𝜕𝜌𝑗
)𝜎2 + 6𝜏12 (

𝜕𝜏12

𝜕𝜌𝑗
) 

 
With all of the prerequisite derivatives calculated, derivatives of the global stress metrics, e.g. 
 

∂σ𝑔

∂ρ𝑗
=

1

𝑝
σ𝑔

1−𝑝
⋅

[
 
 
 

∑ ∑ 𝑝

𝑛𝑖𝑝
(𝑒)

 

𝑖=1

(σ𝑉
(𝑒,𝑖))

𝑝−1
𝑛𝑒𝑙

𝑒=1

⋅
∂σ𝑉

∂ρ𝑗

(𝑒,𝑖)

]
 
 
 

 

 
and average element stress values 
 

∂�̅�𝑉
(𝑒)

∂ρ𝑗
=

1

𝑛𝑖𝑝
∑

∂σ𝑉

∂ρ𝑗

(𝑖)
𝑛𝑖𝑝

𝑖=1

 

 
were assembled. Traditional structural topology optimizations require “filtering” of sensitivities – a 
process of averaging derivatives in an element with those of neighboring elements – to ensure mesh 
independency and to prevent unrealistic structures such as checkerboard patterns. This procedure 
was not only unnecessary with the presented optimization, but had no meaningful impact on results. 
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