
Supplementary Methods 

Datasets 

Results of this study are based on two main types of data sets: simulated and 

real data. The simulated data sets are derived from the study of Soneson et al. 

[1], which simulated read count data for 12,500 genes from a negative binomial 

(NB) distribution with mean and variances from Pickrell’s RNA-Seq dataset [2]. 

Pickrell’s data set consists of 69 lymphoblastoid human cell lines derived from 

unrelated Nigerian individuals. The simulated data is generated under two 

conditions: NB and NB with random outliers (denoted by R). Each set includes 

10 independently repeated simulations of two treatment groups and different 

replicate sample sizes of 2, 5 or 10 for each group. Outliers were introduced 

into the NB distributed data by multiplying a randomly generated factor between 

5 and 10 with the read count of all genes in all groups obtained through random 

sampling with a probability of 0.05. 

In addition, seven real data sets were used to assess the performance of DE 

inference methods (Table 1). The first four data sets are based on replicated 

RNA samples of the human whole body (UHR) and brain (BHR) [3, 4]: ABRF, 

MAQC-II, SEQC, and PrimePCR (qRT-PCR validated data set to define true 

DE). The ABRF data set refers to the Association of Biomolecular Resource 

Facilities next-generation sequencing (ABRF-NGS) study, which assessed 

RNA-Seq data variation across laboratory sites and platforms [5] . Here we use 



data from two samples generated via a ribo-depleted protocol, namely RNA 

from cancer cell lines and also RNA from pooled normal human brain tissues. 

We thus exclude data from mixtures of these samples and that based on other 

protocols. The raw data and counts tables are available at the Gene Expression 

Omnibus database under accession number GSE48035. The considered RNA-

Seq data compares two conditions (UHR and BHR), whereby the same RNA 

samples are analyzed in three different laboratories. Any variation between 

these laboratories should not be due to relevant biological differences, but 

result from variations across sites in environmental and also procedural factors. 

The MAQC-II data set consists of seven replicates for each condition and is 

generated by the MicroArray Quality Control (MAQC) study to evaluate the 

performance of different gene expression analysis methods [6]. The raw data 

of MAQC-II are available from the NCBI SRA database under SRA010153 and 

counts table is downloaded from http://bowtie-bio.sourceforge.net/recount/ [7]. 

The SEQC data set consists of five replicates and is generated by Sequencing 

Quality Control (SEQC) study available under GSE49712. The ABRF are 

aligned to External RNA Control Consortium (ERCC) transcript using STAR 

2.5.3a [8] to obtain the information for ERCC. The PrimePCR data set is based 

on the PrimePCR approach of qRT-PCR and includes more than 20,000 

validated DE genes from SEQC (MAQC III), available under GSE56457. The 

SEQC data set was additionally used to assess the influence of sequencing 

depth on method performance. We derived five data sets, which only had 10%, 



20%, 30%, 40%, and 50% of the read numbers of the original SEQC data set, 

followed by their analysis with the various DE methods and normalization 

procedures. 

Three additional real data sets were downloaded from http://bowtie-

bio.sourceforge.net/recount/ [7]. The first of these is the modencodefly data set 

from the modENCODE project [9], which assesses gene expression during the 

development of Drosophila melanogaster [10], covering 30 distinct 

developmental stages. Each of the stages consists of 4 up to 6 technical 

replicates, which provides an opportunity to construct subgroups per 

developmental stage to study stochastic variations but not true DE. We 

accordingly subsampled from each stage to construct a 2:2 pairwise study. 

The next real data set is the HapMap-CEU data set [11], which includes 41 

samples based on immortalized B-cells from 41 unrelated CEPH grandparents. 

It contains a relatively large sample size (17 female samples and 24 male 

samples) and high variations in read count due to genetic diversity. It is well-

studied and useful for measuring the ability of DE detection models on large 

samples and variations [12-14]. 

We also considered the Bottomly data set, which is from a study that 

characterized transcriptomic differences between two inbred mouse strains 

(C57BL/6J and DBA/2J) with 10 and 11 replicates each, respectively [15]. We 

filtered out genes with zero read count across samples before analysis. 



The basic statistics for all real data sets are summarized in Table 1 of the main 

text, including the average total number of read count, the number of present 

genes, sample size and the average number of DE genes. Genes with zero 

counts in all samples are filtered out for analysis 

 

Normalization 

Read count of RNA-Seq data requires normalization before DE inference in 

order to reduce possible biases from sequence depth, library preparation or 

even analysis in sequencing lanes [16, 17]. Current approaches for 

normalization rely on the assumption that the majority of genes (or at least 

those with high expression) are not DE and/or that the distribution of up- and 

down-regulated DEs is symetrical. These assumptions might not be valid under 

certain biological processes, such as development or aging, when gene 

expression shows dramatic biological variation or samples with unsymmetrical 

DE. In contrast to current normalization approaches, we assess the overall 

distribution of DE across samples and then use it to estimate the true library 

size ratio   (i.e., ratio between total number of reads from two samples) from 

the observed library size ratio o  between two samples (e.g., sample A and B). 

o  is a function of   and influence of DE d  as 

 log( ) log( )o d = +   (1) 



where d  could be positive or negative depending on whether DE is mainly 

influenced from up- or down-regulated genes, respectively. Biological variation 

results in log fold changes under a zero centered normal distribution with 

standard deviation (SD)  . DE scales   as a half normal distribution with 

parameters r  and l  (e.g., up and down-regulation in A for two half normal 

distributions, respectively). In this case, the influence of DE on the log library 

size ratio for A ( Ad , vs. B) or B ( Bd , vs. A) is a result of r  and l  and can be 

defined as 
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where   is the probability of a gene to be up-regulated in the current sample 

and   is the mean of the half normal distribution. While   for the entire data 

should be around 0.5 (equal chance for up- or down-regulation), the observed 

library size ratio between A and B could be thus approximately represented as 

 log( ) log( ) ( )o r l     + −   (3) 

Under (1), the mean ratio of read count between A and B for any subsets in A 

and B ( {A}  and {B} ) can be written as  

 
{A} {A}

{B} {B}

log( ) log( )

log( ) log( )

d

d

 

 

= +


= −

  (4) 

where {A || B}  indicates a subset of read counts from sample A or B, 

respectively. Therefore, from (4) we obtain  

 {A} {B} {A} {B} {A} {B}log( ) log( ) ( 1) ( )r ld d      − = + = + − +   (5) 



Since up-regulation increases gene expression and thus top-ranked genes are 

more likely up-regulated (or non-DE), (i.e., {A}&{B} 1 →  in (5)), (5) for the highly 

expressed subsets (e.g., a large quantile 0 0.95q =  after ranking via reads 

count) can be approximated by 

 {A} {B} {A||B} A||B 0log( ) log( ) ( )   {A||B} ( , )r l c quantile c q    −  + =    (6) 

where c  indicates read count. While the SD across ||log( )A Bc  (or CV across ||A Bc ) 

is determined by biological variation  , it is also scaled by DE with r  and l  

as  

 0  [ 1,1]r lsd sd    −=  −   (7) 

where sd  and 0sd  indicates SDs after and before DE, respectively.   is the 

coefficient of ||r l  on 0sd , which could be increased ( 0  ) or decreased ( 0  ) 

by either up or down-regulation (i.e., both can increase or decrease the 

difference across read counts).   thus has opposite effects for up and down-

regulated DE on 0sd  and ranges in value from -1 to 1. As a result, the maximum 

or minimum of 0/sd sd  respectively approaches /l r   or /r l   when | | 1 → . 

Biological varation   (or 0sd ) is determined by expression level [12, 14] (i.e, 

quantile q  of ||A Bc ). For the same q  (with similar expression level), we assume 

that subsets of log( )Ac  and log( )Bc  preserve Asd  and Bsd  from the same 0sd . 

The 0/sd sd  ratio could be thus obtained from ||A Bsd  at q  as  
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Based on this logic, we apply a sliding quantile window on ||log( )A Bc  to obtain a 

maximum or minimum of the SD ratio as the estimation of /l r  , that is  
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where j and w  are the start and size of sliding window, respectively. A sliding 

window with small size (e.g, 0.05w = ) will maximize the influence of   on 0sd  

(i.e., | | 1 → , up- or down-regulation has the same effect on all genes in the 

subset). The true library size ratio can be estimated from (4), (6) and (9). 

However, it is impossible to determine whether r l   or r l   due to the 

unknown direction of  . Notably, an opposite choice of /l r   (e.g., mir  under 

l r  ) under (9) will result in an estimation of r  as l . As a consequence, 

ˆlog( )  will become log( ) ( )r l   + −  under (4) and (6), which is close to the 

observed size ratio o  (3). This suggests that we can obtain a more accurate 

̂  by 
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In practice, we select one sample (default is the one with the largest number of 

read counts) as control and then apply this procedure on all samples to obtain 

the size factor for normalization. This procedure is implemented as qtotal in 

ABSSeq and set as default normalization procedure for aFold. 



For the additional DE analysis methods, we used the default normalization 

procedures (voom and TMM for Voom and edgeR, geometry mean for DESeq2, 

qtotal for ABSSeq, quartile for baySeq, total for ROTS). 

 

Outlier detection 

Outliers influence DE detection through shifting both mean and variance [13, 

14], which thus needs to be corrected for. Here we integrate the procedure from 

our previous ABSSeq approach into aFold, which utilizes the median absolute 

deviation (MAD) to detect the outliers in log-transformed read count and shrink 

the read count of outliers toward median of read count from one condition.  

 

Moderating uncertainty of read count 

Due to biological and/or other sources of variance, the observed expression 

value for the ith gene ig  is given as the mean i  with uncertainty i . 

 i i ic  = +   (11) 

In practice, the uncertainty is represented as the standard deviation (SD) of 

samples if the SD is independent of the mean. However, in RNA-Seq data or 

microarray data, the SD is not independent of i  and could be generally written 

as 

    0i i i ia a =    (12) 



where ia  is the coefficient that describes the mean-variance relationship of the 

ith gene. This implies that there is propagation of error (uncertainty) in 

measurement of SD based on i . Therefore, an accurate reads uncertainty 

measurement should also include the propagation of error from (12). In theory, 

the propagation uncertainty of SD can be written as 

 , ( )i s i i i ia SD g a s = =   (13) 

where is  is the sample SD of ig . Thus, the uncertainty of read counts for each 

gene becomes 

 ,i i i s i i is s a s = + = +   (14) 

ia  in (13) actually serves as the CV as 
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The uncertainty of ig  becomes a polynomial function of sample SD is  

 

2

i
i i

i

s
s


= +   (16) 

In addition to the observed variance, there are still hidden variances upon 

expression levels, which are usually described as  
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which is dominated by mean read count of each gene [14]. As a result, the 

uncertainty from expression level becomes 

 
î i i
  = =   (18) 

We leave out the second term of the polynomial function of (16) in (18) because 



i  is the expected SD for each gene and contains no propagation error. Since 

i   represents SD from limited samples in practice, î   actually sums up 

uncertainty across samples and thus requires moderation of the sample size 

according to the central limit theorem as 

 ˆ i i
i

i im m


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where im  is defined as the effective sample size for each gene. We use the 

effective sample size instead of the real sample size in (19) to capture the data 

structure (i.e, overal dispersion of CVs). According to G.4.2 in [18], a global 

effective sample size (effective degrees of freedom) can be obtained via 
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Instead of using original CVs, m is calculated from moderating CVs, which 

retains information of uncertainty of i  and is more stable (Figure S9A), thus 

avoiding underestimation of m. The effective sample size im   actually varies 

across expression levels since the biological variation is more difficult to capture 

at low than high expression levels. We thus assume that the genes with highest 

expression retain m   as im   while the remaining genes have a decreasing im  

which can be written as 
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Where k  is the coefficient factor for expression level, iv  is the smoothed CV by 

the locfit package from R [19], f  stands for the smoothing function and 0v  is 

prior value that could be provided by users to avoid over-estimation of im  



(default is 0.05). We use 2 2

0/iv v  instead of 0/iv v  because k is proportional to 

2

iv  as in (21). The final uncertainty i  for the ith gene is then called as 
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Moderating fold change by uncertainty of read count 

In our previous study [13], we show that the log fold change can be described 

as  

 log( )  max( , ) | |i
i i iA iB i iA iB

i i
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This relationship specifies that log fold change depends on the expression level 

and the mean read count difference between two conditions (denoted as A and 

B). Under (23), the same mean difference i  refers to larger log fold change at 

lower expression level ic . The uncertainty (as variance) could be treated as 

unobserved read count, thus the actual or robust fold change can then be 

written as 
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The fold change is thus shrunk toward 0 according to uncertainty or variance. 

As a result, the fold change from (24) presents a robust way of measuring 

differential expression since it fully accounts for the mean and variance of 

expression values. We thus term this inference procedure the accurate fold 

change (aFold) approach. 



 

Determination of the cut-off of aFold  

While the ordinary log fold changes usually follows a normal distribution with 

zero mean [14, 20, 21], aFold also has a zero-centered normal distribution 

(Figure S9B, HapMap-CEU). Therefore, the cut-off (significance threshold) of 

aFold can be determined by estimating the SD of the zero-centered normal 

distribution. Notably, the aFold calculation approach is equivalent to adding the 

pseudocounts ( i  from (22)) to read count. This has no influence on read count 

variance, but stabilizes the CV (variance stabilization, inlets in Figure S9A, S9C 

and S9D). Based on this procedure (i.e., adding i ), we obtain for each data 

set a general CV for the count level or SD for log transformation of counts (also 

as the SD for aFold). We can next calculate the general SD under log 

transformation via moments estimation as 

 
log( ) / 1mean s n = −   (25) 

  from (25) fits the distribution of aFold very well (Figure S9B, red line). Then 

the p-value of each aFold is generated via the normal distribution as 

 ( ,0, )ip pnorm lfc =   (26) 

After an adjustment of multiple testing (i.e, Benjamini-Hochberg in default), a 

data-specific aFold cut-off is obtained in consideration of the significance level. 

The aFold model is here developed for simple designs. It is possible to adjust 

it for complex experimental designs with the help of linear models from limma 



[22]. Such more complex designs will be assessed and implemented in the 

future. 

 

 

  



Supplementary Tables 

 

Table S1. Comparison of AUCs in Figure 1. Pvalues are calculated via a 

two sample one side z-test. 

Dataset qtotal vs. Z-score Adjusted pvalue 

ABRFAB 

TMM 10.79  1.40E-26 

total 2.48  4.56E-02 

quartile 0.15  1.00E+00 

geometric 9.44  1.29E-20 

cqn 5.09  1.24E-06 

MedpgQ2 6.80  3.60E-11 

UQpgQ2 8.60  2.81E-17 

SEQC 

TMM 9.97  7.17E-23 

total 6.80  3.70E-11 

quartile 7.39  5.03E-13 

geometric 12.81  5.37E-37 

cqn 10.60  1.09E-25 

MedpgQ2 8.92  1.67E-18 

UQpgQ2 7.98  5.22E-15 

MAQC-II 

TMM 7.49  2.42E-13 

total -0.03  1.00E+00 

quartile 3.80  5.03E-04 

geometric 8.71  1.05E-17 

cqn 10.60  1.01E-25 

MedpgQ2 3.54  1.40E-03 

UQpgQ2 5.25  5.27E-07 

 

  



Table S2. Comparison of AUCs in Figure 4. Pvalues are calculated via a 

two sample one side z-test. 

Dataset Comparison Z-score Adjusted pvalue 

ABRFAB 

aFold vs. 

DESeq2 18.62  1.76E-76 

edgeR 17.12  8.92E-65 

Voom 19.75  6.45E-86 

baySeq 1.93  4.31E-01 

ABSSeq 0.03  1.00E+00 

ROTS 5.46  3.90E-07 

DESeq2 DESeq2-qtotal 14.19  8.97E-45 

edgeR edgeR-qtotal 15.79  2.90E-55 

Voom Voom-qtotal 19.75  6.63E-86 

baySeq baySeq-qtotal 0.33  1.00E+00 

ROTS ROTS-qtotal 0.35  1.00E+00 

SEQC 

aFold vs. 

DESeq2 16.29  9.67E-59 

edgeR 10.11  4.08E-23 

Voom 13.56  5.50E-41 

baySeq 8.75  1.71E-17 

ABSSeq 1.25  1.00E+00 

ROTS 1.06  1.00E+00 

DESeq2 DESeq2-qtotal 12.54  3.75E-35 

edgeR edgeR-qtotal 10.30  5.40E-24 

Voom Voom-qtotal 14.69  5.64E-48 

baySeq baySeq-qtotal 7.15  7.00E-12 

ROTS ROTS-qtotal 7.07  1.28E-11 

MAQC-II 

aFold vs. 

DESeq2 13.18  8.65E-39 

edgeR 11.36  5.37E-29 

Voom 11.43  2.29E-29 

baySeq 6.26  3.12E-09 

ABSSeq 1.64  8.15E-01 

ROTS 3.74  1.50E-03 

DESeq2 DESeq2-qtotal 8.66  3.67E-17 

edgeR edgeR-qtotal 7.34  1.75E-12 

Voom Voom-qtotal 9.36  6.34E-20 

baySeq baySeq-qtotal 4.81  1.23E-05 

ROTS ROTS-qtotal 0.03  1.00E+00 

 

  



Table S3. List of the seven sex-related genes for HapMap analysis. 

Ensemble ID Gene_name Chromosome Start End 

ENSG00000157828 RPS4Y2 Y 22918050 22942918 

ENSG00000099749 CYorf15A Y 21729235 21752309 

ENSG00000129824 RPS4Y1 Y 2709527 2734997 

ENSG00000154620 TMSB4Y Y 15815447 15817904 

ENSG00000198692 EIF1AY Y 22737611 22755040 

ENSG00000183878 UTY Y 15360259 15592553 

ENSG00000006757 PNPLA4 X 7866288 7895780 

The seven genes are either located on the Y or X chromosomes. 

  



Supplementary Figures 

 

 

Figure S1. RMSD (root mean square deviation) correlation between log2 

fold changes from PrimePCR and RNA-Seq data: ABRF, SEQC and 

MAQC-II. 



 

Figure S2. Correlation between true and estimated fold changes. (A) 

RMSD (root mean square deviation) correlation between log2 fold changes 

from ERCC, PrimePCR (labeled as Prime) and RNA-Seq data: ABRF, SEQC 

and MAQC-II. Scatter plot of fold changes from PrimePCR (y-axis) and RNA-

Seq: (B) ABRF and (C) MAQC-II. Lowly expressed genes (logCPM < 1) are 

represented by red points. 

 

 

 



 

Figure S3. Assessment of method performance for different sequencing 

depths of the SEQC data set. The different sequencing depths were 



generated with SAMtools [23], using either 10%, 20%, 30%, 40%, or 50% of 

the original number of reads. (A) ROC analysis. Solid lines show the results for 

the RNA-Seq methods with their integrated normalization procedures. Dashed 

lines (except diagonal) show the results under qtotal for all methods except for 

the two methods, aFold and ABSSeq, which use qtotal as default and are thus 

shown as solid lines. qtotal improves the performance of most methods. (B) 

Sensitivity analysis. Sensitivity is calculated as the ratio between the number of 

true DE genes under adjusted pvalue < 0.05 and the total number of true DE 

genes, inferred from PrimePCR. The empirical false discovery rate (eFDR) is 

calculated as FPs/(TPs+FPs) under adjusted pvalue < 0.05. qtotal improves 

either eFDR or sensitivity or both when applied with the tested DE methods. 

Filled and open circles indicate results for methods with their default 

normalization approach and qtotal, respectively. 

  



 

Figure S4. Additional analysis using the qRT-PCR validated data sets. (A) 

ROC analysis. Results of aFold are shown with different normalization methods: 

TMM (labeled as aFold-t), geometric (aFold-g), quartile (aFold-q) and qtotal 

(aFold-qt). (B) RMSD (root mean square deviation) correlation between log2 

fold changes from ERCC, PrimePCR (labeled as Prime) and RNA-Seq data: 

ABRF, SEQC and MAQC-II as well as different DE methods. 



 

Figure S5. Additional AUC analysis on simulated data sets. Asterisk 

indicates a statistically significant difference in AUC between aFold and any of 

the other methods. 



 

Figure S6. Additional AUC analysis on simulated data sets. AUC 

comparison on DE detection methods with different normalization approaches. 



Asterisk indicates a statistically significant difference in AUC between qtotal and 

any of the other normalization methods. 

  



 

 

Figure S7. Additional Sensitivity and FDR analysis on simulated data sets. 

Sensitivity and FDR are shown for DE detection methods with default and qtotal 

normalization approach. Results of aFold contain additional normalization 

approaches including TMM, geometric and quartile.  

 



 

Figure S8. Venn diagram. Venn diagrams show number of DE identified by 

aFold, DESeq2 and Voom on four data sets: (A-B) the ABRF data set; (C) the 

SEQC data set; (D) the MAQC-II data set; (E-G) the Bottomly data set. aFold 

detects DE under three normalization procedures: qtotal (C-E), TMM (A and F) 

and geometric mean (B and G). Numbers in brackets indicate the eFDR. 



 

Figure S9. aFold modeling. Illustration based on the HapMap-CEU (A-B, large 

sample size n=24), Modencodefly (small sample size n=2, C) and ABRF 

(middle sample size n=9, D) data sets. (A,C-D) Mean-variance modeling and 

coefficient of variation (CV) normalization. Grey horizontal line indicates the 

baseline of CV. Red points in the inlet show CVs after uncertainty 

transformation. Red line (main panel) and black line (inlet) represent the fitted 

value of CV via locfit. (B) Distribution of aFold. Red line indicates a zero-

centered normal distribution with an estimated standard deviation (SD) of 0.090. 
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