

Supporting Information

Hydrogenative Cyclopropanation and Hydrogenative Metathesis

Sebastian Peil, Alexandre Guthertz, Tobias Biberger, and Alois Fürstner*

ange_201904256_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

Contents

GENERAL	2
SUPPORTING CRYSTALLOGRAPHIC INFORMATION	3
HEADSPACE GC ANALYSES	5
THE BRIDGED CARBENOID 16	10
SIDE REACTIONS	17
SUBSTRATES	18
HYDROGENATIVE CYCLOPROPANATION AND METATHESIS REACTIONS	47
REFERENCES	145

GENERAL

Unless stated otherwise, all reactions were carried out under argon atmosphere in flame dried Schlenk glassware. The solvents were purified by distillation over the indicated drying agents under argon: THF, Et₂O (Mg/anthacene), hexanes (Na/K), EtOH, MeOH (Mg), 1,2-dichloroethane, CD_2Cl_2 , EtOAc, THP (CaH₂), 2-butanone (B₂O₃). DMF, MeCN and Et₃N were dried by an absorption solvent purification system based on molecular sieves. 1,2-Dichloroethane, CD_2Cl_2 , THP and 2-butanone were degassed via freeze-pump-thaw procedure (3 x) and stored over molecular sieves (except 2-butanone). Flash chromatography: Merck Geduran silica gel 60 (40 – 63 μ m). TLCs were stained with KMnO₄, anisaldehyde or PMA.

NMR spectra were recorded on Bruker DPX 300, AMX 300, AV 400 or AV III 600 spectrometers in the solvents indicated; chemical shifts are given in ppm relative to TMS, coupling constants (*J*) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_c = 77.16 \text{ ppm}$; residual CHCl₃: $\delta_H = 7.26 \text{ ppm}$; CD₂Cl₂: $\delta_c = 54.00 \text{ ppm}$; residual CHDCl₂: $\delta_H = 5.32 \text{ ppm}$; C₆D₆: $\delta_c = 128.06 \text{ ppm}$; residual C₆HD₅ : $\delta_H = 7.16 \text{ ppm}$). Proton and carbon assignments were established using HSQC, HMBC and NOESY experiments.

IR: Alpha Platinum ATR (Bruker), wavenumbers (\tilde{v}) in cm⁻¹.

MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker) or Thermo Scientific LTQ-FT or Thermo Scientific Exactive. HRMS: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan) or Thermo Scientific LTQ-FT or Thermo Scientific Exactive. GC-MS was measured on a Shimadzu GCMS-QP2010 Ultra instrument.

Headspace GC-FID samples were measured on an Agilent Technology 6890 or 7890 with a 30 m HP-plot Al_2O_3 column (0.25 mm Ø, 5 µm film) using H_2 as the carrier gas. Headspace GC/MS samples were measured on an Agilent Technology 7890A instrument with AT 5975C MSD detection.

Unless stated otherwise, all commercially available compounds (abcr, Acros, TCI, Aldrich, Alfa Aesar) were used as received. The ruthenium complexes $[Cp*RuCI]_4$, [1] [Cp*Ru(cod)CI], [1] and $[Cp*Ru(NCMe)_3][PF_6]^{[2]}$ were prepared according to literature procedures.

SUPPORTING CRYSTALLOGRAPHIC INFORMATION

Figure S1. The structure of cyclopropane **4e** in the solid state; only one of the two independent molecules in the unit cell is shown, H-atoms are omitted for clarity

X-ray Crystal Structure Analysis of Compound 4e: C₂₂ H₃₇ N O₃ S Si, *Mr* = 423.67 g · mol⁻¹, colorless plate, crystal size 0.131 x 0.052 x 0.042 mm³, monoclinic, space group *P*2₁, *a* = 6.835(2) Å, *b* = 17.816(5) Å, *c* = 19.511(6) Å, β = 93.141(6)°, *V* = 2372.2(12) Å³, *T* = 150(2) K, *Z* = 4, *D_{calc}* = 1.186 g · cm³, λ = 0.71073 Å, μ (*Mo-K* α) = 0.208 mm⁻¹, Gaussian absorption correction (T_{min} = 0.98, T_{max} = 0.99), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 2.985 < Θ < 35.156°, 79614 measured reflections, 20656 independent reflections, 15380 reflections with *I* > 2 σ (*I*), *R*_{int} = 0.066.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.045 [I > 2\sigma(I)]$, $wR_2 = 0.100$, 521 parameters. The H atoms were refined using a riding model, S = 1.070, absolute structure parameter = 0.03(2), residual electron density 0.3 (0.73 Å from O2)/ -0.3 (0.55 Å from S1) e · Å⁻³. **CCDC-1905682**.

Figure S2. The structure of cycloalkene 12b in the solid state; H-atoms are omitted for clarity.

X-ray Crystal Structure Analysis of Compound 12b: $C_{16} H_{23} N O_3 S$, $Mr = 309.41 \text{ g} \cdot \text{mol}^{-1}$, colorless plate, crystal size 0.177 x 0.087 x 0.048 mm³, triclinic, space group *P*1, *a* = 7.9011(18) Å, *b* = 8.0298(19) Å, *c* = 14.549(3) Å, $\alpha = 91.943(4)^{\circ}$, $\beta = 98.836(4)^{\circ}$, $\gamma = 118.012(4)^{\circ}$, $V = 799.2(3) Å^3$, T = 160(2) K, Z = 2, $D_{calc} = 1.286 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 0.212 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.98$, $T_{max} = 0.99$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 2.976 < Θ < 36.474°, 37819 measured reflections, 7683 independent reflections, 5904 reflections with $I > 2\sigma(I)$, $R_{int} = 0.035$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.042 [I > 2\sigma(I)]$, $wR_2 = 0.120$, 194 parameters. The H atoms were refined using a riding model, S = 1.031, residual electron density 0.5 (0.64 Å from C3)/ -0.5 (0.62 Å from S1) e · Å⁻³. **CCDC-1905683**.

HEADSPACE GC ANALYSES

The reactions were setup as described in the Experimental Section (see below). After completion of the reaction, the mixture was allowed to cool to room temperature and a needle connected to a gas tight analysis bag was pierced through the septum used to seal the Schlenk tube. The headspace gases were transferred by purging the Schlenk tube into the gas bag by a stream of argon (approx. 50 mL). An aliquot of the gas mixture was immediately analyzed by GC-FID and GC-MS. Retention times and fragmentation patterns of the analytes were compared with reference samples ("Phillips 40"), which unambiguously confirmed the formation of propane/propene from enyne **1f** and of isobutane/isobutene from enyne **1e** as the starting material.

Figure S3: Excerpt of GC-FID traces of the headspace analytes formed in the shown reactions.

Zuordnung mit Vergleichssubstanzen (Gasmischung Phillips 40)

No.	Ret.Time min	area-% %	Peak Name
1	1,04	0.06	
2	1,12	0,00	
3	1,19	0.61	
4	1,40	42.65	Propan
5	1,81	40.35	Propen
6	3,99	0.07	. repen
7	4,38	2,39	
8	6,62	0.19	
9	7,11	0.36	
10	8,14	0.02	17
11	10,07	0.02	
12	14,83	12,11	a.
13	16,12	0,22	85
14	17,03	0.01	
15	17,28	0,25	~
16	18,89	0,15	
17	19,81	0.03	50 C
18	21,32	0,21	
19	21,82	0,02	
20	26,43	0,06	

Instrument parameters:

Column:	30,0 m HP-Plot/Al203 0.25/5.0df	G/425
Temperature:	220/ 80, 10 min iso 6/min 180, 5 min iso/ 350	
Gas:	0,80 bar H2	
Sample size:	250,0 µL	

V. Diete

S7

Zuordnung mit Vergleichssubstanzen (Gasmischung Phillips 40)

No.	Ret.Time	area-%	Peak Name
	min	%	
1	1,04	0,07	
2	1,12	0,06	
3	1,19	0,63	
4	1,41	2,19	Propan
5	1,82	2,93	Propen
6	2,36	33,46	Isobutan
7	2,55	0,01	
8	4,07	0,17	
9	4,18	0,59	
10	4,43	53,96	Isobuten
11	7,30	0,03	
12	10,35	3,25	
13	15,14	0,06	
14	17,55	0,05	
15	21,97	0,23	
16	22,09	0,04	
17	22,37	0,02	
18	23,30	0,04	
19	25,77	2,18	
20	27,08	0,04	

Instrument parameters:		
Column:	30,0 m	HP-Plot/Al203 0.25/5 0df G/425
Temperature:	220/ 80, 10 min i	iso 6/min 180, 5 min iso/ 350
Gas:	0,80 bar	H2
Sample size:	250,0 µL	

V. Diet

S9

THE BRIDGED CARBENOID 16

A. Variable-temperature NMR Control of the Stoichiometric Reaction of Enyne 1f with $[Cp^*RuCl]_4$ under H₂. $[Cp^*RuCl]_4$ (16.1 mg, 0.015 mmol) was added to a stirred solution of enyne 1f (13.9 mg, 0.059 mmol) in CD₂Cl₂ (0.7 mL) under argon in a flame-dried Schlenk tube. The mixture was transferred into a flame-dried J-Young-NMR tube under argon before it was cooled to -78 °C (dry ice/acetone bath). The atmosphere was exchanged for H₂ by purging the system with a H₂ for 2 min and the NMR tube was quickly sealed in a H₂ current. The NMR tube was shaken before being introduced into the NMR spectrometer, the internal temperature of which had been set to -50°C. ¹H NMR spectra were recorded at temperatures from -50 °C to room temperature using 10 °C intervals (series of ¹H excerpts see Fig. S4).

Figures S4 and S5: The formation of the metathesis product **11a** starts at -30 °C (signals C + D) with steady increase of conversion upon raising the temperature in increments of 10°C. An additional signal (*E*) appears in parallel which was attributed to the bridged carbenoid **16**. Conversion was incomplete even at room temperature, likely because of insufficient H₂ in solution and slow transfer from the gas phase.

B. Room Temperature NMR Spectra of a Stoichiometric Reaction of Enyne 1f with $[Cp*RuCl]_4$ under H₂. $[Cp*RuCl]_4$ (15.3 mg, 0.014 mmol) was added to a stirred solution of enyne 1f (14.5 mg, 0.062 mmol) in CD_2Cl_2 (0.7 mL) under argon in a flame dried Schlenk tube at room temperature. H₂ was bubbled gently through the mixture for 2 min and stirring was continued for 30 min under a H₂ atmosphere. The mixture was transferred into a flame dried J-Young-NMR tube under argon, sealed and immediately analyzed.

Figures S7-S10: The spectra show complete conversion of enyne **1f** (signals A + B missing) to product **11a** (signals C + D). Significant quantities of bridged carbenoid **16** are detected (approx. 15% by comparison of signals D and E). ¹³C NMR, HSQC and HMBC spectra were recorded to characterize the carbenoid species; the data are summarized in **Figure S5**.

Figure S4: Low and room temperature stoichiometric NMR experiments. Shown is the relevant region in the ¹H spectra recorded at the specified temperatures (complete spectra see below). Excerpt 1 (top) refers to experiment **B**, excerpts 2 - 8 refer to experiment **A**.

Figure S5: NMR assignments of carbenoid 16 based on the spectra shown in Fig. S7 – S14.

Figure S6. ¹H NMR spectra of low temperature stoichiometric NMR experiment **A**. Spectra are stacked according to Fig. S4 (1 @ -50 °C to 7 @ 25 °C)

Figure S7. ¹H NMR spectrum of room temperature stoichiometric NMR experiment **B**; peak-picking and integrals shown for signals attributed to carbenoid **16**.

Figure S8: ¹³C NMR spectrum of the room temperature stoichiometric NMR experiment **B**; peak-picking shown for signals attributed to carbenoid **16**.

Figure S9: HSQC of experiment B, cross-peaks for carbenoid 16 are indicated

Figure S10: HMBC of experiment B, cross-peaks for carbenoid 16 are indicated

Figure S11: Synthesis of bridged carbenoid 16 from 2-diazopropane.

Independent Synthesis. 2-Diazopropane (0.2 M in Et₂O, 92 μ L, 0.02 mmol)^{[3][4]} was added dropwise to a stirred solution of [Cp*RuCl]₄ (10 mg, 0.01 mmol) in CH₂Cl₂ (0.4 mL) at 0 °C in a flame-dried Schlenk tube under argon. The mixture was stirred for 1 min before it was allowed to warm to room temperature. The solvent was removed by purging with argon and subsequent evacuation of the tube, and the green residue was dissolved in CD₂Cl₂ and immediately analyzed.

Figures S12-S14: Identical sets of ¹H and ¹³C resonances (**Figs. S12 – S13**) were found as for the in-situ generated carbenoid **16** from NMR experiment **B** by metathesis, thus strongly supporting the structural assignment. nOe data confirm the shown 3D structure, which is also consistent with a previously reported dimeric carbenoid.^[5]

Figure S12: ¹H NMR spectrum of the crude reaction mixture comprising carbenoid **16** prepared by decomposition of 2-diazopropane

Figure S14: NOESY of of carbenoid 16 generated from diazopropane

SIDE REACTIONS

A compilation of side products identified in the reactions of the shown substrates is presented in Table S1. As can be seen from entry 1 and 2 the scope of hydrogenative cyclopropanation is limited by the higher propensity of such substrates to get activated either by allylic substitution (entry 1) or oxidative cyclization (entry 2) of the terminal alkene compared to the internal alkenes used for hydrogenative metathesis. Oxidative enyne cyclization can also be observed by the "competition"-substrate (entry 3) where the non-hydrogenative cyclization outcompetes carbene formation by *gem*-hydrogenation. Products of oxidative cyclization were also observed with 1,2-disubstituted enynes (entries 4 and 5). Finally, a propargylic alcohol (entry 6) yielded a mixture of products formed by hydrogenative metathesis, *trans*-hydrogenation and enyne addition/isomerization.

identified side entry substrate comment products OMe OMe allylic substitution/ 1 decarboxylation OMe OMe oxidative cyclization/ 2 hydrogenation 3 oxidative cyclization OTBS OTBS oxidative cyclization/ 4 hydrogenation OMe OMe 5 oxidative cyclization hydrogenative metathesis 6 trans-hydrogenation OH enyne addition/ isomerization

Table S1: Identified side products formed upon treatment of the shown substrates under standard conditions ((Cp*RuCl)₄ cat., H_2 , 1,2-DCE, 70 °C, 3 h).

SUBSTRATES

Building Blocks

Tetrahydrofuran-2-ol (S1). DIBAL-H (1 M in CH₂Cl₂, 34.8 mL, 34.8 mmol) was slowly added to a solution of γ-butyrolactone (2.5 g, 29.0 mmol) in CH₂Cl₂ (12 mL) at -78 °C and stirring was continued for 1.5 h at that temperature. MeOH (3 mL) and sat. Rochelle salt solution (3 mL) were introduced, the mixture was warmed to room temperature and vigorously stirred for 2 h until clean separation of the layers was reached. The aqueous phase was extracted with CH₂Cl₂ (3 x 25 mL) and the combined organic layers were dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was used without further purification (colorless oil, 1.06 g, 41%). ¹H NMR (400 MHz, CDCl₃) δ 5.53 (dd, *J* = 4.4, 1.6 Hz, 1H), 4.04 (td, *J* = 7.7, 7.2, 4.9 Hz, 1H), 3.89 – 3.80 (m, 1H), 2.12 – 1.99 (m, 1H), 1.99 – 1.80 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 98.5, 67.5, 33.3, 23.6. The spectral data is consistent with previously reported values.^[6]

5-Methylhex-4-en-1-ol (S2). KO^tBu (1.16 g, 10.4 mmol dissolved in 7.7 mL THF) was added to a suspension of isopropyltriphenylphosphonium iodide (4.1 g, 9.5 mmol) in THF (10.0 mL) at -78 °C. The mixture was warmed to 0 °C and stirred for 30 min at that temperature before a solution of lactol S1 (0.76 g, 8.63 mmol) in THF (4.2 mL) was introduced. The mixture was stirred at room temperature for 18 h before water (10 mL) and Et₂O (50 mL)

were added and the layers were separated. The aqueous phase was extracted with Et_2O (2 x 50 mL) and the combined organic layers were dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, pentane/ Et_2O 7:3) to furnish the product as a colorless liquid (444 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 5.13 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 3.64 (t, *J* = 6.5 Hz, 2H), 2.11 – 2.02 (m, 2H), 1.69 (q, *J* = 1.3 Hz, 3H), 1.65 – 1.57 (m, 5H), 1.40 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 132.4, 124.0, 62.9, 32.9, 25.9, 24.5, 17.8. The spectral data is consistent with previously reported values.^[7]

6-Bromo-2-methylhex-2-ene (S3). Br₂ (0.38 mL, 7.2 mmol) was added dropwise to a solution of PPh₃

(2.0 g, 7.7 mmol) and imidazole (870 mg, 12.7 mmol) in CH_2Cl_2 (13.6 mL) at 0 °C. The mixture was stirred for 15 min before alcohol **S2** (440 mg, 3.9 mmol) was added at 0 °C. Stirring was continued for 45 min at 0 °C and for another 1 h at room

temperature. The suspension was successively washed with H_2O_2 solution (3 % H_2O_2 in water, 2 x 3 mL) and aq. $Na_2S_2O_3$ solution (1 M, 2 x 10 mL). The combined thiosulfate layers were extracted with CH_2Cl_2 (2 x 40 mL) and the combined organic layers were dried over MgSO₄. The solvent was removed under reduced pressure. The solid residue was suspended in hexanes (20 mL) by means of short ultrasonication and the resulting suspension filtered through a short plug of silica, thoroughly rinsing with hexanes (200 mL). The combined filtrates were concentrated under reduced pressure to give the product as a colorless liquid (622 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 5.07 (tdq, *J* = 7.3, 2.9, 1.3 Hz, 1H), 3.40 (t, *J* = 6.7 Hz, 2H), 2.13 (q, *J* = 7.1 Hz, 2H), 1.89 (p, *J* = 6.9 Hz, 2H), 1.70 (q, *J* = 1.3 Hz, 3H), 1.63 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 133.3, 122.6, 33.8, 33.0, 26.6, 25.9, 17.9. The spectral data is consistent with previously reported values.^[8]

4-Methylpent-4-en-1-ol (S4). LiAlH₄ (570 mg, 15 mmol) was added in portions to a solution of ethyl 4methylpent-4-enoate (1.1 g, 7.5 mmol) in Et₂O (8 mL) at 0 °C. The mixture was stirred room temperature for 4 h before water (0.52 mL) and NaOH (0.52 mL, 15% in water) was carefully added. The mixture was stirred for 15 min at room temperature before more water (0.85 mL) was added. Stirring was continued for 15 min, the suspension was filtrated through a glas frit, the residue was washed with Et₂O (20 mL) and the combined filtrates were dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, pentane/Et₂O 2:1) to give the title compound as a colorless liquid (502 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 4.72 (s, 1H), 4.71 (s, 1H), 3.65 (t, *J* = 6.5 Hz, 2H), 2.10 (t, *J* = 7.6 Hz, 2H), 1.76 – 1.67 (m, 5H), 1.53 – 1.44 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 110.3, 62.9, 34.2, 30.7, 22.5. The spectral data is consistent with previously reported values.^[9]

5-Bromo-2-methylpent-1-ene (S5). Br₂ (0.49 mL, 9.5 mmol) was added dropwise to a solution of PPh₃ (2.6 g, 10.0 mmol) and imidazole (1.13 g, 16.5 mmol) in CH₂Cl₂ (17.7 mL) at 0 °C. The mixture was stirred for 15 min before alcohol **S4** (502 mg, 5.0 mmol) was added at 0 °C. Stirring was continued for 45 min at 0 °C and for 1 h at reach room temperature. The suspension was washed H₂O₂ solution (3 % H₂O₂ in water, 2 x 4 mL) and Na₂S₂O₃ solution (1 M, 2 x 15 mL). The combined thiosulfate layers were extracted with CH₂Cl₂ (2 x 50 mL) and the combined organic layers were dried over MgSO₄. The solvent was removed under reduced pressure. The solid white residue was suspended in hexanes (20 mL) by means of short ultrasonication and insoluble material filtered off through a short plug of silica. The filter cake and silica were thoroughly rinsed with hexanes (200 mL) and the combined filtrates were concentrated under reduced pressure to give the product as a colorless liquid (427 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 4.80 – 4.73 (m, 1H), 4.75 – 4.69 (m, 1H), 3.41 (t, J = 6.7 Hz, 2H), 2.20 – 2.12 (m, 2H), 2.04 – 1.94 (m, 2H), 1.75 – 1.69 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 111.2, 36.2, 33.5, 30.7, 22.5. The spectral data is consistent with previously reported values.^[10]

Pent-1-en-3-ol (S6). Freshly distilled propionaldehyd (2.42 g, 41.7 mmol) in Et₂O (42 mL) was added over

ОН

30 min to a stirred solution of vinylmagnesium bromide (1 \bowtie in THF, 50 mL, 50 mmol) at -78 °C. The mixture was stirred for 1 h at -78 °C before it was allowed to reach room temperature. The mixture was acidified with aqueous HCl (1 \bowtie , 55 mL) and the layers were

separated. The aqueous phase was extracted with Et_2O (3 x 100 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure to give the crude product as a pale yellow liquid, which was used without further purification (3.28 g, 91%) ¹H NMR (400 MHz, CDCl₃) δ 5.86 (ddd, *J* = 16.9, 10.4, 6.2 Hz, 1H), 5.22 (dt, *J* = 17.2, 1.4 Hz, 1H), 5.16 – 5.07 (m, 1H), 4.08 – 3.98 (m, 1H), 1.63 – 1.50 (m, 3H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 114.9, 74.7, 30.0, 9.7. The spectral data is consistent with previously reported values.^[11]

Methyl (E)-hept-4-enoate (S7). Alcohol S6 (3.28 g, 38.0 mmol) was added to trimethylorthoacetate

(14.5 mL, 114 mmol) and propionic acid (140 mg, 1.9 mmol) in a thick-walled pressure Schlenk flask. The flask was sealed and immersed into a pre-heated oil bath at 120 °C and the mixture stirred at this temperature for 14 h. The mixture

was cooled to room temperature before being reheated to 120 °C in air. After reaching room

temperature, the solution was diluted with CH_2Cl_2 (50 mL) and aqueous HCl (1 M, 10 mL) and the mixture was stirred for 1 h before the layers were separated. The aqueous phase was extracted with CH_2Cl_2 (2 x 100 mL), the combined organic layers were washed with sat. NaHCO₃ solution and dried over MgSO₄. The solvent was removed under reduced pressure and the resulting crude product used without further purification (colorless oil, 4.77 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 5.51 (dtt, *J* = 14.9, 6.0, 1.1 Hz, 1H), 5.38 (dtt, *J* = 15.2, 6.2, 1.4 Hz, 1H), 3.67 (s, 3H), 2.42 – 2.33 (m, 2H), 2.34 – 2.26 (m, 2H), 2.05 – 1.93 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 133.5, 127.0, 51.6, 34.3, 28.0, 25.7, 13.9. The spectral data is consistent with previously reported values.^[12]

(E)-Hept-4-en-1-ol (S8). LiAlH₄ (1.87 g, 49 mmol) was added in portions to a solution of ester S7 (2.0 g,

14.1 mmol) in Et_2O (44 mL) at 0 °C. The mixture was stirred at room OH

temperature for 4 h before water (2 mL) and NaOH (2 mL, 15% in water) were carefully added. The mixture was stirred for 15 min before more water (6 mL) was added. Stirring was continued for another 15 min, the suspension was filtrated through a glas frit, the residue was washed with Et₂O (20 mL) and the combined filtrates were dried over Na₂SO₄. The solvent was removed under reduced pressure and the resulting crude product used without further purification (colorless liquid, 1.49 g, 93%). ¹H NMR (400 MHz, CDCl₃) δ 5.54 – 5.46 (m, 1H), 5.47 – 5.34 (m, 1H), 3.65 (t, *J* = 6.5 Hz, 2H), 2.11 – 2.03 (m, 2H), 2.03 – 1.95 (m, 2H), 1.68 – 1.59 (m, 2H), 0.96 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.9, 128.6, 62.8, 32.6, 29.0, 25.7, 14.1. The spectral data is consistent with previously reported values.^[13]

(*E*)-7-Bromohept-3-ene (S9). Br₂ (0.72 mL, 14.0 mmol) was added dropwise to a solution of PPh₃ (3.86 g, 14.7 mmol) and imidazole (1.65 g, 24.3 mmol) in CH₂Cl₂ (26 mL) at 0 °C. The mixture was stirred for 15 min before alcohol S8 (840 mg, 7.4 mmol) was added at 0 °C. Stirring was continued for 45 min at 0 °C and at room temperature for 1 h. The suspension was washed H₂O₂ solution (3 % H₂O₂ in water, 2 x 6 mL) and Na₂S₂O₃ solution (1 M, 2 x 20 mL). The combined thiosulfate layers were extracted with CH₂Cl₂ (2 x 80 mL) and the combined organic layers dried over MgSO₄. The solvent was removed under reduced pressure. The white residue was suspended in hexanes (30 mL) by means of short ultrasonication and insoluble materials were filtered off through a plug of silica. The filter cake and silica were thoroughly rinsed with hexanes (300 mL) and the combined filtrate were concentrated under reduced pressure to give the title compound as a colorless liquid (1.06 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ 5.52 (dtt, *J* = 15.3, 6.2, 1.3 Hz, 1H), 5.34 (dtt, *J* = 15.1, 6.7, 1.5 Hz, 1H), 3.41 (t, *J* = 6.8 Hz, 2H), 2.14 (dddd, *J* = 8.6, 7.5, 6.1, 1.3 Hz, 2H), 2.00 (qdq, *J* = 7.5, 6.4, 1.2 Hz, 2H), 1.91 (p, *J* = 7.0 Hz, 2H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 133.9, 127.0, 33.5, 32.6, 31.0, 25.7, 14.0. The spectral data is consistent with previously reported values.^[13]

4-Methylpent-1-en-3-ol (S10). Freshly distilled isobutyraldehyd (3.02 g, 41.7 mmol) in Et₂O (44 mL) was

OH added over 30 min to a stirred solution of vinyImagnesium bromide (1 M in THF, 50 mL, 50 mmol) at -78 °C. The mixture was stirred for 1 h at -78 °C before being allowed to reach room temperature. The mixture was acidified with aqueous HCl (1 M, 55 mL) and the layers were separated. The aqueous phase was extracted with Et_2O (3 x 100 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced

pressure and the resulting crude product used without further purification (light yellow liquid, 3.75 g, 90%). ¹H NMR (400 MHz, CDCl₃) δ 5.86 (ddd, *J* = 17.1, 10.4, 6.4 Hz, 1H), 5.22 (dt, *J* = 17.2, 1.5 Hz, 1H), 5.15 (ddd, *J* = 10.4, 1.7, 1.1 Hz, 1H), 3.88 – 3.83 (m, 1H), 1.80 – 1.67 (m, 1H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.90 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 115.7, 78.4, 33.7, 18.3, 17.9. The spectral data is consistent with previously reported values.^[14]

Methyl (E)-6-methylhept-4-enoate (S11). Alcohol S10 (3.75 g, 37.4 mmol) was added to trimethylorthoacetate (14.3 mL, 112 mmol) and propionic acid (138 mg, 1.9 mmol) in a thick-walled pressure Schlenk flask. The sealed flask was immersed in a heating bath at 120 °C and the mixture stirred for 14 h. The

mixture was allowed to cool to room temperature and then stirred again at 120 °C open to air. After reaching ambient temperature, the solution was diluted with CH_2Cl_2 (50 mL) and aqueous HCl (1 M, 10 mL). The mixture was stirred for 1 h at room temperature before the layers were separated and the aqueous phase extracted with CH_2Cl_2 (2 x 100 mL). The combined organic layers were washed with sat. NaHCO₃ solution and dried over MgSO₄. The solvent was removed under reduced pressure and the resulting crude product was used without further purification in the next step (colorless oil, 5.45 g, 93%). ¹H NMR (400 MHz, CDCl₃) δ 5.43 (ddt, *J* = 15.4, 6.2, 1.0 Hz, 1H), 5.34 (dtd, *J* = 15.3, 6.0, 1.0 Hz, 1H), 3.66 (s, 3H), 2.40 – 2.33 (m, 2H), 2.33 – 2.26 (m, 2H), 2.26 – 2.17 (m, 1H), 0.95 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 139.1, 125.0, 51.6, 34.4, 31.1, 28.0, 22.7.

(E)-6-Methylhept-4-en-1-ol (S12). LiAlH₄ (1.7 g, 45 mmol) was added in portions to a solution of ester

S11 (2.0 g, 12.8 mmol) in Et_2O (40 mL) at 0 °C. The mixture was warmed to room temperature and stirring was continued for 4 h before water (2 mL) and NaOH (2 mL, 15% in water) were carefully added. The mixture was stirred for 15 min

at room temperature before more water (6 mL) was added. After stirring for additional 15 min, the suspension was filtrated through a glass frit, the residue was washed with Et₂O (20 mL) and the combined filtrates were dried over Na₂SO₄. The solvent was removed under reduced pressure and the resulting crude material used in the next step without further purification (colorless liquid, 1.65 g, 100%). ¹H NMR (400 MHz, CDCl₃) δ 5.47 – 5.32 (m, 2H), 3.65 (t, *J* = 6.5 Hz, 2H), 2.30 – 2.17 (m, 1H), 2.11 – 2.03 (m, 2H), 1.69 – 1.57 (m, 2H), 0.96 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 126.5, 62.8, 32.6, 31.1, 29.0, 22.8. The spectral data is consistent with previously reported values.^[15]

(E)-7-Bromo-2-methylhept-3-ene (S13). Br₂ (0.67 mL, 13.0 mmol) was added dropwise to a solution of PPh₃ (3.60 g, 13.7 mmol) and imidazole (1.54 g, 22.6 mmol) in CH₂Cl₂ (24 mL) at 0 °C. The mixture was stirred for 15 min before alcohol S12 (880 mg, 6.9 mmol) was added at 0 °C. Stirring was continued for 30 min at 0 °C and for 1 h at

ambient temperature. The suspension was washed with H_2O_2 solution (3 % H_2O_2 in water, 2 x 6 mL) and $Na_2S_2O_3$ solution (1 M, 2 x 20 mL). The combined thiosulfate layers were extracted with CH_2Cl_2 (2 x 80 mL) and the combined organic phases were dried over MgSO₄. The solvent was removed under reduced pressure. The solid white residue was suspended in hexanes (30 mL) by means of short ultrasonication and the suspension filtered through a plug of silica. The filter cake and silica were thoroughly rinsed with hexanes (300 mL) and the combined filtrates were evaporated to give the product as a colorless liquid

(1.08 g, 83%). ¹H NMR (400 MHz, CDCl₃) δ 5.45 (ddt, *J* = 15.3, 6.5, 1.3 Hz, 1H), 5.30 (dtd, *J* = 15.3, 6.7, 1.2 Hz, 1H), 3.40 (t, *J* = 6.8 Hz, 2H), 2.31 – 2.17 (m, 1H), 2.18 – 2.07 (m, 2H), 1.91 (p, *J* = 7.0 Hz, 2H), 0.96 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 139.5, 124.9, 33.5, 32.7, 31.2, 31.0, 22.7.

(*E*)-6-Bromohex-2-ene (S14). Br₂ (1.86 mL, 36.3 mmol) was added dropwise to a solution of PPh₃ (10.1 g, Br 38.5 mmol) and imidazole (4.4 g, 64.1 mmol) in CH₂Cl₂ (75 mL) at 0 °C. The mixture was stirred for 15 min before *trans*-4-hexen-1-ol (2.14 g, 21.4 mmol) was added at 0 °C. Stirring was continued for 45 min at 0 °C and at room temperature for another 30 min. The suspension was washed with H₂O₂ solution (3 % H₂O₂ in water, 2 x 15 mL) and Na₂S₂O₃ solution (1 M, 2 x 30 mL). The combined thiosulfate layers were extracted with CH₂Cl₂ (2 x 80 mL) and the combined extracts were dried over MgSO₄. The solvent was evaporated, the solid residue was suspended in hexanes (30 mL) by means of short ultrasonication and the suspension filtered through a plug of silica. The filter cake and silica were thoroughly rinsed with hexanes (300 mL), the combined filtrates were evaporated to give the title compound as a colorless liquid (1.56 g, 45%). ¹H NMR (400 MHz, CDCl₃) δ 5.50 (dqt, *J* = 14.8, 6.1, 1.2 Hz, 1H), 5.37 (dtq, *J* = 15.1, 6.9, 1.5 Hz, 1H), 3.40 (t, *J* = 6.8 Hz, 2H), 2.13 (m, 2H), 1.90 (p, *J* = 6.7 Hz, 2H), 1.65 (dq, *J* = 6.3, 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 129.3, 126.6, 33.5, 32.6, 31.0, 18.1. The spectral data is consistent with previously reported values.^[16]

(Z)-6-Bromohex-2-ene (S15). Prepared analogously from *cis*-4-hexen-1-ol (1.0 g, 10.0 mmol) as a colorless liquid (1.10 g, 68%). ¹H NMR (400 MHz, CDCl₃) δ 5.52 (dddd, *J* = 10.7, 8.3, 6.8, 5.2 Hz, 1H), 5.38 – 5.29 (m, 1H), 3.41 (t, *J* = 6.7 Hz, 2H), 2.26 – 2.17 (m, 2H), 1.92 (dq, *J* = 8.1, 6.7 Hz, 2H), 1.64 (ddt, *J* = 6.8, 1.8, 0.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 128.5, 125.7, 33.6, 32.6, 25.4, 13.0. The spectral data is consistent with previously reported values.^[17]

5-Methylhex-4-enal (S16). 2-Methyl-3-buten-2-ol (8.0 g, 93 mmol), ethyl vinyl ether (17.8 mL, 186 mmol) and H_3PO_4 (85%, 0.1 mL, 1.4 mmol) were stirred in a sealed thick-walled pressure Schlenk flask for 2.5 h at 150 °C. The mixture was cooled to room temperature before Et_3N (0.6 mL, 4.2 mmol) was added. The crude product was purified by distillation

under reduced pressure (60 mbar, 120 °C bath temperature). The product was obtained as a colorless oil by collecting the fraction boiling at \approx 72 °C (2.38 g, 23%). ¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, *J* = 1.8 Hz, 1H), 5.09 (tdq, *J* = 7.1, 2.9, 1.5 Hz, 1H), 2.48 – 2.43 (m, 2H), 2.37 – 2.26 (m, 2H), 1.69 (q, *J* = 1.3 Hz, 3H), 1.63 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 202.8, 133.4, 122.3, 44.1, 25.8, 21.1, 17.9. The spectral data is consistent with previously reported values.^[18]

1-((tert-Butyldimethylsilyl)oxy)propan-2-one (S17). Imidazole (1.0 g, 14.8 mmol) was added in portions to a stirred solution of hydroxyacetone (90%, 555 mg, 6.7 mmol) and TBSCI (1.53 g, 10.1 mmol) in CH_2Cl_2 (26 mL) at 0 °C. The mixture was stirred at room temperature for

1 h before brine (10 mL) was added. The layers were separated, the aqueous phase was extracted with CH_2CI_2 (2 x 50 mL) and the combined organic layers were dried over MgSO₄. The solvent was evaporated and the crude product purified by flash chromatography (silica, pentane/Et₂O 20:1 – 10:1) to give the title compound as a colorless oil (1.1 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 4.14 (s, 2H), 2.17 (s, 3H), 0.92 (s, 9H), 0.09 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 209.4, 69.7, 26.1, 25.9, 18.4, -5.4. The spectral data is consistent with previously reported values.^[19]

4-((tert-Butyldimethylsilyl)oxy)butan-2-one (S18). Imidazole (3.2 g, 47.1 mmol) was added in portions to

a stirred solution of 4-hydroxy-2-butanone (90%, 2.1 g, 21.5 mmol) and TBSCI (4.85 g, 32.2 mmol) in CH_2CI_2 (83 mL) at 0 °C. The mixture was stirred at room temperature for 1 h before brine (20 mL) was added and the layers were separated. The aqueous

phase was extracted with CH_2Cl_2 (2 x 100 mL) and the combined organic layers were dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, pentane/Et₂O 20:1 – 10:1) to give the title compound as a colorless oil (4.05 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 3.88 (t, *J* = 6.3 Hz, 1H), 2.61 (t, *J* = 6.3 Hz, 1H), 2.18 (s, 1H), 0.87 (s, 4H), 0.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.2, 59.0, 46.7, 31.0, 26.0, 18.4, -5.3. The spectral data is consistent with previously reported values.^[20]

Alkyne Building Blocks

The alkynes **S19**,^[21] **S20**,^[22] **S21**,^[23] and **S22**^[24] were prepared according to literature procedures

1-Ethynyl-1-(methoxymethoxy)cyclohexane (S23). A solution of 1-ethynyl-1-cyclohexanol (4.0 g, **MOM** 32.2 mmol) in THF (15 mL) was added to a stirred suspension of NaH (1.55 g, 64.4 mmol) in THF (65 mL) at 0 °C. The mixture was stirred for 30 min at room temperature before MOMCI (0.61 mL, 8.1 mmol) was added at 0 °C. Stirring was continued for 2 h at room temperature before aq. sat. NH₄Cl (6 mL), water (4 mL) and *tert*-butyl methyl ether (80 mL) were added. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 100 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaported and the residue purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1) to give the title compound as colorless oil (5.06 g, 93%). ¹H NMR (400 MHz, CDCl₃) δ 4.94 (s, 2H), 3.40 (s, 3H), 2.52 (s, 1H), 2.01 – 1.91 (m, 2H), 1.73 – 1.48 (m, 7H), 1.33 – 1.18 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 92.9, 84.9, 74.8, 74.7, 56.0, 38.6, 25.4, 23.0. IR (film) \tilde{v} 3305, 3264, 2934, 1149, 1023 cm⁻¹. HRMS (ESI⁺) for C₁₀H₁₆O₂ [M+Na]⁺: calcd: 191.1042, found: 191.1042.

tert-Butyl((1-ethynylcyclohexyl)oxy)dimethylsilane (S24). TBSOTF (0.83 mL, 3.6 mmol) was added to a solution of 1-ethynyl-1-cyclohexanol (500 mg, 4.0 mmol) and 2,6-lutidine (0.94 mL, 8.1 mmol) in CH_2Cl_2 (10.8 mL) at 0 °C. The mixture was stirred for 2 h before water (2 mL) was added. After reaching room temperature, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic layers were washed with

aqueous phase was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes) to yield the title compound as a colorless oil (610 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 2.45 (s, 1H), 1.84 – 1.74 (m, 2H), 1.71 – 1.57 (m, 4H), 1.57 – 1.47 (m, 2H), 1.47 – 1.38 (m, 1H), 1.37 – 1.25 (m, 1H), 0.88 (s, 9H), 0.17 (s, 6H). ¹³C NMR (101 MHz, CDCl₃)

δ 88.7, 72.8, 69.2, 41.2, 26.0, 25.4, 22.8, 18.3, -2.7. IR (film) \tilde{v} 3310, 2932, 2856, 1252, 1101, 835, 774 cm⁻¹. HRMS (ESI⁺) for C₁₄H₂₆OSi [M+H]⁺: calcd: 239.1826, found: 239.1825.

N-(4-(1-Methoxycyclohexyl)but-3-yn-1-yl)-4-methylbenzenesulfonamide (S25). n-BuLi (1.6 M in

Ts

hexanes, 2.0 mL, 3.2 mmol) was slowly added to a solution of alkyne **S19** (400 mg, 2.9 mmol) in THF (5.0 mL) at 0 °C. A solution of *N*-tosylaziridine (428 mg, 2.2 mmol) in THF (3.3 mL) and DMPU (0.9 mL) was slowly added and the mixture was stirred at room temperature for 3 h. sat. NH_4Cl solution (2 mL), water (2 mL) and EtOAc (20 mL) were introduced before the layers

were separated and the aqueous phase extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 5:1 - 4:1 - 3:1) to give the title compound as a colorless oil (405 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.73 (m, 2H), 7.34 – 7.29 (m, 2H), 4.71 (t, *J* = 6.3 Hz, 1H), 3.28 (s, 3H), 3.10 (q, *J* = 6.5 Hz, 2H), 2.45 – 2.39 (m, 5H), 1.84 – 1.74 (m, 2H), 1.68 – 1.57 (m, 2H), 1.57 – 1.36 (m, 5H), 1.34 – 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 137.1, 129.9, 127.2, 84.0, 81.9, 74.0, 50.7, 42.2, 36.9, 25.5, 22.9, 21.7, 20.1. IR (film) \tilde{v} 3283 (br), 2933, 2857, 1446, 1090 cm⁻¹. HRMS (ESI⁺) for C₁₈H₂₅NO₃S [M+Na]⁺: calcd: 358.1447, found: 358.1444.

4-Methyl-N-(3-methylbut-2-en-1-yl)-N-(prop-2-yn-1-yl)benzenesulfonamide (S26). 1-Bromo-3-methyl-

2-butene (0.66 mL, 5.7 mmol) was added to a solution of N-tosylpropargylamine (1.00 g, 4.8 mmol)^[25] and K_2CO_3 (1.32 g, 9.6 mmol) in MeCN (8 mL). The mixture was stirred at 60 °C for 6 h before it was cooled to room temperature and diluted

with MeCN (10 mL). The suspension was filtered through a pad of Celite and the filter cake was washed with EtOAc (40 mL). The combined filtrates were evaporated and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 10:1 - 6:1 - 4:1) to give the title compound as a colorless oil (923 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.71 (m, 2H), 7.31 – 7.27 (m, 2H), 5.10 (tdq, *J* = 7.2, 2.8, 1.4 Hz, 1H), 4.07 (d, *J* = 2.5 Hz, 2H), 3.81 (d, *J* = 7.3 Hz, 2H), 2.42 (s, 3H), 1.98 (t, *J* = 2.5 Hz, 1H), 1.72 (q, *J* = 1.1 Hz, 3H), 1.67 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 139.2, 136.3, 129.5, 128.0, 118.1, 77.2, 73.5, 44.1, 35.5, 26.0, 21.7, 18.0. The spectral data is consistent with previously reported values.^[26]

Dimethyl 2-(3-methylbut-2-en-1-yl)-2-(prop-2-yn-1-yl)malonate (S27). Cs₂CO₃ (1.45 g, 4.5 mmol) and 1-

bromo-3-methyl-2-butene (0.67 mL, 5.8 mmol) were added to a solution of malonate **S21** (330 mg, 1.9 mmol) in acetone (12.8 mL). The mixture was stirred at reflux temperature for 18 h before it was allowed to cool to room temperature

and diluted with *tert*-butyl methyl ether (40 mL). The mixture was filtered through a pad of Celite and the filter cake was washed with *tert*-butyl methyl ether (100 mL). The combined filtrates were evaporated and the crude product was purified by flash chromatography (silica, hexanes/*tert*-butyl methyl ether 1:0 - 20:1 - 10:1 - 6:1) to give the title compound as a colorless oil (412 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 4.89 (tdq, *J* = 7.3, 2.9, 1.4 Hz, 1H), 3.73 (s, 6H), 2.80 - 2.76 (m, 4H), 2.00 (t, *J* = 2.7 Hz, 1H), 1.70 (q, *J* = 1.2 Hz, 3H), 1.66 - 1.64 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 137.1, 117.1, 79.4, 71.3, 57.3, 52.9, 30.9, 26.2, 22.7, 18.1. The spectral data is consistent with previously reported values.^[27]

3-Methylbut-2-en-1-yl propiolate (S28). Propiolic acid (500 mg, 7.1 mmol) and 1-bromo-3-methyl-2-

butene (1.65 mL, 14.3 mmol) were added to a stirred suspension of NaHCO₃ (1.2 g, 14.3 mmol) in DMF (8.8 mL) at room temperature. The mixture was stirred for 18 h before it was diluted with water (60 mL) and Et_2O (30 mL). The aqueous

phase was extracted with Et₂O (2 x 30 mL) and the combined organic layers were washed with water (60 mL) and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, pentane/Et₂O 10:1) to give the title compound as a colorless oil (993 mg, quant.). ¹H NMR (400 MHz, CDCl₃) δ 5.37 (tdq, *J* = 7.2, 2.9, 1.5 Hz, 1H), 4.69 (dt, *J* = 7.4, 0.8 Hz, 2H), 2.85 (s, 1H), 1.80 – 1.74 (m, 3H), 1.75 – 1.70 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.91, 140.95, 117.46, 74.90, 74.57, 63.22, 25.93, 18.21. IR (film) v 3271, 2975, 2937, 2119, 1707 cm⁻¹. HRMS (ESI⁺) for C₈H₁₀O₂ [M+H]⁺: calcd: 139.0734, found: 139.0754.

Preparation of the Substrates for Hydrogenative Cyclopropanation or Metathesis

1-(6-Methylhept-5-en-1-yn-1-yl)cyclohexan-1-ol (S29). n-BuLi (1.6 M in hexanes, 3.2 mL, 5.1 mmol) was

added to a solution of 1-ethynyl-1-cyclohexanol (315 mg, 2.5 mmol) in THF (6.9 mL) and DMPU (2.6 mL) at 0 $^{\circ}$ C in a thick-walled pressure Schlenk flask. The mixture was stirred for 1 h at 0 $^{\circ}$ C before 5-bromo-2-methyl-2-pentene (0.28 mL, 2.1 mmol) in THF (1.7 mL) was added. The flask was

sealed and the mixture stirred at 65 °C for 16 h. Water (2 mL) and *tert*-butyl methyl ether (5 mL) were added and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 x 20 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 10:1 - 7:1 - 5:1) to give the title compound as a colorless oil (50 mg, 11%). ¹H NMR (400 MHz, CDCl₃) δ 5.21 – 5.11 (m, 1H), 2.26 – 2.15 (m, 4H), 1.90 – 1.80 (m, 2H), 1.77 – 1.61 (m, 2H), 1.70 (d, *J* = 1.3 Hz, 3H), 1.63 (d, *J* = 1.3 Hz, 3H), 1.60 – 1.46 (m, 6H), 1.29 – 1.14 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 133.0, 123.1, 84.8, 84.0, 69.0, 40.4, 27.8, 25.9, 25.4, 23.6, 19.3, 18.0. IR (film) \tilde{v} 3357 (br), 2930, 2856, 1446, 1057, 962 cm⁻¹. HRMS (ESI⁺) for C₁₄H₂₂O [M+Na]⁺: calcd: 229.1563, found: 229.1564.

1-Methoxy-1-(6-methylhept-6-en-1-yn-1-yl)cyclohexane (S30). *n*-BuLi (1.6 M in hexanes, 1.08 mL, 1.74 mmol) was slowly added to a solution of alkyne S19 (200 mg, 1.45 mmol) in THF (5 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of alkyl bromide S5 (283 mg, 1.74 mmol) in THF (3.3 mL) and DMPU (0.9 mL) was added. The mixture was warmed to

room temperature and stirring was continued stirring for 18 h. sat. NH₄Cl solution (2 mL), *tert*-butyl methyl ether (10 mL) and water (2 mL) were added and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 x 20 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed and the residue was purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 80:1 – 40:1) to give the title compound as a colorless oil (203 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 4.73 (m, 1H), 4.70 (m, 1H), 3.35 (s, 3H), 2.24 (t, *J* = 7.0 Hz, 2H), 2.13 (t, *J* = 7.6 Hz, 2H), 1.91 – 1.81 (m, 2H), 1.72 (dd, *J* = 1.4, 0.8 Hz, 3H), 1.71 – 1.59 (m, 4H), 1.59 –

1.46 (m, 5H), 1.34 – 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 110.6, 86.3, 81.5, 74.2, 50.6, 37.2, 37.00, 27.1, 25.7, 23.1, 22.5, 18.4. IR (film) $\tilde{\nu}$ 3074, 2933, 2857, 1650, 1447, 1093 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₄O [M+Na]⁺: calcd: 243.1719, found: 243.1720.

1-(Hept-6-en-1-yn-1-yl)-1-methoxycyclohexane (1a). A detailed procedure as well as analytical and

spectroscopic data of this compound and copies of the spectra are contained in the Supporting Information of our previous publication.^[28]

(E)-1-Methoxy-1-(oct-6-en-1-yn-1-yl)cyclohexane (1b). *n*-BuLi (1.6 M in hexanes, 1.08 mL, 1.74 mmol) was slowly added to a solution of alkyne S19 (200 mg, 1.45 mmol) in THF (5 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of alkyl bromide S14 (283 mg, 1.74 mmol) in THF (3.3 mL) and DMPU (0.9 mL) was added. The mixture was then stirred at room

temperature for 18 h. sat. NH₄Cl solution (2 mL), *tert*-butyl methyl ether (10 mL) and water (2 mL) were added and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 x 20 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 80:1 – 40:1) to give the title compound as a colorless oil (204 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 5.52 – 5.35 (m, 2H), 3.35 (s, 3H), 2.23 (t, *J* = 7.1 Hz, 2H), 2.14 – 2.05 (m, 2H), 1.85 (t, *J* = 8.3 Hz, 2H), 1.69 – 1.45 (m, 12H), 1.26 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 130.5, 125.8, 86.4, 81.3, 74.2, 50.6, 37.2, 31.8, 28.9, 25.7, 23.1, 18.2, 18.1. IR (film) \tilde{v} 2932, 2856, 1447, 1092 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₄O [M+Na]⁺: calcd: 243.1719, found: 243.1721.

(Z)-1-Methoxy-1-(oct-6-en-1-yn-1-yl)cyclohexane (1c). Prepared analogously as a colorless oil (184 mg,

58%). ¹H NMR (400 MHz, CDCl₃) δ 5.54 – 5.44 (m, 1H), 5.43 – 5.31 (m, 1H), 3.35 (s, 3H), 2.25 (t, *J* = 7.0 Hz, 2H), 2.22 – 2.11 (m, 2H), 1.91 – 1.82 (m, 2H), 1.69 – 1.46 (m, 12H), 1.33 – 1.24 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 129.7, 124.9, 86.4, 81.3, 74.2, 50.6, 37.2, 28.9, 26.1, 25.7, 23.1, 18.3,

12.9. IR (film) \tilde{v} 3013, 2933, 2857, 1446, 1092 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₄O [M+Na]⁺: calcd: 243.1719, found: 243.1720.

(E)-1-Methoxy-1-(non-6-en-1-yn-1-yl)cyclohexane (1d). n-BuLi (1.6 M in hexanes, 1.08 mL, 1.74 mmol)

was added slowly to a solution of alkyne **S19** (200 mg, 1.45 mmol) in THF (5 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of alkyl bromide **S9** (308 mg, 1.74 mmol) in THF (3.3 mL) and DMPU (0.9 mL) was added. The mixture was stirred at ambient

temperature for 18 h. sat. NH₄Cl solution (2 mL), *tert*-butyl methyl ether (10 mL) and water (2 mL) were added and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 x 20 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 80:1 – 40:1) to furnish the product as a colorless oil (193 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 5.53 – 5.44 (m, 1H), 5.43 – 5.31 (m, 1H), 3.35 (s, 3H), 2.23 (t, *J* = 7.1 Hz, 2H), 2.15 –

2.04 (m, 2H), 2.06 – 1.94 (m, 2H), 1.90 – 1.82 (m, 2H), 1.70 – 1.46 (m, 9H), 1.33 – 1.24 (m, 1H), 0.97 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 133.1, 128.2, 86.4, 81.3, 74.2, 50.6, 37.2, 31.8, 29.0, 25.8, 25.7, 23.1, 18.2, 14.1. IR (film) $\tilde{\nu}$ 2932, 2856, 2822, 1447, 1092 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₆O [M+Na]⁺: calcd: 257.1876, found: 257.1876.

(E)-1-Methoxy-1-(8-methylnon-6-en-1-yn-1-yl)cyclohexane (1e). n-BuLi (1.6 M in hexanes, 1.08 mL,

1.74 mmol) was added slowly to a solution of alkyne **S19** (200 mg, 1.45 mmol) in THF (5 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of alkyl bromide **S13** (332 mg, 1.74 mmol) in THF (3.3 mL) and DMPU (0.9 mL) was introduced. The mixture was

stirred at room temperature for 18 h. sat. NH₄Cl solution (2 mL), *tert*-butyl methyl ether (10 mL) and water (2 mL) were added and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 x 20 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the crude product purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 80:1 – 40:1) to give the product as a colorless oil (216 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 5.41 (ddt, *J* = 15.3, 6.1, 1.0 Hz, 1H), 5.32 (dtd, *J* = 15.3, 6.4, 0.9 Hz, 1H), 3.35 (s, 3H), 2.23 (t, *J* = 7.1 Hz, 2H), 2.24 (m, 1H), 2.09 (m, 2H), 1.90 – 1.82 (m, 2H), 1.70 – 1.46 (m, 9H), 1.28 (m, 1H), 0.96 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.8, 126.1, 86.4, 81.3, 74.2, 50.6, 37.2, 31.8, 31.2, 29.0, 25.7, 23.1, 22.8, 18.2. IR (film) \tilde{v} 2932, 2858, 2822, 1448, 1093 cm⁻¹. HRMS (ESI⁺) for C₁₇H₂₈O [M+Na]⁺: calcd: 271.2032, found: 271.2032.

1-Methoxy-1-(7-methyloct-6-en-1-yn-1-yl)cyclohexane (1f). n-BuLi (1.6 M in hexanes, 1.08 mL,

1.74 mmol) was slowly added to a solution of alkyne **S19** (200 mg, 1.45 mmol) in THF (5 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of alkyl bromide **S3** (307 mg, 1.74 mmol) in THF (3.3 mL) and DMPU (0.9 mL) was added. The mixture was warmed to room temperature and stirring was continued for 18 h. Sat. NH_4CI

solution (2 mL), *tert*-butyl methyl ether (10 mL) and water (2 mL) were added and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 x 20 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 80:1 – 40:1) to give the product as a colorless oil (183 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 5.10 (tdq, *J* = 7.2, 2.9, 1.5 Hz, 1H), 3.35 (s, 3H), 2.24 (d, *J* = 7.0 Hz, 2H), 2.09 (q, *J* = 7.3 Hz, 2H), 1.90 – 1.81 (m, 2H), 1.69 (q, *J* = 1.3 Hz, 3H), 1.65 – 1.60 (m, 2H), 1.62 (s, 3H), 1.59 – 1.47 (m, 7H), 1.26 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 132.4, 123.8, 86.6, 81.2, 74.2, 50.6, 37.2, 29.3, 27.3, 25.9, 25.7, 23.1, 18.4, 17.8. IR (film) \tilde{v} 2932, 2857, 1446, 1092 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₆O [M+Na]⁺: calcd: 257.1876, found: 257.1877.

N-Allyl-N-(4-(1-methoxycyclohexyl)but-3-yn-1-yl)-4-methylbenzenesulfonamide (S31). Allyl bromide

(0.08 mL, 0.95 mmol) was added to a stirred suspension of K_2CO_3 (131 mg, 0.95 mmol) and sulfonamide **S25** (160 mg, 0.48 mmol) in MeCN (0.8 mL) at room temperature. After stirring for 18 h at 60 °C the mixture was allowed to cool to ambient temperature and diluted with MeCN (10 mL). The suspension was filtered through a plug of cotton

wool and the filtrate was concentrated under reduced pressure. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 6:1) to yield the title compound as a colorless oil (105 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.68 (m, 2H), 7.33 – 7.28 (m, 2H), 5.66 (ddt, *J* = 17.1, 10.1, 6.3 Hz, 1H), 5.23 – 5.14 (m, 2H), 3.85 (dt, *J* = 6.3, 1.4 Hz, 2H), 3.32 – 3.26 (m, 5H), 2.55 – 2.48 (m, 2H), 2.43 (s, 3H), 1.86 – 1.76 (m, 2H), 1.67 – 1.42 (m, 7H), 1.35 – 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 137.2, 133.2, 129.9, 127.3, 119.2, 83.1, 82.6, 74.0, 51.4, 50.7, 46.5, 36.9, 25.6, 22.9, 21.7, 19.7. IR (film) \tilde{v} 2935, 2857, 1449, 1345, 1158, 1092 cm⁻¹. HRMS (ESI⁺) for C₂₁H₂₉NO₃S [M+Na]⁺: calcd: 398.1760, found: 398.1762.

N-(4-(1-Methoxycyclohexyl)but-3-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide

(S32). 1-Bromo-3-methyl-2-butene (0.28 mL, 2.4 mmol) was added to a stirred suspension of K_2CO_3 (494 mg, 3.6 mmol) and sulfonamide **S25** (400 mg, 1.2 mmol) in MeCN (3.8 mL). The mixture was stirred at 60 °C for 2 h before additional K_2CO_3 (494 mg, 3.6 mmol) and 1-bromo-3-methyl-2-butene (0.28 mL, 2.4 mmol) were added. After

stirring for another 18 h at 60 °C, the mixture was cooled to room temperature and diluted with MeCN (10 mL). The suspension was filtered through a plug of cotton wool and the filtrate was evaporated. The residue was purified by flash chromatography (silica, hexanes/EtOAc 20:1 - 10:1 - 6:1) to yield the title compound as pale yellow oil (306 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.66 (m, 2H), 7.32 – 7.27 (m, 2H), 5.01 (tdq, *J* = 7.1, 2.8, 1.4 Hz, 1H), 3.82 (d, *J* = 7.1 Hz, 2H), 3.31 (s, 3H), 3.28 – 3.22 (m, 2H), 2.53 – 2.47 (m, 2H), 2.42 (s, 3H), 1.85 – 1.77 (m, 2H), 1.66 (q, *J* = 1.2 Hz, 3H), 1.65 – 1.57 (m, 5H), 1.57 – 1.41 (m, 5H), 1.32 – 1.22 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 137.4, 137.3, 129.7, 127.3, 119.1, 83.0, 82.8, 74.0, 50.6, 46.5, 46.2, 36.9, 25.9, 25.6, 22.9, 21.6, 19.8, 17.9. IR (film) \tilde{v} 2933, 2857, 1448, 1341, 1157 cm⁻¹. HRMS (ESI⁺) for C₂₃H₃₃NO₃S [M+Na]⁺: calcd: 426.1073, found: 426.2072.

2-(5-(1-Methoxycyclohexyl)pent-4-yn-1-yl)-1,3-dioxolane (S33). *n*-BuLi (1.6 M in hexanes, 1.63 mL, 2.60 mmol) was added slowly to a solution of alkyne S19 (300 mg, 2.17 mmol) in THF (7.6 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of 2-(3-bromopropyl)-1,3-dioxolane (508 mg, 2.60 mmol) in THF (4.9 mL) and DMPU (1.3 mL) was added. The mixture

was stirred at room temperature for 18 h. sat. NH₄Cl solution (3 mL), *tert*-butyl methyl ether (20 mL) and water (3 mL) were added and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 x 40 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 80:1 – 40:1) to give the product as a colorless oil (301 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 4.89 (t, *J* = 4.7 Hz, 1H), 4.01 – 3.92 (m, 2H), 3.90 – 3.81 (m, 2H), 3.34 (s,

3H), 2.30 (t, *J* = 7.0 Hz, 2H), 1.89 – 1.82 (m, 2H), 1.82 – 1.74 (m, 2H), 1.65 (m, 5H), 1.57 – 1.45 (m, 4H), 1.25 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 104.36, 85.93, 81.62, 74.16, 65.03, 50.63, 37.16, 33.15, 25.70, 23.61, 23.06, 18.82. IR (film) \tilde{v} 2935, 2859, 1449, 1142, 1091 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₄O₃ [M+Na]⁺: calcd: 275.1618, found: 275.1618.

6-(1-Methoxycyclohexyl)hex-5-ynal (S34). A solution of dioxolane S33 (150 mg, 0.59 mmol) in acetone

(2.7 mL) was added to a solution of p-TsOH·H₂O (6 mg, 0.03 mmol) in water (2.7 mL). The mixture was stirred at 70 °C for 3 h before sat. NaHCO₃ solution (2 mL) was added. The mixture was diluted with *tert*-butyl methyl ether (10 mL) and the layers were separated. The aqueous

phase was extracted with *tert*-butyl methyl ether (3 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1) to give the title compound as a colorless oil (110 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (t, *J* = 1.4 Hz, 1H), 3.33 (s, 3H), 2.59 (td, *J* = 7.2, 1.4 Hz, 2H), 2.33 (t, *J* = 6.9 Hz, 2H), 1.90 – 1.80 (m, 4H), 1.69 – 1.59 (m, 2H), 1.59 – 1.44 (m, 5H), 1.33 – 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 84.9, 82.5, 74.1, 50.6, 43.0, 37.1, 25.6, 23.0, 21.5, 18.3. IR (film) \tilde{v} 2935, 2857, 1725, 1448, 1091 cm⁻¹. HRMS (ESI⁺) for C₁₃H₂₀O₂ [M+Na]⁺: calcd: 231.1355, found: 231.1357.

1-(Methoxymethoxy)-1-(7-methyloct-6-en-1-yn-1-yl)cyclohexane (S35). n-BuLi (1.6 M in hexanes,

12.2 mL, 19.5 mmol) was slowly added to a solution of alkyne **S23** (2.73 g, 16.2 mmol) in THF (57 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of alkyl bromide **S3** (3.73 g, 21.1 mmol) in THF (37 mL) and DMPU (9.8 mL) was added. The

resulting mixture was stirred at room temperature for 18 h. sat. NH₄Cl solution (10 mL), *tert*-butyl methyl ether (50 mL) and water (10 mL) were added, the aqueous phase was extracted with *tert*-butyl methyl ether (3 x 100 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 20:1) to give the title compound as a colorless oil (4.12 g, 96%). ¹H NMR (400 MHz, CDCl₃) δ 5.10 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 4.94 (s, 2H), 3.39 (s, 3H), 2.23 (t, *J* = 7.1 Hz, 2H), 2.08 (q, *J* = 7.4 Hz, 2H), 1.96 – 1.86 (m, 2H), 1.69 (q, *J* = 1.3 Hz, 3H), 1.68 – 1.62 (m, 3H), 1.61 (s, 3H), 1.59 – 1.48 (m, 6H), 1.30 – 1.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 132.5, 123.8, 92.9, 87.5, 80.9, 75.5, 55.8, 39.1, 29.2, 27.3, 25.9, 25.6, 23.4, 18.4, 17.8. IR (film) \tilde{v} 2931, 2857, 1447, 1149, 1026 cm⁻¹. HRMS (ESI⁺) for C₁₇H₂₈O₂ [M+Na]⁺: calcd: 287.1981, found: 287.1980.

tert-Butyldimethyl((1-(7-methyloct-6-en-1-yn-1-yl)cyclohexyl)oxy)silane (S36). n-BuLi (1.6 M in hexanes,

1.3 mL, 2.1 mmol) was slowly added to a solution of alkyne **S24** (412 mg, 1.7 mmol) in THF (6.0 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of alkyl bromide **S3** (398 mg, 2.2 mmol) in THF (3.9 mL) and DMPU (1.0 mL) was added. The mixture

was stirred at room temperature for 18 h. sat. NH₄Cl solution (3 mL), *tert*-butyl methyl ether (20 mL) and water (2 mL) were added, the aqueous phase was extracted with *tert*-butyl methyl ether (2 x 30 mL) and

the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue was purified by flash chromatography (silica, hexanes) to give the title compound as a colorless oil (523 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 5.10 (m, 1H), 2.20 (t, *J* = 7.1 Hz, 2H), 2.08 (q, *J* = 7.4 Hz, 2H), 1.77 – 1.69 (m, 2H), 1.70 (q, *J* = 1.3 Hz, 3H), 1.67 – 1.59 (m, 2H), 1.62 (s, 3H), 1.59 – 1.45 (m, 6H), 1.46 – 1.34 (m, 1H), 1.35 – 1.24 (m, 1H), 0.88 (s, 9H), 0.15 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 132.4, 123.9, 85.0, 84.9, 69.4, 41.6, 29.1, 27.4, 26.1, 25.9, 25.6, 23.0, 18.5, 18.3, 17.9, -2.7. IR (film) \tilde{v} 2930, 2855, 1446, 1250, 1095, 1052 cm⁻¹. HRMS (ESI⁺) for C₂₁H₃₈OSi [M+Na]⁺: calcd: 357.2584, found: 257.2585.

3-Methylbut-2-en-1-yl 3-(1-hydroxycyclohexyl)propiolate (S37). LiHMDS (1 m in THF, 1.7 mL, 1.7 mmol)

was slowly added to a solution of alkyne **S28** (200 mg, 1.45 mmol) in THF (14.1 mL) at -78 °C and the resulting mixture was stirred for 30 min at that temperature. Cyclohexanone (0.23 mL, 2.17 mmol) was slowly added at -78 °C to the mixture allowed to reach room temperature. After 5 min sat., NH₄Cl solution (1 mL) and EtOAc (20 mL) were

introduced, the layers were separated, the aqueous phase was extracted with EtOAc (3 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue was purified by flash chromatography (silica, hexanes/EtOAc 10:1 - 7:1 - 5:1) to give the title compound as a colorless oil (312 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 5.30 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 4.60 (d, *J* = 7.4 Hz, 2H), 1.92 - 1.84 (m, 2H), 1.70 (d, *J* = 1.3 Hz, 3H), 1.65 (d, *J* = 1.3 Hz, 3H), 1.65 - 1.41 (m, 7H), 1.28 - 1.15 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 140.4, 117.6, 90.3, 76.0, 68.5, 62.9, 39.1, 25.8, 24.9, 22.8, 18.1. IR (film) \tilde{v} 3401 (br), 2935, 2860, 2227, 1709, 1228 cm⁻¹. HRMS (ESI⁺) for C₁₄H₂₀O₃ [M+Na]⁺: calcd: 259.1346, found: 259.1304.

3-Methylbut-2-en-1-yl 3-(1-methoxycyclohexyl)propiolate (S38). A solution of alcohol S37 (300 mg,

1.27 mmol) in THF (1 mL) was slowly added to a suspension of NaH (152 mg, 6.3 mmol) in THF (5.5 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before MeI (0.80 mL, 12.7 mmol) was carefully added at 0 °C. Stirring was continued for 1 h at room temperature before water (2 mL) and *tert*-butyl methyl ether (30 mL)

were introduced. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 50 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1) to yield the title compound as a colorless oil (129 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 5.37 (ddp, *J* = 8.8, 5.7, 1.4 Hz, 1H), 4.67 (dt, *J* = 7.3, 0.9 Hz, 2H), 3.37 (s, 3H), 1.98 – 1.85 (m, 2H), 1.77 (d, *J* = 1.2 Hz, 3H), 1.73 (d, *J* = 1.3 Hz, 3H), 1.73 – 1.58 (m, 4H), 1.59 – 1.44 (m, 4H), 1.38 – 1.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 140.4, 117.8, 88.5, 77.9, 73.9, 63.0, 51.4, 36.1, 26.0, 25.3, 22.5, 18.2. IR (film) \tilde{v} 2937, 2860, 2238, 1711, 1230 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₃O₃ [M+Na]⁺: calcd: 273.1461, found: 273.1459.

1-(1-Methoxycyclohexyl)-7-methyloct-6-en-1-yn-3-ol (\$39). n-BuLi (1.6 M in hexanes, 3.6 mL, 5.8 mmol)

was slowly added to a solution of alkyne **S19** (800 mg, 5.8 mmol) in THF (47 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of the freshly distilled aldehyde **S16** (500 mg, 4.5 mmol) in THF (3 mL) was introduced. After warming to room temperature the mixture was stirred for 10 min before water (5 mL) and EtOAc (50 mL)

were added. The layers were separated and the aqueous phase was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 7:1 - 5:1) to yield the title compound as a colorless oil (647 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 5.14 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 4.44 (t, *J* = 6.5 Hz, 1H), 3.35 (s, 3H), 2.27 – 2.08 (m, 2H), 1.93 – 1.83 (m, 2H), 1.81 – 1.67 (m, 2H), 1.70 (q, *J* = 4.0 Hz, 3H), 1.70 – 1.62 (m, 2H), 1.63 (s, 3H), 1.61 – 1.46 (m, 5H), 1.35 – 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 132.8, 123.4, 87.2, 86.1, 74.0, 62.4, 50.8, 38.2, 36.9, 36.8, 25.9, 25.6, 24.0, 23.0, 17.8. IR (film) \tilde{v} 3416 (br), 2933, 2857, 1446, 1079 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₆O₂ [M+Na]⁺: calcd: 273.1825, found: 273.1823.

1-Methoxy-1-(3-methoxy-7-methyloct-6-en-1-yn-1-yl)cyclohexane (S40). A solution of alcohol S39

(200 mg, 0.8 mmol) in THF (1 mL) was added to a stirred suspension of NaH (96 mg, 4.0 mmol) in THF (3.2 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before MeI (0.50 mL, 8.0 mmol) was introduced. After stirring for 1 h at room temperature, sat. NH_4CI solution (2 mL), water (4 mL) and *tert*-butyl methyl ether (30 mL) were

added and the layers separated. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 20:1) to give the title compound as a colorless oil (184 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 5.11 (tdq, *J* = 7.3, 2.9, 1.4 Hz, 1H), 4.00 (t, *J* = 6.6 Hz, 1H), 3.40 (s, 3H), 3.37 (s, 3H), 2.19 – 2.10 (m, 2H), 1.95 – 1.86 (m, 2H), 1.82 – 1.71 (m, 2H), 1.69 (d, *J* = 1.0 Hz, 3H), 1.70 – 1.60 (m, 2H), 1.62 (s, 3H), 1.60 – 1.47 (m, 5H), 1.35 – 1.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 132.6, 123.5, 87.0, 85.1, 74.2, 70.9, 56.5, 50.8, 37.0, 36.0, 25.9, 25.6, 24.1, 23.1, 17.8. IR (film) \tilde{v} 2934, 2857, 1447, 1290, 1094 cm⁻¹. HRMS (EI) for C₁₇H₂₈O₂ [M]⁺: calcd: 264.1084, found: 264.2085.

1-(1-Methoxycyclohexyl)-7-methyloct-6-en-1-yn-3-one (S41). NaHCO₃ (336 mg, 4.0 mmol) and Dess-Martin periodinane (508 mg, 1.2 mmol) were added to a solution of alcohol **S39** (200 mg, 0.8 mmol) in wet CH_2Cl_2 (7.4 mL) at 0 °C. The mixture was stirred at room temperature for 30 min before aq. sat. Na₂S₂O₃ (3 mL) and water (3 mL) were added. The layers were separated and the aqueous phase was extracted with CH_2Cl_2 (2 x

20 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue was purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 30:1 – 20:1) to give the product as a colorless oil (193 mg, 97%). ¹H NMR (400 MHz, CDCl₃) δ 5.08 (tdq, *J* = 7.2, 2.9, 1.5 Hz, 1H), 3.38 (s, 3H), 2.60 (t, *J* = 7.2 Hz, 2H), 2.36 (q, *J* = 7.5 Hz, 2H), 1.99 – 1.88 (m, 2H), 1.70 –

1.61 (m, 3H), 1.68 (q, J = 1.4 Hz, 3H), 1.62 (s, 3H), 1.59 – 1.45 (m, 4H), 1.38 – 1.28 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.7, 133.5, 122.1, 93.2, 85.1, 74.0, 51.4, 46.0, 36.2, 25.8, 25.4, 23.0, 22.6, 17.8. IR (film) \tilde{v} 2934, 2859, 2204, 1676, 1120 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₄O₂ [M+Na]⁺: calcd: 271.1668, found: 271.1668.

1-(7,7-Difluorohept-6-en-1-yn-1-yl)-1-methoxycyclohexane (22). A solution of aldehyde S34 (110 mg,

0.53 mmol) in DMF (2.3 mL) was added to solid PPh_3 (277 mg, 1.06 mmol) and sodium chlorodifluoroacetate (161 mg, 1.06 mmol). The mixture was stirred at 100 °C for 10 min before it was allowed to reach room temperature. Water (3 mL) and *tert*-butyl methyl ether (10 mL) were added and the layers were separated, the aqueous phase

was extracted with *tert*-butyl methyl ether (2 x 10 mL) and the combined organic layers were washed with brine (2 mL), H₂O₂ solution (6% in water, 4 mL) and again brine. The organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 50:1) to give the title compound as a colorless oil (62 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 4.14 (dtd, *J* = 25.3, 7.9, 2.5 Hz, 1H), 3.34 (s, 3H), 2.27 (t, *J* = 7.0 Hz, 2H), 2.11 (qt, *J* = 7.6, 1.8 Hz, 2H), 1.89 – 1.78 (m, 2H), 1.71 – 1.43 (m, 9H), 1.34 – 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.5 (dd, *J* = 287.5, 285.1 Hz), 85.3, 81.7, 77.3 (d, *J* = 21.6 Hz), 74.0, 50.4, 37.0, 28.6 (t, *J* = 2.5 Hz), 25.5, 22.9, 21.3 (d, *J* = 4.5 Hz), 19.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -88.8 (d, *J* = 47.3 Hz), -91.3 (d, *J* = 47.4 Hz). IR (film) \tilde{v} 2935, 2859, 1746, 1448, 1229, 1092 cm⁻¹. HRMS (EI) for C₁₄H₂₀F₂O [M-H]⁺: calcd: 241.1398, found: 241.1398.

1-Methoxy-1-(7-methoxyhept-6-en-1-yn-1-yl)cyclohexane (23). PhLi (1.8 M in n-Bu₂O, 0.41 mL,

0.73 mmol) was slowly added to a solution of (methoxymethyl)triphenylphosphonium chloride (263 mg, 0.77 mmol) in Et₂O (3.2 mL) at 0 °C. The mixture was stirred for 10 min at 0 °C before a solution of aldehyde **S34** (80 mg, 0.38 mmol)

in Et₂O (1 mL) was introduced. The mixture was stirred at room temperature for 10 min sat. NH₄Cl solution (1 mL) and *tert*-butyl methyl ether (5 mL) were added, the layers were separated and the aqueous phase was extracted with *tert*-butyl methyl ether (3 x 20 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 20:1) to give the title compound as a pale yellow oil (44 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ (mixture of *E/Z* isomers: 54/46) 6.30 (dt, *J* = 12.7, 1.2 Hz, 0.54H), 5.90 (dt, *J* = 6.2, 1.4 Hz, 0.46H), 4.70 (dt, *J* = 12.6, 7.4 Hz, 0.54H), 4.33 (td, *J* = 7.4, 6.2 Hz, 0.46H), 3.57 (s, 1.08H), 3.51 (s, 1.62H), 3.35 (s, s, 3H), 2.24 (t, *J* = 7.1 Hz, 2H), 2.17 (qd, *J* = 7.4, 1.5 Hz, 0.92H), 2.05 (qd, *J* = 7.4, 1.2 Hz, 1.08H), 1.90 – 1.80 (m, 2H), 1.68 – 1.45 (m, 9H), 1.33 – 1.22 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 146.8, 105.9, 102.0, 86.6, 86.2, 81.4, 81.2, 74.2, 74.2, 59.6, 56.1, 50.6, 37.2, 37.2, 30.0, 29.3, 26.9, 25.8, 25.7, 23.3, 23.1, 18.4, 18.0. IR (film) \tilde{v} 2932, 2856, 1656, 1448, 1210, 1110, 1090 cm⁻¹. HRMS (EI) for C₁₅H₂₄O₂ [M]⁺: calcd: 236.1771, found: 236.1773.

N-Allyl-N-(4-hydroxy-4-methylpent-2-yn-1-yl)-4-methylbenzenesulfonamide (S42). n-BuLi (1.6 M in

hexanes, 0.59 mL, 0.94 mmol) was added slowly to a solution of alkyne **S20** (181 mg, 0.73 mmol) in THF (7.6 mL) at 0 °C. The solution was stirred for 30 min at 0 °C before acetone (0.75 mL, 10.1 mmol) was introduced. The mixture was warmed to room temperature and stirring continued for 30 min. sat. NH_4CI

solution (3 mL) and EtOAc (30 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 2:1 – 1:1) to yield the title compound as a pale yellow amorphous solid (72 mg, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 5.75 (ddt, *J* = 17.1, 10.0, 6.5 Hz, 1H), 5.32 – 5.22 (m, 2H), 4.10 (s, 2H), 3.82 (dt, *J* = 6.4, 1.2 Hz, 2H), 2.43 (s, 3H), 1.45 (br, 1H), 1.27 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 136.4, 132.1, 129.7, 128.1, 120.0, 90.6, 74.8, 64.9, 49.2, 36.1, 31.2, 21.6. IR (neat) \tilde{v} 3510, 2981, 2929, 1598, 1160 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₂NO₃S [M+Na]⁺: calcd: 308.1315, found: 308.1316.

N-Allyl-N-(4-((tert-butyldimethylsilyl)oxy)-4-methylpent-2-yn-1-yl)-4-methylbenzenesulfonamide (S43).

TBSOTf (54 μ L, 0.23 mmol) was added to a solution of alcohol **S42** (60 mg, 0.20 mmol) and 2,6-lutidine (46 μ L, 0.39 mmol) in CH₂Cl₂ (0.6 mL) at -15 °C (ice/acetone bath). The mixture was stirred for 2 h before water (0.5 mL) was added. After reaching room temperature the layers were separated and the

aqueous phase was extracted with CH_2Cl_2 (3 x 5 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1) to yield the title compound as a colorless amorphous solid (67 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 1H), 5.74 (ddt, *J* = 17.1, 10.0, 6.4 Hz, 1H), 5.28 (dq, *J* = 17.2, 1.4 Hz, 1H), 5.23 (dq, *J* = 10.1, 1.2 Hz, 1H), 4.12 (s, 2H), 3.83 (d, *J* = 6.4 Hz, 2H), 2.41 (s, 3H), 1.21 (s, 6H), 0.82 (s, 9H), 0.05 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 136.6, 132.2, 129.7, 127.8, 119.9, 91.1, 75.1, 66.2, 49.1, 36.1, 32.8, 25.8, 21.6, 18.0, -2.8. IR (film) \tilde{v} 2929, 2856, 1352, 1162, 1042 cm⁻¹. HRMS (ESI⁺) for C₂₂H₃₅NO₃SSi [M+Na]⁺: calcd: 444.1999, found: 444.2001.

N-allyl-N-(4-methoxy-4-methylpent-2-yn-1-yl)-4-methylbenzenesulfonamide (9a). NaH (62 mg,

2.60 mmol) was added to a solution of alcohol **S42** (320 mg, 1.04 mmol) in THF (4.5 mL) at room temperature. The suspension was stirred for 10 min before MeI (0.33 mL, 5.20 mmol) was slowly added. Stirring was continued for 1 h before water (2 mL) and *tert*-butyl methyl ether (20 mL) were added. The

aqueous phase was etracted with *tert*-butyl methyl ether (2 x 20 mL) and the combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 5:1) to yield the title compound as a colorless oil (269 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.70 (m, 2H), 7.33 – 7.27 (m, 2H), 5.75 (ddt, *J* = 17.2, 10.0, 6.5 Hz, 1H), 5.32 – 5.22 (m, 2H), 4.15 (s, 2H), 3.83 (dt, *J* = 6.5, 1.3 Hz, 2H), 3.12 (s, 3H), 2.42 (s, 3H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 136.4, 132.2, 129.7,

127.8, 120.0, 87.7, 76.8, 70.3, 51.6, 49.2, 36.1, 28.2, 21.6. IR (film) \tilde{v} 2984, 2934, 1350, 1163, 1075 cm⁻¹. HRMS (ESI⁺) for C₁₇H₂₃NO₃S [M+Na]⁺: calcd 344.1291, found 344.1293.

N-Allyl-N-(4-hydroxybut-2-yn-1-yl)-4-methylbenzenesulfonamide (S44). n-BuLi (1.6 M in hexanes,

1.68 mL, 2.69 mmol) was added slowly to a solution of alkyne **S20** (515 mg, 2.07 mmol) in THF (21 mL) at 0 °C. The solution was stirred for 30 min before powdered paraformaldehyde (93 mg, 3.10 mmol) was introduced. After stirring for another 2 h at room temperature, the reaction was quenched with NH₄Cl

solution (5 mL) and EtOAc (30 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 2:1 – 3:2) to yield the title compound as a light yellow oil (310 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.72 (m, 2H), 7.34 – 7.29 (m, 2H), 5.73 (ddt, *J* = 17.1, 10.0, 6.4 Hz, 1H), 5.32 – 5.21 (m, 2H), 4.10 (t, *J* = 2.0 Hz, 2H), 3.98 (t, *J* = 2.0 Hz, 2H), 3.82 (dt, *J* = 6.4, 1.3 Hz, 2H), 2.43 (s, 3H), 1.23 (s (br), 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 136.3, 132.1, 129.5, 128.1, 120.1, 83.9, 78.7, 50.9, 49.4, 36.2, 21.7. IR (film) \tilde{v} 3510 (br), 2924, 2867, 1432, 1345, 1160 cm⁻¹. HRMS (ESI⁺) for C₁₄H₁₇NO₃S [M+Na]⁺: calcd 302.0821, found 302.0824.

N-allyl-N-(4-methoxybut-2-yn-1-yl)-4-methylbenzenesulfonamide (9b). NaH (68 mg, 2.77 mmol) was

added to a solution of alcohol **S44** (310 mg, 1.11 mmol) in THF (4.8 mL) and the resulting suspension stirred for 10 min before MeI (0.35 mL, 5.55 mmol) was slowly added. Stirring was continued for 1 h before water (2 mL) and *tert*-butyl methyl ether (20 mL) were introduced. The layers were separated, the

aqueous phase was extracted with *tert*-butyl methyl ether (2 x 20 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, hexanes/EtOAc 10:1 - 6:1 - 5:1) to yield the title compound as a colorless oil (270 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.71 (m, 2H), 7.32 – 7.27 (m, 2H), 5.74 (ddt, *J* = 17.1, 10.1, 6.4 Hz, 1H), 5.31 – 5.21 (m, 2H), 4.13 (t, *J* = 1.9 Hz, 2H), 3.83 (t, *J* = 1.9 Hz, 3H), 3.81 (t, *J* = 1.3 Hz, 1H), 3.19 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 136.2, 132.1, 129.6, 127.9, 120.0, 81.5, 79.3, 59.7, 57.53, 49.3, 36.2, 21.7. IR (film) \tilde{v} 2984, 2929, 1598, 1447, 1348, 1162, 1093 cm⁻¹. HRMS (ESI⁺) for C₁₅H₁₉NO₃S [M+Na]⁺: calcd 316.0978, found 316.0977.

N-(4-Hydroxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (S45).

n-BuLi (1.6 M in hexanes, 1.35 mL, 2.16 mmol) was slowly added to a solution of alkyne **S26** (460 mg, 1.66 mmol) in THF (17.5 mL) at 0 °C. The solution was stirred for 30 min at 0 °C before acetone (1.22 mL, 16.6 mmol) was introduced. After stirring at room temperature for 30 min, sat. NH_4CI

solution (3 mL) and EtOAc (30 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 4:1 – 2:1) to yield the title compound as a light yellow amorphous solid (297 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.72 (m, 2H), 7.34 – 7.29 (m, 2H),

5.11 (ddq, J = 8.8, 5.8, 1.4 Hz, 1H), 4.07 (s, 2H), 3.81 (d, J = 7.3 Hz, 2H), 2.43 (s, 3H), 1.73 (s, 3H), 1.68 (s, 3H), 1.47 (br, 1H), 1.25 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 139.1, 136.6, 129.6, 128.1, 118.1, 90.1, 75.3, 64.9, 44.1, 35.7, 31.1, 26.0, 21.6, 18.0. IR (film) \tilde{v} 3522, 2979, 2921, 1596, 1327, 1152 cm⁻¹. HRMS (ESI⁺) for C₁₈H₂₅O₃S [M+Na]⁺: calcd: 358.1447, found: 358.1444.

N-(4-Methoxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (S46).

NaH (38 mg, 1.58 mmol) was added to a solution of alcohol **S45** (106 mg, 0.32 mmol) in THF (1.4 mL) at room temperature. The suspension was stirred for 10 min before MeI (0.2 mL, 3.16 mmol) was slowly added. After stirring for another 1 h at room temperature, water (1 mL) and *tert*-butyl

methyl ether (5 mL) were introduced, the layers were separated, the aqueous phase was etracted with *tert*-butyl methyl ether (2 x 10 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 5:1) to yield the title compound as a colorless oil (106 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.70 (m, 2H), 7.32 – 7.27 (m, 2H), 5.13 (tdq, *J* = 7.3, 2.9, 1.3 Hz, 1H), 4.12 (s, 2H), 3.82 (d, *J* = 7.3 Hz, 2H), 3.11 (s, 3H), 2.41 (s, 3H), 1.73 (d, *J* = 1.3 Hz, 3H), 1.68 (d, *J* = 1.3 Hz, 3H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 138.8, 136.5, 129.5, 127.7, 118.1, 87.0, 77.2, 70.2, 51.5, 43.9, 35.6, 28.0, 25.9, 21.5, 17.9. IR (film) \tilde{v} 2982, 2932, 1738, 1346, 1159 cm⁻¹. HRMS (ESI⁺) for C₁₉H₂₇NO₃S [M+Na]⁺: calcd: 372.1604, found: 372.1603.

N-(4-((*tert*-butyldimethylsilyl)oxy)-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (S47). TBSOTf (82 μL, 0.36 mmol) was added to a solution of alcohol S45 (100 mg,

OTBS 0.30 mmol) and 2,6-lutidine (69 μ L, 0.60 mmol) in CH₂Cl₂ (0.8 mL) at -15 °C (ice/acetone bath). Stirring was continued for 2 h before water (0.5 mL) was added. After reaching room temperature, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL).

The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1) to yield the title compound as a colorless amorphous solid (126 mg, quant.). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.71 (m, 2H), 7.30 – 7.27 (m, 2H), 5.12 (dddd, *J* = 8.6, 5.7, 2.8, 1.4 Hz, 1H), 4.09 (s, 2H), 3.81 (d, *J* = 7.2 Hz, 2H), 2.41 (s, 3H), 1.72 (s, 3H), 1.67 (s, 3H), 1.21 (s, 6H), 0.82 (s, 9H), 0.05 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 138.6, 136.6, 130.0, 127.7, 118.2, 90.5, 75.4, 66.1, 44.0, 35.7, 32.6, 25.8, 25.6, 21.5, 17.9, 17.9, -3.0. IR (film) \tilde{v} 2929, 2855, 1451, 1343, 1160 cm⁻¹. HRMS (ESI⁺) for C₂₄H₃₉NO₃SSi [M+Na]⁺: calcd: 472.2312, found: 472.2313.

N-(4-Hydroxyhex-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (S48). n-BuLi (1.6

M in hexanes, 1.35 mL, 2.16 mmol) was added slowly to a solution of alkyne **S26** (460 mg, 1.66 mmol) in THF (17.5 mL) at 0 °C. The solution was stirred for 30 min at 0 °C before freshly distilled propionaldehyde (1.20 mL, 16.6 mmol) was introduced. Stirring was continued at room

temperature for 30 min before sat. NH_4Cl solution (3 mL) and EtOAc (30 mL) were added. The layers were separated and the aqueous phase was extracted with EtOAc (2 x 30 mL). The combined organic
layers were washed with brine and dried over MgSO₄, the solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 8:1 - 4:1 - 3:1) to yield the title compound as a light yellow oil which was directly used in the subsequent step.

N-(4-Methoxyhex-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (S49). A solution

of alcohol **S48** in THF (3 mL) was slowly added to a suspension of NaH (214 mg, 8.9 mmol) in THF (7.7 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before Mel (1.12 mL, 17.9 mmol) was carefully added at 0 °C. After stirring for another 1 h at room

temperature, water (1 mL) and *tert*-butyl methyl ether (10 mL) were introduced and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 50 mL), the combined organic layers were washed with brine and dried over MgSO₄, the solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 5:1) to yield the title compound as a colorless oil (235 mg, 40% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.71 (m, 2H), 7.30 – 7.26 (m, 2H), 5.12 (tdq, *J* = 7.1, 2.8, 1.4 Hz, 1H), 4.14 (d, *J* = 1.8 Hz, 2H), 3.81 (d, *J* = 7.3 Hz, 2H), 3.61 (tt, *J* = 6.3, 1.8 Hz, 1H), 3.18 (s, 2H), 2.41 (s, 3H), 1.72 (d, *J* = 1.3 Hz, 3H), 1.67 (d, *J* = 1.3 Hz, 3H), 1.57 – 1.36 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 139.0, 136.5, 129.6, 127.9, 118.2, 84.1, 79.1, 72.4, 56.4, 44.1, 35.8, 28.6, 26.0, 21.6, 18.0, 9.7. IR (film) \tilde{v} 2971, 2932, 1449, 1343, 1159 cm⁻¹. HRMS (ESI⁺) for C₁₉H₂₇NO₃S [M+Na]⁺: calcd: 372.1604, found: 372.1604.

N-(4-Hydroxybut-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (S50). n-BuLi (1.6

OH M in hexanes, 0.59 mL, 0.94 mmol) was slowly added to a solution of alkyne
S26 (200 mg, 0.72 mmol) in THF (7.6 mL) at -78 °C. The solution was stirred for 3 h at -78 °C before powdered paraformaldehyde (28 mg, 0.94 mmol) was introduced. After stirring at room temperature for 1 h, sat. NH₄Cl

solution (3 mL) and EtOAc (30 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 10:1 - 4:1 - 2:1) to yield the title compound as a light yellow oil (159 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.72 (m, 2H), 7.34 – 7.28 (m, 2H), 5.10 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 4.07 (t, *J* = 2.0 Hz, 2H), 3.97 (dt, *J* = 6.1, 2.0 Hz, 2H), 3.80 (d, *J* = 7.3 Hz, 2H), 2.43 (s, 3H), 1.72 (d, *J* = 1.2 Hz, 3H), 1.67 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 139.2, 136.4, 129.4, 128.1, 118.0, 83.5, 79.2, 50.9, 44.2, 35.8, 26.0, 21.7, 18.0. The spectral data is consistent with previously reported values.^[29]

N-(4-Methoxybut-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (S51). A solution

OMe of alcohol S50 (150 mg, 0.49 mmol) in THF (2 mL) was slowly added to a suspension of NaH (59 mg, 2.4 mmol) in THF (2.1 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before MeI (0.31 mL, 4.9 mmol) was carefully added at 0 °C. Stirring was continued for 1 h at

room temperature before water (0.5 mL) and tert-butyl methyl ether (10 mL) were introduced and the

layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the crude product purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 5:1) to yield the title compound as a colorless oil (126 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.71 (m, 2H), 7.32 – 7.27 (m, 2H), 5.11 (tdq, *J* = 7.1, 2.8, 1.4 Hz, 1H), 4.10 (t, *J* = 1.9 Hz, 2H), 3.82 (t, *J* = 1.9 Hz, 2H), 3.80 (d, *J* = 7.3 Hz, 3H), 3.18 (s, 3H), 2.42 (s, 3H), 1.72 (d, *J* = 1.3 Hz, 3H), 1.66 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 139.1, 136.3, 129.5, 128.0, 118.1, 81.2, 79.8, 59.7, 57.5, 44.2, 35.9, 26.0, 21.7, 18.0. IR (film) \tilde{v} 2975, 2926, 1598, 1343, 1090 cm⁻¹. HRMS (ESI⁺) for C₁₇H₂₃NO₃S [M+Na]⁺: calcd: 344.1291, found: 344.1294.

N-(5-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-

1-yl)benzenesulfonamide (S52). *n*-BuLi (1.6 M in hexanes, 1.46 mL, 2.34 mmol) was slowly added to a solution of alkyne **S26** (500 mg, 1.80 mmol) in THF (19.0 mL) at 0 °C. The solution was stirred for 20 min at 0 °C before ketone **S17** (509 mg, 2.7 mmol) was

introduced. The mixture was warmed to room temperature and stirred for 5 min before sat. NH₄Cl solution (10 mL) and EtOAc (50 mL) were added. The aqueous phase was extracted with EtOAc (2 x 50 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 10:1 – 6:1 – 4:1) to yield the title compound as a colorless oil (503 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.70 (m, 2H), 7.32 – 7.27 (m, 2H), 5.11 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 4.09 (s, 2H), 3.81 (d, *J* = 7.3 Hz, 2H), 3.40 (d, *J* = 9.5 Hz, 1H), 3.29 (d, *J* = 9.4 Hz, 1H), 2.51 (br, 1H), 2.42 (s, 3H), 1.72 (d, *J* = 1.3 Hz, 3H), 1.68 (d, *J* = 1.3 Hz, 3H), 1.15 (s, 3H), 0.89 (s, 9H), 0.06 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 139.0, 136.6, 129.6, 128.0, 118.2, 87.7, 76.5, 70.8, 67.8, 44.0, 35.8, 26.0, 26.0, 25.2, 21.7, 18.5, 18.1, -5.2, -5.3. IR (film) \tilde{v} 3513 (br), 2929, 2858, 1347, 1160, 1093 cm⁻¹. HRMS (ESI⁺) for C₂₄H₃₉NO₄SSi [M+Na]⁺: calcd: 488.2261, found: 488.2264.

N-(4,5-bis((*tert*-Butyldimethylsilyl)oxy)-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-methylbut-2-en-1yl)benzenesulfonamide (S53). TBSOTf (0.15 mL, 0.64 mmol) was added to a solution of alcohol S52

(250 mg, 0.0.54 mmol) and 2,6-lutidine (0.13 mL, 1.07 mmol) in CH_2Cl_2 (2.1 mL) at -78 °C. The mixture was allowed to reach room temperature and was stirred for 2 h before sat. NH_4Cl solution (0.5 mL) was added. The layers were separated and the aqueous

phase was extracted with CH_2Cl_2 (3 x 5 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 20:1) to yield the title compound as a light yellow oil (281 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.70 (m, 2H), 7.30 – 7.26 (m, 2H), 5.12 (tdq, *J* = 7.2, 2.9, 1.3 Hz, 1H), 4.10 (s, 2H), 3.82 (d, *J* = 7.2 Hz, 2H), 3.29 (s, 2H), 2.41 (s, 3H), 1.71 (d, *J* = 1.3 Hz, 3H), 1.68 (d, *J* = 1.3 Hz, 3H), 1.18 (s, 3H), 0.87 (s, 9H), 0.82 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H), 0.02 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 138.7, 136.9, 129.6, 127.8, 118.3, 88.5, 77.4, 71.6, 70.0, 44.0, 35.9, 27.2, 26.0, 26.0, 25.8, 21.7, 18.5, 18.1, -2.7, -2.9, -5.2. IR (film) \tilde{v} 2929, 2857, 1351, 1162, 1112 cm⁻¹. HRMS (ESI⁺) for C₃₀H₅₃NO₄SSi₂ [M+Na]⁺: calcd: 602.3126, found: 602.3128.

4-Methyl-N-(3-methylbut-2-en-1-yl)-N-(4-oxopent-2-yn-1-yl)benzenesulfonamide (\$54). n-BuLi (1.6 M in

hexanes, 1.46 mL, 2.34 mmol) was slowly added to a solution of alkyne **S26** (500 mg, 1.80 mmol) in THF (19.0 mL) at 0 °C. The solution was stirred for 20 min at 0 °C before *N*-methoxy-*N*-methylacetamide (0.29 mL, 2.7 mmol) was introduced. After reaching room temperature, the mixture was stirred

for 5 min before sat. NH₄Cl solution (10 mL) and EtOAc (50 mL) were added. The layers were separated and the aqueous phase was extracted with EtOAc (2 x 50 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 10:1 – 6:1 – 4:1) to yield the title compound as a yellow oil (248 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.71 (m, 2H), 7.36 – 7.29 (m, 2H), 5.10 (tdq, *J* = 7.1, 2.8, 1.4 Hz, 1H), 4.21 (s, 2H), 3.82 (d, *J* = 7.3 Hz, 2H), 2.42 (s, 3H), 2.08 (s, 3H), 1.73 (d, *J* = 1.3 Hz, 3H), 1.66 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.3, 144.0, 139.9, 135.8, 129.8, 127.9, 117.6, 84.9, 84.6, 44.6, 35.7, 32.4, 26.0, 21.7, 18.0. IR (film) \tilde{v} 2974, 2921, 2209, 1679, 1348, 1162 cm⁻¹. HRMS (ESI⁺) for C₁₇H₂₁NO₃S [M+Na]⁺: calcd: 342.1134, found: 342.1135.

4-Methyl-N-(3-(2-methyl-1,3-dioxolan-2-yl)prop-2-yn-1-yl)-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (S55). *p*-TsOH · H₂O (7.4 mg, 0.04 mmol) was added to a vigorously stirred suspension of ynone

S54 (125 mg, 0.39 mmol) and triethylorthoformate (70 mg, 0.47 mmol) in ethylene glycol (1.9 mL). The mixture was stirred at room temperature for 24 h before solid NaHCO₃ (30 mg) and sat. NaHCO₃ solution (1 mL) were added. The mixture was diluted with EtOAc (20 mL) and water (5 mL), the

layers were separated, the aqueous phase was extracted with EtOAc (2 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 10:1 – 6:1 – 4:1) to give the title compound as a colorless amorphous solid (116 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.71 (m, 2H), 7.34 – 7.29 (m, 2H), 5.10 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 4.11 (s, 2H), 3.91 – 3.83 (m, 2H), 3.82 – 3.77 (m, 4H), 2.42 (s, 3H), 1.72 (d, *J* = 1.2 Hz, 3H), 1.67 (d, *J* = 1.3 Hz, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 139.1, 136.3, 129.7, 127.8, 118.1, 100.5, 83.9, 76.3, 64.6, 44.2, 35.6, 26.2, 26.0, 21.7, 18.0. IR (film) \tilde{v} 2973, 2895, 1347, 1185, 1161 cm⁻¹. HRMS (ESI⁺) for C₁₉H₂₅NO₄S [M+Na]⁺: calcd: 386.1397, found: 386.1399.

2-Methylnon-8-en-3-yn-2-ol (S56). n-BuLi (1.6 M in hexanes, 19.3 mL, 30.1 mmol) was added at 0 °C to a

solution of 2-methyl-3-butin-2-ol (1.50 mL, 15.5 mmol) in THF (45 mL) and HMPA (18 mL). After 1 h at 0 °C, the reaction mixture was cooled to -78 °C and 5-bromo-1-pentene (1.53 mL, 12.9 mmol) was slowly introduced. The mixture was warmed to room temperature during 1 h and then stirred at 70 °C for

another 18 h. The mixture was cooled to room temperature and the reaction quenched with sat. NH₄Cl solution (50 mL). The aqueous phase was extracted with Et₂O (3 x 40 mL) and the combined organic layers were washed with sat. NaCl solution, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (silica, hexanes/EtOAc 5:1) to give the title compound as a colorless oil (1.54 g, 78%) ¹H NMR (400 MHz, CDCl₃) δ 5.79 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 5.08 – 4.95 (m, 2H), 2.19 (t, *J* = 7.1 Hz, 2H), 2.17 – 2.10 (m, 2H), 1.86 (s, 1H), 1.63 – 1.55 (m, 1H), 1.50

(s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 137.9, 115.1, 85.4, 82.2, 65.3, 32.8, 31.7, 27.8, 18.0. IR (film) \tilde{v} 3331, 2980, 2933, 1641, 1439, 1364, 1240, 1163, 1133, 1083, 950, 912, 838 cm⁻¹. HRMS (ESI⁺) for C₁₀H₁₆O [M+Na]⁺: calcd: 175.1093, found: 175.1094.

tert-Butyldimethyl((2-methylnon-8-en-3-yn-2-yl)oxy)silane (S57). 2,6-Lutidine (0.4 mL, 3.4 mmol) and

TBSOTf (0.47 mL, 2.0 mmol) were added at -15 °C to a solution of alcohol **S56** (260 mg, 1.7 mmol) in CH₂Cl₂ (8 mL).The mixture was warmed to ambient temperature over the course of 2 h and stirring was continued for 14 h. The reaction was quenched with sat. NH₄Cl solution (5 mL), the aqueous phase

was extracted with CH_2Cl_2 (3 x 5 mL) and the combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash chromatography (silica, hexanes/EtOAc 100:1) to give the title compound as a colorless oil (349 mg, 77%). ¹H NMR (400 MHz, CDCl₃): δ 5.65 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 4.88 (ddd, *J* = 17.1, 1.7, 1.7 Hz, 1H), 4.85 – 4.80 (m, 1H), 2.08 – 1.93 (m, 5H), 1.50 – 1.37 (m, 2H), 1.27 (s, 6H), 0.71 (s, 9H), 0.00 (s, 6H).¹³C NMR (101 MHz, CDCl₃): δ 138.1, 115.2, 86.1, 82.5, 66.5, 33.4, 33.0, 28.0, 25.9, 25.9, 18.2, 18.1, - 2.8. IR (film) \tilde{v} 2930, 1247, 1159, 1035, 834, 774 cm⁻¹. HRMS (CI) for C₁₆H₃₀OSi [M+H]⁺: calcd: 267.2137, found: 267.2139.

8-(Methoxymethoxy)-8-methylnon-1-en-6-yne (S58). Hünig's base (1.17 mL, 6.7 mmol) and MOMCI

(0.26 mL, 3.37 mmol) were added at 0 °C to a solution of alcohol **S56** (171 mg, 1.12 mmol) in CH_2Cl_2 (5 mL). The mixture was warmed to ambient temperature over 2 h and stirring was continued for another 14 h. The reaction was quenched with sat. NH_4Cl solution (5 mL), the aqueous phase

was extracted with CH_2CI_2 (3 x 5 mL) and the combined organic layers were washed with sat. NaCl solution, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 97:3) to give the title compound as a colorless oil (156 mg, 71%). ¹H NMR (400 MHz, CDCI₃) δ 5.78 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 5.06 – 4.95 (m, 2H), 4.89 (s, 2H), 3.37 (s, 3H), 2.21 (t, *J* = 7.1 Hz, 2H), 2.18 – 2.11 (m, 2H), 1.64 – 1.56 (m, 2H), 1.48 (s, 6H). ¹³C NMR (101 MHz, CDCI₃) δ 138.0, 115.3, 93.2, 85.1, 82.3, 71.4, 55.5, 32.9, 30.7, 28.0, 18.1. IR (film) \tilde{v} 2934, 1256, 1144, 1031, 1001, 917, 810 cm⁻¹. HRMS (ESI⁺) for C₁₂H₂₀O₂ [M+Na]⁺: calcd: 219.1356, found: 219.1356.

Trimethyl(2-(((2-methylnon-8-en-3-yn-2-yl)oxy)methoxy)ethyl)silane (S59). Hünig's base (1.21 mL, OSEM 6.9 mmol) and SEMCI (0.62 mL, 3.48 mmol) were added at 0 °C to a solution of alcohol S56 (176.9 mg, 1.16 mmol) in CH₂Cl₂(5 mL). The mixture was warmed to ambient temperature over 2 h and stirring was continued for another 14 h. The reaction was quenched with sat. NH₄Cl solution (5 mL), the

aqueous phase was extracted with CH_2Cl_2 (3 x 5 mL) and the combined organic layers were washed with sat. NaCl solution, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (silica, hexanes/EtOAc 100:1) to give the title compound as a colorless oil (311 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 5.79 (ddt, *J* = 16.9, 10.1, 6.7 Hz, 1H), 5.06 – 4.95 (m, 2H), 4.94 (s, 2H), 3.71 – 3.59 (m, 2H), 2.21 (t, *J* = 7.1 Hz, 2H), 2.18 – 2.09 (m, 2H), 1.67 – 1.55 (m, 2H), 1.48 (s, 6H), 0.99 – 0.89 (m, 2H), 0.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 116.6, 92.7, 86.2, 83.7, 72.5, 66.6,

34.2, 31.9, 29.3, 19.6, 19.4, 0.0. IR (film) \tilde{v} 2953, 1248, 1095, 1027, 919, 857, 834 cm⁻¹. HRMS (ESI⁺) for C₁₆H₃₀O₂Si [M+Na]⁺: calcd: 305.1907, found: 305.1908.

4-Methyl-4-((triethylsilyl)oxy)pent-2-yn-1-ol (S60). n-BuLi (1.6 M in hexanes, 1.57 mL, 2.5 mmol) was

added at 0 °C to a solution of alkyne **S22** (500 mg, 2.5mmol) in THF (10 mL). The mixture was stirred for 1 h at this temperature before powdered paraformaldehyde (90 mg, 3.0 mmol) was slowly introduced and stirring was continued overnight at ambient temperature. The reaction was quenched with sat.

NH₄Cl solution (10 mL). The aqueous phase was extracted with Et₂O (3 x 40 mL) and the combined organic layers were washed with sat. NaCl solution, dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 9:1) to give the title compound as a colorless oil (529 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 4.28 (d, *J* = 6.2 Hz, 2H), 1.42 (t, *J* = 6.2 Hz, 1H), 0.97 (t, *J* = 7.9 Hz, 9H), 0.74 – 0.62 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 91.4, 80.4, 66.3, 51.4, 33.1, 7.1, 6.2. IR (film) \tilde{v} 3340, 2955, 2876, 1377, 1239, 1160, 1035, 1002, 724 cm⁻¹. HRMS (ESI⁺) for C₁₂H₂₄O₂Si [M+Na]⁺: calcd: 251.1438, found: 251.1436.

Triethyl((2-methyl-5-((2-methylallyl)oxy)pent-3-yn-2-yl)oxy)silane (S61). Alcohol S60 (150 mg,

0.66 mmol) was added at 0 °C to a suspension of NaH (15.7 mg, 0.66 mmol) in THF (5 mL). The mixture was stirred for 1 h at 0 °C before 3-bromo-2-methylpropene (0.13 mL, 1.3 mmol) was slowly introduced. The mixture was allowed to reach ambient temperature overnight. The reaction was

quenched with sat. NH₄Cl solution (5 mL), the aqueous phase was extracted with CH₂Cl₂ (3 x 3 mL) and the combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (silica, hexanes/EtOAc 98:2) to give the title compound as a colorless oil (145.8 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 4.99 (s, 1H), 4.92 (s, 1H), 4.16 – 4.10 (m, 2H), 3.96 (s, 2H), 1.80 – 1.70 (m, 3H), 1.49 (d, *J* = 1.0 Hz, 6H), 0.96 (t, *J* = 7.8 Hz, 9H), 0.67 (q, *J* = 7.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 113.0, 91.7, 78.5, 73.6, 66.3, 57.5, 33.2, 19.7, 7.1, 6.2. IR (film) \tilde{v} 2954, 2876, 1458, 1359, 1239, 1161, 1035, 1004, 725 cm⁻¹. HRMS (ESI⁺) for C₁₆H₃₀O₂Si [M+Na]⁺: calcd: 305.1907, found: 305.1903.

Triethyl((2-methyl-5-((3-methylbut-2-en-1-yl)oxy)pent-3-yn-2-yl)oxy)silane (S62). Alcohol S60 (150 mg,

0.66 mmol) was added at 0 °C to a suspension of NaH (15.7 mg, 0.66 mmol) in THF (5 mL). The mixture was stirred for 1 h at 0 °C before 1-bromo-3-methyl-2-butene (0.15 mL, 1.3 mmol) was slowly introduced. The mixture was allowed to reach ambient temperature overnight. The

reaction was quenched with sat. NH₄Cl solution (5 mL), the aqueous phase was extracted with CH₂Cl₂ (3 x 3 mL) and the combined organic layers were washed with sat. NaCl solution, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 50:1) to give the title compound as a colorless oil (126 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 5.40 – 5.26 (m, 1H), 4.14 (s, 2H), 4.03 (d, *J* = 6.7 Hz, 2H), 1.81 – 1.67 (m, 6H), 1.48 (s, 6H), 0.96 (t, *J* = 7.9 Hz, 9H), 0.66 (q, *J* = 7.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.2, 120.6, 91.6, 78.7, 66.3, 66.0,

57.4, 33.2, 26.0, 18.1, 7.1, 6.2. IR (film) \tilde{v} 2956, 1716, 1362, 1237, 1163, 1037, 1004, 726 cm⁻¹. HRMS (ESI⁺) for C₁₇H₃₂O₂Si [M+Na]⁺: calcd: 319.2064, found: 319.2063.

((5-(Allyloxy)-2-methylpent-3-yn-2-yl)oxy)(tert-butyl)dimethylsilane (S63). To a solution of allyl

propargyl ether (150 mg, 1.5 mmol)^[30] in THF (6 mL) was added *n*-BuLi (1.6 M in hexanes, 0.97 mL, 1.56 mmol) at -78 °C. The mixture was stirred for 1 h at this temperature before acetone (0.17 mL, 2.3 mmol) was slowly introduced. The mixture was allowed to reach ambient temperature overnight. The

reaction was quenched with sat. NH_4Cl solution (10 mL). The aqueous phase was extracted with Et_2O (3 x 10 mL) and the combined organic layers were washed with sat. NaCl solution, dried over Na_2SO_4 and concentrated under reduced pressure. The crude product was used directly for the next step.

2,6-Lutidine (0.2 mL, 1.74 mmol) and TBSOTf (0.24 mL, 1 mmol) were added at –15 °C to a solution of the crude alcohol (134 mg, 0.89 mmol) in CH₂Cl₂ (2.5 mL). The mixture was warmed to ambient temperature over 2 h and stirring was continued for another 14 h. The reaction was quenched with sat. NH₄Cl solution (5 mL), the aqueous phase was extracted with CH₂Cl₂ (3 x 3 mL) and the combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (silica, hexanes/EtOAc 99:1) to give the title compound as a colorless oil (220 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 5.91 (ddt, *J* = 17.2, 10.4, 5.8 Hz, 1H), 5.31 (ddd, *J* = 17.2, 1.6, 1.6 Hz, 1H), 5.22 (ddd, *J* = 10.4, 1.4, 1.3 Hz, 1H), 4.17 (s, 2H), 4.05 (dt, *J* = 5.8, 1.4 Hz, 2H), 1.46 (s, 6H), 0.86 (s, 9H), 0.16 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.2, 117.9, 91.9, 78.4, 70.6, 66.4, 57.6, 33.0, 25.8, 18.1, -2.8. IR (film) \tilde{v} 2930, 1721, 1360, 1248, 1162, 1035, 828, 775, 678 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₈O₂Si [M+H]⁺: calcd: 269.1931, found: 269.1933.

3-(1-Methoxycyclohexyl)prop-2-yn-1-ol (S64). n-BuLi (1.6 м in hexanes, 2.94 mL, 4.7 mmol) was slowly

added to a solution of alkyne **S19** (500 mg, 3.6 mmol) in THF (38 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before powdered paraformaldehyde (141 mg, 4.7 mmol) was introduced. After stirring at room temperature for 18 h the reaction was quenched with water (10 mL) and EtOAc (50 mL). The layers

were separated and the aqueous phase was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 10:1 – 4:1) to yield the title compound as a colorless oil (371 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 4.33 (s, 2H), 3.35 (s, 3H), 1.92 – 1.83 (m, 2H), 1.70 – 1.44 (m, 8H), 1.37 – 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 87.0, 84.1, 73.9, 51.3, 50.8, 36.7, 25.5, 22.8. IR (film) \tilde{v} 3423 (br), 2935, 2858, 1448, 1077 cm⁻¹. HRMS (ESI⁺) for C₁₀H₁₆O₂ [M+Na]⁺: calcd: 191.1042, found: 191.1042.

1-Methoxy-1-(3-((3-methylbut-2-en-1-yl)oxy)prop-1-yn-1-yl)cyclohexane (S65). A solution of alcohol

S64 (360 mg, 2.1 mmol) in THF (1 mL) was added to a stirred suspension of NaH (87 mg, 3.6 mmol) in THF (13.9 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before 1-bromo-3-methyl-2-butene (0.30 mL, 2.6 mmol) was added. After stirring for 1 h

at room temperature, the reaction was quenched with sat. NH₄Cl solution (2 mL), water (4 mL) and tert-

butyl methyl ether (30 mL). The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 50 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 40:1 – 20:1) to give the title compound as a colorless oil (266 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 5.35 (tdq, *J* = 7.1, 2.8, 1.4 Hz, 1H), 4.20 (s, 2H), 4.06 (d, *J* = 7.1 Hz, 2H), 3.36 (s, 3H), 1.94 – 1.82 (m, 2H), 1.76 (s, 3H), 1.70 (s, 3H), 1.69 – 1.45 (m, 7H), 1.37 – 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 120.5, 87.3, 82.2, 74.1, 65.9, 57.28, 50.9, 36.8, 26.0, 25.6, 22.9, 18.2. IR (film) \tilde{v} 2933, 2856, 1674, 1446, 1073 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₄O₂ [M+Na]⁺: calcd: 259.1668, found: 259.1669.

Dimethyl 2-(3-(1-hydroxycyclohexyl)prop-2-yn-1-yl)-2-(3-methylbut-2-en-1-yl)malonate (S66). LiHMDS

(1 M in THF, 1.0 mL, 1.0 mmol) was slowly added to a solution of alkyne **S27** (200 mg, 0.84 mmol) in THF (8.2 mL) at -78 °C and the resulting mixture was stirred for 30 min at that temperature. Cyclohexanone (0.13 mL, 1.26 mmol) was slowly added at -78 °C and the resulting

mixture warmed to room temperature. After 5 min, sat. NH₄Cl solution (1 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous phase was extracted with EtOAc (3 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 5:1) to give the title compound as a colorless oil (189 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 4.90 (tp, *J* = 7.7, 1.5 Hz, 1H), 3.72 (s, 6H), 2.79 (s, 2H), 2.76 (d, *J* = 7.7 Hz, 2H), 1.87 – 1.72 (m, 5H), 1.70 (d, *J* = 1.4 Hz, 3H), 1.65 (d, *J* = 1.4 Hz, 3H), 1.58 – 1.44 (m, 5H), 1.23 – 1.13 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 136.9, 117.2, 87.1, 79.6, 68.9, 57.6, 52.8, 40.2, 31.0, 26.2, 25.3, 23.5, 22.9, 18.1. IR (film) \tilde{v} 3468 (br), 2933, 2858, 1732, 1437 cm⁻¹. HRMS (ESI⁺) for C₁₉H₂₈O₅ [M+Na]⁺: calcd: 359.1829, found: 359.1829.

Dimethyl 2-(3-(1-methoxycyclohexyl)prop-2-yn-1-yl)-2-(3-methylbut-2-en-1-yl)malonate (S67). A

solution of alcohol **S66** (180 mg, 0.54 mmol) in THF (1 mL) was slowly added to a suspension of NaH (64 mg, 2.7 mmol) in THF (2.2 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before MeI (0.34 mL, 5.4 mmol) was carefully added at 0 °C. After stirring for

1 h at room temperature, water (0.5 mL) and *tert*-butyl methyl ether (10 mL) were introduced and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue was purified by flash chromatography (silica, hexanes/EtOAc 40:1 – 20:1 – 15:1) to yield the title compound as a colorless oil (84 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 4.91 (dddd, *J* = 9.2, 5.9, 2.9, 1.5 Hz, 1H), 3.72 (s, 6H), 3.31 (s, 3H), 2.83 (s, 2H), 2.77 (d, *J* = 7.8 Hz, 2H), 1.88 – 1.77 (m, 2H), 1.70 (d, *J* = 1.3 Hz, 3H), 1.65 (d, *J* = 1.3 Hz, 3H), 1.64 – 1.41 (m, 8H), 1.31 – 1.23 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 136.9, 117.3, 84.2, 81.2, 74.1, 57.6, 52.8, 50.7, 37.0, 31.0, 26.2, 25.6, 23.0, 22.9, 18.1. IR (film) \tilde{v} 2935, 2857, 1738, 1437, 1224 cm⁻¹. HRMS (ESI⁺) for C₂₀H₃₀O₅ [M+Na]⁺: calcd: 373.1985, found: 373.1983.

Dimethyl 2-(4-methylpent-3-en-1-yl)-2-(prop-2-yn-1-yl)malonate (S68). Cs₂CO₃ (3.4 g, 10.5 mmol) and MeO₂C CO₂Me 5-bromo-2-methyl-2-pentene (1.40 mL, 10.5 mmol) were added to a solution of malonate S21 (594 mg, 3.5 mmol) in acetone (23.1 mL). The mixture was stirred at reflux temperature for 18 h before it was cooled to room temperature and diluted with *tert*butyl methyl ether (40 mL). The mixture was filtered through a pad of Celite and the filter cake was washed with *tert*-butyl methyl ether (100 mL). The combined filtrates were evaporated and the residue was purified by flash chromatography (silica, hexanes/*tert*-butyl methyl ether 40:1 – 20:1 – 15:1 – 10:1) to give the title compound as a colorless oil (740 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 5.09 (tdq, *J* = 6.9, 2.6, 1.3 Hz, 1H), 3.73 (s, 6H), 2.85 (d, *J* = 2.7 Hz, 2H), 2.12 – 2.06 (m, 2H), 2.00 (t, *J* = 2.7 Hz, 1H), 1.93 – 1.85 (m, 2H), 1.67 (q, *J* = 1.3 Hz, 3H), 1.58 (d, *J* = 1.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 133.0, 122.9, 79.0, 71.4, 56.8, 52.9, 32.2, 25.8, 23.0, 22.9, 17.7. The spectral data is consistent with previously reported values.^[31]

Dimethyl 2-(3-(1-hydroxycyclohexyl)prop-2-yn-1-yl)-2-(4-methylpent-3-en-1-yl)malonate (S69). LiHMDS

(1 M in THF, 1.9 mL, 1.9 mmol) was slowly added to a solution of alkyne **S68** (400 mg, 1.59 mmol) in THF (15.4 mL) at -78 °C and the resulting mixture was stirred for 30 min at this temperature. Cyclohexanone (0.25 mL, 2.38 mmol) was slowly added at -78 °C and

the resulting mixture was warmed to room temperature. After 5 min, sat. NH₄Cl solution (1 mL) and EtOAc (20 mL) were introduced and the layers were separated, the aqueous phase was extracted with EtOAc (3 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 5:1). The product was obtained as a colorless oil (351 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 5.08 (tdq, *J* = 7.1, 2.8, 1.4 Hz, 1H), 3.72 (s, 6H), 2.87 (s, 2H), 2.11 – 2.03 (m, 2H), 1.93 – 1.77 (m, 5H), 1.70 – 1.63 (m, 5H), 1.58 (d, *J* = 1.4 Hz, 3H), 1.50 (qd, *J* = 10.6, 9.6, 3.2 Hz, 5H), 1.25 – 1.13 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 132.9, 123.0, 87.1, 79.2, 68.9, 57.2, 52.8, 40.3, 32.3, 25.8, 25.3, 23.5, 23.2, 22.9, 17.7. IR (film) \tilde{v} 3498 (br), 2933, 2857, 1733, 1438, 1171 cm⁻¹. HRMS (ESI⁺) for C₂₀H₃₀O₅ [M+Na]⁺: calcd: 373.1985, found: 373.1983.

Dimethyl 2-(3-(1-methoxycyclohexyl)prop-2-yn-1-yl)-2-(4-methylpent-3-en-1-yl)malonate (17). A

solution of alcohol **S69** (340 mg, 0.97 mmol) in THF (1 mL) was slowly added to a suspension of NaH (70 mg, 2.9 mmol) in THF (3.9 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before MeI (0.31 mL, 4.9 mmol) was carefully added at 0 °C. Stirring was

continued for 1 h at room temperature before water (1 mL) and *tert*-butyl methyl ether (20 mL) were introduced and the layers were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 50 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1 – 5:1) to yield the title compound as a colorless oil (263 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 5.08 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 3.72 (s, 6H), 3.31 (s, 3H), 2.90 (s, 2H), 2.12 – 2.00 (m, 2H), 1.93 – 1.78 (m, 4H), 1.70 – 1.56 (m, 3H), 1.67 (q, *J* = 1.9 Hz, 3H), 1.58 (s, 3H), 1.55 – 1.40 (m, 6H), 1.30 – 1.18 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 132.8, 123.0, 84.3, 80.9, 74.2, 57.2, 52.8, 50.7, 37.0, 32.3, 25.8, 25.6, 23.2, 23.0, 22.9, 17.7. IR (film) \tilde{v} 2934, 2857, 1735, 1436, 1167 cm⁻¹. HRMS (ESI⁺) for C₂₁H₃₂O₅ [M+Na]⁺: calcd: 387.2142, found: 387.2142.

4-(Methoxymethoxy)-4-methyloct-1-en-5-yne (S70). Allylmagnesium chloride (2 M in THF, 0.59 mL,

1.19 mmol) was added to a stirred solution of 3-hexyn-2-one (57.0 mg, 0.59 mmol) in THF (2 mL) at 0 °C. The mixture was warmed to room temperature and stirring was continued for 18 h before sat. NH_4Cl solution (3 mL) and Et_2O (5 mL) were

introduced. The layers were separated and the aqueous phase was extracted with Et_2O (2 x 10 mL). The combined organic layers were washed with brine and dried over Na_2SO_4 . The solvent was removed under reduced pressure and the residue was directly used in the next step without further purification.

Hünig's base (0.54 mL, 3.1 mmol) and MOMCI (0.12 mL, 1.6 mmol) were added at 0 °C to a solution of the crude alcohol (82 mg, 0.59 mmol) in CH_2Cl_2 (2.1 mL). The mixture was warmed to ambient temperature over 2 h and stirring was continued for another 14 h. The reaction was quenched with sat. NH₄Cl solution (5 mL), the aqueous phase was extracted with CH_2Cl_2 (3 x 5 mL) and the combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash chromatography (silica, hexanes/EtOAc 98:2) to give the title compound as a colorless oil (67 mg, 62% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 6.01 – 5.81 (m, 1H), 5.14 – 5.07 (m, 2H), 4.98 (d, *J* = 7.0 Hz, 1H), 4.85 (d, *J* = 7.0 Hz, 1H), 3.38 (s, 3H), 2.56 – 2.48 (m, 1H), 2.45 – 2.37 (m, 1H), 2.23 (q, *J* = 7.5 Hz, 2H), 1.43 (s, 3H), 1.14 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 134.1, 117.9, 93.2, 88.6, 74.0, 55.7, 47.6, 28.1, 14.1, 12.5, 1.2. IR (film) \tilde{v} 2979, 1320, 1143, 1092, 1024, 917 cm⁻¹. HRMS (ESI⁺) for C₁₁H₁₈O₂ [M+Na]⁺: calcd: 205.1199, found: 205.1201.

1-((tert-Butyldimethylsilyl)oxy)-3-methyltridec-4-yn-3-ol (S71). n-BuLi (1.6 м in hexanes, 7.04 mL,

11.3 mmol) was slowly added to a solution of 1-decyne (2.03 mL, 11.3 mmol) in THF (100 mL) at 0 °C. The solution was stirred for 20 min at 0 °C before ketone **S18** (1.9 g, 9.4 mmol) was introduced. After stirring at room temperature for 20 min, aq. sat. NH_4Cl (10 mL) and *tert*-butyl methyl ether (100 mL) were added. The layers were separated and the aqueous phase was extracted with *tert*-butyl

methyl ether (2 x 100 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 20:1) to yield the title compound as a colorless oil (2.65 g, 83%). ¹H NMR (400 MHz, CDCl₃) δ 4.53 (br, 1H), 4.23 (ddd, *J* = 10.8, 10.0, 3.1 Hz, 1H), 3.87 (ddd, *J* = 10.1, 4.5, 3.4 Hz, 1H), 2.20 (t, *J* = 7.1 Hz, 2H), 1.95 (ddd, *J* = 14.1, 10.8, 4.5 Hz, 1H), 1.69 (dt, *J* = 14.1, 3.2 Hz, 1H), 1.56 – 1.45 (m, 2H), 1.46 (s, 3H), 1.42 – 1.33 (m, 2H), 1.33 – 1.22 (m, 8H), 0.91 (s, 9H), 0.88 (t, *J* = 7.1 Hz, 3H), 0.11 (s, 3H), 0.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 84.1, 83.5, 68.8, 62.1, 43.6, 32.0, 30.9, 29.4, 29.3, 29.1, 29.0, 26.0, 22.8, 18.9, 18.3, 14.3, -5.4, -5.5. IR (film) \tilde{v} 3503 (br), 2954, 2928, 2856, 1255, 1093 cm⁻¹. HRMS (ESI⁺) for C₂₀H₄₀O₂Si [M+Na]⁺: calcd: 363.2690, found: 363.2691.

tert-Butyl((3-methoxy-3-methyltridec-4-yn-1-yl)oxy)dimethylsilane (S72). A solution of alcohol S71

(1.8 g, 5.3 mmol) in THF (5 mL) was added to a stirred suspension of NaH (317 mg, 13.2 mmol) in THF (23 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before MeI (1.66 mL, 26.4 mmol) was added. After stirring for 1 h at room temperature sat. NH_4CI solution (10 mL), water (10 mL) and *tert*-butyl methyl ether (60 mL) were added to the mixture and the layers were

separated. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 100 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the crude product purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 20:1) to give the title compound as a colorless oil (1.77 g, 94%). ¹H NMR (400 MHz, CDCl₃) δ 3.80 (ddd, *J* = 7.9, 6.6, 1.1 Hz, 2H), 3.31 (s, 3H), 2.20 (t, *J* = 7.0 Hz, 2H), 1.99 – 1.84 (m, 2H), 1.54 – 1.46 (m, 2H), 1.42 – 1.34 (m, 2H), 1.39 (s, 3H), 1.34 – 1.21 (m, 8H), 0.89 (s, 9H), 0.88 (t, *J* = 7.0 Hz, 3H), 0.06 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 86.2, 80.8, 72.5, 60.0, 51.2, 44.2, 32.0, 29.4, 29.2, 29.0, 28.9, 26.6, 26.1, 22.8, 18.8, 18.5, 14.3, -5.1, -5.1. IR (film) \tilde{v} 2955, 2928, 2856, 1463, 1254, 1079 cm⁻¹. HRMS (ESI⁺) for C₂₁H₄₂O₂Si [M+Na]⁺: calcd: 377.2846, found: 377.2846.

3-Methoxy-3-methyltridec-4-yn-1-ol (S73). TBAF (1 m in THF) was added to a solution of silyl ether S72

(1.77 g, 4.98 mmol) in THF (32 mL) at room temperature. The mixture was stirred for 1 h before sat. NH_4Cl solution (5 mL), water (5 mL) and EtOAc (30 mL) were added. The aqueous phase was extracted with EtOAc (2 x 80 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue was purified by flash chromatography

(silica, hexanes/EtOAc 10:1 – 4:1) to give the title compound as a colorless oil (1.03 g, 86%). ¹H NMR (400 MHz, CDCl₃) δ 3.98 (ddd, *J* = 11.6, 8.3, 3.5 Hz, 1H), 3.76 (ddd, *J* = 11.3, 6.0, 3.8 Hz, 1H), 3.34 (s, 3H), 2.74 (br, 1H), 2.21 (t, *J* = 7.1 Hz, 2H), 1.97 (ddd, *J* = 14.4, 8.3, 3.9 Hz, 1H), 1.86 (ddd, *J* = 14.4, 6.0, 3.5 Hz, 1H), 1.56 – 1.46 (m, 2H), 1.42 (s, 3H), 1.38 (m, 2H), 1.33 – 1.22 (m, 8H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 87.3, 80.2, 75.0, 60.4, 51.3, 44.1, 32.0, 29.3, 29.2, 29.0, 28.9, 26.1, 22.8, 18.7, 14.3. IR (film) \tilde{v} 3424 (br), 2927, 2856, 1464, 1078 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₈O₂ [M+Na]⁺: calcd: 263.1981, found: 263.1981.

3-Methoxy-3-methyltridec-4-ynal (S74). NaHCO₃ (874 mg, 10.4 mmol) and Dess-Martin periodinane

(1.06 g, 2.5 mmol) were added to a solution of alcohol **S73** (500 mg, 2.08 mmol) in wet CH_2Cl_2 (19 mL) at 0 °C. The mixture was stirred at room temperature for 30 min before sat. $Na_2S_2O_3$ solution (7 mL) and water (4 mL) were introduced. The layers were separated, the aqueous phase was extracted with CH_2Cl_2 (2 x 60 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent

was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 10:1). The product was obtained as a colorless oil (421 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 9.85 (t, *J* = 2.9 Hz, 1H), 3.37 (s, 3H), 2.64 (dd, *J* = 15.3, 3.0 Hz, 1H), 2.58 (dd, *J* = 15.3, 2.8 Hz, 1H), 2.22 (t, *J* = 7.1 Hz, 2H), 1.51 (m, 2H), 1.47 (s, 3H), 1.42 – 1.33 (m, 2H), 1.27 (m, 8H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 88.4, 79.5, 70.9, 54.5, 51.6, 32.0, 29.3, 29.2, 29.0, 28.7, 26.5, 22.8, 18.7, 14.3. IR (film) \tilde{v} 2928, 2856, 1726, 1463, 1075 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₆O₂ [M+Na]⁺: calcd: 261.1825, found: 261.1827.

5-Methoxy-2,5-dimethylpentadec-2-en-6-yne (S75). n-BuLi (1.6 M in hexanes, 0.60 mL, 0.96 mmol) was

slowly added to a stirred suspension of isopropyltriphenylphosphonium iodide (492 mg, 1.14 mmol) in THF (5.7 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C before a solution of aldehyde **S74** (208 mg, 0.88 mmol) in THF (1.4 mL) was added. After stirring at 0 °C for 1 h, sat. NH₄Cl solution (2 mL) and *tert*-butyl

methyl ether (10 mL) were introduced and the layers separated. The aqueous phase was extracted with *tert*-butyl methyl ether (2 x 30 mL) and the combined organic layers were dried over MgSO₄. The solvent was evaported and the residue purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 75:1 – 50:1) to yield the title compound as a colorless oil (55 mg, 24%). ¹H NMR (400 MHz, CDCl₃) δ 5.24 (tdq, J = 7.2, 2.9, 1.4 Hz, 1H), 3.35 (s, 3H), 2.43 – 2.30 (m, 2H), 2.21 (t, J = 7.0 Hz, 2H), 1.74 (q, J = 1.3 Hz, 3H), 1.63 (s, 3H), 1.55 – 1.46 (m, 2H), 1.43 – 1.36 (m, 2H), 1.34 (s, 3H), 1.32 – 1.23 (m, 8H), 0.91 – 0.86 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 134.2, 119.5, 85.9, 81.4, 74.0, 51.4, 39.8, 32.0, 29.4, 29.2, 29.0, 26.2, 25.9, 22.8, 18.8, 18.3, 14.3. IR (film) \tilde{v} 2928, 2857, 1458, 1367, 1089 cm⁻¹. HRMS (ESI⁺) for C₁₈H₃₂O [M+H]⁺: calcd: 265.2526, found: 265.2526.

2,6-Dimethylhexadec-2-en-7-yn-6-ol (S76). n-BuLi (1.6 M in hexanes, 1.78 mL, 2.85 mmol) was added

slowly to a solution of 1-decyne (0.51 mL, 2.85 mmol) in THF (25 mL) at 0 °C. The solution was stirred for 20 min at 0 °C before 6-methyl-5-hepten-2-one (300 mg, 2.38 mmol) was introduced. After stirring at room temperature for 20 min, sat. NH_4Cl solution (2 mL) and *tert*-butyl methyl ether (25 mL) were added, the layers were separated and the aqueous phase was extracted with

tert-butyl methyl ether (2 x 25 mL). The combined organic layers were washed with brine and dried over MgSO₄, the solvent was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 20:1 – 10:1) to yield the title compound as a colorless oil (546 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 5.20 – 5.14 (m, 1H), 2.32 – 2.22 (m, 1H), 2.19 (t, *J* = 7.1 Hz, 2H), 1.85 (br, 1H), 1.69 (q, *J* = 1.3 Hz, 3H), 1.68 – 1.66 (m, 2H), 1.65 (d, *J* = 1.2 Hz, 3H), 1.54 – 1.46 (m, 2H), 1.45 (s, 3H), 1.42 – 1.33 (m, 2H), 1.32 – 1.22 (m, 9H), 0.91 – 0.86 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.4, 124.2, 84.2, 84.0, 68.7, 43.8, 32.0, 30.4, 29.3, 29.2, 29.0, 28.9, 25.9, 24.0, 22.8, 18.8, 17.8, 14.3. IR (film) \tilde{v} 3384 (br), 2925, 2856, 1455, 1375 cm⁻¹. HRMS (ESI⁺) for C₁₈H₃₂O [M+Na]⁺: calcd: 287.2345, found: 287.2345.

6-Methoxy-2,6-dimethylhexadec-2-en-7-yne (S77). A solution of alcohol S76 (300 mg, 1.13 mmol) in THF

(1 mL) was added to a stirred suspension of NaH (68 mg, 2.84 mmol) in THF (4.9 mL) at 0 °C. The mixture was stirred for 10 min at room temperature before MeI (0.36 mL, 5.67 mmol) was added and stirring continued for 1 h at room temperature. sat. NH₄Cl solution (2 mL), water (2 mL) and *tert*-butyl methyl ether (20 mL) were introduced and the layers separated. The aqueous

phase was extracted with *tert*-butyl methyl ether (2 x 30 mL) and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated and the residue purified by flash chromatography (silica, hexanes/EtOAc 1:0 – 20:1) to give the product as a colorless oil (284 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 5.13 (tdq, *J* = 7.2, 2.9, 1.4 Hz, 1H), 3.33 (s, 3H), 2.21 (t, *J* = 7.0 Hz, 2H), 2.17 – 2.06 (m, 3H), 1.68 (q, *J* = 1.2 Hz, 3H), 1.67 – 1.58 (m, 2H), 1.62 (d, *J* = 1.2 Hz, 3H), 1.54 – 1.46 (m, 2H), 1.42 – 1.35 (m, 2H), 1.37 (s, 3H), 1.33 – 1.23 (m, 8H), 0.91 – 0.86 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 131.8, 124.3, 86.0, 81.2, 73.7, 51.3, 41.6, 32.0, 29.4, 29.2, 29.0, 29.0, 26.1, 25.9, 23.4, 22.8, 18.8, 17.8, 14.3. IR (film) \tilde{v} 2926, 2856, 1459, 1173, 1088, 1073 cm⁻¹. HRMS (ESI⁺) for C₁₉H₃₄O [M+H]⁺: calcd: 279.2682, found: 279.2680.

HYDROGENATIVE CYCLOPROPANATION AND METATHESIS REACTIONS

Representative Procedure A. Preparation of cycloalkene 11a. $[Cp*RuCl]_4$ (2.3 mg, 2 mol%) was added to a stirred solution of enyne **1f** (24.8 mg, 0.11 mmol) in 1,2-dichloroethane (1 mL, 0.1 M) in a flame dried Schlenk tube under argon. H₂ was bubbled through the mixture for 2 min before After stirring for 3 h at 70 °C, the mixture was allowed to cool to room temperature, the solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, pentane/Et₂O 100:1) to yield the title product as colorless oil (20.4 mg, 93%).

Representative Procedure B. Preparation of cycloalkene 18. TBACI (0.021 M in 1,2-dichloroethane, 0.42 mL, 11 mol%) was added to solid [Cp(Me₂CO₂Et)Ru(NCMe)₃][PF₆] **21** (4.3 mg, 10 mol%) in a flame dried Schlenk tube under argon. The mixture was stirred for 5 min at room temperature before enyne **17** (29.3 mg, 0.08 mmol) in 1,2-dichloroethane (0.5 mL, 0.1 M) was added. H₂ was bubbled through the mixture for 2 min before the flask was immersed into a pre-heated oil bath at 70 °C keeping a static H₂ atmosphere (ambient pressure, H₂ filled balloon). After stirring for 3 h at 70 °C, the mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 40:1 – 20:1 – 10:1) to yield the title product as light grey oil (16.9 mg, 65%).

Representative Procedure C. Preparation of cyclopropane 4a. $[Cp*RuCl]_4$ (2.6 mg, 2 mol%) was added to a stirred solution of enyne **S57** (31.6 mg, 0.12 mmol) in CH_2Cl_2 (1.2 mL, 0.1 M) in a flame dried Schlenk tube under argon. H_2 was bubbled through the mixture for 2 min and stirring was continued for 18h under H_2 atmosphere (ambient pressure, H_2 filled balloon). The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 100:1) to yield the title product as colorless oil (29.1 mg, 91%).

Representative Procedure D. Preparation of cyclopropane 3b. $[Cp*RuCl]_4$ (3.5 mg, 2 mol%) was added to a stirred solution of enyne **S30** (35.0 mg, 0.16 mmol) in 1,2-dichloroethane (1.6 mL, 0.1 M) in a flame dried Schlenk tube under argon. H₂ was bubbled through the mixture for 2 min before before the flask was immersed into a pre-heated oil bath at 70 °C keeping a static H₂ atmosphere (ambient pressure, H₂ filled balloon). After stirring was continued for 18 h at 70 °C, the mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica, hexanes/EtOAc 50:1) to yield the title product as colorless oil (32.2 mg, 91%).

Representative Procedure E. Preparation of cyclopropane 4e. $[Cp*RuCl]_4$ (1.0 mg, 2 mol%) was added to a stirred solution of enyne **S43** (20.0 mg, 0.05 mmol) in 1,2-dichloroethane (1 mL, 0.5 M) in a flame dried thick-walled Schlenk tube under argon. H₂ was bubbled through the mixture for 2 min before the tube was sealed and immersed into a pre-heated oil bath at 90 °C keeping a static H₂ atmosphere. The mixture was stirred for 18 h at 90 °C before it was cooled to room temperature. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (silica, hexanes/EtOAc 97:3) to yield the title product as colorless solid (15.6 mg, 78%). (1S*,5R*)-1-((1-methoxycyclohexyl)methyl)bicyclo[3.1.0]hexane (3a). A detailed procedure for the

preparation of this compound, a compilation of analytical and spectroscopic data as well as copies of the spectra are contained in the Supporting Information of our previous publication.^[28]

(1S*,5R*)-1-((1-methoxycyclohexyl)methyl)-5-methylbicyclo[3.1.0]hexane [3.1.0]hexane (3b).

According to the Representative Procedure A from enyne **S30** (35.0 mg, 0.16 mmol); colorless oil (32.2 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 3.15 (s, 3H), 1.97 (dd, *J* = 12.4, 7.8 Hz, 1H), 1.87 – 1.70 (m, 3H), 1.71 – 1.62 (m, 1H), 1.62 – 1.51

(m, 4H), 1.53 - 1.38 (m, 5H), 1.40 - 1.22 (m, 3H), 1.13 (d, J = 14.9 Hz, 1H), 1.08 (s, 3H), 0.53 (d, J = 4.8 Hz, 1H), 0.04 (d, J = 4.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 76.7, 48.2, 38.8, 35.1, 34.5, 34.5, 34.2, 27.8, 26.6, 26.2, 22.1, 22.1, 20.8, 19.2, 18.6. IR (film) \tilde{v} 2928, 2851, 1445, 1081 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₆O [M+H]⁺: calcd: 223.2056, found: 223.2055.

((1-((1S*,5R*)-bicyclo[3.1.0]hexan-1-yl)-2-methylpropan-2-yl)oxy)(tert-butyl)dimethylsilane (4a).

According to the Representative Procedure C from enyne **S57** (31.6 mg, 0.12 mmol); colorless oil (29.1 mg, 91%). ¹H NMR (400 MHz, $CDCl_3$) δ 1.92 (dd, J = 14.1, 1.4 Hz, 1H), 1.81 (dd, J = 12.0, 7.8 Hz, 1H), 1.74 – 1.51 (m, 4H), 1.29 (d, J = 14.4 Hz, 1H), 1.27 (s,

3H), 1.24 (s, 3H), 1.18 (d, J = 8.3 Hz, 1H), 0.87 – 0.86 (m, 1H), 0.86 (s, 9H), 0.44 – 0.31 (m, 2H), 0.08 (s, 3H), 0.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 75.6, 52.2, 33.1, 30.9, 30.3, 27.0, 26.1, 26.0, 24.0, 22.3, 18.2, 13.6, -1.7. IR (film) \tilde{v} 2954, 2929, 2857, 1462, 1251, 1144, 1031, 832, 769, 689 cm⁻¹. HRMS (CI) for C₁₆H₃₂OSi [M+H]⁺: calcd: 269.2295, found: 269.2295.

(2-(((1-((1S*,5R*)-bicyclo[3.1.0]hexan-1-yl)-2-methylpropan-2-yl)oxy)methoxy)ethyl)trimethylsilane

OSEM (4b). According to the Representative Procedure C from enyne S59 (27.6 mg, 0.10 mmol); colorless oil (28.0 mg, quant.). ¹H NMR (400 MHz, CDCl₃) δ 4.77 – 4.71 (m, 2H), 3.67 – 3.55 (m, 2H), 1.97 (d, *J* = 14.4 Hz, 1H), 1.85 – 1.76 (m, 1H), 1.70 – 1.48

(m, 4H), 1.34 (d, J = 14.5 Hz, 1H), 1.28 (s, 3H), 1.24 (s, 3H), 1.18 – 1.07 (m, 1H), 0.97 – 0.82 (m, 3H), 0.43 – 0.38 (m, 1H), 0.34 (dd, J = 7.9, 4.8 Hz, 1H), -0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 89.3, 77.9, 64.9, 48.6, 33.0, 27.3, 27.0, 25.7, 24.1, 22.3, 18.4, 13.6, -1.2. IR (film) \tilde{v} 2955, 1259, 1091, 1023, 858, 833, 797, 692 cm⁻¹. HRMS (ESI⁺) for C₁₆H₃₂O₂Si [M+Na]⁺: calcd: 307.2064, found: 307.2066.

(15*,5R*)-1-(2-(methoxymethoxy)-2-methylpropyl)bicyclo[3.1.0]hexane (4c). According to the OMOM Representative Procedure C from enyne **S58** (34.3 mg, 0.17 mmol); colorless oil (27.4 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 4.71 (q, J = 7.2 Hz, 2H), 3.36 (s, 3H), 2.00 (dd, J = 14.4, 1.5 Hz, 1H), 1.86 – 1.78 (m, 1H), 1.73 – 1.48 (m, 5H), 1.35 (d, J = 14.4 Hz, 1H), 1.29 (s, 3H), 1.26 (s, 3H), 1.22 – 1.08 (m, 1H), 0.87 (dt, J = 8.2, 4.1 Hz, 1H), 0.45 – 0.40 (m, 1H), 0.39 – 0.32 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 91.1, 78.1, 55.2, 48.6, 33.0, 27.3, 27.0, 26.9, 25.6, 24.1, 22.3, 13.6. IR (film) \tilde{v} 2928, 1715, 1449, 1259, 1087, 1030, 919, 806 cm⁻¹. HRMS (ESI⁺) for C₁₂H₂₂O₂ [M+Na]⁺: calcd: 221.1511, found: 221.1514.

(1R*,5R*)-1-(2-((tert-butyldimethylsilyl)oxy)-2-methylpropyl)-3-tosyl-3-azabicyclo[3.1.0]hexane (4e).

According to the Representative Procedure E from enyne **S43** (20.0 mg, 0.05 mmol); colorless solid (15.6 mg, 78%). Single crystals suitable for X-ray analysis were grown by slowly cooling a saturated solution of product in Et₂O to -20 °C. m.p.: 104-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.34 – 7.27 (m, 2H), 3.64 (d,

 $J = 9.6 \text{ Hz}, 1\text{H}, 3.47 \text{ (d, } J = 9.0 \text{ Hz}, 1\text{H}, 2.98 \text{ (dd, } J = 9.0, 3.9 \text{ Hz}, 1\text{H}), 2.91 \text{ (d, } J = 9.9 \text{ Hz}, 1\text{H}), 2.43 \text{ (s, } 3\text{H}), 1.96 \text{ (d, } J = 14.2 \text{ Hz}, 1\text{H}), 1.26 \text{ (s, } 3\text{H}), 1.18 \text{ (s, } 3\text{H}), 1.09 - 0.97 \text{ (m, } 2\text{H}), 0.89 \text{ (s, } 9\text{H}), 0.74 \text{ (t, } J = 4.9 \text{ Hz}, 1\text{H}), 0.59 \text{ (dd, } J = 7.9, 5.1 \text{ Hz}, 1\text{H}), 0.10 \text{ (s, } 3\text{H}), 0.09 \text{ (s, } 3\text{H}). ¹³C NMR (101 MHz, CDCl₃) & 143.3, 133.6, 129.6, 127.8, 74.9, 54.3, 49.6, 49.2, 31.4, 28.8, 26.2, 25.0, 21.7, 21.2, 18.2, 15.2, -1.7, -1.7. IR (film) <math>\tilde{v}$ 2928, 2855, 1462, 1347, 1163, 1132, 1027, 832, 771, 664, 567, 548 cm⁻¹. HRMS (ESI⁺) for C₂₂H₃₇NO₃SSi [M+Na]⁺: calcd: 446.2156, found: 446.2155.

((1-((1R*,5R*)-3-oxabicyclo[3.1.0]hexan-1-yl)-2-methylpropan-2-yl)oxy)(tert-butyl)dimethylsilane (4f).

According to the Representative Procedure E from enyne **S63** (22.3 mg, 0.08 mmol), flash chromatography (silica, hexanes/EtOAc 97:3), colorless oil (12.7 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 3.90 (d, J = 8.5 Hz, 1H), 3.76 – 3.64 (m, 2H), 3.62 (d, J = 8.5 Hz, 1H), 2.13 (d, J = 14.2 Hz, 1H), 1.32 (d, J = 14.3 Hz, 1H), 1.28 (s, 3H), 1.24 (s, 3H), 1.20 (d, J = 12.1 Hz, 1H), 1.13 (td, J = 6.0, 2.8 Hz, 1H), 0.86 (s, 9H), 0.63 (d, J = 6.4 Hz, 2H), 0.10 (s, 3H), 0.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 75.0, 74.1, 69.0, 48.8, 31.2, 29.2, 26.1, 25.9, 22.9, 18.2, 14.7, -1.7. IR (film) \tilde{v} 2956, 2856, 1780, 1364, 1252, 1131, 1024, 830, 770, 690 cm⁻¹. HRMS (ESI⁺) for C₁₅H₃₀O₂Si [M+H]⁺: calcd: 271.2088, found: 271.2087.

triethyl((2-methyl-1-((1R*,5R*)-5-methyl-3-oxabicyclo[3.1.0]hexan-1-yl)propan-2-yl)oxy)silane (4g).

According to the Representative Procedure E from enyne **S61** (21.0 mg, 0.07 mmol); colorless oil (18.8 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 3.96 (d, *J* = 8.7 Hz, 1H), 3.73 (d, *J* = 7.9 Hz, 1H), 3.58 (d, *J* = 8.8 Hz, 1H), 3.42 (d, *J* = 8.0 Hz, 1H), 1.91 (d, *J* = 13.9 Hz, 1H), 1.26 (s, 6H), 1.16 (d, *J* = 14.1 Hz, 1H), 1.09 (s, 3H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.70 (d, *J* = 4.4 Hz, 1H), 0.58 (q, *J* = 7.8 Hz, 6H), 0.33 (d, *J* = 4.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 75.1, 74.6, 74.1, 45.2, 31.5, 29.3, 28.4, 25.8, 19.7, 13.6, 7.3, 6.9. IR (film) \tilde{v} 2956, 2876, 1458, 1225, 1173, 1097, 1035, 925, 719 cm⁻¹. HRMS (ESI⁺) for C₁₆H₃₂O₂Si [M+Na]⁺: calcd: 307.2064, found: 307.2064.

(1R*,5S*)-1-ethyl-3-(methoxymethoxy)-3-methylbicyclo[3.1.0]hexane (5). According to the Representative Procedure D (using additional [Cp*RuCl]₄ (2 mol%) added after 12 h and stirring was continued for another 12 h) from enyne **S70** (24.0 mg, 0.14 mmol); colorless oil (19.5 mg, 80%, mixture of diastereomers 1.3 : 1). ¹H NMR (400 MHz, CDCl₃) δ 4.74 – 4.63 (m, 1H), 4.64 (s, 1H), 3.37 (s, 1.35H), 3.34 (s, 1.65H), 2.32 (dd, *J* = 13.9, 6.2 Hz, 0.55H),

2.12 – 1.82 (m, 2H), 1.71 – 1.48 (m, 2.75H), 1.31 (s, 1.65H), 1.29 – 1.24 (m, 0.7H), 1.22 (s, 1.35H), 1.17 – 1.09 (m, 0.45H); 1.04 – 0.94 (m, 55H), 0.94 – 0.85 (m, 3H), 0.84 – 0.78 (m, 0.55H), 0.59 – 0.52 (m, 0.45H), 0.41 – 0.34 (m, 0.55H), 0.23 – 0.16 (m, 0.45H). ¹³C NMR (101 MHz, CDCl₃) δ 92.0, 91.7, 89.4, 86.5, 55.5, 55.3, 46.9, 45.3, 43.6, 42.0, 31.5, 30.2, 29.8, 29.4, 27.6, 27.0, 23.8, 22.9, 22.0, 17.5, 12.0, 11.9. IR (film) \tilde{v} 2959, 2626, 2727, 1461, 1259, 1074, 1019, 796 cm⁻¹. HRMS (ESI⁺) for C₁₁H₂₀O₂ [M+Na]⁺: calcd: 207.1356, found: 207.1357.

2-((1S*,6R*)-1-Methyl-3-tosyl-3-azabicyclo[4.1.0]heptan-6-yl)propan-2-ol (6). A detailed procedure for the preparation of this compound, a compilation of analytical and spectroscopic data as well as copies of the spectra are contained in the Supporting Information of our previous publication.^[28]

(1R*,6R*)-6-((1-methoxycyclohexyl)methyl)-3-tosyl-3-azabicyclo[4.1.0]heptane (7). According to the Representative Procedure A from enyne S31 (35.0 mg, 0.09 mmol); colorless oil (27.2 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.59 (m, 2H), 7.31 – 7.28 (m, 2H), 3.31 (dt, *J* = 11.4, 1.4 Hz, 1H), 3.22 (dd, *J* = 11.6, 5.4 Hz, 1H), 3.08 (s, 3H), 2.91 – 2.84 (m, 1H), 2.71 (ddd, *J* = 12.0, 8.2, 5.3 Hz, 1H), 2.42 (s, 3H), 2.12

(dt, J = 13.7, 5.8 Hz, 1H), 1.92 (ddd, J = 13.8, 8.2, 5.3 Hz, 1H), 1.81 - 1.67 (m, 2H), 1.60 - 1.33 (m, 6H), 1.28 - 1.08 (m, 4H), 0.82 (dtd, J = 8.8, 5.4, 1.9 Hz, 1H), 0.51 (dd, J = 8.7, 4.9 Hz, 1H), 0.42 (t, J = 5.2 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 143.4, 133.9, 129.7, 127.7, 76.7, 47.9, 45.0, 44.9, 42.9, 35.1, 34.9, 28.0, 26.0, 21.9, 21.8, 21.7, 17.8, 17.2, 15.1. IR (film) \tilde{v} 2929, 2854, 1455, 1339, 1160, 1075 cm⁻¹. HRMS (ESI⁺) for C₂₁H₃₁NO₃S [M+Na]⁺: calcd: 400.1917, found: 400.1917.

(1S*,6S*)-1-((1-Methoxycyclohexyl)methyl)bicyclo[4.1.0]heptan-2-one (8). A detailed procedure for the preparation of this compound, a compilation of analytical and spectroscopic data as well as copies of the spectra are contained in the Supporting Information of our previous publication.^[28]

(Z)-3-Methyl-4-(2-methylpropylidene)-1-tosylpyrrolidine (10a). According to the Representative Ts Procedure A from enyne 9a (28.9 mg, 0.09 mmol); colorless solid (20.2 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.68 (m, 2H), 7.35 – 7.30 (m, 2H), 4.98 (dq, J = 9.5, 2.4 Hz, 1H), 3.88 (ddd, J = 13.9, 2.6, 1.0 Hz, 1H), 3.73 (ddd, J = 14.0, 2.5, 1.8 Hz, 1H), 3.55 – 3.47 (m, 1H), 2.66 – 2.61 (m, 1H), 2.60 (q, J = 2.4, 1.6 Hz, 1H), 2.43 (s, 3H), 2.24 – 2.13 (m, 1H), 1.00 (d, J = 6.4 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 143.6, 137.4, 133.1, 129.8, 129.3, 127.9, 55.0, 49.5, 37.2, 29.1, 22.8, 22.8, 21.7, 16.8. IR (film) \tilde{v} 2958, 2928, 2868, 1462, 1344, 1160 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₃NO₂S [M+Na]⁺: calcd 294.1522, found 294.1521.

1-(Cyclopent-1-en-1-ylmethyl)-1-methoxycyclohexane (11a). According to the Representative **OMe** Procedure A from enyne **1f** (24.8 mg, 0.11 mmol), colorless oil (20.4 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 5.43 – 5.36 (m, 1H), 3.18 (s, 3H), 2.36 – 2.26 (m, 4H), 2.27 – 2.21 (m, 2H), 1.90 – 1.77 (m, 2H), 1.73 – 1.64 (m, 2H), 1.59 – 1.37 (m, 5H),

1.32 – 1.16 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 127.6, 75.6, 48.3, 37. 5, 36.9, 34.5, 32.6, 26.0, 23.9, 22.1. IR (film) \tilde{v} 3038, 2929, 2848, 1455, 1444, 1081 cm⁻¹. HRMS (ESI⁺) for C₁₃H₂₂O [M+H]⁺: calcd: 195.1734, found: 195.1741.

1-(Cyclopent-1-en-1-ylmethyl)-1-(methoxymethoxy)cyclohexane (11b). According to the Representative **OMOM**Procedure A from enyne **S35** (26.6 mg, 0.10 mmol), flash chromatography (silica, hexanes/EtOAc 1:0 – 40:1 – 30:1), colorless oil (18.0 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 5.43 – 5.38 (m, 1H), 4.73 (s, 2H), 3.41 (s, 3H), 2.34 – 2.26 (m, 6H), 1.83 (m, 2H), 1.76 – 1.20 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 128.1, 90.8, 77.8, 55.9, 39.5, 37.1, 35.5, 32.6, 25.9, 24.0, 22.5. IR (film) \tilde{v} 2927, 2849, 1448, 1140, 1028 cm⁻¹. HRMS (ESI⁺) for C₁₄H₂₄O₂ [M+Na]⁺: calcd: 247.1668, found: 247.1671.

tert-Butyl((1-(cyclopent-1-en-1-ylmethyl)cyclohexyl)oxy)dimethylsilane (11c). According to the

Representative Procedure A from enyne **S36** (31.4 mg, 0.09 mmol), colorless oil (19.0 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 5.40 (m, 1H), 2.34 – 2.25 (m, 6H), 1.83 (m, 2H), 1.70 – 1.57 (m, 2H), 1.53 – 1.24 (m, 8H), 0.88 (s, 9H), 0.08 (s, 6H). ¹³C NMR

(101 MHz, CDCl₃) δ 141.4, 127.9, 75.9, 43.8, 38.2, 37.4, 32.6, 26.3, 25.9, 24.2, 23.0, 18.6, -1.4. IR (film) \tilde{v} 2927, 2853, 1471, 1251, 1056, 769 cm⁻¹. HRMS (ESI⁺) for C18H34OSi [M+Na]⁺: calcd: 317.2271, found: 317.2271.

3-((1-Methoxycyclohexyl)methyl)-2,5-dihydrofuran (11e). According to the Representative Procedure A

from enyne **S65** (25.9 mg, 0.11 mmol); light yellow oil (16.9 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 5.60 – 5.52 (m, 1H), 4.67 – 4.61 (m, 2H), 4.61 – 4.55 (m, 2H), 3.16 (s, 3H), 2.31 – 2.28 (m, 2H), 1.76 – 1.65 (m, 2H), 1.65 – 1.48 (m, 3H), 1.48 –

1.37 (m, 2H), 1.34 – 1.21 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 122.6, 77.9, 75.7, 75.2, 48.3, 34.3, 34.1, 25.9, 22.1. IR (film) \tilde{v} 2932, 2855, 1750, 1145, 1073 cm⁻¹. HRMS (ESI⁺) for C₁₂H₂₀O₂ [M+Na]⁺: calcd: 219.1357, found: 219.1355.

Dimethyl 3-((1-methoxycyclohexyl)methyl)cyclopent-3-ene-1,1-dicarboxylate (11f). According to the

Representative Procedure A from enyne **S67** (24.6 mg, 0.07 mmol); colorless oil (16.8 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 5.27 (m, 1H), 3.72 (s, 6H), 3.17 (s, 3H), 3.03 – 2.96 (m, 4H), 2.22 (q, *J* = 1.2 Hz, 2H), 1.70 – 1.60 (m, 2H), 1.57 – 1.45 (m, 3H), 1.46 – 1.35 (m, 2H), 1.31 – 1.17 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 138.1, 124.2, 75.5, 59.6, 52.9, 48.3, 44.4, 40.6, 36.9, 3.3, 25.9, 22.1. IR (film) \tilde{v} 2931, 2855, 1734, 1434, 1250 cm⁻¹. HRMS (ESI⁺) for C₁₇H₂₆O₅ [M+Na]⁺: calcd: 333.1672, found: 333.1673.

1-Methoxy-1-((5-methoxycyclopent-1-en-1-yl)methyl)cyclohexane (11g). According to the Representative Procedure A from enyne **S40** (30.5 mg, 0.12 mmol); colorless oil (13.7 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 5.67 (m, 1H), 4.42 – 4.36 (m, 1H), 3.28 (s, 3H), 3.21 (s, 3H), 2.45 – 2.35 (m, 2H), 2.29 – 2.18 (m, 1H), 2.17 – 2.04 (m, 2H), 1.82 – 1.70 (m, 2H), 1.69 – 1.60 (m, 2H), 1.59 – 1.37 (m, 3H), 1.34 – 1.18 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.0, 132.0, 87.9, 75.7, 55.6, 48.3, 35.0, 34.2, 33.5, 30.3, 28.9, 26.1, 22.1, 22.0. IR (film) \tilde{v} 2931, 2853, 1456, 1260, 1083 cm⁻¹. HRMS (ESI⁺) for C₁₄H₂₄O₂ [M+Na]⁺: calcd: 247.1668, found: 247.1668.

2-((1-Methoxycyclohexyl)methyl)cyclopent-2-en-1-one (11h). According to the Representative

Procedure A from enyne **S41** (25.4 mg, 0.10 mmol); yellow oil (14.5 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 1H), 3.22 (s, 3H), 2.64 – 2.55 (m, 2H), 2.40 – 2.36 (m, 2H), 2.34 (q, *J* = 1.3 Hz, 2H), 1.71 – 1.60 (m, 2H), 1.58 – 1.49 (m, 1H), 1.49 – 1.41 (m, 4H), 1.32 – 1.16 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 210.2, 160.8, 141.9, 75.4, 48.5, 34.2, 34.0, 30.1, 26.9, 25.9, 21.9. IR (film) \tilde{v} 2931, 2856, 1700, 1444, 1074 cm⁻¹. HRMS (ESI⁺) for C₁₃H₂₀O₂ [M+Na]⁺: calcd: 231.1355, found: 231.1357.

3-((1-Methoxycyclohexyl)methyl)furan-2(5H)-one (11i). According to the Representative Procedure A

O FO OMe

from enyne **S38** (27.1 mg, 0.11 mmol); light yellow oil (11.9 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (p, *J* = 1.6 Hz, 1H), 4.80 (q, *J* = 1.7 Hz, 2H), 3.22 (s, 3H), 2.46 (q, *J* = 1.6 Hz, 2H), 1.75 – 1.67 (m, 2H), 1.59 – 1.42 (m, 5H), 1.36 – 1.20 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 175.3, 147.4, 129.6, 75.3, 70.5, 48.6, 34.1, 30.8, 25.8, 21.8. IR (film) \tilde{v} 2931, 2856, 1730, 1455, 1346, 1071 cm⁻¹. HRMS (ESI⁺) for C₁₂H₁₈O₃ [M+H]⁺: calcd: 211.1329, found: 211.1329.

((1-(2,5-Dihydrofuran-3-yl)-2-methylpropan-2-yl)oxy)triethylsilane (12a). According to the OTES Representative Procedure A from enyne S62 (27.0 mg, 0.09 mmol), colorless oil (22.2 mg, 95%). ¹H NMR (400 MHz, CDCl₃): δ 5.54 – 5.50 (m, 1H), 4.67 – 4.57 (m, 4H), 2.29 (s, 2H), 1.23 (s, 6H), 0.94 (t, J = 7.9 Hz, 9H), 0.63 – 0.54 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 138.0, 122.6, 78.1, 75.5, 73.3, 43.7, 30.1, 7.2, 6.9. IR (film) \tilde{v} 3412, 2973, 1735, 1370,

1234, 1072, 1010, 901, 736 cm⁻¹. HRMS (ESI⁺) for $C_{14}H_{28}O_2Si$ [M+Na]⁺: calcd: 279.1751; found: 279.1753.

1H), 4.14 – 4.05 (m, 4H), 3.14 (s, 3H), 2.42 (s, 3H), 2.17 (s, 2H), 1.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 136.7, 134.5, 129.8, 127.6, 121.7, 74.5, 57.6, 54.9, 49.4, 40.2, 24.8, 21.7. IR (film) \tilde{v} 2962, 2860, 2829, 1336, 1155, 1055 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₃NO₃S [M+Na]⁺: calcd: 332.1291, found: 332.1288.

3-(2-((*tert***-Butyldimethylsilyl)oxy)-2-methylpropyl)-1-tosyl-2,5-dihydro-1***H***-pyrrole (12c). According to the Representative Procedure A from enyne S47** (44.8 mg, 0.10 mmol); colorless solid (31.0 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.68 (m, 2H), 7.33 – 7.28 (m, 2H), 5.34 – 5.27 (m, 1H), 4.14 – 4.03 (m, 4H), 2.42 (s, 3H), 2.15 (s, 2H), 1.13 (s, 6H),

0.83 (s, 9H), 0.03 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 137.1, 134.6, 129.8, 127.6, 121.7, 73.5, 57.7, 54.8, 45.0, 30.0, 26.0, 21.7, 18.1, -1.9. IR (film) \tilde{v} 3039, 2928, 2856, 1337, 1161, 1102 cm⁻¹. HRMS (ESI⁺) for C₂₁H₃₅NO₃SSi [M+Na]⁺: calcd: 432.1999, found: 432.2000.

3-(2-Methoxybutyl)-1-tosyl-2,5-dihydro-1H-pyrrole (12d). According to the Representative Procedure A

from enyne **S49** (41.8 mg, 0.12 mmol), light brown oil (13.3 mg, 36%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 5.32 (s, 1H), 4.13 – 3.99 (m, 4H), 3.25 (s, 3H), 3.16 – 3.09 (m, 1H), 2.42 (s, 3H), 2.17 (d, *J* = 5.9 Hz, 2H), 1.48 – 1.31 (m, 2H), 0.83 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5,

137.0, 134.4, 129.8, 127.6, 120.3, 80.5, 57.1, 56.6, 55.1, 32.8, 25.8, 21.7, 9.3. IR (film) \tilde{v} 2967, 2930, 1598, 1341, 1160 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₃NO₃S [M+Na]⁺: calcd: 332.1291, found: 332.1291.

3-(2-Methoxyethyl)-1-tosyl-2,5-dihydro-1*H***-pyrrole (12e)**. According to the Representative Procedure A from enyne **S51** (34.8 mg, 0.11 mmol), colorless oil (3.5 mg, 11%). ¹H NMR (400 MHz,

OMe

CDCl₃) δ 7.74 – 7.68 (m, 2H), 7.34 – 7.29 (m, 2H), 5.34 (hept, J = 1.6 Hz, 1H), 4.13 – 4.05 (m, 2H), 4.06 – 4.01 (m, 2H), 3.42 (t, J = 6.3 Hz, 2H), 3.30 (s, 3H), 2.43 (s, 3H), 2.31 – 2.23 (m, 2H). ¹³C NMR (101 MHz. CDCl₃) δ 143.5, 137.0, 134.5, 129.9, 127.6, 119.6, 70.5, 58.8, 56.8, 55.1, 29.3, 21.7. IR (film) \tilde{v} 2921, 2863, 1341, 1160, 1100 cm⁻¹. HRMS (ESI⁺) for C₁₄H₁₉NO₃S [M+H]⁺: calcd: 282.1158, found: 282.1158.

3-((2-methyl-1,3-dioxolan-2-yl)methyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (13). According to the Representative Procedure A from enyne S55 (36.0 mg, 0.10 mmol), colorless oil (17.3 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.34 – 7.28 (m, 2H), n 5.39 (m, 1H), 4.09 (s, 4H), 3.91 - 3.84 (m, 2H), 3.84 - 3.77 (m, 2H), 2.41 (s, 3H), 2.35 (s, 2H), 1.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 135.2, 134.4, 129.8, 127.6,

122.4, 109.0, 64.8, 57.3, 55.1, 38.9, 23.9, 21.6. IR (film) \tilde{v} 2983, 2875, 1341, 1161, 1046 cm⁻¹. HRMS (ESI⁺) for C₁₆H₂₁NO₄S [M+Na]⁺: calcd: 346.1084, found: 346.1083.

3-(2,3-bis((tert-Butyldimethylsilyl)oxy)-2-methylpropyl)-1-tosyl-2,5-dihydro-1H-pyrrole (14). According

Ts

to the Representative Procedure A from enyne S53 (55.0 mg, 0.09 mmol), colorless oil (34.2 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.68 (m, 2H), 7.33 - 7.28 (m, 2H), 5.32 (m, 1H), 4.11 - 4.01 (m, 4H), 3.26 - 3.20 (m, 2H), 2.42 (s, 3H), 2.27 - 2.21 (m, 1H), 2.20 - 2.11 (m, 1H), 1.10 (s, 3H), 0.86 (s, 9H), 0.83

(s, 9H), 0.03 (s, 3H), 0.03 (s, 3H), 0.00 (s, 3H), -0.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 136.6, 134.5, 129.8, 127.7, 121.8, 76.2, 69.8, 57.9, 54.8, 39.6, 26.1, 26.0, 25.4, 21.7, 18.4, 18.3, -1.7, -1.8, -5.4, -5.4. IR (film) \tilde{v} 2954, 2929, 2856, 1163, 1096 cm⁻¹. HRMS (ESI⁺) for C₂₇H₄₉NO₄SSi₂ [M+Na]⁺: calcd: 562.2813, found: 562.2814.

4-Methoxy-4-methyl-1-octylcyclopent-1-ene (15). According to the Representative Procedure A from enyne S75 (30.3 mg, 0.11 mmol), colorless oil (25.2 mg, 98%). An aliquot was further ,OMe purified by HPLC. ¹H NMR (400 MHz, CDCl₃) δ 5.23 (hept, J = 2.2 Hz, 1H), 3.20 (s, 3H), 2.58 - 2.45 (m, 2H), 2.28 - 2.12 (m, 2H), 2.05 - 1.97 (m, 2H), 1.46 - 1.35 (m, 2H), 1.33 (s, 3H), 1.30 - 1.23 (m, 10H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 121.0, 83.9, 50.7, 47.0, 44.5, 32.0, 31.5, 29.6, 29.6, 29.4, 27.7, 25.6, 22.8,

14.3. IR (film) \tilde{v} 2959, 2924, 2854, 1461, 1077 cm⁻¹. HRMS (ESI⁺) for C₁₅H₂₈O [M+Na]+: calcd: 247.2032, found: 247.2032.

Dimethyl 3-((1-methoxycyclohexyl)methyl)cyclohex-3-ene-1,1-dicarboxylate (18). According to the Representative Procedure B from enyne 17 (29.3 mg, 0.08 mmol), colorless MeO₂C CO₂Me oil (16.9 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 5.37 (m, 1H), 3.71 (s, 6H), 3.18 OMe (s, 3H), 2.58 (s, 2H), 2.13 (s, 2H), 2.09 (s, 4H), 1.68 (dt, J = 13.4, 4.0 Hz, 2H), 1.60 - 1.36 (m, 5H), 1.29 - 1.14 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3,

131.9, 123.8, 75.8, 53.9, 52.7, 48.3, 44.0, 35.4, 34.3, 27.3, 26.0, 22.8, 22.1. IR (film) \tilde{v} 2931, 2852, 1733, 1435, 1253 cm⁻¹. HRMS (ESI⁺) for C₁₈H₂₈O₅ [M+Na]⁺: calcd: 347.1829, found: 347.1830.

4-((1-Methoxycyclohexyl)methyl)-1-tosyl-1,2,3,6-tetrahydropyridine According the (19). to Ts N Representative Procedure B from enyne S32 (33.7 mg, 0.08 mmol), colorless OMe oil (17.9 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.33 – 7.28 (m, 2H), 5.36 - 5.28 (m, 1H), 3.60 - 3.52 (m, 2H), 3.14 (t, J = 5.7 Hz, 2H), 3.13 (s, 3H), 2.42 (s, 3H), 2.28 - 2.22 (m, 2H), 2.07 (s, 2H), 1.68 - 1.31 (m, 6H), 1.31 - 1.11 (m, 3H), 0.96 - 0.81 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 133.6, 133.5, 129.7, 127.9, 120.0, 75.7, 48.2, 45.0, 43.2, 42.7, 34.4, 29.9, 25.9, 22.0, 21.7. IR (film) \tilde{v} 2929, 2854, 1458, 1341, 1161 cm⁻¹. HRMS (ESI⁺) for C₂₀H₂₉NO₃S [M+Na]⁺: calcd: 386.1760, found: 386.1758.

5-Methoxy-5-methyl-1-octylcyclohex-1-ene (20). According to the Representative Procedure B from

enyne **S77** (31.0 mg, 0.11 mmol), colorless oil (22.7 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 5.40 – 5.32 (m, 1H), 3.24 (s, 3H), 2.20 – 2.05 (m, 2H), 2.04 – 1.88 (m, 4H), 1.73 – 1.65 (m, 1H), 1.57 – 1.48 (m, 1H), 1.38 (m, 2H), 1.26 (m, 10H), 1.16 (s, 3H), 0.91 – 0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.9, 119.4, 73.5, 49.0, 39.9, 37.9, 32.1, 31.9, 29.7, 29.5, 29.5, 27.8, 23.5, 22.8, 22.7, 14.3. IR (film) \tilde{v} 2923, 2853, 1462,

1369, 1095 cm⁻¹. HRMS (CI) for $C_{16}H_{30}O[M+NH_4]^+$: calcd: 256.2635, found: 256.2632.

S67

100 90 [ppm] -10

S77

S78

S105

12e

Τs

REFERENCES

- ¹ P. J. Fagan, W. S. Mahoney, J. S. Calabrese, J. C. Williams, *Organometallics* **1990**, 9, 1843 1852
- ² M. D. Mbaye, B. Demerseman, J.-L. Renaud, L. Toupet, C. Bruneau, *Adv. Synth. Catal.* **2004**, 346, 835 841
- ³ A. C. Day, M. C. Whiting, Org. Synth. **1970**, 50, 3
- ⁴ S. D. Andrews, A. C. Day, P. Raymond, M. C. Whiting, *Org. Synth.* **1970**, 50, 27
- ⁵ M. R. Gagne, R. H. Grubbs, J. Feldman, J. W. Ziller, *Organometallics* **1992**, 11, 3933 3935
- ⁶ T. Saito, Y. Nishimoto, M. Yasuda, A. Baba, *J. Org. Chem.* **2006**, 71, 8516-8522
- ⁷ A. Natsch, S. Derrer, F. Flachsmann, J. Schmid, *Chem. Biodiversity* **2006**, 6, 1-37
- ⁸ F.-D. Boyer, I. Hanna, *Org. Lett.* **2007**, 9, 2293-2295
- ⁹ A. Fernández-Mateos, P. H. Teijón, L. M. Burón, R. R. Clemente, R. R. González, J. Org. Chem. 2007, 9973 -9982
- ¹⁰ J.-C. Jung, R. Kache, K. K. Vines, Y.-S. Zheng, P. Bijoy, M. Valluri, M. A. Avery, *J. Org. Chem.* **2004**, 9269 9284
- ¹¹ R. N. Shakhmaev, A. U. Ishbaeva, I. S. Shayakhmetova, *Russ. J. Gen. Chem.* **2009**, 79, 1171 1174
- ¹² R. Takeuchi, Y. Tsuji, M. Fujita, T. Kondo, Y. Watanabe, *J. Org. Chem.* **1989**, 54, 1831 1846
- ¹³ S. A. Snyder, D. S. Treitler, A. P. Brucks, W. Sattler, *J. Am. Chem. Soc.* **2011**, 133, 15898 15901
- ¹⁴ D. M. Hodgson, M. J. Fleming, S. J. Stanway, *J. Org. Chem.* **2007**, 72, 4763 4773
- ¹⁵ C. U. Grünanger, B. Breit, *Angew. Chem. Int. Ed.* **2010**, 49, 967 970
- ¹⁶ W. Oppolzer, S. Siles, L. Snowden, B. H. Bakker, M. Petrzilka, *Tetrahedron* **1985**, 41, 3497-3509
- ¹⁷ N. Z. Burns, M. R. Witten, E. N. Jacobsen, J. Am. Chem. Soc. **2011**, 133, 14578-14581
- ¹⁸ X. Wei, J. C. Lorenz, S. Kapadia, A. Saha, N. Haddad, C. A. Busacca, C. H. Senanayake, *J. Org. Chem.* **2007**, 72, 4250 4253
- ¹⁹ M. S. Davey, R. Malde, R. C. Mykura, A. T. Baker, T. E. Taher, C. S. Le Duff, B. E. Willcox, Y. Mehellou, *J. Med. Chem.* **2018**, 61, 2111 2117
- ²⁰ C.-L. Kao, W. Kittlemann, H. Zhang, H. Seto, H.-W. Liu, *Org. Lett.* **2005**, 7, 5677 5680
- ²¹ C. E. Wagner, K. J. Shea, *Org. Lett.* **2004**, 6, 313 316
- ²² S. E. Gibson, J. A. C. Kaufmann, P. R. Haycock, A. J. P. White, D. J. Hardick, M. J. Tozer, *Organometallics* 2007, 26, 1578 1580
- ²³ T. Shimamoto, M. Chimori, H. Sogawa, K. Yamamoto, J. Am. Chem. Soc. **2005**, 127, 16410 16411
- ²⁴ J. Li, J. Peng, Y. Deng, C. Ma, G. Zhang, Y. Bai, G. Lai, *Appl. Organomet. Chem.* **2012**, 26, 461 466
- ²⁵ T. Achard, A. Lepronier, Y. Gimbert, H. Clavier, L. Giordano, A. Tenaglia, G. Buono, *Angew. Chem. Int. Ed.* 2011, 50, 3552-3556
- ²⁶ W. Wang, J. Yang, F. Wang, M. Shi, *Organometallics* **2011**, 30, 3859 3869
- ²⁷ S. Ferrer, A. M. Echavarren, *Organometallics* **2018**, 37, 781 786
- ²⁸ A. Guthertz, M. Leutzsch, L. M. Wolf, P. Gubta, S. M. Rummelt, R. Goddard, C. Farès, W. Thiel, A. Fürstner, J. Am. Chem. Soc. **2018**, 140, 3156 – 3169
- ²⁹ S. Clark, F. Romiti, K. F. Hogg, M. Haniti, S. A. Hamid, S. C. Richter, A. Boyer, J. C. Redman, L. J. Farrugia, *Angew. Chem. Int. Ed.* **2015**, 54, 5744 5747
- ³⁰ K. T. Sylvester, P. J. Chirik, *J. Am. Chem. Soc.* **2009**, 131, 8772 8774
- ³¹ M. Nishizawa, V. K. Yadav, M. Skwarczynski, H. Takao, H. Imagawa, T. Sugihara, Org. Lett. 2003, 5, 1609 -1611