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ON THE DIFFERENCE IN VALUES OF THE EULER TOTIENT

FUNCTION NEAR PRIME ARGUMENTS

STEPHAN RAMON GARCIA AND FLORIAN LUCA

Abstract. We prove unconditionally that for each ℓ > 1, the difference ϕ(p−
ℓ)− ϕ(p + ℓ) is positive for 50% of odd primes p and negative for 50%.

1. Introduction

In what follows, p always denotes an odd prime number. The inequality ϕ(p −
1) > ϕ(p+1) appears to hold for an overwhelming majority of twin primes p, p+2,
and to be reversed for small, but positive, proportion of the twin primes [4]. To be
more specific, if the Bateman–Horn conjecture is true, then the inequality above
holds for at least 65.13% of twin prime pairs and is reversed for at least 0.47% of
pairs. Numerical evidence suggests, in fact, that the ratio is something like 98% to
2%. In other words, for an overwhelming majority of twin prime pairs p, p+ 2, it
appears that the first prime has more primitive roots than does the second.

Based upon numerical evidence, it was conjectured in [4] that this bias disappears
if only p is assumed to be prime. That is, ϕ(p−1) > ϕ(p+1) for 50% of primes and
the inequality is reversed for 50% of primes. We prove this unconditionally and,
moreover, we are able to handle wider spacings as well. If all primality assumptions
are dropped, then it is known that ϕ(n− 1) > ϕ(n+ 1) asymptotically 50% of the
time. This follows from work of Shapiro, who considered the distribution function
of ϕ(n)/ϕ(n− 1) [11].

Let π(x) denote the number of primes at most x and let ∼ denote asymptotic
equivalence. The Prime Number Theorem ensures that π(x) ∼ x/ log x. Our main
theorem is the following.

Theorem 1.1. Let ℓ be a positive integer. As x→ ∞ we have the following:

(a) #{p 6 x : ϕ(p− ℓ) > ϕ(p+ ℓ)} ∼ 1
2π(x).

(b) #{p 6 x : ϕ(p− ℓ) < ϕ(p+ ℓ)} ∼ 1
2π(x).

(c) #{p 6 x : ϕ(p− ℓ) = ϕ(p+ ℓ)} = o(π(x)).
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ℓ # ℓ # ℓ # ℓ # ℓ # ℓ # ℓ # ℓ #

1 103 9 359 17 106 25 6 33 338 41 109 49 38 57 295

2 49 10 4 18 219 26 47 34 47 42 322 50 5 58 54

3 201078 11 107 19 104 27 357 35 3 43 121 51 371 59 127

4 58 12 214 20 3 28 17 36 374 44 39 52 38 60 538

5 5 13 98 21 403 29 117 37 97 45 486 53 126 61 126

6 231 14 7 22 52 30 507 38 45 46 47 54 303 62 45

7 43 15 108772 23 136 31 98 39 380 47 124 55 2 63 22654

8 50 16 39 24 301 32 53 40 5 48 236 56 6 64 48

Table 1. The number (#) of primes p 6 2,038,074,743 (the hundred millionth
prime) for which ϕ(p − ℓ) = ϕ(p + ℓ). This number is exceptionally large if
ℓ = 4n − 1; see Theorem 3.1 for an explanation.

A curious phenomenon occurs in (c), in the sense that the decay rate relative to
π(x) depends upon ℓ in a peculiar manner. Theorem 3.1 shows that

#
{

p 6 x : ϕ(p− ℓ) = ϕ(p+ ℓ)
}

≪











x

(log x)3
if ℓ = 4n − 1,

x

e(log x)1/3
otherwise.

This does not appear to be an artifact of the proof since it is borne out in numerical
computations (see Table 1) and is consistent with the Bateman–Horn conjecture.

We first prove Theorem 1.1 in the case ℓ = 1. This is undertaken in Section
2 and it comprises the bulk of this article. For the sake of readability, we break
the proof into several steps which we hope are easy to follow. In Section 3, we
outline the modifications necessary to treat the case ℓ > 2. This approach permits
us to focus on the main ingredients that are common to both cases, without getting
sidetracked by all of the adjustments necessary to handle the general case.

2. Proof of Theorem 1.1 for ℓ = 1

2.1. The case of equality. Our first job is to show that the set of primes p for
which ϕ(p − 1) = ϕ(p + 1) has a counting function that is o(π(x)). We need the
following lemma, which generalizes earlier work by Erdős, Pomerance, and Sárközy
[3] in the case k = 1. The upper bound (b) in the following was strengthened in a
preprint of Yamada [14].

Lemma 2.1 (Graham–Holt–Pomerance [6]). Suppose that j and j + k have the
same prime factors. Let g = gcd(j, j + k) and suppose that

jt

g
+ 1 and

(j + k)t

g
+ 1 (2.2)

are primes that do not divide j.

(a) Then n = j

(

(j + k)t

g
+ 1

)

satisfies ϕ(n) = ϕ(n+ k).

(b) For k fixed and sufficiently large x, the number of solutions n 6 x to ϕ(n) =
ϕ(n+ k) that are not of the form above is less than x/ exp((log x)1/3).
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Consider the case k = 2 and n = p− 1, in which p is prime. Suppose that j and
j + 2 have the same prime factors and let g = gcd(j, j + 2). Let us also suppose
that t is a positive integer such that

jt

g
+ 1 and

(j + 2)t

g
+ 1

are primes and

p− 1 = j

(

(j + 2)t

g
+ 1

)

.

Since j and j + 2 have the same prime factors, they are both powers of 2. Then
j = 2 and j + 2 = 4, so g = 2. Consequently,

t+ 1, 2t+ 1, and 4t+ 3 (2.3)

are prime. Reduction modulo 3 reveals that at least one of them is a multiple of 3.
The only prime triples produced by (2.3) are (2, 3, 7) and (3, 5, 11), in which r = 1
and r = 2, respectively. Consequently,

#
{

p 6 x : ϕ(p− 1) = ϕ(p+ 1)
}

<
x

exp((log x)1/3)
+ 2 = o(π(x)). (2.4)

This is Theorem 1.1.c in the case ℓ = 1.

2.2. A comparison lemma. Instead of comparing ϕ(p− 1) and ϕ(p+1) directly,
it is more convenient to compare the related quantities

ϕ(p− 1)

p− 1
=

∏

q|(p−1)

(

1− 1

q

)

and
ϕ(p+ 1)

p+ 1
=

∏

q|(p+1)

(

1− 1

q

)

, (2.5)

in which q is prime. Let

S(p) :=
ϕ(p− 1)

p− 1
− ϕ(p+ 1)

p+ 1
, (2.6)

which we claim is nonzero for p > 5. Let P (n) denote the largest prime factor of
n. Since

ϕ(n)

n
=
∏

q|n

(

q − 1

q

)

, (2.7)

it follows that P (n) is the largest prime factor of the denominator of ϕ(n)/n. Since
gcd(p− 1, p+ 1) = 2, the condition S(p) = 0 implies that p− 1 and p+ 1 are both
powers of 2. Thus, S(p) = 0 holds only for p = 3.

Something similar to the following lemma is in [4], although there it was assumed
that p+ 2 is also prime. The adjustment for ℓ > 2 is discussed in Section 3.

Lemma 2.8 (Comparison Lemma). The set of primes p for which ϕ(p−1)−ϕ(p+1)
and S(p) have the same sign has counting function asymptotic to π(x) as x→ ∞.

Proof. In light of (2.4), it suffices to show that

ϕ(p− 1) > ϕ(p+ 1) ⇐⇒ ϕ(p− 1)

p− 1
>

ϕ(p+ 1)

p+ 1
(2.9)

on a set of full density in the primes. The forward direction is clear, so we focus on
the reverse. If the inequality on the right-hand side of (2.9) holds, then

0 < p
(

ϕ(p− 1)− ϕ(p+ 1)
)

+ ϕ(p− 1) + ϕ(p+ 1)

6 p
(

ϕ(p− 1)− ϕ(p+ 1)
)

+ 1
2 (p− 1) + 1

2 (p+ 1)
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= p
(

ϕ(p− 1)− ϕ(p+ 1) + 1
)

(2.10)

because p − 1 and p + 1 are even. Since ϕ(n) is even for n > 3, it follows that
ϕ(p− 1)− ϕ(p+ 1) > 0. Now appeal to (2.4) to see that strict inequality holds on
a set of full density in the primes. �

2.3. Some preliminaries. In our later study of the quantity S(p), we need to
avoid four classes of inconvenient primes. To make the required estimates, we need
some notation. Let x be large, let y := log log x, and define

Ly := lcm{m : m 6 y}. (2.11)

Then Ly = eψ(y), in which

ψ(y) :=
∑

pk6y

log p

is Chebyshev’s function. Since the Prime Number Theorem asserts that ψ(y) =
y + o(y) as y → ∞, we obtain

Ly = ey+o(y) < e2y = (log x)2 (2.12)

for sufficiently large x. For a positive integer n, let Dy(n) denote the largest divisor
of n that is y-smooth:

Dy(n) := max
{

d : d|n and P (d) 6 y
}

. (2.13)

On occasion, we will need the Brun sieve. Let f1, f2, . . . , fm be a collection of
distinct irreducible polynomials with positive leading coefficients. An integer n is
prime generating for this collection if each f1(n), f2(n), . . . , fm(n) is prime. Let
G(x) denote the number of prime-generating integers at most x and suppose that
f = f1f2 · · · fm does not vanish identically modulo any prime. As x→ ∞,

G(x) ≪ x

(log x)m
,

in which the implied constant depends only upon m and
∏m
i=1 deg fi [13, Thm. 3,

Sect. I.4.2]. The upper bound obtained in this manner has the same order of
magnitude as the prediction furnished by the Bateman–Horn conjecture [1].

2.4. Inconvenient primes of Type 1. Let

E1(x) :=
{

p 6 x : Dy(p
2 − 1) ∤ Ly

}

.

We will prove that

#E1(x) ≪
x

y1/2 log x
= o(π(x)). (2.14)

Suppose that p ∈ E1(x). Then (2.13) and the definition of E1(x) yield a divisor
d of p2 − 1 such that P (d) 6 y and d ∤ Ly. These conditions provide a prime power
qb with least exponent b such that

qb|d, q = P (qb) 6 y, and y < qb. (2.15)

Indeed, if every y-smooth prime power qb that divides d satisfies qb 6 y, then
(2.11) would imply that d|Ly, a contradiction. We also observe that the second two
conditions in (2.15) ensure that b > 2.

We claim that for large x either p− 1 or p+1 has a prime power divisor qc with
c > 2 in the interval [y/2, y2]. Since

p2 − 1 = (p− 1)(p+ 1) and gcd(p− 1, p+ 1) = 2,
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it follows that d/(2, d) divides one of p+ 1, p− 1. There are two cases to consider.

• If q = 2, then 2b−1 divides one of p − 1, p + 1. Since we aim to prove (2.14) as
x→ ∞, we may assume that b > 3 since for b = 2, the third statement in (2.15)
implies log log x < 4. Next observe that (2.15) implies that y/2 < 2b−1. The
minimality of b in (2.15) ensures that 2b−1 6 y < y2. Thus, 2b−1 ∈ [y2 , y

2] has
b− 1 > 2 (since b > 3), and divides one of p− 1, p+ 1.

• If q is odd, then qb divides p − 1 or p + 1. The minimality of b ensures that
qb−1 6 y and the second statement in (2.15) yields

y

2
< y < qb = qb−1q 6 y2, and hence qb ∈ [y2 , y

2] with b > 2.

For large x, we conclude that one of p− 1, p+ 1 has a prime power divisor qc with
c > 2 in [y/2, y2].

Let πs(x) denote the number of prime powers pa with a > 2 that are at most x.
Since pa 6 x with a > 2 implies either a = 2 and p 6 x1/2, or a ∈ [3, (log x/ log 2)]
and p 6 x1/3, the Prime Number Theorem implies that

πs(x) = π(
√
x) +O

(

π(x1/3) log x
)

= (2 + o(1))
x1/2

log x

as x→ ∞. Let π(x;m, k) denote the number of primes at most x that are congruent
to k modulo m. Then the Brun sieve implies

#E1(x) 6
∑

qb∈[y/2,y2]
b>2

π(x; qb, 1) +
∑

qb∈[y/2,y2]
b>2

π(x; qb,−1)

≪
∑

qb∈[y/2,y2]
b>2

x

ϕ(qb) log x
≪

∑

qb∈[y/2,y2]
b>2

2x

qb log x

≪ x

log x

∑

qb∈[y/2,y2]
b>2

1

qb

≪ x

log x

∫ y2

y/2

dπs(t)

t
6

x

log x

∫ ∞

y/2

dπs(t)

t

≪ x

log x





πs(t)

t

∣

∣

∣

∣

∣

∞

y/2

+

∫ ∞

y/2

πs(t) dt

t2





≪ x

log x

(

(y/2)1/2

(y/2) log(y/2)
+

∫ ∞

y/2

t−3/2(log t)−1/2 dt

)

≪ x

y1/2(log y)(log x)
= o(π(x))

as x→ ∞. This is the desired estimate (2.14).

2.5. Inconvenient primes of Type 2. Fix a large x and define the function

hy(n) :=
∑

r|n
r>y

1

r
,
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in which r is prime. Let

E2(x) :=
{

p 6 x : hy(p− 1) >
1

y
√
log y

or hy(p+ 1) >
1

y
√
log y

}

.

We claim that

#E2(x) ≪
π(x)√
log y

= o(π(x)) (2.16)

as x→ ∞. This will follow from an averaging argument similar to [7, Lem. 3].
The Brun sieve with f(t) = rt± 1 provides

π(x; r,±1) ≪ π(x)

r
for y 6 r 6 (log x)3

uniformly for r in the specified range [13, Thm. 3, Sect. I.4.2]. We use the trivial
estimate

π(x; r,±1) 6
x

r
for (log x)3 6 r 6 x.

We also require the upper bound

∑

r>y

1

r2
=

∫ ∞

y

dπ(t)

t2
=
π(t)

t2

∣

∣

∣

∣

∣

∞

y

+ 2

∫ ∞

y

π(t) dt

t3
≪ π(y)

y2
≪ 1

y log y
, (2.17)

which is afforded by the Prime Number Theorem. As x→ ∞, we have

∑

p6x

hy(p± 1) =
∑

p6x

∑

r|(p±1)
r>y

1

r
=

∑

y6r6x

1

r

∑

p6x
r|(p±1)

1

=
∑

y6r6x

π(x; r,∓1)

r

≪
∑

y6r6(log x)3

π(x)

r2
+

∑

(log x)3<r6x

x

r2

≪ π(x)
∑

r>y

1

r2
+ x

∑

r>(log x)3

1

r2

≪ π(x)

y log y
+

x

(log x)3
≪ π(x)

y log y
+

π(x)

(log x)2

≪ π(x)

y log y
.

Consequently,

#E2(x)
y
√
log y

6
∑

p6x
hy(p−1)> 1

y
√

log y

hy(p− 1) +
∑

p6x
hy(p+1)> 1

y
√

log y

hy(p+ 1)

6
∑

p6x

hy(p− 1) +
∑

p6x

hy(p+ 1)

≪ π(x)

y log y
,

which implies (2.16).
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2.6. Inconvenient primes of Type 3. Let ω(n) denote the number of distinct
prime factors of n and ωy(n) the number of distinct prime factors q 6 y of n. Define

E3(x) =
{

p 6 x : ωy(p
2 − 1) /∈ [1.5 log log y, 2.5 log log y]

}

.

We claim that

#E3(x) ≪
π(x)

log log y
= o(π(x)) (2.18)

as x → ∞. Although this is essentially a result of Erdős [2], we sketch a simpler
proof that is easily generalized since we later need to handle p2−ℓ2 instead of p2−1.

If p ∈ E3(x), then for large x we have

ωy(p
2 − 1) + 1 = ωy(p− 1) + ωy(p+ 1)

because gcd(p− 1, p+ 1) = 2. Thus, either

min{ωy(p− 1), ωy(p+ 1)} 6 0.75 log log y + 1 6 0.8 log log y

or

max{ωy(p− 1), ωy(p+ 1) > 1.25 log log y > 1.2 log log y

for sufficiently large x. Without loss of generality, we may suppose that

ωy(p− 1) 6 0.8 log log y or ωy(p− 1) > 1.2 log log y. (2.19)

Then

0.04(log log y)2 6
(

ωy(p− 1)− log log y)2 (2.20)

and similarly if p+ 1 occurs in (2.19).
We next require the following “Turán–Kubilius”-type result; see [8, Lem. 2], [10,

§V.5, 1, p. 159]. To study ϕ(p ± ℓ) for ℓ 6= 1 requires a slight generalization; see
Lemma 3.2 in Section 3 for a statement and sketch of the proof.

Lemma 2.21 (Motohashi).
∑

p6x

(ωy(p± 1)− log log y)2 = O(π(x) log log y).

Now return to (2.20), apply Lemma 2.21, and conclude that

0.04(log log y)2#E3(x) 6
∑

p∈E3(x)

(ωy(p− 1)− log log y)2 + (ωy(p+ 1)− log log y)2

6
∑

p6x

(ωy(p− 1)− log log y)2 + (ωy(p+ 1)− log log y)2

= O(π(x) log log y).

This yields the desired estimate (2.18).

2.7. Inconvenient primes of Type 4. Let

E4(x) =
{

p 6 x :
p2 − 1

ϕ(p2 − 1)
> (log y)1/3

}

. (2.22)

We claim that

#E4(x) ≪
π(x)

(log y)1/6
= o(π(x)) (2.23)

as x→ ∞. Since ϕ(p− 1)ϕ(p+ 1) 6 ϕ(p2 − 1), the condition

p2 − 1

ϕ(p2 − 1)
> (log y)1/3
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implies that

p+ 1

ϕ(p+ 1)
> (log y)1/6 or

p− 1

ϕ(p− 1)
> (log y)1/6.

A standard application of the Siegel–Walfisz theorem yields
∑

p6x

p− 1

ϕ(p− 1)
≪ π(x); (2.24)

see [10, §I.28, 1b, p 30] or [9]. The same holds with p − 1 replaced by p + 1; the
adjustments necessary to handle p± ℓ are discussed in Section 3. Thus,

E4(x)(log y)1/6 6
∑

p∈E4(x)

(

p− 1

ϕ(p− 1)
+

p+ 1

ϕ(p+ 1)

)

6
∑

p6x

(

p− 1

ϕ(p− 1)
+

p+ 1

ϕ(p+ 1)

)

≪ π(x),

which yields (2.23).

2.8. Convenient primes. Throughout the remainder of the proof, we let 5 6 p 6
x, in which x is large, and we suppose that

p /∈ E1(x) ∪ E2(x) ∪ E3(x) ∪ E4(x).
We say that such a prime is convenient. Because gcd(p− 1, p+ 1) = 2, we have

Dy(p
2 − 1) = m1m2, (2.25)

in which

p− 1 = m1n1, p+ 1 = m2n2, gcd(m1,m2) = 2, (2.26)

every prime factor of m1m2 is at most y, and every prime factor of n1n2 is greater
than y. In particular, gcd(m1, n1) = gcd(m2, n2) = 1.

We claim that
ϕ(m1)

m1
6= ϕ(m2)

m2
(2.27)

for sufficiently large x. In light of (2.7), it follows that P (n) is the largest prime
factor of the denominator of ϕ(n)/n. If ϕ(m1)/m1 = ϕ(m2)/m2, then P (m1) =
P (m2) = 2 since gcd(m1,m2) = 2. Thus, m1 and m2 are powers of 2 and

1 = ω(m1) + ω(m2)− 1

= ω(m1m2) = ω(Dy(p
2 − 1))

= ωy(p
2 − 1) ∈

[

1.5 log log y, 2.5 log log y
]

because p /∈ E3(x). This is a contradiction for x > 10483.
For convenient p 6 x, we have

S(p) =
ϕ(p− 1)

p− 1
− ϕ(p+ 1)

p+ 1
=
ϕ(m1)ϕ(n1)

m1n1
− ϕ(m2)ϕ(n2)

m2n2
.

We note that S(p) 6= 0 because otherwise P (p − 1) = P (p + 1) by (2.7). Since
gcd(p−1, p+1) = 2, it would follow that p−1 and p+1 are powers of 2, which occurs
only for p = 3. Lemma 2.8 ensures that S(p) has the same sign as ϕ(p−1)−ϕ(p+1)
on a set of full density in the primes.
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Since p /∈ E2(x), for large x we may use the inequality

|t+ log(1− t)| 6 |t|2, for |t| 6 1
2 ,

to obtain

ϕ(n1)

n1
=

∏

r|(p−1)
r>y

(

1− 1

r

)

= exp

(

∑

r|(p−1)
r>y

log

(

1− 1

r

)

)

= exp

(

−
∑

r|(p−1)
r>y

1

r
+O

((

∑

r|(p−1)
r>y

1

r

)2)
)

= exp
(

− hy(p− 1) +O
(

hy(p− 1)2
)

)

= 1 +O

(

1

y
√
log y

)

,

in which the implied constant in the preceding can be taken to be 2. A similar
inequality holds if n1 is replaced by n2. Consequently,

S(p) =
ϕ(m1)

m1

(

1 +O

(

1

y
√
log y

)

)

− ϕ(m2)

m2

(

1 +O

(

1

y
√
log y

)

)

=
ϕ(m1)

m1
− ϕ(m2)

m2
+O

(

1

y
√
log y

)

, (2.28)

in which the implied constant can be taken to be 4.

2.9. Weird primes. A convenient prime p 6 x is weird if

S(p)

(

ϕ(m1)

m1
− ϕ(m2)

m2

)

< 0;

that is, if S(p) and ϕ(m1)/m1 − ϕ(m2)/m2 have opposite signs (the second factor
is nonzero if x is large; see (2.27)). If this occurs, then (2.28) tells us that

∣

∣

∣

∣

ϕ(m1)

m1
− ϕ(m2)

m2

∣

∣

∣

∣

<
4

y
√
log y

. (2.29)

In general, one expects the sign of S(p) to be determined by small primes; that is,
those primes at most y. If p is weird, then the primes q > y that divide p2 − 1
conspire to overthrow the contribution of the small primes.

We say that a pair (m1,m2) of positive integers is weird if

24|m1m2, m1m2|Ly, gcd(m1,m2) = 2, and (2.29) holds.

What is the reason for the appearance of the number 24 in the preceding? If p > 5,
then considering p2 − 1 modulo 3 and 8 reveals that 24|(p2 − 1). If x > 109, then
y > 3 and hence P (24) = 3 and 24|Dy(p

2 − 1). Consequently, if we are searching
for primes p for which Dy(p

2 − 1) = m1m2, it makes sense for us to insist that
m1m2 is divisible by 24.

Lemma 2.30. Let y > exp(486) and D|Ly be a multiple of 24.

(a) The number of pairs (m1,m2) with D = m1m2 and gcd(m1,m2) = 2 is 2ω(D).
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(b) If ω(D) ∈ [1.5 log log y, 2.5 log log y] and D/ϕ(D) 6 (log y)1/3, then the number
of weird pairs (m1,m2) with D = m1m2 is

≪ 2ω(D)

√
log log y

.

Proof. (a) In what follows, νp denotes the p-adic valuation function. Write

D =
∏

q∈S
qνq(D),

in which S is a set of primes that contains 2, #S = ω(D), and ν(2) > 3. Since
gcd(m1,m2) = 2, it follows that

νq(m1) =

{

1 or ν2(D)− 1 if q = 2,

0 or νq(D) if q > 3.

For each of the ω(D) primes in S, there are two possible choices for νq(m1). Con-

sequently, there are 2ω(D) possible pairs (m1,m2).

(b) Let

(m1,m2) = (2n1, 2
ν2(D)−1n2) or (2ν2(D)−1n1, 2n2)

and

(m′
1,m

′
2) = (2n′

1, 2
ν2(D)−1n′

2) or (2ν2(D)−1n′
1, 2n

′
2)

be weird, where n1, n2, n
′
1, n

′
2 are odd, and let D = m1m2 = m′

1m
′
2. Suppose

toward a contradiction that n1|n′
1 and n1 < n′

1. Then (2.29) says that
(

ϕ(n1)

n1

)2

=
4ϕ(m1)

2

m2
1

=
4ϕ(m1)

m1

(

ϕ(m2)

m2
+O

(

1

y
√
log y

))

=
4ϕ(m1)ϕ(m2)

m1m2
+ O

(

1

y
√
log y

)

(2.31)

=
2ϕ(m1m2)

m1m2
+O

(

1

y
√
log y

)

=
2ϕ(D)

D
+O

(

1

y
√
log y

)

=
2ϕ(D)

D

(

1 +O

(

1

y(log y)1/6

)

)

(2.32)

since D/ϕ(D) 6 (log y)1/3. The implied constant in (2.32) is 16, in light of (2.29)
and the absorption of 4ϕ(m1)/m1 in (2.31). Similar reasoning yields an analogous
expression for ϕ(n′

1)/n
′
1, with the same implied constant.

Let r be the smallest prime divisor of n′
1/n1. Use the inequality

1 + s

1 + t
6 1 +

3

2
|s− t| 6 1 +

3

2

(

|s|+ |t|
)

, |s|, |t| 6 1

3
,

and the fact that (2.32) holds for n1 and n′
1 to deduce that

1 +
1

r
< 1 +

2

r − 1
6

(

1 +
1

r − 1

)2

=
1

(1− 1/r)2
=

(

n′
1

ϕ(n′
1)

· ϕ(n1)

n1

)2
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6 1 +
3
2 (16 + 16)

y(log y)1/6
= 1 +

48

y(log y)1/16
.

Since r|D and D|Ly, we have r 6 y and hence

y(log y)1/6

48
< r 6 y.

This is a contradiction if y > exp(486).
Hence, the set of odd components n1 of the parts m1 as (m1,m2) ranges over

weird pairs has the property that no two divide each other. Identifying n1 with
the set of its odd prime factors, no two n1 and n′

1, as subsets, are contained one in
another. Sperner’s theorem1 from combinatorics and Stirling’s formula ensure that
the number of such n1, and hence the number of such pairs (m1,m2), is

6

(

ω(D)

⌊ω(D)
2 ⌋

)

≪ 2ω(D)

√

ω(D)
≪ 2ω(D)

√
log log y

. �

�

2.10. Conclusion. We have shown that the number of inconvenient primes at most
x is o(π(x)) and hence they can be safely ignored. Each convenient prime p gives
rise to a pair (m1,m2) as in (2.25).

Suppose that x is large. Let D be a multiple of 24 with

D|Ly,
D

ϕ(D)
6 (log y)1/3, and ω(D) ∈ [1.5 log log y, 2.5 log log y]. (2.33)

We wish to count the primes p 6 x for which Dy(p
2 − 1) = D. Denote this number

by πD(x). To complete the proof of Theorem 1.1 in the case ℓ = 1, it suffices to show
that (1/2 + o(1))πD(x) of primes at most x have S(p) > 0 and (1/2 + o(1))πD(x)
have S(p) < 0, and that the implied constant is uniform for all D as above.

Choose a pair (m1,m2) such that D = m1m2 and gcd(m1,m2) = 2. We want to
count the primes p 6 x such that m1|(p− 1) and m2|(p+ 1); that is, such that

p ≡ 1 (modm1) and p ≡ −1 (modm2). (2.34)

Apply the Chinese Remainder Theorem with moduli 1
2m1,m2 or m1,

1
2m2, depend-

ing upon which of m1,m2 is exactly divisible by 2, to see that p belongs to an
arithmetic progression am1,m2

(modD/2), with gcd(am1,m2
, D/2) = 1. However,

we also want

gcd

(

p2 − 1

m1m2
, Ly

)

= 1.

For this, we need to work modulo

MD := (D/2)
∏

r6y

r.

To ensure that (2.34) holds, we do the following:

• If r|D, then we then want

p ≡ ε+ rνr(D/2)λ (mod rνr(D/2)+1)

1A collection of sets that does not contain X and Y for which X ( Y is a Sperner family. If S is
a Sperner family whose union has a total of n elements, then #S 6

(

n

⌊n
2
⌋

)

[12].
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for some λ ∈ {1, 2, . . . , r−1}. Here, ε = ±1 according to whether rνr(D/2) divides
m1 or m2, respectively. For each r|D, there are r−1 possibilities for λ and hence
there are r − 1 possibilities for p modulo rνr(D/2)+1.

• If r ∤ D, then we want p ≡ λ (mod r) for some λ 6∈ {0, 1, r − 1}. For each r ∤ D,
there are r − 3 possibilities for p modulo r.

Thus, the number of progressions moduloMD that can contain a prime p for which
(2.34) occurs is

∏

r|D
2

(r − 1)
∏

r6y
r∤D

(r − 3). (2.35)

By (2.12), the common modulus of all these progressions satisfies

MD 6 L2
y 6 (log x)4

for large x. The Siegel–Walfisz theorem says that the number of primes in each
progression is asymptotically

π(x)

ϕ(MD)
+O

(

xe−C
√
log x

)

(2.36)

for some C > 0. Summing up over the number of progressions (or, more precisely,
multiplying the (2.36) by the number of acceptable progressions (2.35)), and using
the fact that ϕ(MD) = (D/2)

∏

r6y(r − 1), we get a count of

2π(x)

D

∏

r6y
r∤D

(

r − 3

r − 1

)

+O
(

xL2
ye

−C
√
log x

)

.

The count depends on D but not on the pair of divisors (m1,m2) of D. We now
apply Lemma 2.30 and obtain

πD(x) =
2ω(D)+1π(x)

D

∏

r6y
r∤D

(

r − 3

r − 1

)

+O(2ω(D)xL2
ye

−C
√
log x). (2.37)

Although it is not crucial to our proof, we show in Subsection 2.11 that

∑

D

πD(x) = π(x)

(

1 +O

(

1√
log log y

))

, (2.38)

where the index D runs over all D for which (2.33) holds, because the computation
is of independent interest.

The product in (2.37) is less than 1 and bounded below by

∏

r6y
r∤D

(

r − 3

r − 1

)

≫
∏

r6y

(

r − 3

r − 1

)

=
∏

r6y

(

r2(r − 3)

(r − 1)3

)(

1− 1

r

)2

=
∏

r6y

(

1− 3r − 1

(r − 1)3

)

∏

r6y

(

1− 1

r

)2

≫
∏

r6y

(

1− 1

r

)2

≫ (log y)−2 (2.39)
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by Mertens’ asymptotic formula [10, §VII.29.1b, p. 259]. Since
2ω(D) > 21.5 log log y ≫ (log y),

we examine the main term in (2.37) and conclude that

πD(x) ≫
π(x)

D(log y)2
.

On the other hand, the error term in (2.37) is

O(2ω(D)xL2
ye

−C
√
log x) = O(22.5 log log yx(log x)4e−C

√
log x)

= O
(

(log x)4(log y)2xe−C
√
log x

)

= o

(

π(x)

D(log y)3

)

= o

(

πD(x)

log y

)

.

There is a symmetry between non-weird pairs (m1,m2) with

ϕ(m1)

m1
− ϕ(m2)

m2
> 0 and those with

ϕ(m1)

m1
− ϕ(m2)

m2
< 0

given by the transposition (m1,m2) 7→ (m2,m1). Indeed, we could return to (2.26)
and insist that m1|(p + 1) and m2|(p − 1) instead. The subsequent asymptotic
estimates go through in exactly the same manner. Via this transposition, we obtain
an asymptotically equal count between the convenient primes p 6 x corresponding
to (m1,m2) and the convenient primes p 6 x corresponding to (m2,m1). If only
non-weird pairs (m1,m2) are taken into account, for fixed Dy(p

2 − 1) = D this
symmetry gives an asymptotically equal count of convenient primes p 6 x with
S(p) > 0 and with S(p) < 0.

Lemma 2.30 ensures that the number of weird pairs (m1,m2) with D = m1m2

is ≪ 2ω(D)/
√
log log y. As x → ∞, we see from (2.37) that the number of primes

at most x that arise from some weird pair is

≪ 2ω(D)π(x)

D
√
log log y

∏

r6y
r∤D

(

r − 3

r − 1

)

= O

(

πD(x)√
log log y

)

= o(πD(x)).

Recall that the non-weird, convenient primes have full density in the set of
primes. Of such primes p 6 x, the argument above shows that an asymptotically
equal amount have S(p) > 0 versus S(p) < 0 (recall that S(p) = 0 only for p = 3).
This completes the proof of Theorem 1.1 in the case ℓ = 1. �

2.11. Sanity check. Before extending the preceding proof to the case ℓ > 2, it is
helpful to perform a quick sanity check. Our goal here is to prove (2.38). In light
of (2.37), it suffices to prove that

∑

D

2ω(D)+1

D

∏

r6y
r∤D

(

r − 3

r − 1

)

= 1 + o(1), (2.40)

in which the index D runs over all D for which (2.33) holds. In particular, (2.38)
holds and the preceding product does not run over r = 2, 3. These developments
seems remarkably fortuitous. Let us provide an independent derivation of (2.40),
which will help corroborate some of the fine details in the preceding proof.
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First write D = 2kD1, in which k > 3, and sum to obtain
(

∑

k>3

22

2k

)(

∑

D1 odd

2ω(D1)

D1

)

=
∑

D1 odd

2ω(D1)

D1
.

Now write D1 = 3kD2 and sum over k > 1 getting
(

∑

k>1

2

3k

)(

∑

gcd(D2,6)=1

2ω(D2)

D2

)

=
∑

gcd(D2,6)=1

2ω(D2)

D2
.

For the rest, we use multiplicativity to say that the sum in (2.40) is

∏

r6y

(

r − 3

r − 1

)

∏

56r6y

(

1 +
2

(r − 3)/(r − 1)

∑

k>1

1

rk

)

.

However, this is not strictly correct since the sum above stops at the largest power
rb 6 y. Moreover, the sum runs over all D without restrictions such as ω(D) ∈
[1.5 log log y, 2.5 log log y] or D/ϕ(D) 6 (log y)1/3. We deal with these omissions
shortly. For the time being, let us ignore these restrictions. Then the amount
inside the Euler factor is

1 +
2(r − 1)

r − 3

1

r − 1
= 1 +

2

r − 3
=
r − 1

r − 3
,

which cancels with the outside (r − 3)/(r − 1).
Now we must examine the errors. There are essentially four types:

(a) In each Euler factor we only sum up to rb, in which b is maximal such that
rb 6 y. By extending the sum to infinity we incurred an error of

2

(r − 3)/(r − 1)

∑

k>b+1

1

rk
=

2

rb(r − 3)
= O

(

1

y

)

.

For 5 6 r 6 y, the actual Euler factor is

r − 1

r − 3
+O

(

1

(r − 3)y

)

=
r − 1

r − 3

(

1 +O

(

1

y

))

Similar considerations apply for r = 2, 3. The total multiplicative error is

(

1 +O

(

1

y

))π(y)

= 1 +O

(

π(y)

y

)

= 1 +O

(

1

log y

)

.

(b) We consider only D such that D/ϕ(D) 6 (log y)1/3. Let the set of remaining
D be denoted D. For D ∈ D, we have

1

D
6

1

(log y)1/3
· 1

ϕ(D)
.

Applying this inequality and extending then the sum over all possible D, the
piece of the sum over D is at most

≪ π(x)

(log y)1/3

∑

D

2ω(D)+1

ϕ(D)

∏

r6y
r∤D

(

r − 3

r − 1

)

.
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We separate out the power of 2 in D as D = 2kD1 with k > 3 getting an Euler
factor corresponding to 2 of

4

(

1

ϕ(8)
+

1

ϕ(16)
+ · · ·+ 1

ϕ(2k)
+ · · ·

)

= 2.

Then we separate out a factor of 3 from D1 writing it as D1 = 3kD2, getting
an Euler factor corresponding to 3 of

2

(

1

ϕ(3)
+

1

ϕ(9)
+ · · ·+ 1

ϕ(3k)
+ · · ·

)

=
3

2
.

For the remaining primes r > 5, we form the Euler product getting

π(x)

(log y)2/3

∏

56r6y

(

r − 3

r − 1

) y
∏

r=5



1 +
2

(r − 3)/(r − 1)

∑

b>1

1

ϕ(rb)



 .

The factor inside the parentheses is

1 +
2

(r − 3)/(r − 1)

1

(r − 1)(1− 1/r)
= 1 +

2r

(r − 1)(r − 3)

=
r2 − 2r + 3

(r − 1)(r − 3)

=
(r − 1)

(r − 3)

(

1 +
2

(r − 1)2

)

.

Multiply this by the outside factor (r − 3)/(r − 1) and get

(

r − 3

r − 1

)



1 +
2

(r − 3)/(r − 1)

∑

b>1

1

ϕ(rb)



 = 1 +
2

(r − 1)2
.

Taking the product of the factors above over r ∈ [5, y], we get a convergent
product. Consequently,

π(x)
∑

D|Ly,24|D
D/ϕ(D)>(log y)1/3

2ω(D)+1

D

∏

566y
r∤D

(

r − 3

r − 1

)

≪ π(x)

(log y)1/3
.

(c) We need to consider D with ω(D) 6∈ [1.5 log log y, 2.5 log log y]. From the
preceding material and (2.39), we have

∏

56r6y



1 +
∑

b>1

2

(r − 3)/(r − 1)

∑

b>1

1

rb



 ≍





∏

56r6y

(

r − 3

r − 1

)





−1

≍ (log y)2.

We first deal with D with many prime factors. Consider the multiplicative
function defined for prime powers rb with r > 5 by

f(r) =
2(r − 1)

(r − 3)rb
.

If K := ⌊2.5 log log y⌋, then
∑

r|D2=⇒r∈[5,y]
ω(D2)>K−2

f(D2) 6
∑

k>K−2

1

k!

(

∑

r∈[5,y]
b>1

f(rb)

)k

.
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We have

S =
∑

r∈[5,y]
b>1

f(rb) =
∑

b>1
56r6y

(

2

rb
+

2

rb

(

r − 1

r − 3
− 1

))

=
∑

r∈[2,y]
b>1

2

rb
+O

(

∑

r>5
b>1

1

rb+1

)

= 2 log log y +O(1),

in which we have used Mertens’ theorem [10, §VII.28.1b]. In the sum
∑

k>K S
k/k!,

the ratio of two consecutive terms is

Sk+1/(k + 1)!

Sk/k!
=

S

k + 1
=

2 log log y +O(1)

2.5 log log y +O(1)
<

5

6

for k > K − 2 and large x, so the first term dominates. With K! > (K/e)K ,
the contribution of D with ω(D) > 2.5 log log y is at most

≪ SK−2

(K − 2)!
6

(

2e log log y +O(1)

2.5 log log y +O(1)

)2.5 log log y+O(1)

≪ (log y)c,

in which c = 2.5 log(2e/2.5) < 1.95. Multiplying this by (see (2.39))

∏

56r6y

(

r − 3

r − 1

)

≪ (log y)−2,

we obtain

π(x)
∑

D|Ly

24|D
ω(D)>2.5 log log y

2ω(D)+1

D

∏

56r6y
r∤D

(

r − 3

r − 1

)

≪ π(x)

(log y)0.5
.

We use a similar argument for D with ω(D) < 1.5 log log y. In this case, let
K1 := ⌊1.5 log log y⌋. We have to deal with

∑

D2:r|D2=⇒r∈[5,y]
ω(D2)<1.5 log log y−2

f(D2) 6
∑

k6K1−2

1

k!
Sk.

For k > K1 − 2 and large x, the ratio of any two consecutive terms above is

Sk+1/(k + 1)!

Sk/k!
=

S

k + 1
>

2 log log y +O(1)

1.5 log log y +O(1)
>

5

4
,

it follows that the last term dominates. Thus, this sum is at most
(

2e log log y +O(1)

K1 − 2

)K1−2

=

(

2e log log y +O(1)

1.5 log log y +O(1)

)1.5 log log y+O(1)

≪ (log y)c1 ,

in which where c1 = 1.5 log(2e/1.5) < 1.95. Consequently, the contribution of
D with ω(D) < 1.5 log log y to the sum defining πD(x) is

≪ πD(x)

(log y)0.05
.

Putting everything together we obtain (2.40), which is equivalent to (2.38).
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3. Proof of Theorem 1.1 for ℓ > 2

The proof for ℓ > 2 follows largely on the lines of the case ℓ = 1, although there
are a number of minor adjustments that must be made. For example, in Lemma
2.30 we assumed that D is a multiple of 24. Elementary considerations reveal that
the following adjustments are necessary for various values of ℓ:

(a) D is coprime to all primes that divide ℓ.

(b) D is odd if ℓ is even.

(c) D is a multiple of 8 if ℓ is odd.

(d) D is a multiple of 3 if and only if ℓ is not.

More significant modifications are discussed below.

3.1. The case of equality. We need a variant of the inequality (2.4). The estimate
provided by the following theorem involves two special cases. Numerical evidence
strongly suggests that this distinction is not simply a byproduct of our proof; see
Table 1. If we replace the use of the Brun sieve in what follows with an appeal to
the Bateman–Horn conjecture [1], then the larger of the two upper bounds becomes
an asymptotic equivalence if the appropriate constant factor is introduced.

Theorem 3.1. For each ℓ > 1,

#
{

p 6 x : ϕ(p− ℓ) = ϕ(p+ ℓ)
}

≪











x

(log x)3
if ℓ = 4n − 1,

x

e(logx)1/3
otherwise.

Proof. In Lemma 2.1, let k = 2ℓ and n = p− ℓ, in which p is prime. Suppose that
j and j + 2ℓ have the same prime factors. Since

p = j

(

(j + 2ℓ)t

g
+ 1

)

+ ℓ, (3.1)

it follows that j is not divisible by any prime factor of ℓ and hence g = gcd(j, 2ℓ) = 2.
Thus, j = 2m and j + 2ℓ = 2m+n for some m,n > 1. Then 2m+n = 2m + 2ℓ and

ℓ = 2m−1(2n − 1).

If m > 2, then ℓ is even and (3.1) implies that 2|p, a contradiction. Thus, the upper
bound from Lemma 2.1 applies in this case.

If m = 1, then j = 2 and ℓ = 2n − 1. Then

p = 2(ℓ+ 1)t+ (ℓ+ 2), q = t+ 1 and r = (ℓ+ 1)t+ 1

and we count t 6 x−(ℓ+2)
2(ℓ+1) ∼ x

2ℓ for which p, q, r are simultaneously prime. Let

f1(t) = 2n+1t+ (2n + 1), f2(t) = t+ 1, and f3(t) = 2nt+ 1.

If n is odd, then
f1(0) ≡ f2(2) ≡ f3(1) ≡ 0 (mod 3).

There are three possibilities:

(a) If f1(0) = 3, then f2(0) = 1 is not prime and no prime triples are produced.

(b) If f2(2) = 3, then for each odd n, at most one prime triple is produced.2

2The only odd n < 99 for which a prime triple arises in this manner are n = 1, 3, 7, 15, from which
we obtain the triples (11, 3, 5), (41, 3, 17), (641, 3, 257), and (163841, 3, 65537).
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(c) If f3(1) = 3, then n = 1 and only the prime triple (7, 2, 3) is produced.

In each case, the upper bound from Lemma 2.1 dominates.
If n is even, then none of f1, f2, f3 vanish identically modulo any prime. The

Brun sieve says that the number of p 6 x for which p, q, r are prime is O(x/(log x)3),
which dominates the estimate from Lemma 2.1. �

3.2. A more general comparison lemma. The next adjustment that is required
is an analogue of the comparison lemma (Lemma 2.8). This turns out to be more
involved than expected. In fact, we first need a generalization of the “Turán–
Kubilius”-type result from Lemma 2.21. Since this is a minor variant of an existing
result, we only sketch the proof.

Lemma 3.2. For each ℓ > 1,
∑

p6x

(ωy(p± ℓ)− log log y)2 = O(π(x) log log y).

Proof. Since y 6 (log x)2, apply the Siegel–Walfisz theorem to obtain
∑

p6x

ωy(p± ℓ) = π(x) log log y +O(π(x)),

∑

p6x

ωy(p± ℓ)2 = π(x)(log log y)2 +O(π(x) log log y),

in which the log log y term arises from an application of Mertens’ theorem [10,
§VII.28.1b]. Now expand

∑

p6x(ωy(p±ℓ)− log log y)2 and apply the preceding. �

The direct generalization of Lemma 2.8 for ℓ > 2 runs into trouble. If ℓ is
sufficiently large, then the +1 in (2.10) becomes too large for the same argument
to work. The evenness of ϕ(p − ℓ) − ϕ(p + ℓ) is no longer sufficient to push the
argument through. Fortunately, we are able to employ the following lemma instead.

Lemma 3.3. For ℓ,m > 1,

#
{

p 6 x : ϕ(p± ℓ) ≡ 0 (mod 2m)
}

∼ π(x).

Proof. Fix ℓ > 1. Let ω(n) denote the number of distinct prime divisors of n. Then
2ω(n)−1|ϕ(n) since ϕ(n) =

∏

pa‖n p
a−1(p− 1). If

2 + log2 ℓ 6 m+ 1 6 ω(p± ℓ), (3.4)

then

2ℓ 6 2m 6 2ω(p±ℓ)−1 and hence ϕ(p± ℓ) ≡ 0 (mod 2m).

Thus, it suffices to show that the set of primes p 6 x for which (3.4) fails has a
counting function that is o(π(x)). Let x be so large that y = log log x satisfies

2 + log2 ℓ 6
1
2 log log y

and let

E(x) =
{

p 6 x : ω(p− ℓ) < 2 + log2 ℓ or ω(p+ ℓ) < 2 + log2 ℓ
}

Let ωy(n) denote the number of distinct prime factors q 6 y of n. If p ∈ E(x), then
ωy(p− ℓ) < 1

2 log log y or ωy(p+ ℓ) < 1
2 log log y,

and hence

ωy(p− ℓ) /∈ [ 12 log log y,
3
2 log log y] or ωy(p+ ℓ) /∈ [ 12 log log y,

3
2 log log y].
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Then

1
4 (log log y)

2 6
(

ωy(p− ℓ)− log log y)2 or 1
4 (log log y)

2 6
(

ωy(p+ ℓ)− log log y)2.

Lemma 3.2 ensures that

1
4 (log log y)

2#E(x) 6
∑

p∈E(x)
(ωy(p− ℓ)− log log y)2 + (ωy(p+ ℓ)− log log y)2

6
∑

p6x

(ωy(p− ℓ)− log log y)2 + (ωy(p+ ℓ)− log log y)2

= O(π(x) log log y).

Thus,

#E(x) ≪ π(x)

log log y
= o(π(x)). �

�

Our replacement for the comparison lemma is the following. Since the excep-
tional set is o(π(x)), it will not affect the proof of Theorem 1.1 in the case ℓ > 2.

Lemma 3.5. For each ℓ > 1, the set of primes p for which ϕ(p− ℓ)−ϕ(p+ ℓ) and

S(p) :=
ϕ(p− ℓ)

p− ℓ
− ϕ(p+ ℓ)

p+ ℓ
(3.6)

have the same sign has counting function ∼ π(x).

Proof. By Theorem 3.1, it suffices to show that the set of primes p for which

ϕ(p− ℓ) > ϕ(p+ ℓ) ⇐⇒ ϕ(p− ℓ)

p− ℓ
>

ϕ(p+ ℓ)

p+ ℓ
(3.7)

has counting function ∼ π(x). The forward implication is straightforward, so we
focus on the reverse. If the inequality on the right-hand side of (3.7) holds, then

0 < (p+ ℓ)ϕ(p− ℓ)− (p− ℓ)ϕ(p+ ℓ)

= p[ϕ(p− ℓ)− ϕ(p+ ℓ)] + ℓϕ(p− ℓ) + ℓϕ(p+ ℓ)

6 p[ϕ(p− ℓ)− ϕ(p+ ℓ)] + ℓ(p− ℓ) + ℓ(p+ ℓ)

= p[ϕ(p− ℓ)− ϕ(p+ ℓ) + 2ℓ].

Let 2m > 2ℓ and apply lemma Lemma 3.3 to conclude that ϕ(p− ℓ)−ϕ(p+ ℓ) > 0
for p in a set with counting function ∼ π(x). �

3.3. Final ingredient. The only other ingredient necessary to consider ℓ > 2 is a
replacement for the estimate (2.24). We include the proof for completeness.

Lemma 3.8.
∑

p6x

p± ℓ

ϕ(p± ℓ)
≪ π(x).

Proof. Let σ(n) denote the sum of the divisors of n. Then

σ(n)

n
=
∑

d|n

1

d
and

6

π2
<
σ(n)ϕ(n)

n2
, for n > 2;
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see [10, §I.3.5]. The Siegel–Walfisz theorem provides C > 0 so that

∑

p6x

p± ℓ

ϕ(p± ℓ)
≪
∑

p6x

σ(p± ℓ)

(p± ℓ)
=
∑

p6x

∑

d|(p±ℓ)

1

d
=
∑

d6x

1

d

∑

p6x
p≡∓1 (mod d)

1 =
∑

d6x

π(x;∓ℓ, d)
d

=
∑

d6(log x)3

π(x;∓1, d)

d
+

∑

(log x)36d6x

π(x;∓1, d)

d

6
∑

d6(log x)3

(

π(x)

dϕ(d)
+O

(

xe−C
√
log x

)

)

+
∑

(log x)36d6x

x

d2

6 π(x)
∑

16d<∞

1

dϕ(d)
+O

(

x(log x)3e−C
√
log x

)

+ x
∑

(log x)36d<∞

1

d2

≪ π(x) + x(log x)3e−C
√
log x +

x

(log x)3

≪ π(x). �

�
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