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MACDONALD TOPOLOGICAL VERTICES AND BRANE CONDENSATES

OMAR FODA 1 AND MASAHIDE MANABE 2

Abstract. We show, in a number of simple examples, that Macdonald-type qt-deformations
of topological string partition functions are equivalent to topological string partition functions
that are without qt-deformations but with brane condensates, and that these brane condensates
lead to geometric transitions.

1. Introduction

We recall the topological vertex, its refinements and deformations, and ask what the physical inter-
pretation of a specific Macdonald-type deformation is.

1.1. A hierarchy of topological vertices.

1.1.1. Abbreviations. To simplify the presentation, we use 1. string, string partition function,
vertex, etc. for topological string, topological string partition function, topological vertex, etc.,
which should cause no confusion, as we only consider the latter, and use topological only
for emphasis when that is needed, 2. qt-string partition function, qt-quantum curve, etc. for
qt-deformed string partition function, qt-deformed quantum curve, etc. 3. refined as in refined
partition functions, etc., when discussing objects that are refined in the sense of [9, 10, 35];
otherwise, no refinement should be inferred, and unrefined is used only for emphasis when
that is needed, 4. the qt-version of · · · for the version of an object that is deformed in the sense
of [58, 18], and 5. a brane condensate, or simply a condensate is a set of infinitely-many brane
insertions.

1.1.2. The original vertex as a normalized 1-parameter generating function of plane partitions with
fixed asymptotic boundaries. In [31], Iqbal introduced a systematic way to compute A-model
string partition functions in terms of gluing copies of a trivalent topological vertex, and
constructed a special case of that vertex where one of the three legs is trivial. In [2], Aganagic,

Klemm, Mariño and Vafa constructed the full topological vertex CY 1 Y 2 Y 3

x
, where all

legs are non-trivial, that we refer to in the present work as the original vertex1. It depends
on a single parameter x, and a set of three Young diagrams, Y 1, Y 2 and Y 3, and has a
combinatorial interpretation as a normalized partition function of 3D plane partitions [49],
where each box in each plane partition is assigned a weight x. All plane partitions generated

by CY 1 Y 2 Y 3

x
 satisfy fixed asymptotic boundary conditions specified by Y 1, Y 2 and Y 3.

Copies of CY 1 Y 2 Y 3

x
 can be glued to form string partition functions. Using geometric

engineering [38, 39], these string partition functions are identified with instanton partition
functions in 5D supersymmetric gauge theories onR4×S1, in a self-dualΩ-background with
Nekrasov parameters ǫ1 + ǫ2 = 0 [44, 45]. Using the AGT/W correspondence [5, 59], the

Key words and phrases. Topological vertex. Brane condensation. Geometric transition. Topological string
partition function. Quantum spectral curve.

1 To streamline the presentation, we make a number of departures from conventional notation. We state
these changes as we introduce them, and list them in section 2.1.1. In particular, we use x, instead of q, for the

weight of a box in CY 1 Y 2 Y 3

x
.
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4D limit of these 5D instanton partition functions are identified with conformal blocks in 2D
conformal field theories with an integral central charge c.

1.1.3. The refined vertex as a normalized 2-parameter generating function of plane partitions with
fixed asymptotic boundaries. In [9, 10], Awata and Kanno introduced a refined version of

CY 1 Y 2 Y 3

x
, and in [35], Iqbal, Kozcaz and Vafa introduced yet another refined version of

the same object. In [7], Awata, Feigin and Shiraishi proved that these two refinements are

equivalent. In the present work, we focus on the refined vertex RY 1 Y 2 Y 3

x, y
 of [35].2 It

depends on two parameters
x, y

, and a set of three Young diagrams, Y 1, Y 2 and Y 3, and
has a combinatorial interpretation as a normalized partition function of 3D plane partitions.
Each box in each plane partition is assigned a weight x or y as follows. One splits each plane
partition diagonally into vertical Young diagrams. Scanning the vertical Young diagrams
from one end to the other, a box in a plane partition is assigned a weight x if it belongs
to a vertical Young diagram that protrude with respect to the preceding Young diagram,
and a weight y if it belongs to a vertical Young diagram that does not. All plane partitions

generated by RY 1 Y 2 Y 3

x, y
 satisfy fixed asymptotic boundary conditions specified by Y 1,

Y 2 and Y 3. Copies of RY 1 Y 2 Y 3

x, y
 can be glued to form refined string partition functions.

Using geometric engineering [38, 39], these refined string partition functions are identified
with instanton partition functions in 5D supersymmetric gauge theories on R4 × S1, in a
generic Ω-background, with Nekrasov parameters ǫ1 + ǫ2 , 0 [44, 45]. Using the AGT/W
correspondence [5, 59], the 4D limits of these 5D instanton partition functions are identified
with conformal blocks in 2D conformal field theories with a non-integral central charge c.

1.1.4. The Macdonald vertex as a qt-deformation of the refined vertex. In [58], Vuletić introduced
a deformation of MacMahon’s generating function of plane partitions, in terms of two

Macdonald-type parameters
q, t
. This deformation is independent of the refinement in-

troduced in [9, 10] and [35], as one can check by considering R ′
∅∅∅

x, y
, the unnormalized

version of R
∅∅∅

x, y
, which is a refinement of MacMahon’s generating function, but is

different from that of [58]. In [18], RY 1 Y 2 Y 3

x, y
was deformed using the same Macdonald-

type parameters
q, t
 that were used in [58], to obtain the Macdonald vertexM

q t

Y 1 Y 2 Y 3

x, y
.3

Copies ofM
q t

Y 1 Y 2 Y 3

x, y
 can be glued to form qt-string partition functions that are 5D qt-

instanton partition functions. The latter have well-defined 4D-limits and, for generic values

of
q, t
, contain infinite towers of poles for every pole that is present in the limit q→ t [18].

1.1.5. Limits of the Macdonald vertex. In constructing the original and the refined vertex,
(undeformed) free bosons that satisfy the Heisenberg algebra,

(1.1) [am, an] = n δm+n, 0 ,

play a central role [49, 35]. Similarly, in constructing the Macdonald vertex, qt-free bosons
that satisfy the qt-Heisenberg algebra,

2 We use
x, y

 instead of
q, t
 for the parameters, and RY 1 Y 2 Y 3

x, y
 instead of CY 1 Y 2 Y 3

t, q
 for the

refined vertex of [35]. We reserve the parameters
q, t
 for the Macdonald-type deformation parameters of

[58, 18] introduced in section 1.1.4.
3 We call the ratio x/y a refinement, and in the limit x→ y, the refined vertex reduces to the original one, and

we call the ratio q/t a deformation, and in the limit q → t, the Macdonald vertex reduces to the original vertex,
for x = y, or to the refined vertex, for x , y.
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(1.2)
[
a

q t
m , a

q t
n

]
= n


1 − q |n|

1 − t |n|

 δm+n, 0 ,

play a central role. In the limit q → t, M
q t

Y 1 Y 2 Y 3

x, y
 → RY 1 Y 2 Y 3

x, y
, and in the limit

x→ y,M
q t

Y 1 Y 2 Y 3

x, y
→ C q t

Y 1 Y 2 Y 3

x
, which is a qt-deformation of CY 1 Y 2 Y 3

x
.

1.2. The physical interpretation of the qt-deformation. It is clear by inspection of explicit
computations that the Macdonald parameter ratio q/t is a different object from either the
M-theory circle radius R or the refinement parameter ratio x/y.4 The purpose of the present
work is to shed light on the geometric and/or physical interpretation of the qt-deformation. To
do this, we consider simple string partition functions, and show that in M-theory terms, the
deformation q/t , 1 describes a condensation of M5-branes that lead to geometric transitions
that change the topology of the original Calabi-Yau 3-fold [23]. In conformal field theory
terms, we expect that it describes a condensation of vertex operators that push the conformal
field theory off criticality [60].

1.3. Outline of contents. In section 2, we include comments on notation used in the text, and
definitions of combinatorial objects, including MacMahon’s generating function of plane par-
titions, its refinement and qt-deformation, and in 3, include basic facts related to the original
topological vertex, the refined topological vertex, and their qt-deformations. In section 4, we
give our first example of the equivalence of qt-deformation and brane condensation, which
shows that the refined qt-string partition function on C 3 is equivalent to a refined string
partition function on C 3 with no qt-deformation but in the presence of condensates, and in
5, we give our second example, which shows that a refined qt-deformed partition function
on C 3 with a single-brane insertion is equivalent to its counterpart (also with a single-brane
insertion) with no qt-deformation but in the presence of condensates. In section 6, we discuss
the relation of the condensates and geometric transitions in the context of unrefined objects,
and in 7, we discuss the qt-quantum curves associated with qt-partition function. Finally,
in section 8, we collect a number of remarks, and discuss the various parameters that can
appear in topological vertices and the relation with conformal field theory, and in appendix
A, we collect useful skew Schur function identities that are used freely in the text.

2. Notation and definitions

We collect comments on notation, definitions of combinatorial objects, including variations on
MacMahon’s generating function of plane partitions that appear in the sequel.

2.1. Notation.

2.1.1. Deviations from standard notation. We use the variables
x, y

 as box weights/refinement

parameters, instead of the variables
q, t
 used in [9, 10, 35]. We use RY 1 Y 2 Y 3

x, y
 for

the refined vertex instead of CY 1 Y 2 Y 3

t, q
 as used in [35].5 We reserve the variablesq, t

 for the Macdonald-type deformation parameters that appear in the Macdonald vertex

M
q t

Y 1 Y 2 Y 3

x, y
 of [18].

4 One can also introduce an elliptic nome p [30, 36, 61, 19], which is yet another parameter. In section 8.2,
we discuss what we know about the interpretation of the four parameters, R, x/y, q/t, and p.

5 See section 3.2.2 for a more detailed relation.
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2.1.2. Sets. ρ is the set of negative half-integers
ρ 1, ρ 2, . . .

 with ρi = −i + 1/2, that isρ 1, ρ 2, . . .
 =
− 1/2,− 3/2, . . .

, and ιιι is the set of non-zero positive integers
1, 2, . . .

.

2.2. Combinatorics.

2.2.1. Cells in the lower-right quadrant. Consider the lower-right quadrant inR 2, bounded by
the right-half of the x-axis and the lower-half of the y-axis. The intersection point of the x-

and y-axes to be the origin with coordinates
0, 0

, the x-coordinate increases to the right,
the y-coordinate increases downwards. We divide this quadrant into cells of unit-length in

each direction. A cell � has coordinates
i, j
, if the coordinates of the lower-right corner of

the cell are
i, j
.

2.2.2. Young diagrams. Y is a Young diagram in the lower-right quadrant of R 2 that consists
of rows of cells of positive integral lengths y 1 > y 2 > · · · > 0, and Y ′ is the transpose of Y
that consists of rows of cells of positive integral lengths y ′

1
> y ′2 > · · · > 0. y ′

1
is the number

of (non-zero) parts in Y. The infinite profile of Y consists of the union of 1. a semi-infinite
line that extends from right to left along the positive, right-half of the x-axis, from x = ∞ to
x = y 1, 2. the finite profile of Y, and 3. a semi-infinite line that extends from top to bottom
along the positive, lower-half of the y-axis, from y = y ′

1
to y = ∞.6

2.2.3. Arms, legs and hook lengths. Consider a Young diagram Y, and a cell�i j with coordinatesi, j
 such that �i j is not necessarily inside Y. The arm A

�i j
, leg L

�i j
, extended arm A+

�i j
,

extended leg L+
�i j

, and hook H
�i j

of �i j, with respect to the infinitely-extended profile of Y,
are,

(2.1) A�i j
= yi − j, L�i j

= y ′j − i, A+
�i j
= A�i j

+ 1, L+
�i j
= L�i j

+ 1, H�i j
= A�i j

+ L�i j
+ 1,

where y ′
j

is the length of the j-row in Y ′, which is the j-column in Y. We also define,

(2.2) |Y| =
∑

�∈Y

1,
1

2
‖Y‖ 2

=
∑

�∈Y

A� +
1

2

 ,
1

2
κY =

1

2

‖Y‖ 2 − ‖Y ′‖ 2
 =

∑
i, j
∈Y

 j − i


2.3. The framing factor. We use the notation f Y

x
 for the framing factor of the original

vertex [43, 2],

(2.3) f Y

x
 =
−1
|Y| x

1
2 κY ,

and,

(2.4) f Y

x, y
 =
−1
|Y| x−

1
2 ‖Y

′‖ 2

y
1
2 ‖Y‖

2

,

for the refined framing factor introduced in [56] of the refined vertex.

2.4. Splitting indices. Starting from a sequence a =
a1, a2, . . .

, one can split the single
index I of any element aI into two indices i j, so that aI → ai j. One way to split the indices is
in the following example.

6 In our notation, the positive half of y-axis is the lower-half that extends downwards.
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2.4.1. Example. We proceed in two steps. 1. Position the elements of the 1-dimensional

sequence
a1, a2, . . .

 along the anti-diagonals of a 2-dimensional array, as in,

(2.5)
a1, a2, . . .

 7→

a1 a2 a4 · · ·

a3 a5

a6

2. Map the array with single-index elements to an array with double-index elements, where
the double-indices are in conventional order, as in,

(2.6)
a1 a2 a4 · · ·

a3 a5

a6

7→

a11 a12 a13 · · ·

a21 a22

a31

Any such splitting of indices is far from unique. However, if the splitting rule is well-
defined, as in (2.5)–(2.6), then it is bijective, and all such splittings are in bijection via the
original 1-dimensional sequence.

2.5. Variations on MacMahon’s generating functions.

2.5.1. Notation. To streamline the notation, we use the redundant notation M x x for MacMa-
hon’s original generating function of plane partitions, so that we can write M x y for its refined

counterpart, and M
q t
x y for the qt-version of the latter. M

q t
x x is the qt-MacMahon generating

function of Vuletić, and M
q q
x y =M x y.

2.5.2. M x x. MacMahon’s generating function of plane partitions is,

(2.7) M x x =

∞∏

m= 1


1

1 − x m


m

= exp



∞∑

n= 1

1

n
x n/2 − x− n/2

 2



The first equation in (2.7) is the definition of the MacMahon generating function. The second
is obtained by direct expansion of the logarithms of both sides. All refined and qt-versions
of this equation, in the sequel, are proven similarly.

2.5.3. M x y. The refined MacMahon’s generating function of plane partitions is [35],

(2.8) M x y =

∞∏

m,n=1

1

1 − x my n−1
= exp



∞∑

n= 1

x/y
 n/2

n
x n/2 − x−n/2

y n/2 − y− n/2




In the limit y→ x, M x y →M x x.

2.5.4. M
q t
x x. The qt-version MacMahon’s generating function of plane partitions is,

(2.9) M
q t
x x =

∞∏

i= 0

∞∏

m= 1


1 − q itx m

1 − q ix m


m

= exp



∞∑

n= 1

1

n
x n/2 − x− n/2

 2


1 − tn

1 − qn





which is the qt-MacMahon generating function introduced by Vuletić in [58]. In the limit

t→ q, M
q t
x x →M

q q
x x =M x x.
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Figure 3.1. The figure on the left represents the vertex CY 1 Y 2 Y 3

x
, and this

vertex has the cyclic symmetry CY 1 Y 2 Y 3

x
 = CY 3 Y 1 Y 2

x
 = CY 2 Y 3 Y 1

x
. The

figure on the right represents the refined vertex RY 1 Y 2 Y 3

x, y
 and the Mac-

donald vertexM
q t

Y 1 Y 2 Y 3

x, y
. These two vertices break the cyclic symmetry

and have the preferred leg. Note that RY 1 Y 2 Y 3

x, x
 = CY 1 Y 2 Y ′

3

x
.

2.5.5. M
q t
x y. The refined qt-version MacMahon’s generating function of plane partitions is

[18],

(2.10) M
q t
x y =

∞∏

i= 0

∞∏

m,n=1

1 − q i t x m y n−1

1 − q ix my n−1
= exp



∞∑

n= 1

x/y
 n/2

n
x n/2 − x−n/2

y n/2 − y−n/2



1 − tn

1 − qn





In the limit y→ x, M
q t
x y =M

q t
x x, and so on.

3. Topological vertices

We recall basic facts related to the topological vertices introduced in section 1.1.

3.1. The original vertex of [2]. With reference to the figure on the left in Fig. 3.1, the nor-
malized version of the original vertex 7 of [2] is,

(3.1) CY 1 Y 2 Y 3

x
 = x

1
2 κY 1 s Y 3

 xρ

∑

Y

s Y ′
1
/Y

xρ+Y 3
 s Y 2/Y

xρ+Y ′
3



=
−1
 |Y 2 |+ |Y 3|

f Y 1

x
 x

1
2 ‖Y 3‖

2


∏

�∈Y 3

1

1 − x H�


∑

Y

s Y 1/Y

x−ρ−Y 3
 s Y ′

2
/Y

x− ρ−Y ′
3



Here xρ+Y =
xρ 1 + y 1 , xρ 2 + y 2 , . . .

, x = e− gs , where gs is the string coupling constant, and

s Y 1/Y 2

x
 is the skew Schur function defined in terms of a pair of Young diagrams

Y 1,Y 2


and a set of possibly infinitely-many variables x =

x1, x2, . . .
. In the second equality, we

have used the notation f Y

x
 for the framing factor (2.3), and the identities in appendix A.

3.1.1. Normalization. CY 1 Y 2 Y 3

x
 is normalized by M x x such that C∅∅∅

x
 = 1. The unnor-

malized version is,

(3.2) C ′Y 1 Y 2 Y 3

x
 =M x x CY 1 Y 2 Y 3

x


7 In the present work, we use x for the weight of a box in a plane partition, instead of q in [31, 2]. For a
review of the original vertex, see [42].
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3.1.2. C ′
Y 1 Y 2 Y 3

x
 and M x x as partition functions. The unnormalized vertex C ′

Y 1 Y 2 Y 3

x
 is

the open topological A-model partition function on C 3 with three special Lagrangian sub-
manifolds. M x x is the closed topological A-model partition function on C 3. The figure on
the left in Fig. 3.1 is the toric web diagram of C 3.

3.1.3. Choice of framing. One can choose the framing of CY 1 Y 2 Y 3

x
 as,

(3.3) CY 1 Y 2 Y 3

x
 →


∏

i= 1, 2, 3

f Yi

x
 fi

CY 1 Y 2 Y 3

x
 , f1, f2, f3 ∈ Z,

where f Y

x
 is the framing factor (2.3).

3.2. The refined vertex of [35]. With reference to the figure on the right in Fig. 3.1, the
normalized refined vertex of [35] is,

(3.4) RY 1 Y 2 Y 3

x, y
 =
−1
 |Y 2 |+ |Y 3|

f Y 1

x, y
 x

1
2‖Y

′
3‖

2


∏

�∈Y 3

1

1 − x L+
�y A�

 ×

∑

Y

y

x


1
2

|Y|−|Y 1 |+|Y 2 |


s Y
1
/Y

y−ρx−Y ′
3

 s Y ′
2
/Y

x−ρy−Y 3
 ,

where f Y

x, y
 is the refined framing factor (2.4). In the limit y→ x,

(3.5) RY 1 Y 2 Y 3

x, y
 → CY 1 Y 2 Y ′

3

x


3.2.1. Remark. The dependence on the Young diagram Y 3 in RY 1 Y 2 Y 3

x, y
 on the left hand

side of (3.5) is replaced by a dependence on its transpose Y ′3 in CY 1 Y 2 Y ′
3

x
 on the right hand

side.

3.2.2. Remark.
t, q
 in [35] become

x, y
 in the present work, and the refined vertex

CY 1 Y 2 Y 3

t, q
 in [35] is related to RY 1 Y 2 Y 3

x, y
 in the present work by,

(3.6) CY 1 Y 2 Y 3

t, q
 =
−1
|Y 1 |+|Y 2 |

f Y 3

x, y
RY 2 Y 1 Y 3

x, y


3.2.3. Choice of framing. One can choose the framing of RY 1 Y 2 Y 3

x, y
 as,

(3.7) RY 1 Y 2 Y 3

x, y
 →


∏

i=1,2,3

f Yi

x, y
 fi

RY 1 Y 2 Y 3

x, y
 , f1, f2, f3 ∈ Z

3.2.4. Normalization. RY 1 Y 2 Y 3

x, y
 is normalized by M x y such that R∅∅∅

x
 = 1. The

unnormalized version is,

(3.8) R ′Y 1 Y 2 Y 3

x, y
 = M x yRY 1 Y 2 Y 3

x, y
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3.3. The Macdonald vertex of [18]. With reference to the figure on the right in Fig. 3.1, the
normalized Macdonald vertex of [18] is,

(3.9) M
q t

Y 1 Y 2 Y 3

x, y
 =

∞∏

i= 0

∏

�∈Y 3

1 − q i t x L+
�y A�

1 − q i x L+
�y A�


∑

Y

P
q t

Y 1/Y

y ιιι−1x−Y ′3
Q

q t

Y 2/Y

x ιιιy−Y 3


Here P
q t

Y 1/Y 2

x
 and Q

q t

Y 1/Y 2

x
 are the skew Macdonald and dual Macdonald functions

defined for a pair of Young diagrams
Y 1,Y 2

 and a set of possibly infinitely-many variables

x =
x1, x2, . . .

.

3.3.1. Choice of framing. No choice of framing ofM
q t

Y 1 Y 2 Y 3

x, y
 was discussed in [18], and

none will be needed in the present work.

3.3.2. Normalization. M
q t

Y 1 Y 2 Y 3

x, y
 is normalized by M

q t
x x such thatM

q t
∅∅∅

x, y
 = 1. The

unnormalized version is,

(3.10) M
′ q t

Y 1 Y 2 Y 3

x, y
 =M

q t
x yM

q t

Y 1 Y 2 Y 3

x, y


4. A qt-partition function from brane condensates

We give an example of a refined qt-deformed partition function that is obtained from its undeformed
counterpart via brane condensation.

4.1. From M5-branes to surface operators. Consider M-theory on,

(4.1) R

4 × S1 × X,

where S1 is the M-theory circle, and X is a local toric Calabi-Yau 3-fold such that the topo-
logical A-model on X geometrically engineers a 5D SU(N) supersymmetric gauge theory on

R

4 × S1 with

C

×
 2

-equivariant parameters x, y acting on R4 (Ω-background) [38, 39]. We
introduce M5-branes on the submanifold,

(4.2) R

2 × S1 × L ⊂ R4 × S1 × X,

where L � S1 × C is a Lagrangian submanifold in X [29] such that an end-point of L is on
an edge of the toric web diagram [3]. The M5-branes geometrically engineer simple-type
half-BPS surface operators that reduce the gauge group to SU(N − 1) × U(1) on the surface
R

2 [27, 6, 13, 37].

4.2. From surface operators to primary-field vertex operators. The AGT/W correspondence
[5, 59] relates a class of 4DN = 2 supersymmetric gauge theories onR4 to 2D Toda conformal
field theories. Each of these Toda conformal field theories is defined on a punctured Riemann
surface that is related to the Seiberg-Witten curve of the gauge theory and to the mirror
curve of the Calabi-Yau 3-fold X. The simple-type surface operators on the gauge theory
side correspond to vertex operators that, in turn, correspond to the highest-weight states
in irreducible fully-degenerate highest-weight representations on the conformal field theory
side [4, 17]. In other words, the M5-branes in (4.2) correspond to primary-field vertex
operators of fully-degenerate representations in Toda conformal field theory [40, 17, 57, 8].
From that it follows that a condensation of the M5-branes corresponds to a condensation of
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vertex operators. We expect that such a condensation leads to an off-critical deformation of
the chiral blocks in the conformal field theory of the type that leads to correlation functions
in off-critical integrable models. We will say more about this in section 8. In the following we
show that for X = C3, M5-brane condensates lead to the refined qt-MacMahon generating
function (2.10).

4.3. A qt-partition function from two brane condensates.

4.3.1. The normalized version of the computation. Starting from the refined open-string partition
function on C3, which is the refined vertex, we trivialize the Young diagram on one of the
three legs, and add a stack of infinitely-many branes on each of the two other legs. The

first stack has open-string moduli a =
a1, a2, . . .

, and framing factor f1, and the second has

b =
b1, b2, . . .

, and framing factor f2, as indicated in Fig. 4.1. The result is the open-string

partition function8,

Z
 f1 , f2


x y

a,b
 = N branes

∑

Y 1,Y 2


∏

i=1,2

f Yi

x, y
 fi

RY 1 Y 2 ∅

x, y
 s Y 1

a
 s Y 2

b
 ,(4.3)

whereN branes is a normalization factor, due to the introduction of the branes to be determined
in the sequel. Choosing

 f1, f2

 =
−1, 0

we get

Z
−1, 0


x y

a,b
 = N branes

∑

Y 1,Y 2 ,Y

v−|Y| s Y 1/Y

y−ρ
 s Y 1

va
 s Y ′

2
/Y

x−ρ
 s Y 2

−v−1b
 ,(4.4)

where v =
x/y

1/2
. Using the Cauchy identities in appendix A we obtain,

(4.5) Z
−1, 0


x y

a,b
 = N branes


∞∏

I,J=1

1 − v−1aIbJ





∞∏

I=1

L
v−1 bI, x



L
v aI, y



 ,

where L
a, x
 is the quantum dilogarithm,

(4.6) L
a, x
 =

∞∏

m= 1

1 − a x m− 1
2

 = exp


∞∑

n= 1

an

n
x n/2 − x−n/2





The partition function (4.5) includes the contribution of the brane-brane interactions across
the brane-stacks. To remove this contribution, we take the normalization factorN branes to be,

(4.7) N branes =

∞∏

I,J=1

11 − v−1aIbJ

 ,

and obtain the partition function without the brane-brane interactions,

(4.8) Z
−1, 0


x y

a,b
 =

∞∏

I=1

L
v−1bI, x



L
vaI, y

 , v =


x

y


1/2

8 We take the holonomies along the un-preferred legs to be proportional to Schur functions [41] (see also
[40, 17, 34]). In the absence of the condensates, we have a closed string partition function onC3. The M5-branes
that condense are equivalent to open strings.
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a 1b f2f

Figure 4.1. The vertex with two brane stacks with open-string moduli a =aI


I=1,2,...

, b =
bI


I=1,2,...

and framing factors f1 and f2.

4.3.2. The unnormalized version of the computation. The above calculation started from the nor-

malized vertex RY1 Y2 Y3

x, y
. If we use the unnormalized vertex R ′

Y1 Y2 Y3

x, y
 in (3.8), we

get the unnormalized partition function with a single-brane insertion and two condensates,

Z
′
−1, 0


x y

a,b
 =M x y

∞∏

I=1

L
v−1bI, x



L
vaI, y

(4.9)

Splitting the index I→ (i, j), as in section 2.4, and setting,

(4.10) aI → ai j = q i x j− 1
2 , bI → bi j = qi−1 t x y j− 3

2 , i, j = 1, 2, . . . ,

we find,

(4.11) Z
′
−1, 0


x y

ai j, bi j

 =M x y

∞∏

i, j=1

L
v−1bi j, x



L
vai j, y

 =
∞∏

i= 0

∞∏

m,n=1

1 − q itx myn−1

1 − q ix myn−1
=M

q t
x y

We conclude that the refined open-string partition function on C3 with two condensates,

with moduli as in (4.10), agrees with the refined qt-MacMahon generating function M
q t
x y in

(2.10) which gives the refined qt-deformed closed string partition function on C3. By taking
the unrefined limit y→ x in (4.11), we obtain,

(4.12) Z
′
−1, 0


x x

ai j, bi j

 = M x x

∞∏

i, j=1

L
bi j, x



L
ai j, x

 =
∞∏

i= 0

∞∏

m= 1


1 − q itx m

1 − q ix m


m

=M
q t
x x,

where the right hand side is the qt-MacMahon generating function (2.9) of Vuletić [58], and

the left hand side can be derived using the original vertex CY1 Y2 Y3

x
 as in [28].

4.3.3. Remark. The relations (4.11) and (4.12) agree with the result that conformal blocks

computed using M
q t

Y1 Y2 Y3

x, y
 are equal to those computed using RY1 Y2 Y3

x, y
 up to a

qt-dependent factor [18].

5. A qt-partition function with a single-brane insertion from brane condensates

We give an example of a refined qt-deformed partition function with a single-brane insertion that is
obtained from its undeformed counterpart via brane condensation.
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5.1. A partition function with two brane condensates and a single-brane insertion. Con-
sider the same partition function as in section 4.3, but now with an additional single brane
(on the preferred leg of the refined vertex that has no brane-stacks)9 with an open-string
modulus U and a framing factor f3, and two brane stacks, as represented in Fig. 5.1,

(5.1) Z
 f1 , f2 , f3


x y

U; a,b
 =

N branes

∑

Y 1 ,Y 2,Y 3


∏

i=1,2,3

f Yi

x, y
 fi

RY 1 Y 2 Y 3

x, y
 s Y 1

a
 s Y 2

b
 s Y ′

3

U


Here N branes is the normalization factor introduced in (4.3) and determined in (4.7), and the

Schur function s Y 3

U
with a single variable U is non-zero only for Young diagrams with a

single row y 1 = d. Choosing the framing factors as
 f1, f2, f3

 =
−1, 0, f

, we get,

(5.2) Z
−1, 0, f


x y

U; a,b
 =

N branes

∑

Y 1 ,Y 2,Y 3 ,Y

f Y ′
3

x, y
 f

x
1
2 ‖Y 3‖

2


∏

�∈Y 3

1

1 − x A+
�y L�

 s Y 3

−U
 ×

v−|Y| s Y 1/Y

y−ρx−Y 3
 s Y 1

va
 s Y ′

2
/Y

x−ρy−Y ′
3

 s Y 2

−v−1b
 ,

where v =
x/y

1/2
. Using the Cauchy identities in appendix A, we obtain,

(5.3) Z
−1, 0, f


x y

U; a,b
 = N branes


∞∏

I,J=1

1 − v−1aIbJ





∞∏

I=1

L
v−1bI, x



L
vaI, y



 ×

∞∑

d= 0

x
1
2

1− f
 d 2

−1
 f+1

y f/2 U


d

∏ d
m= 1

1 − x m



∞∏

I=1

1 − aIx
1
2


1 − aIx

1
2−d


d∏

m= 1

1 − bIx
m−1y−

1
2


1 − bIx m−1y

1
2



 ,

where L
a, x
 is the quantum dilogarithm in (4.6).

5.1.1. Normalization. Dividing the partition function with two condensates and a single-
brane insertion by its counterpart that has no single-brane insertion (4.5), we obtain the
normalized partition function,

(5.4) Z
′
−1, 0, f


x y

U; a,b
 =

∞∑

d= 0

x
1
2

1− f
d 2

−1
 f+1

y f/2 U


d

∏ d
m= 1

1 − x m



∞∏

I=1

1 − aI x
1
2


1 − aI x

1
2−d


d∏

m= 1

1 − bI x m−1 y−
1
2


1 − bI x m−1 y

1
2





9 Following [40, 17, 34, 41], when a brane is inserted along the preferred leg of a refined topological vertex,
we need to take the holonomy to be a Macdonald function rather than a Schur function. However, in the case
of a single brane insertion, as discussed in the present work, a Macdonald function reduces to a Schur function,
and we can take a Schur function as the holonomy.
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3f

U

a 1b f2f

Figure 5.1. The partition function with a single-brane insertion that has an
open-string modulus U and framing factor f3, and two brane stacks that have

open-string moduli a =
a1, a2, . . .

, b =
b1, b2, . . .

and framing factors
 f1, f2

.
By the inverse arrow in the preferred leg we assign the transpose Y ′3 of the

Young diagram Y 3, where we note the relation RY 1 Y 2 Y 3

x, x
 = CY 1 Y 2 Y ′

3

x


in (3.5).

We now show that for a suitable choice of the moduli
a1, a2, . . .

 and
b1, b2, . . .

, the nor-
malized partition function (5.4) of a single-brane insertion and two condensates is the qt-
deformation of the partition function on C 3 with a single-brane insertion (and no conden-
sates). The latter without the qt-deformation is obtained from (5.4) by setting the open-string
moduli of the condensates to zero,

(5.5) Z
′
−1, 0, f


x y

U; 0, 0
 =

∞∑

d= 0

x
1
2

1− f
d 2

−1
 f+1

y f/2 U


d

∏ d
m= 1

1 − x m


5.1.2. Remark. Using the specialization of the one-row Schur function,

(5.6) sd

xρ
 = x

1
2 d
d−1


s1 d


xρ
 =

−1
 d

x d 2/2

∏ d
m= 1

1 − x m
 ,

the partition function (5.5) is expressed in terms of Schur functions as,

Z
′
−1, 0, f


x y

U; 0, 0
 =
∑

Y

x−
1
2 f d 2

s Y

xρ
 s Y


−1
 f

y
1
2 f U


=
∑

Y

x
1
2

1− f
d 2

s Y ′

xρ
 s Y


−1
 f

x−
1
2 y

1
2 f U


(5.7)

Using the Cauchy identities in appendix A, the special cases of (5.5) that correspond to
f = 0, 1, satisfy,

(5.8) Z
′
−1, 0, 0


x y

U; 0, 0
 =
Z

′
−1, 0, 1


x y

v U; 0, 0


−1

= L
U, x



5.2. The qt-deformation of Z
′
−1, 0, 1


x y

U; 0, 0
. The qt-partition function onC 3 with a single-

brane insertion with an open-string modulus U, can be computed using the Macdonald vertex
as,
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(5.9) Z
q t
x y

U
 =
∑

Y

M
q t

∅∅Y

x, y
 s Y ′

U
 =

∞∑

d= 0


∞∏

i= 0

d∏

m= 1

1 − q i t x m

1 − q i x m

U d

Using Z
′
−1, 0, 1


x y

y−
1
2 U; 0, 0

 = Z
q q
x y

U
, this qt-partition function can be considered as the

qt-deformation of the undeformed partition function (5.5).

5.3. Identification. To identify the partition function in (5.4) with that in (5.9), we make the
choice of moduli,

(5.10) aI → a ′i j = x d ai j = q i x j− 1
2+d, bI → b ′i j = y bi j = q i−1 t x y j− 1

2 , i, j = 1, 2, . . .

instead of that in (4.10). In other words, in this case, the moduli of the condensates now
depend on the length of the single-row Young diagram that labels the Schur function that
characterizes the single-brane insertion, d. For this modified choice of moduli, the normalized
partition function (5.4) with a single-brane insertion and two condensates becomes,

(5.11) Z
′
−1, 0, f


x y

y−
1
2 f U; a ′i j, b ′i j

 =
∞∑

d= 0

x
1
2

1− f
d 2


∞∏

i= 0

d∏

m= 1

1 − q i t x m

1 − q i x m



−1
 f+1

U


d

,

and we find,

(5.12) Z
′
−1, 0, 1


x y

y−
1
2 U; a ′i j, b ′i j

 =
∞∑

d= 0


∞∏

i= 0

d∏

m= 1

1 − q i t x m

1 − q i x m

U d = Z
q t
x y

U


We conclude that the refined qt-partition function with a single-brane insertion (and no
condensates) coincides with its undeformed counterpart (with condensates) for a suitable
choice of the framing factors, and of the open-string moduli of the condensates. Note that this
refined qt-partition function does not depend on y, and coincides with the result computed

by the original vertex CY 1 Y 2 Y 3

x
 in a similar way.

5.3.1. Remark. We interpret the change in the choice of the moduli of the condensates from
that in (4.10) to that in (5.10) as a back-reaction of the condensates to the single-brane insertion.

5.3.2. Remark. We have shown that the qt-deformed partition functions (2.10) and (5.9) are
obtained, in the absence of a qt-deformation, from the partition functions (4.9) and (5.4),
respectively. These results depend on the chosen specializations (4.10) and (5.10) that were
made to obtain results that can be clearly interpreted. A study of the special significance (if
any) of the choices that were made and the consequences of more general choices is beyond
the scope of the present work.

6. qt-Deformations as geometric transitions

We discuss the relation of the brane condensates and geometric transitions in the context of unrefined
objects.
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6.1. Brane condensates and geometric transitions. Following Gomis and Okuda [21, 22],
brane insertions change the topology of a Calabi-Yau 3-fold via a geometric transition [23],
and a Calabi-Yau 3-fold with brane insertions is equivalent to a bubbling Calabi-Yau 3-
fold of a more complicated topology, but without brane insertions. Correspondingly, an
interpretation of the result in section 4.3 is that a condensate (which is a set of infinitely-
many brane insertions) changes the topology of C3 via a geometric transition, and C3 with
condensates is equivalent to another Calabi-Yau 3-fold of a more complicated geometry, but
without condensates. To test this interpretation, we consider the qt-MacMahon generating

function M
q t
x x in (2.9), which, as we showed in section 4.3, is equal to the open-string partition

onC3 with two condensates, and interpret it as an undeformed (no condensates) closed string
partition function on a Calabi-Yau 3-fold with more complicated topology than C3.

6.2. Gopakumar-Vafa invariants. The partition function ZX

x, Q
 of the string on a Calabi-

Yau 3-fold X with (exponentiated) Kähler moduli Q, is the generating function of Gopakumar-
Vafa invariants n β, g ∈ Z [24],

(6.1) ZX

x, Q
 = exp



∑

β∈H2

X,Z


∞∑

g= 0

∞∑

n= 1

n β, g

n

x n/2 − x−n/2
2 g− 2

Q βn


,

where we have followed the notation used in [42]. Namely, if i =
1, 2, . . . , b2

, where b2 is

the second Betti number of X, Si is a basis of the second homology group H2

X, Z
, and

Qi are (exponentiated) Kähler parameters, then for any β =
∑

i ni[Si] ∈ H2

X, Z
, ni ∈ Z,

Q β =
∏

i Q ni

i
. Comparing M

q t
x x in (2.9) normalized by M x x in (2.7) and the expansion in

(6.1), we find that n β, 0 = ± 1, n β, g = 0, for g = 1, 2, . . ., which are the Gopakumar-Vafa
invariants of a genus-0 manifold with infinitely-many homology 2-cycles β. From (4.10), the
infinitely-many branes (in the unrefined case) have holonomies,

(6.2) log ai j = gs

i Nq − j +
1

2

 , log bi j = gs

(i − 1) Nq +Nt − j +
1

2

 ,

where gs = − log x, gsNq = log q, gsNt = log t, and according to [21, 22], after large Nq and Nt

limit, this yields a Calabi-Yau 3-fold via the bubbling. This agrees with our interpretation
of the qt-deformation in terms of a geometric transition driven by a condensate, that is, the
insertion of infinitely-many branes. In section 7, we identify this geometry with that of an
infinite strip, but before we do that, we consider a simple, but important example.

6.3. A simple example of a geometric transition. In the special case of q = 0, t , 0, the
qt-MacMahon generating function (2.9) is,

(6.3) M 0 t
x x = M x x

∞∏

m= 1

1 − t x m
m

This coincides with the undeformed closed string partition function on the resolved conifold,
which is the total space ofO(−1)⊕O(−1)→ P1 with a single (exponentiated) Kähler modulus
t, in agreement with the interpretation of the t-deformation of the MacMahon’s generating
function proposed in [55].10 From the perspective of this section, what we have is the simple
geometric transition in Fig. 6.1.

10 What we call a t-deformation is called a Q-deformation in [55].
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b t
tgeometric transition

x
j 

1

2j =

Figure 6.1. The figure on the left represents the partition function with a single-
brane insertion on C 3. The figure on the right represents the closed string
partition function on the resolved conifold. They are related by a geometric
transition.

7. qt-Quantum curves

We discuss the qt-quantum curves associated with the unrefined limit of the refined qt-deformed
partition function with a single-brane insertion in section 5.

7.1. The quantum curve for Z q t
U
.

7.1.1. Two operators. In the following, we need the operators Û and V̂, where Û acts as

multiplication by a variable U, and V̂ acts as,

(7.1) V̂ := x U d
dU ,

and satisfy the x-Weyl relation,

(7.2) V̂ Û = x Û V̂

7.1.2. The quantum curve. The operators Û and V̂ act on Z q t
U
, the unrefined limit of the

refined qt-partition function with a single-brane insertion (5.9), as,

(7.3) Û Z q t
U
 = U Z q t

U
 , V̂ Z q t

U
 = Z q t

xU


From (7.3), it follows that Z q t
U
 satisfies the x-difference equation,

(7.4) Â q t
Û, V̂

 Z q t
U
 :=


∞∏

i= 0

1 − q iV̂
 − Û

∞∏

i= 0

1 − q itxV̂

 Z q t

U
 = 0,

which is the quantum curve related to Z q t
U
. As discussed below, (7.4) is a qt-version of the

quantum curve of C 3 in string theory [1, 16, 15, 26].

7.1.3. The classical limit of the quantum curve. Assuming that the asymptotic expansion of

Z q t
U
 in the classical limit, gs = − log x→ 0, has the WKB-form,

(7.5) Z q t
U
 ∼ exp

−
1

gs

∫ U

log V
U ′
 dU ′

U ′

,

then V
U
 is a solution of the equation,
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t

t

t

U U

tq
q

q

q

1

tq 1

Figure 7.1. The figure on the left describes the infinite chain of
−1,−1

 curves

with Kähler moduli t and qt−1, and a brane insertion with the open-string

modulus U. The figure on the right describes the infinite chain of
−2, 0

 curves
with Kähler moduli q, and a brane insertion with the open-string modulus U.

(7.6) A q t
U,V

U
 :=

∞∏

i= 0

1 − q iV
U
 −U

∞∏

i= 0

1 − q itV
U
 = 0,

which is the classical curve related to Z q t
U
. This curve can be identified with the mirror

curve related to the infinite-strip geometry that consists of an infinite chain of
−1,−1

-
curves, see the figure on the left in Fig. 7.1 [33] (see also [20]). This infinite-strip geometry
agrees with the picture of condensates in sections 4, 5 and 6. In the remainder of this section,
we consider a number of spacial cases of quantum curves.

7.2. Case 1. Choosing q = t, the partition function with a single-brane insertion (5.9) reduces

to the undeformed partition function Z
′
−1, 0, 1


x x

x−
1
2 U; 0, 0

with a single-brane insertion on

C

3 in (5.5),

(7.7) Z q q
U
 =

∞∑

d= 0

1
∏ d

m= 1

1 − x m
 U d = Z

′
−1, 0, 1


x x

x−
1
2 U; 0, 0

 = L
x−

1
2 U, x

−1
,

and we find the quantum curve,

(7.8)
1 − V̂ − Û

 Z q q
U
 = 0

The classical limit, gs → 0, of the quantum curve (7.8) gives a mirror curve of C 3 [3],

(7.9) 1 −U − V = 0

In other words, the qt-quantum curve (7.4) is a qt-version of the quantum curve (7.8), and
(7.6) is a qt-version of the mirror curve (7.9).
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7.3. Case 2. Choosing q = 0 and t , 0, the partition function with a single-brane insertion
(5.9) reduces to,

(7.10) Z 0 t
U
 =

∞∑

d= 0


d∏

m= 1

1 − t x m

1 − x m

U d,

and we find the t-version of the quantum curve of C 3,

(7.11)
1 − V̂ − Û + t V̂ Û

 Z 0 t
U
 = 0

Note that Z 0 t
U
 agrees with the undeformed partition function with a single-brane inser-

tion, up to framing ambiguities, on the resolved conifold with the Kähler modulus t [55],
and the classical limit, gs → 0, of the quantum curve (7.11) is the mirror curve of the resolved
conifold [3],

(7.12) 1 −U − V + t U V = 0

In other words, the t-deformation of C 3 is the resolved conifold as discussed in section 6.3.

7.4. Case 3. Choosing q , 0 and t = 0, the partition function with a single-brane insertion
(5.9) reduces to,

(7.13) Z q 0
U
 =

∞∑

d= 0

1
∏∞

i= 0

∏ d
m= 1

1 − q i x m
 U d,

and the q-version of the quantum curve of C 3 is,

(7.14)


∞∏

i= 0

1 − q i V̂
 − Û

 Z q 0
U
 = 0

Z q 0
U
 agrees with the undeformed partition function with a single-brane insertion, up to

framing ambiguities and a slight modification of the Kähler moduli, for the infinite chain of−2, 0
-curves,

(7.15) O
−2
 ⊕ O

0
→ P1,

with the same Kähler modulus q for all P1, see the figure on the right in Fig. 7.1 [33] (see
also [20]). This infinite-strip geometry can be obtained from that in the figure on the left in
Fig. 7.1 by suitable blow-downs.11 The classical limit, gs → 0, of the quantum curve (7.14) is
the mirror curve of this strip geometry,

(7.16)

∞∏

i= 0

1 − q i V
 − U = 0

11 Starting from the infinite-strip geometry on the left in Fig. 7.1, one can think of what happens in the limit
t → 0 as follows. As t → 0, the Kähler parameters t vanish, while the Kähler parameters q/t diverge, and the
corresponding consecutive edges in the toric diagram combine in pairs to form a toric diagram that has edges
with finite Kähler parameters q. The new infinite-strip geometry is on the right in Fig. 7.1.
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We conclude that the q-deformation ofC 3 is identified with the infinite-strip geometry in the
figure on the right in Fig. 7.1, and that this infinite-strip geometry is the result of a geometric
transition caused by the condensates.

8. Remarks

We collect a number of remarks, with particular attention to the interpretation of the various pa-
rameters that can appear in topological vertices, and to the relation with conformal field theory.

8.1. The AGT counterpart of brane condensates. We showed that the Macdonald-type
qt-deformation introduced in [58], when applied to topological string partition functions
[18], leads to qt-partition functions that are equivalent to partition functions without a qt-
deformation but with condensates. These condensates are surface operator condensates, and
their counterparts on the conformal field theory side of the AGT correspondence are vertex
operator condensates in 2D chiral conformal blocks. While this has not been studied in any
detail, we expect that these vertex operator condensates play, at the level of conformal blocks,
the same role that switching-on off-critical perturbations plays, at the level of the correlation
functions [60], and that results in correlation functions in 2D off-critical integrable models.
This expectation coincides with the results in [11, 12, 47, 48, 51].12

8.2. Four parameters. If we start from a 4D instanton partition function in the absence of
an Ω-background, or an AGT-equivalent conformal block in a Gaussian 2D conformal field
theory with an integral central charge, there are four known ways to modify such a partition
function, or conformal block, and each of these ways is characterized by a parameter.

8.2.1. The radius of the M-theory circle, R. Topological string partition functions are 5D objects,
and the corresponding instanton partition functions live inR4 ×S1, where S1 is the M-theory
circle. For small R, one can think of the 5D instanton partition functions as R-deformations
of their 4D limits, in the sense that switching on R gradually is equivalent to including the
lighter Kaluza-Klein modes that are infinitely-massive in the R → 0, and that acquire finite
masses as R increases [32]. In 2D conformal field theory terms, switching R on is equivalent
to deforming the chiral conformal blocks away from criticality to obtain expectation values
of type-I vertex operators [14], in some off-critical integrable statistical mechanical models
[11, 12, 47, 48, 51].

8.2.2. The refinement parameter x/y. Starting with 4D instanton partition functions in the
absence of anΩ-background, one can switch on Nekrasov’sΩ-deformation parameters, that
is ǫ1 + ǫ2 , 0. In the presence of a finite M-theory circle of radius R, setting x = e−R ǫ1 ,
and y = R R ǫ2 , this refinement is equivalent to setting x/y , 1. In 2D conformal field theory
terms, we modify the central charge of the conformal field theory while preserving conformal
invariance, and the underlying statistical mechanical model remains critical.

8.2.3. The Macdonald deformation parameter q/t. The q/t-deformation of [58, 18] is yet another
perturbation but, so far, no interpretation of this deformation is known. The purpose of this
work is to offer one such interpretation.

12 See further discussion on section 8.2.1.
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8.2.4. The elliptic nome p. In [61, 19], two versions were proposed of a topological vertex based

on Saito’s elliptic deformation of the quantum toroidal algebra Uq


̂̂
gl1

 [52–54]. In addition

to the refinement parameters
x, y

, and the Macdonald-type deformation parameters
q, t
,

this vertex depends on an elliptic nome parameter p and copies of the
q = t

-limit of this
vertex can be glued to obtain elliptic conformal blocks. The latter are equal to the elliptic
conformal blocks that were computed in [36, 46] by gluing copies of the refined vertex of
[35], then gluing pairs of external legs.

8.3. Three off-critical deformations. Aside from the refinement parameter x/y, which pre-
serves criticality, it appears that we have three parameters that push the underlying 2D
conformal blocks off-criticality, namely the M-theory circle radius R, the Macdonald param-
eter q/t, and the nome parameter p. One can show by explicit computation that these three
parameters coexist and that their effects are different, but it remains unclear how to interpret
these effects in statistical mechanics terms.

8.4. BPS states in M-theory. Following [24, 50], topological string partition functions on a
Calabi-Yau 3-fold encode the degeneracies of the BPS states in M-theory compactified on
the Calabi-Yau 3-fold, and the interpretation of the xy-refinement (of the refined topological
vertex) was discussed in [30, 25]. What is the interpretation of the qt-deformation (of the
Macdonald vertex) in the context of M-theory? In section 6, we argued that a topological
string partition function on a Calabi-Yau 3-fold with finitely-many homology 2-cycles, in
the presence of a qt-deformation is equal, after a geometric transition, to a corresponding
topological string partition function in the absence of a qt-deformation, on a Calabi-Yau 3-fold
with infinitely-many homology 2-cycles. From this correspondence, we expect that the qt-
partition functions encode the degeneracies of BPS states in M-theory compactified on the
Calabi-Yau 3-fold with infinitely-many homology 2-cycles. A more direct and perhaps deeper
interpretation at the level of the original Calabi-Yau 3-fold with finitely-many homology 2-
cycles is beyond the scope of the present work.

8.5. Summary. In [9, 10, 35], a refinement of the original topological vertex was obtained, and
the physical meaning of this refinement was clear and related to switching-on a non-self-dual
Ω-background. In [58], an independent Macdonald-type qt-deformation of MacMahon’s
generating function of plane partitions was obtained, and was used in [18] to qt-deformed
the refined topological vertex, but no physical meaning of this deformation was proposed.
In the present work, we have presented a number of simple but clear examples of qt-
deformed topological string partition functions, and showed in sections 4 and 5 that, in these
cases, the qt-deformation is equivalent to switching-on infinitely-many brane insertions, or
equivalently brane condensates. In section 6, we showed that a Calabi-Yau 3-fold with
a simple topology in the presence of these condensates is equivalent to another Calabi-
Yau 3-fold with a more complicated topology without condensates, and argued that the
condensates cause the Calabi-Yau 3-fold on which the topological string theory is formulated
to undergo a geometric transition that changes its topology. Finally, in section 7, we studied
the qt-quantum curves related to the unrefined limit of the qt-partition functions studied
in section 5, and showed that their classical limit does indeed correspond to undeformed
partition functions on infinite-strip geometry, in agreement with the conclusion that the
qt-deformation is equivalent to brane condensates that drive a geometric transition. We
expect these conclusions to hold for qt-deformations of more complicated topological string
partition functions.
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Appendix A. Useful Schur function identities

The skew Schur functions satisfy the identities,

s Y

xρ
 = x

1
2κYs Y ′

xρ
 ,(A.1)

s Y

x−ρ
 = x

1
2 ‖Y

′‖ 2
∏

�∈Y

1

1 − x H�
,(A.2)

s Y/∅

x
 = s Y

x
 ,(A.3)

s Y 1/Y 2

x
 = 0 for Y 1 2 Y 2,(A.4)

s Y 1/Y 2

c x
 = c |Y 1 | − |Y 2 | s Y 1/Y 2

x
 , c ∈ C,(A.5)

s Y 1/Y 2

xρ+Y
 =
−1
 |Y 1| − |Y 2 |

s Y ′
1
/Y ′

2

x− ρ−Y
(A.6)

The Cauchy identities for the skew Schur functions are,

∑

Y

s Y/Y 1

x
 s Y/Y 2

y
 =
∑

Y

s Y 2/Y

x
 s Y 1/Y

y

∏

i, j=1


1

1 − xiy j

 ,(A.7)

∑

Y

s Y/Y 1

x
 s Y ′/Y 2

y
 =
∑

Y

s Y ′
2
/Y

x
 s Y ′

1
/Y ′

y

∏

i, j=1

1 + xiy j

(A.8)
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