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Abstract

We show, in a number of simple examples, that Macdonald-type qt-deformations of topological string 
partition functions are equivalent to topological string partition functions that are without qt-deformations 
but with brane condensates, and that these brane condensates lead to geometric transitions.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

We recall the topological vertex, its refinements and deformations, and ask what the physical 
interpretation of a specific Macdonald-type deformation is.

1.1. A hierarchy of topological vertices

1.1.1. Abbreviations
To simplify the presentation, we use 1. string, string partition function, vertex, etc. for topo-

logical string, topological string partition function, topological vertex, etc., which should cause 
no confusion, as we only consider the latter, and use topological only for emphasis when that is 
needed, 2. qt -string partition function, qt -quantum curve, etc. for qt -deformed string partition 
function, qt -deformed quantum curve, etc. 3. refined as in refined partition functions, etc., when 
discussing objects that are refined in the sense of [9,10,35]; otherwise, no refinement should be 

* Corresponding author.
E-mail addresses: omar.foda@unimelb.edu.au (O. Foda), masahidemanabe@gmail.com (M. Manabe).
https://doi.org/10.1016/j.nuclphysb.2018.10.001
0550-3213/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2018.10.001
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:omar.foda@unimelb.edu.au
mailto:masahidemanabe@gmail.com
https://doi.org/10.1016/j.nuclphysb.2018.10.001
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2018.10.001&domain=pdf


O. Foda, M. Manabe / Nuclear Physics B 936 (2018) 448–471 449
inferred, and unrefined is used only for emphasis when that is needed, 4. the qt -version of · · ·
for the version of an object that is deformed in the sense of [58,18], and 5. a brane condensate, 
or simply a condensate is a set of infinitely-many brane insertions.

1.1.2. The original vertex as a normalized 1-parameter generating function of plane partitions 
with fixed asymptotic boundaries

In [31], Iqbal introduced a systematic way to compute A-model string partition functions 
in terms of gluing copies of a trivalent topological vertex, and constructed a special case of 
that vertex where one of the three legs is trivial. In [2], Aganagic, Klemm, Mariño and Vafa 
constructed the full topological vertex C Y 1 Y 2 Y 3 (x), where all legs are non-trivial, that we re-
fer to in the present work as the original vertex.1 It depends on a single parameter x, and a 
set of three Young diagrams, Y 1, Y 2 and Y 3, and has a combinatorial interpretation as a nor-
malized partition function of 3D plane partitions [49], where each box in each plane partition 
is assigned a weight x. All plane partitions generated by C Y 1 Y 2 Y 3 (x) satisfy fixed asymptotic 
boundary conditions specified by Y 1, Y 2 and Y 3. Copies of C Y 1 Y 2 Y 3 (x) can be glued to form 
string partition functions. Using geometric engineering [38,39], these string partition functions 
are identified with instanton partition functions in 5D supersymmetric gauge theories on R4×S1, 
in a self-dual �-background with Nekrasov parameters ε1 + ε2 = 0 [44,45]. Using the AGT/W 
correspondence [5,59], the 4D limit of these 5D instanton partition functions are identified with 
conformal blocks in 2D conformal field theories with an integral central charge c.

1.1.3. The refined vertex as a normalized 2-parameter generating function of plane partitions 
with fixed asymptotic boundaries

In [9,10], Awata and Kanno introduced a refined version of C Y 1 Y 2 Y 3 (x), and in [35], Iqbal, 
Kozcaz and Vafa introduced yet another refined version of the same object. In [7], Awata, Feigin 
and Shiraishi proved that these two refinements are equivalent. In the present work, we focus on 
the refined vertex R Y 1 Y 2 Y 3 (x, y) of [35].2 It depends on two parameters (x, y), and a set of 
three Young diagrams, Y 1, Y 2 and Y 3, and has a combinatorial interpretation as a normalized 
partition function of 3D plane partitions. Each box in each plane partition is assigned a weight 
x or y as follows. One splits each plane partition diagonally into vertical Young diagrams. Scan-
ning the vertical Young diagrams from one end to the other, a box in a plane partition is assigned 
a weight x if it belongs to a vertical Young diagram that protrude with respect to the preceding 
Young diagram, and a weight y if it belongs to a vertical Young diagram that does not. All plane 
partitions generated by R Y 1 Y 2 Y 3 (x, y) satisfy fixed asymptotic boundary conditions specified 
by Y 1, Y 2 and Y 3. Copies of R Y 1 Y 2 Y 3 (x, y) can be glued to form refined string partition func-
tions. Using geometric engineering [38,39], these refined string partition functions are identified 
with instanton partition functions in 5D supersymmetric gauge theories on R4 × S1, in a generic 
�-background, with Nekrasov parameters ε1 + ε2 �= 0 [44,45]. Using the AGT/W correspon-
dence [5,59], the 4D limits of these 5D instanton partition functions are identified with conformal 
blocks in 2D conformal field theories with a non-integral central charge c.

1 To streamline the presentation, we make a number of departures from conventional notation. We state these changes 
as we introduce them, and list them in section 2.1.1. In particular, we use x, instead of q , for the weight of a box in 
CY 1 Y 2 Y 3 (x).

2 We use (x, y) instead of (q, t) for the parameters, and RY 1 Y 2 Y 3 (x, y) instead of CY 1 Y 2 Y 3 (t, q) for the refined 
vertex of [35]. We reserve the parameters (q, t) for the Macdonald-type deformation parameters of [58,18] introduced in 
section 1.1.4.
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1.1.4. The Macdonald vertex as a qt -deformation of the refined vertex
In [58], Vuletić introduced a deformation of MacMahon’s generating function of plane par-

titions, in terms of two Macdonald-type parameters (q, t). This deformation is independent of 
the refinement introduced in [9,10] and [35], as one can check by considering R ′

∅∅∅
(x, y), 

the unnormalized version of R
∅∅∅

(x, y), which is a refinement of MacMahon’s generating 
function, but is different from that of [58]. In [18], R Y 1 Y 2 Y 3 (x, y) was deformed using the 
same Macdonald-type parameters (q, t) that were used in [58], to obtain the Macdonald vertex
M q t

Y 1 Y 2 Y 3
(x, y).3 Copies of M q t

Y 1 Y 2 Y 3
(x, y) can be glued to form qt -string partition func-

tions that are 5D qt -instanton partition functions. The latter have well-defined 4D-limits and, for 
generic values of (q, t), contain infinite towers of poles for every pole that is present in the limit 
q → t [18].

1.1.5. Limits of the Macdonald vertex
In constructing the original and the refined vertex, (undeformed) free bosons that satisfy the 

Heisenberg algebra,

[am,an] = nδm+n, 0 , (1.1)

play a central role [49,35]. Similarly, in constructing the Macdonald vertex, qt -free bosons that 
satisfy the qt -Heisenberg algebra,[

a
q t
m , a

q t
n

]
= n

(
1 − q |n|

1 − t |n|

)
δm+n, 0 , (1.2)

play a central role. In the limit q → t , M q t
Y 1 Y 2 Y 3

(x, y) → R Y 1 Y 2 Y 3 (x, y), and in the limit 

x → y, M q t
Y 1 Y 2 Y 3

(x, y) → C q t
Y 1 Y 2 Y 3

(x), which is a qt -deformation of C Y 1 Y 2 Y 3 (x).

1.2. The physical interpretation of the qt -deformation

It is clear by inspection of explicit computations that the Macdonald parameter ratio q/t is a 
different object from either the M-theory circle radius R or the refinement parameter ratio x/y.4

The purpose of the present work is to shed light on the geometric and/or physical interpretation 
of the qt -deformation. To do this, we consider simple string partition functions, and show that 
in M-theory terms, the deformation q/t �= 1 describes a condensation of M5-branes that lead to 
geometric transitions that change the topology of the original Calabi–Yau 3-fold [23]. In confor-
mal field theory terms, we expect that it describes a condensation of vertex operators that push 
the conformal field theory off criticality [60].

1.3. Outline of contents

In section 2, we include comments on notation used in the text, and definitions of combi-
natorial objects, including MacMahon’s generating function of plane partitions, its refinement 

3 We call the ratio x/y a refinement, and in the limit x → y, the refined vertex reduces to the original one, and we call 
the ratio q/t a deformation, and in the limit q → t , the Macdonald vertex reduces to the original vertex, for x = y, or to 
the refined vertex, for x �= y.

4 One can also introduce an elliptic nome p [30,36,61,19], which is yet another parameter. In section 8.2, we discuss 
what we know about the interpretation of the four parameters, R, x/y, q/t , and p.
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and qt -deformation, and in section 3, include basic facts related to the original topological ver-
tex, the refined topological vertex, and their qt -deformations. In section 4, we give our first 
example of the equivalence of qt -deformation and brane condensation, which shows that the 
refined qt -string partition function on C 3 is equivalent to a refined string partition function 
on C 3 with no qt -deformation but in the presence of condensates, and in section 5, we give 
our second example, which shows that a refined qt -deformed partition function on C 3 with a 
single-brane insertion is equivalent to its counterpart (also with a single-brane insertion) with no 
qt -deformation but in the presence of condensates. In section 6, we discuss the relation of the 
condensates and geometric transitions in the context of unrefined objects, and in section 7, we 
discuss the qt -quantum curves associated with qt -partition function. Finally, in section 8, we 
collect a number of remarks, and discuss the various parameters that can appear in topological 
vertices and the relation with conformal field theory, and in appendix A, we collect useful skew 
Schur function identities that are used freely in the text.

2. Notation and definitions

We collect comments on notation, definitions of combinatorial objects, including variations 
on MacMahon’s generating function of plane partitions that appear in the sequel.

2.1. Notation

2.1.1. Deviations from standard notation
We use the variables (x, y) as box weights/refinement parameters, instead of the variables 

(q, t) used in [9,10,35]. We use R Y 1 Y 2 Y 3 (x, y) for the refined vertex instead of C Y 1 Y 2 Y 3 (t, q)

as used in [35].5 We reserve the variables (q, t) for the Macdonald-type deformation parameters 
that appear in the Macdonald vertex M q t

Y 1 Y 2 Y 3
(x, y) of [18].

2.1.2. Sets
ρ is the set of negative half-integers (ρ 1, ρ 2, . . .) with ρi = −i + 1/2, that is (ρ 1, ρ 2, . . .) =

(−1/2,−3/2, . . .), and ιιι is the set of non-zero positive integers (1,2, . . .).

2.2. Combinatorics

2.2.1. Cells in the lower-right quadrant
Consider the lower-right quadrant in R 2, bounded by the right-half of the x-axis and the 

lower-half of the y-axis. The intersection point of the x- and y-axes to be the origin with coordi-
nates (0,0), the x-coordinate increases to the right, the y-coordinate increases downwards. We 
divide this quadrant into cells of unit-length in each direction. A cell � has coordinates (i, j), if 
the coordinates of the lower-right corner of the cell are (i, j).

2.2.2. Young diagrams
Y is a Young diagram in the lower-right quadrant of R 2 that consists of rows of cells of 

positive integral lengths y 1 � y 2 � · · ·� 0, and Y ′ is the transpose of Y that consists of rows of 
cells of positive integral lengths y ′

1 � y ′
2 � · · · � 0. y ′

1 is the number of (non-zero) parts in Y . 

5 See section 3.2.2 for a more detailed relation.



452 O. Foda, M. Manabe / Nuclear Physics B 936 (2018) 448–471
The infinite profile of Y consists of the union of 1. a semi-infinite line that extends from right to 
left along the positive, right-half of the x-axis, from x = ∞ to x = y 1, 2. the finite profile of Y , 
and 3. a semi-infinite line that extends from top to bottom along the positive, lower-half of the 
y-axis, from y = y ′

1 to y = ∞.6

2.2.3. Arms, legs and hook lengths
Consider a Young diagram Y , and a cell �ij with coordinates (i, j) such that �ij is not

necessarily inside Y . The arm A�ij
, leg L�ij

, extended arm A+
�ij

, extended leg L+
�ij

, and hook 
H�ij

of �ij , with respect to the infinitely-extended profile of Y , are,

A�ij
= yi − j, L�ij

= y ′
j − i, A+

�ij
= A�ij

+ 1, L+
�ij

= L�ij
+ 1,

H�ij
= A�ij

+ L�ij
+ 1, (2.1)

where y ′
j is the length of the j -row in Y ′, which is the j -column in Y . We also define,

|Y | =
∑
�∈Y

1,
1

2
‖Y‖ 2 =

∑
�∈Y

(
A� + 1

2

)
,

1

2
κ Y = 1

2

(
‖Y‖ 2 − ∥∥Y ′∥∥ 2

)
=

∑
(i,j)∈Y

(j − i) (2.2)

2.3. The framing factor

We use the notation fY (x) for the framing factor of the original vertex [43,2],

fY (x) = (−1)|Y | x
1
2 κ Y , (2.3)

and,

fY (x, y) = (−1)|Y | x − 1
2

∥∥Y ′∥∥ 2
y

1
2 ‖Y‖ 2

, (2.4)

for the refined framing factor introduced in [56] of the refined vertex.

2.4. Splitting indices

Starting from a sequence a = (a1, a2, . . .), one can split the single index I of any element aI

into two indices ij , so that aI → aij . One way to split the indices is in the following example.

2.4.1. Example
We proceed in two steps. 1. Position the elements of the 1-dimensional sequence (a1, a2, . . .)

along the anti-diagonals of a 2-dimensional array, as in,

(a1, a2, . . .) 	→
a1 a2 a4 · · ·
a3 a5
a6

(2.5)

2. Map the array with single-index elements to an array with double-index elements, where the 
double-indices are in conventional order, as in,

6 In our notation, the positive half of y-axis is the lower-half that extends downwards.
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a1 a2 a4 · · ·
a3 a5
a6

	→
a11 a12 a13 · · ·
a21 a22
a31

(2.6)

Any such splitting of indices is far from unique. However, if the splitting rule is well-defined, 
as in (2.5)–(2.6), then it is bijective, and all such splittings are in bijection via the original 
1-dimensional sequence.

2.5. Variations on MacMahon’s generating functions

2.5.1. Notation
To streamline the notation, we use the redundant notation Mx x for MacMahon’s original 

generating function of plane partitions, so that we can write Mx y for its refined counterpart, and 
M

q t
x y for the qt -version of the latter. M q t

x x is the qt -MacMahon generating function of Vuletić, 
and M q q

x y = Mx y .

2.5.2. Mx x

MacMahon’s generating function of plane partitions is,

Mx x =
∞∏

m = 1

(
1

1 − x m

)m

= exp

( ∞∑
n = 1

1

n
(
x n/2 − x − n/2

) 2

)
(2.7)

The first equation in (2.7) is the definition of the MacMahon generating function. The second is 
obtained by direct expansion of the logarithms of both sides. All refined and qt -versions of this 
equation, in the sequel, are proven similarly.

2.5.3. Mx y

The refined MacMahon’s generating function of plane partitions is [35],

Mx y =
∞∏

m,n=1

1

1 − x my n−1 = exp

( ∞∑
n = 1

(x/y) n/2

n
(
x n/2 − x − n/2

) (
y n/2 − y − n/2

))
(2.8)

In the limit y → x, Mx y → Mx x .

2.5.4. M
q t
x x

The qt -version MacMahon’s generating function of plane partitions is,

M
q t
x x =

∞∏
i = 0

∞∏
m = 1

(
1 − q itx m

1 − q ix m

)m

= exp

( ∞∑
n = 1

1

n
(
x n/2 − x − n/2

) 2

(
1 − tn

1 − qn

))
(2.9)

which is the qt -MacMahon generating function introduced by Vuletić in [58]. In the limit t → q , 
M

q t
x x → M

q q
x x = Mx x .

2.5.5. M
q t
x y

The refined qt -version MacMahon’s generating function of plane partitions is [18],

M
q t
x y =

∞∏ ∞∏ 1 − q i t x m y n−1

1 − q ix my n−1

i = 0 m,n=1
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Fig. 3.1. The figure on the left represents the vertex CY 1 Y 2 Y 3 (x), and this vertex has the cyclic symmetry 
CY 1 Y 2 Y 3 (x) = CY 3 Y 1 Y 2 (x) = CY 2 Y 3 Y 1 (x). The figure on the right represents the refined vertex RY 1 Y 2 Y 3 (x, y)

and the Macdonald vertex M q t
Y 1 Y 2 Y 3

(x, y). These two vertices break the cyclic symmetry and have the preferred leg. 
Note that RY 1 Y 2 Y 3 (x, x) = CY 1 Y 2 Y ′

3
(x).

= exp

( ∞∑
n = 1

(x/y) n/2

n
(
x n/2 − x − n/2

) (
y n/2 − y − n/2

) (
1 − tn

1 − qn

))
(2.10)

In the limit y → x, M q t
x y = M

q t
x x , and so on.

3. Topological vertices

We recall basic facts related to the topological vertices introduced in section 1.1.

3.1. The original vertex of [2]

With reference to the figure on the left in Fig. 3.1, the normalized version of the original 
vertex7 of [2] is,

C Y 1 Y 2 Y 3 (x) = x
1
2 κY 1 s Y 3

(
x ρ

)∑
Y

s Y ′
1/Y

(
x ρ + Y 3

)
s Y 2/Y

(
x ρ + Y ′

3

)

= (−1) |Y 2| + |Y 3| fY 1 (x) x
1
2 ‖Y 3‖ 2

⎛⎝ ∏
�∈Y 3

1

1 − x H �

⎞⎠×
∑

Y

s Y 1/Y

(
x − ρ − Y 3

)
s Y ′

2/Y

(
x − ρ − Y ′

3

)
(3.1)

Here x ρ + Y = (
x ρ 1 + y 1, x ρ 2 + y 2 , . . .

)
, x = e − gs , where gs is the string coupling constant, and 

s Y 1/Y 2 (x) is the skew Schur function defined in terms of a pair of Young diagrams (Y 1, Y 2) and 
a set of possibly infinitely-many variables x = (x1, x2, . . .). In the second equality, we have used 
the notation fY (x) for the framing factor (2.3), and the identities in appendix A.

3.1.1. Normalization
C Y 1 Y 2 Y 3 (x) is normalized by Mx x such that C∅∅∅ (x) = 1. The unnormalized version is,

C ′
Y 1 Y 2 Y 3

(x) = Mx x C Y 1 Y 2 Y 3 (x) (3.2)

7 In the present work, we use x for the weight of a box in a plane partition, instead of q in [31,2]. For a review of the 
original vertex, see [42].
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3.1.2. C ′
Y 1 Y 2 Y 3

(x) and Mx x as partition functions
The unnormalized vertex C ′

Y 1 Y 2 Y 3
(x) is the open topological A-model partition function 

on C 3 with three special Lagrangian submanifolds. Mx x is the closed topological A-model 
partition function on C 3. The figure on the left in Fig. 3.1 is the toric web diagram of C 3.

3.1.3. Choice of framing
One can choose the framing of C Y 1 Y 2 Y 3 (x) as,

C Y 1 Y 2 Y 3 (x) →
⎛⎝ ∏

i = 1, 2, 3

fYi (x)fi

⎞⎠C Y 1 Y 2 Y 3 (x) , f1, f2, f3 ∈Z, (3.3)

where fY (x) is the framing factor (2.3).

3.2. The refined vertex of [35]

With reference to the figure on the right in Fig. 3.1, the normalized refined vertex of [35] is,

R Y 1 Y 2 Y 3 (x, y) = (−1) |Y 2| + |Y 3| fY 1 (x, y) x
1
2

∥∥Y ′
3

∥∥ 2

⎛⎝ ∏
�∈Y 3

1

1 − x L+
�y A �

⎞⎠ ×

∑
Y

(y

x

) 1
2 (|Y |−|Y 1|+|Y 2|)

s Y 1/Y

(
y −ρx −Y ′

3

)
s Y ′

2/Y

(
x −ρy −Y 3

)
, (3.4)

where fY (x, y) is the refined framing factor (2.4). In the limit y → x,

R Y 1 Y 2 Y 3 (x, y) → C Y 1 Y 2 Y ′
3
(x) (3.5)

3.2.1. Remark
The dependence on the Young diagram Y 3 in R Y 1 Y 2 Y 3 (x, y) on the left hand side of (3.5) is 

replaced by a dependence on its transpose Y ′
3 in C Y 1 Y 2 Y ′

3
(x) on the right hand side.

3.2.2. Remark
(t, q) in [35] become (x, y) in the present work, and the refined vertex C Y 1 Y 2 Y 3 (t, q) in [35]

is related to R Y 1 Y 2 Y 3 (x, y) in the present work by,

C Y 1 Y 2 Y 3 (t, q) = (−1)|Y 1|+|Y 2| fY 3 (x, y)R Y 2 Y 1 Y 3 (x, y) (3.6)

3.2.3. Choice of framing
One can choose the framing of R Y 1 Y 2 Y 3 (x, y) as,

R Y 1 Y 2 Y 3 (x, y) →
⎛⎝ ∏

i=1,2,3

fYi (x, y)fi

⎞⎠R Y 1 Y 2 Y 3 (x, y) , f1, f2, f3 ∈Z (3.7)

3.2.4. Normalization
R Y 1 Y 2 Y 3 (x, y) is normalized by Mx y such that R∅∅∅ (x) = 1. The unnormalized version 

is,

R ′
Y 1 Y 2 Y 3

(x, y) = Mx y R Y 1 Y 2 Y 3 (x, y) (3.8)
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3.3. The Macdonald vertex of [18]

With reference to the figure on the right in Fig. 3.1, the normalized Macdonald vertex of [18]
is,

M q t
Y 1 Y 2 Y 3

(x, y)

=
⎛⎝ ∞∏

i = 0

∏
�∈Y 3

1 − q i t x L+
�y A�

1 − q i x L+
�y A�

⎞⎠∑
Y

P
q t
Y 1/Y

(
y ιιι−1x − Y ′

3

)
Q

q t
Y 2/Y

(
x ιιιy −Y 3

)
(3.9)

Here P q t
Y 1/Y 2

(x) and Qq t
Y 1/Y 2

(x) are the skew Macdonald and dual Macdonald functions de-
fined for a pair of Young diagrams (Y 1, Y 2) and a set of possibly infinitely-many variables 
x = (x1, x2, . . .).

3.3.1. Choice of framing
No choice of framing of M q t

Y 1 Y 2 Y 3
(x, y) was discussed in [18], and none will be needed in 

the present work.

3.3.2. Normalization
M q t

Y 1 Y 2 Y 3
(x, y) is normalized by M q t

x x such that M q t
∅∅∅

(x, y) = 1. The unnormalized 
version is,

M ′ q t
Y 1 Y 2 Y 3

(x, y) = M
q t
x y M q t

Y 1 Y 2 Y 3
(x, y) (3.10)

4. A qt-partition function from brane condensates

We give an example of a refined qt -deformed partition function that is obtained from its un-
deformed counterpart via brane condensation.

4.1. From M5-branes to surface operators

Consider M-theory on,

R4 × S1 × X, (4.1)

where S1 is the M-theory circle, and X is a local toric Calabi–Yau 3-fold such that the topological 
A-model on X geometrically engineers a 5D SU(N) supersymmetric gauge theory on R4 × S1

with 
(
C×) 2-equivariant parameters x, y acting on R4 (�-background) [38,39]. We introduce 

M5-branes on the submanifold,

R 2 × S1 × L ⊂R4 × S1 × X, (4.2)

where L ∼= S1 ×C is a Lagrangian submanifold in X [29] such that an end-point of L is on an 
edge of the toric web diagram [3]. The M5-branes geometrically engineer simple-type half-BPS 
surface operators that reduce the gauge group to SU(N − 1) ×U(1) on the surface R 2 [27,6,13,
37].
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Fig. 4.1. The vertex with two brane stacks with open-string moduli a = (aI )I=1,2,..., b = (bI )I=1,2,... and framing 
factors f1 and f2.

4.2. From surface operators to primary-field vertex operators

The AGT/W correspondence [5,59] relates a class of 4D N = 2 supersymmetric gauge theo-
ries on R4 to 2D Toda conformal field theories. Each of these Toda conformal field theories is 
defined on a punctured Riemann surface that is related to the Seiberg–Witten curve of the gauge 
theory and to the mirror curve of the Calabi–Yau 3-fold X. The simple-type surface operators 
on the gauge theory side correspond to vertex operators that, in turn, correspond to the highest-
weight states in irreducible fully-degenerate highest-weight representations on the conformal 
field theory side [4,17]. In other words, the M5-branes in (4.2) correspond to primary-field ver-
tex operators of fully-degenerate representations in Toda conformal field theory [40,17,57,8]. 
From that it follows that a condensation of the M5-branes corresponds to a condensation of ver-
tex operators. We expect that such a condensation leads to an off-critical deformation of the chiral 
blocks in the conformal field theory of the type that leads to correlation functions in off-critical 
integrable models. We will say more about this in section 8. In the following we show that for 
X =C3, M5-brane condensates lead to the refined qt -MacMahon generating function (2.10).

4.3. A qt -partition function from two brane condensates

4.3.1. The normalized version of the computation
Starting from the refined open-string partition function on C3, which is the refined vertex, we 

trivialize the Young diagram on one of the three legs, and add a stack of infinitely-many branes on 
each of the two other legs. The first stack has open-string moduli a = (a1, a2, . . .), and framing 
factor f1, and the second has b = (b1, b2, . . .), and framing factor f2, as indicated in Fig. 4.1. 
The result is the open-string partition function,8

Z
(f1, f2)
x y (a,b) =N branes

∑
Y 1,Y 2

⎛⎝ ∏
i=1,2

fYi (x, y)fi

⎞⎠R Y 1 Y 2 ∅ (x, y) s Y 1 (a) s Y 2 (b) ,

(4.3)

where N branes is a normalization factor, due to the introduction of the branes to be determined 
in the sequel. Choosing (f1, f2) = (−1,0) we get

8 We take the holonomies along the un-preferred legs to be proportional to Schur functions [41] (see also [40,17,34]). 
In the absence of the condensates, we have a closed string partition function on C3. The M5-branes that condense are 
equivalent to open strings.
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Z (−1, 0)
x y (a,b) =N branes

∑
Y 1,Y 2,Y

v −|Y | s Y 1/Y

(
y −ρ

)
s Y 1 (va) s Y ′

2/Y

(
x −ρ

)
s Y 2

(
−v−1b

)
,

(4.4)

where v = (x/y)1/2. Using the Cauchy identities in appendix A we obtain,

Z (−1, 0)
x y (a,b) =N branes

⎛⎝ ∞∏
I,J=1

(
1 − v−1aI bJ

)⎞⎠( ∞∏
I=1

L
(
v−1 bI , x

)
L(v aI , y)

)
, (4.5)

where L (a, x) is the quantum dilogarithm,

L(a, x) =
∞∏

m = 1

(
1 − a x m− 1

2

)
= exp

( ∞∑
n = 1

an

n
(
x n/2 − x − n/2

))
(4.6)

The partition function (4.5) includes the contribution of the brane–brane interactions across 
the brane-stacks. To remove this contribution, we take the normalization factor N branes to be,

N branes =
∞∏

I,J=1

1(
1 − v−1aI bJ

) , (4.7)

and obtain the partition function without the brane–brane interactions,

Z (−1, 0)
x y (a,b) =

∞∏
I=1

L
(
v−1bI , x

)
L(vaI , y)

, v =
(

x

y

)1/2

(4.8)

4.3.2. The unnormalized version of the computation
The above calculation started from the normalized vertex R Y1 Y2 Y3 (x, y). If we use the un-

normalized vertex R ′
Y1 Y2 Y3

(x, y) in (3.8), we get the unnormalized partition function with a 
single-brane insertion and two condensates,

Z ′ (−1, 0)
x y (a,b) = Mx y

∞∏
I=1

L
(
v−1bI , x

)
L(vaI , y)

(4.9)

Splitting the index I → (i, j), as in section 2.4, and setting,

aI → aij = q i xj− 1
2 , bI → bij = qi−1 t x yj− 3

2 , i, j = 1,2, . . . , (4.10)

we find,

Z ′ (−1, 0)
x y

(
aij , bij

) = Mx y

∞∏
i,j=1

L
(
v−1bij , x

)
L

(
vaij , y

) =
∞∏

i = 0

∞∏
m,n=1

1 − q itx myn−1

1 − q ix myn−1 = M
q t
x y

(4.11)

We conclude that the refined open-string partition function on C3 with two condensates, with 
moduli as in (4.10), agrees with the refined qt -MacMahon generating function M q t

x y in (2.10)
which gives the refined qt -deformed closed string partition function on C3. By taking the unre-
fined limit y → x in (4.11), we obtain,

Z ′ (−1, 0)
x x

(
aij , bij

) = Mx x

∞∏ L
(
bij , x

)
L

(
aij , x

) =
∞∏ ∞∏ (

1 − q itx m

1 − q ix m

)m

= M
q t
x x, (4.12)
i,j=1 i = 0 m = 1
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Fig. 5.1. The partition function with a single-brane insertion that has an open-string modulus U and framing factor f3, 
and two brane stacks that have open-string moduli a = (a1, a2, . . .), b = (b1, b2, . . .) and framing factors (f1, f2). By 
the inverse arrow in the preferred leg we assign the transpose Y ′

3 of the Young diagram Y 3, where we note the relation 
RY 1 Y 2 Y 3 (x, x) = CY 1 Y 2 Y ′

3
(x) in (3.5).

where the right hand side is the qt -MacMahon generating function (2.9) of Vuletić [58], and the 
left hand side can be derived using the original vertex C Y1 Y2 Y3 (x) as in [28].

4.3.3. Remark
The relations (4.11) and (4.12) agree with the result that conformal blocks computed using 

M q t
Y1 Y2 Y3

(x, y) are equal to those computed using R Y1 Y2 Y3 (x, y) up to a qt -dependent fac-
tor [18].

5. A qt-partition function with a single-brane insertion from brane condensates

We give an example of a refined qt -deformed partition function with a single-brane insertion 
that is obtained from its undeformed counterpart via brane condensation.

5.1. A partition function with two brane condensates and a single-brane insertion

Consider the same partition function as in section 4.3, but now with an additional single brane 
(on the preferred leg of the refined vertex that has no brane-stacks)9 with an open-string modulus 
U and a framing factor f3, and two brane stacks, as represented in Fig. 5.1,

Z
(f1, f2, f3)
x y (U ;a,b) =

N branes

∑
Y 1,Y 2,Y 3

⎛⎝ ∏
i=1,2,3

fYi (x, y)fi

⎞⎠R Y 1 Y 2 Y 3 (x, y) s Y 1 (a) s Y 2 (b) s Y ′
3
(U) (5.1)

Here N branes is the normalization factor introduced in (4.3) and determined in (4.7), and the 
Schur function s Y 3 (U) with a single variable U is non-zero only for Young diagrams with a 
single row y 1 = d . Choosing the framing factors as (f1, f2, f3) = (−1,0, f ), we get,

Z
(−1, 0, f )
x y (U ;a,b) =

9 Following [40,17,34,41], when a brane is inserted along the preferred leg of a refined topological vertex, we need 
to take the holonomy to be a Macdonald function rather than a Schur function. However, in the case of a single brane 
insertion, as discussed in the present work, a Macdonald function reduces to a Schur function, and we can take a Schur 
function as the holonomy.
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N branes

∑
Y 1,Y 2,Y 3,Y

f Y ′
3
(x, y)f x

1
2 ‖Y 3‖ 2

⎛⎝ ∏
�∈Y 3

1

1 − x A+
�y L �

⎞⎠ s Y 3 (−U) ×

v −|Y | s Y 1/Y

(
y −ρx −Y 3

)
s Y 1 (va) s Y ′

2/Y

(
x −ρy −Y ′

3

)
s Y 2

(
−v−1b

)
, (5.2)

where v = (x/y)1/2. Using the Cauchy identities in appendix A, we obtain,

Z
(−1, 0, f )
x y (U ;a,b) =N branes

⎛⎝ ∞∏
I,J=1

(
1 − v−1aI bJ

)⎞⎠( ∞∏
I=1

L
(
v−1bI , x

)
L(vaI , y)

)
×

∞∑
d = 0

x
1
2 (1−f ) d 2 (

(−1)f +1 y f/2 U
) d∏ d

m = 1 (1 − x m)

⎛⎝ ∞∏
I=1

(
1 − aI x

1
2

)
(

1 − aI x
1
2 −d

) d∏
m = 1

(
1 − bI x

m−1y − 1
2

)
(

1 − bI x m−1y
1
2

)
⎞⎠ , (5.3)

where L (a, x) is the quantum dilogarithm in (4.6).

5.1.1. Normalization
Dividing the partition function with two condensates and a single-brane insertion by its coun-

terpart that has no single-brane insertion (4.5), we obtain the normalized partition function,

Z
′ (−1, 0, f )
x y (U ;a,b) =

∞∑
d = 0

x
1
2 (1−f )d 2 (

(−1) f +1 y f/2 U
) d∏ d

m = 1 (1 − x m)

⎛⎝ ∞∏
I=1

(
1 − aI x

1
2

)
(

1 − aI x
1
2 −d

) d∏
m = 1

(
1 − bI x m−1 y− 1

2

)
(

1 − bI x m−1 y
1
2

)
⎞⎠ (5.4)

We now show that for a suitable choice of the moduli (a1, a2, . . .) and (b1, b2, . . .), the normal-
ized partition function (5.4) of a single-brane insertion and two condensates is the qt -deformation 
of the partition function on C 3 with a single-brane insertion (and no condensates). The latter 
without the qt -deformation is obtained from (5.4) by setting the open-string moduli of the con-
densates to zero,

Z
′ (−1, 0, f )
x y (U ;0,0) =

∞∑
d = 0

x
1
2 (1−f )d 2 (

(−1)f +1 y f/2 U
) d∏ d

m = 1 (1 − x m)
(5.5)

5.1.2. Remark
Using the specialization of the one-row Schur function,

s (d)

(
x ρ

) = x
1
2 d(d−1) s (

1 d
) (

x ρ
) = (−1) d x d 2/2∏ d

m = 1 (1 − x m)
, (5.6)

the partition function (5.5) is expressed in terms of Schur functions as,

Z
′ (−1, 0, f )
x y (U ;0,0) =

∑
Y

x − 1
2 f d 2

s Y

(
x ρ

)
s Y

(
(−1)f y

1
2 f U

)
=

∑
Y

x
1
2 (1−f )d 2

s Y ′
(
x ρ

)
s Y

(
(−1)f x − 1

2 y
1
2 f U

) (5.7)
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Using the Cauchy identities in appendix A, the special cases of (5.5) that correspond to f = 0, 1, 
satisfy,

Z ′ (−1, 0, 0)
x y (U ; 0, 0) =

(
Z ′ (−1, 0, 1)

x y (v U ; 0, 0)
)−1 = L(U,x) (5.8)

5.2. The qt -deformation of Z ′ (−1, 0, 1)
x y (U ; 0, 0)

The qt -partition function on C 3 with a single-brane insertion with an open-string modulus 
U , can be computed using the Macdonald vertex as,

Z
q t
x y (U) =

∑
Y

M q t
∅∅ Y (x, y) s Y ′ (U) =

∞∑
d = 0

( ∞∏
i = 0

d∏
m = 1

1 − q i t x m

1 − q i x m

)
U d (5.9)

Using Z ′ (−1, 0, 1)
x y

(
y − 1

2 U ; 0, 0
)

= Z
q q
x y (U), this qt -partition function can be considered as the 

qt -deformation of the undeformed partition function (5.5).

5.3. Identification

To identify the partition function in (5.4) with that in (5.9), we make the choice of moduli,

aI → a ′
ij = x d aij = q i xj− 1

2 +d, bI → b ′
ij = y bij = q i−1 t x yj− 1

2 , i, j = 1,2, . . .

(5.10)

instead of that in (4.10). In other words, in this case, the moduli of the condensates now depend on 
the length of the single-row Young diagram that labels the Schur function that characterizes the 
single-brane insertion, d . For this modified choice of moduli, the normalized partition function 
(5.4) with a single-brane insertion and two condensates becomes,

Z
′ (−1, 0, f )
x y

(
y − 1

2 f U ; a ′
ij , b ′

ij

)
=

∞∑
d = 0

x
1
2 (1−f )d 2

( ∞∏
i = 0

d∏
m = 1

1 − q i t x m

1 − q i x m

)(
(−1)f +1 U

) d

, (5.11)

and we find,

Z ′ (−1, 0, 1)
x y

(
y − 1

2 U ; a ′
ij , b ′

ij

)
=

∞∑
d = 0

( ∞∏
i = 0

d∏
m = 1

1 − q i t x m

1 − q i x m

)
U d = Z

q t
x y (U) (5.12)

We conclude that the refined qt -partition function with a single-brane insertion (and no con-
densates) coincides with its undeformed counterpart (with condensates) for a suitable choice 
of the framing factors, and of the open-string moduli of the condensates. Note that this refined 
qt -partition function does not depend on y, and coincides with the result computed by the origi-
nal vertex C Y 1 Y 2 Y 3 (x) in a similar way.

5.3.1. Remark
We interpret the change in the choice of the moduli of the condensates from that in (4.10) to 

that in (5.10) as a back-reaction of the condensates to the single-brane insertion.
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5.3.2. Remark
We have shown that the qt -deformed partition functions (2.10) and (5.9) are obtained, in the 

absence of a qt -deformation, from the partition functions (4.9) and (5.4), respectively. These 
results depend on the chosen specializations (4.10) and (5.10) that were made to obtain results 
that can be clearly interpreted. A study of the special significance (if any) of the choices that were 
made and the consequences of more general choices is beyond the scope of the present work.

6. qt-Deformations as geometric transitions

We discuss the relation of the brane condensates and geometric transitions in the context of 
unrefined objects.

6.1. Brane condensates and geometric transitions

Following Gomis and Okuda [21,22], brane insertions change the topology of a Calabi–Yau 
3-fold via a geometric transition [23], and a Calabi–Yau 3-fold with brane insertions is equivalent 
to a bubbling Calabi–Yau 3-fold of a more complicated topology, but without brane insertions. 
Correspondingly, an interpretation of the result in section 4.3 is that a condensate (which is a set 
of infinitely-many brane insertions) changes the topology of C3 via a geometric transition, and 
C3 with condensates is equivalent to another Calabi–Yau 3-fold of a more complicated geometry, 
but without condensates. To test this interpretation, we consider the qt -MacMahon generating 
function M q t

x x in (2.9), which, as we showed in section 4.3, is equal to the open-string partition 
on C3 with two condensates, and interpret it as an undeformed (no condensates) closed string 
partition function on a Calabi–Yau 3-fold with more complicated topology than C3.

6.2. Gopakumar–Vafa invariants

The partition function ZX (x, Q) of the string on a Calabi–Yau 3-fold X with (exponentiated) 
Kähler moduli Q, is the generating function of Gopakumar–Vafa invariants nβ,g ∈Z [24],

ZX (x, Q) = exp

⎛⎝ ∑
β ∈ H2(X,Z)

∞∑
g = 0

∞∑
n = 1

nβ, g

n

(
x n/2 − x − n/2

)2 g − 2
Q β n

⎞⎠ , (6.1)

where we have followed the notation used in [42]. Namely, if i = (1,2, . . . , b2), where b2 is 
the second Betti number of X, Si is a basis of the second homology group H2 (X, Z), and 
Qi are (exponentiated) Kähler parameters, then for any β = ∑

i ni[Si] ∈ H2 (X, Z), ni ∈ Z, 
Q β = ∏

i Q
ni

i . Comparing M q t
x x in (2.9) normalized by Mx x in (2.7) and the expansion in (6.1), 

we find that nβ, 0 = ± 1, nβ, g = 0, for g = 1, 2, . . ., which are the Gopakumar–Vafa invariants of 
a genus-0 manifold with infinitely-many homology 2-cycles β . From (4.10), the infinitely-many 
branes (in the unrefined case) have holonomies,

logaij = gs

(
i Nq − j + 1

2

)
, logbij = gs

(
(i − 1)Nq + Nt − j + 1

2

)
, (6.2)

where gs = − logx, gsNq = logq , gsNt = log t , and according to [21,22], after large Nq and Nt

limit, this yields a Calabi–Yau 3-fold via the bubbling. This agrees with our interpretation of the 
qt -deformation in terms of a geometric transition driven by a condensate, that is, the insertion of 
infinitely-many branes. In section 7, we identify this geometry with that of an infinite strip, but 
before we do that, we consider a simple, but important example.
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Fig. 6.1. The figure on the left represents the partition function with a single-brane insertion on C 3 . The figure on the 
right represents the closed string partition function on the resolved conifold. They are related by a geometric transition.

6.3. A simple example of a geometric transition

In the special case of q = 0, t �= 0, the qt -MacMahon generating function (2.9) is,

M 0 t
x x = Mx x

∞∏
m = 1

(
1 − t x m

)m (6.3)

This coincides with the undeformed closed string partition function on the resolved conifold, 
which is the total space of O(−1) ⊕O(−1) → P

1 with a single (exponentiated) Kähler modu-
lus t , in agreement with the interpretation of the t -deformation of the MacMahon’s generating 
function proposed in [55].10 From the perspective of this section, what we have is the simple 
geometric transition in Fig. 6.1.

7. qt-Quantum curves

We discuss the qt -quantum curves associated with the unrefined limit of the refined 
qt -deformed partition function with a single-brane insertion in section 5.

7.1. The quantum curve for Z q t (U)

7.1.1. Two operators
In the following, we need the operators Û and V̂ , where Û acts as multiplication by a variable 

U , and V̂ acts as,

V̂ := x U d
dU , (7.1)

and satisfy the x-Weyl relation,

V̂ Û = x Û V̂ (7.2)

7.1.2. The quantum curve
The operators Û and V̂ act on Z q t (U), the unrefined limit of the refined qt -partition function 

with a single-brane insertion (5.9), as,

Û Z q t (U) = U Z q t (U) , V̂ Z q t (U) = Z q t (xU) (7.3)

10 What we call a t -deformation is called a Q-deformation in [55].
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Fig. 7.1. The figure on the left describes the infinite chain of (−1,−1) curves with Kähler moduli t and qt−1, and a 
brane insertion with the open-string modulus U . The figure on the right describes the infinite chain of (−2,0) curves 
with Kähler moduli q , and a brane insertion with the open-string modulus U .

From (7.3), it follows that Z q t (U) satisfies the x-difference equation,

Â q t
(
Û , V̂

)
Z q t (U) :=

( ∞∏
i = 0

(
1 − q iV̂

)
− Û

∞∏
i = 0

(
1 − q itxV̂

))
Z q t (U) = 0, (7.4)

which is the quantum curve related to Z q t (U). As discussed below, (7.4) is a qt -version of the 
quantum curve of C 3 in string theory [1,16,15,26].

7.1.3. The classical limit of the quantum curve
Assuming that the asymptotic expansion of Z q t (U) in the classical limit, gs = − logx → 0, 

has the WKB-form,

Z q t (U) ∼ exp

⎛⎝− 1

gs

U∫
logV

(
U ′) dU ′

U ′

⎞⎠, (7.5)

then V (U) is a solution of the equation,

Aq t (U,V (U)) :=
∞∏

i = 0

(
1 − q iV (U)

)
− U

∞∏
i = 0

(
1 − q itV (U)

)
= 0, (7.6)

which is the classical curve related to Z q t (U). This curve can be identified with the mirror 
curve related to the infinite-strip geometry that consists of an infinite chain of (−1,−1)-curves, 
see the figure on the left in Fig. 7.1 [33] (see also [20]). This infinite-strip geometry agrees with 
the picture of condensates in sections 4, 5 and 6. In the remainder of this section, we consider a 
number of spacial cases of quantum curves.

7.2. Case 1

Choosing q = t , the partition function with a single-brane insertion (5.9) reduces to the unde-

formed partition function Z ′ (−1, 0, 1)
x x

(
x − 1

2 U ; 0, 0
)

with a single-brane insertion on C 3 in (5.5),
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Z q q (U) =
∞∑

d = 0

1∏ d
m = 1 (1 − x m)

U d = Z ′ (−1, 0, 1)
x x

(
x − 1

2 U ; 0, 0
)

= L
(
x− 1

2 U,x
)−1

,

(7.7)

and we find the quantum curve,(
1 − V̂ − Û

)
Z q q (U) = 0 (7.8)

The classical limit, gs → 0, of the quantum curve (7.8) gives a mirror curve of C 3 [3],

1 − U − V = 0 (7.9)

In other words, the qt -quantum curve (7.4) is a qt -version of the quantum curve (7.8), and (7.6)
is a qt -version of the mirror curve (7.9).

7.3. Case 2

Choosing q = 0 and t �= 0, the partition function with a single-brane insertion (5.9) reduces 
to,

Z 0 t (U) =
∞∑

d = 0

(
d∏

m = 1

1 − t x m

1 − x m

)
U d, (7.10)

and we find the t -version of the quantum curve of C 3,(
1 − V̂ − Û + t V̂ Û

)
Z 0 t (U) = 0 (7.11)

Note that Z 0 t (U) agrees with the undeformed partition function with a single-brane insertion, up 
to framing ambiguities, on the resolved conifold with the Kähler modulus t [55], and the classical 
limit, gs → 0, of the quantum curve (7.11) is the mirror curve of the resolved conifold [3],

1 − U − V + t U V = 0 (7.12)

In other words, the t -deformation of C 3 is the resolved conifold as discussed in section 6.3.

7.4. Case 3

Choosing q �= 0 and t = 0, the partition function with a single-brane insertion (5.9) reduces 
to,

Z q 0 (U) =
∞∑

d = 0

1∏∞
i = 0

∏ d
m = 1

(
1 − q i x m

) U d, (7.13)

and the q-version of the quantum curve of C 3 is,( ∞∏
i = 0

(
1 − q i V̂

)
− Û

)
Z q 0 (U) = 0 (7.14)

Z q 0 (U) agrees with the undeformed partition function with a single-brane insertion, up to 
framing ambiguities and a slight modification of the Kähler moduli, for the infinite chain of 
(−2,0)-curves,
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O (−2) ⊕ O (0) → P
1, (7.15)

with the same Kähler modulus q for all P1, see the figure on the right in Fig. 7.1 [33] (see also 
[20]). This infinite-strip geometry can be obtained from that in the figure on the left in Fig. 7.1
by suitable blow-downs.11 The classical limit, gs → 0, of the quantum curve (7.14) is the mirror 
curve of this strip geometry,

∞∏
i = 0

(
1 − q i V

)
− U = 0 (7.16)

We conclude that the q-deformation of C 3 is identified with the infinite-strip geometry in the 
figure on the right in Fig. 7.1, and that this infinite-strip geometry is the result of a geometric 
transition caused by the condensates.

8. Remarks

We collect a number of remarks, with particular attention to the interpretation of the various 
parameters that can appear in topological vertices, and to the relation with conformal field 
theory.

8.1. The AGT counterpart of brane condensates

We showed that the Macdonald-type qt -deformation introduced in [58], when applied to 
topological string partition functions [18], leads to qt -partition functions that are equivalent to 
partition functions without a qt -deformation but with condensates. These condensates are sur-
face operator condensates, and their counterparts on the conformal field theory side of the AGT 
correspondence are vertex operator condensates in 2D chiral conformal blocks. While this has 
not been studied in any detail, we expect that these vertex operator condensates play, at the level 
of conformal blocks, the same role that switching-on off-critical perturbations plays, at the level 
of the correlation functions [60], and that results in correlation functions in 2D off-critical inte-
grable models. This expectation coincides with the results in [11,12,47,48,51].12

8.2. Four parameters

If we start from a 4D instanton partition function in the absence of an �-background, or an 
AGT-equivalent conformal block in a Gaussian 2D conformal field theory with an integral central 
charge, there are four known ways to modify such a partition function, or conformal block, and 
each of these ways is characterized by a parameter.

8.2.1. The radius of the M-theory circle, R
Topological string partition functions are 5D objects, and the corresponding instanton parti-

tion functions live in R4 ×S1, where S1 is the M-theory circle. For small R, one can think of the 

11 Starting from the infinite-strip geometry on the left in Fig. 7.1, one can think of what happens in the limit t → 0
as follows. As t → 0, the Kähler parameters t vanish, while the Kähler parameters q/t diverge, and the correspond-
ing consecutive edges in the toric diagram combine in pairs to form a toric diagram that has edges with finite Kähler 
parameters q . The new infinite-strip geometry is on the right in Fig. 7.1.
12 See further discussion on section 8.2.1.
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5D instanton partition functions as R-deformations of their 4D limits, in the sense that switching 
on R gradually is equivalent to including the lighter Kaluza–Klein modes that are infinitely-
massive in the R → 0, and that acquire finite masses as R increases [32]. In 2D conformal field 
theory terms, switching R on is equivalent to deforming the chiral conformal blocks away from 
criticality to obtain expectation values of type-I vertex operators [14], in some off-critical inte-
grable statistical mechanical models [11,12,47,48,51].

8.2.2. The refinement parameter x/y

Starting with 4D instanton partition functions in the absence of an �-background, one can 
switch on Nekrasov’s �-deformation parameters, that is ε1 + ε2 �= 0. In the presence of a finite 
M-theory circle of radius R, setting x = e − R ε1 , and y = R R ε2 , this refinement is equivalent to 
setting x/y �= 1. In 2D conformal field theory terms, we modify the central charge of the confor-
mal field theory while preserving conformal invariance, and the underlying statistical mechanical 
model remains critical.

8.2.3. The Macdonald deformation parameter q/t

The q/t -deformation of [58,18] is yet another perturbation but, so far, no interpretation of this 
deformation is known. The purpose of this work is to offer one such interpretation.

8.2.4. The elliptic nome p
In [61,19], two versions were proposed of a topological vertex based on Saito’s elliptic 

deformation of the quantum toroidal algebra Uq

(̂̂gl1

)
[52–54]. In addition to the refinement 

parameters (x, y), and the Macdonald-type deformation parameters (q, t), this vertex depends 
on an elliptic nome parameter p and copies of the (q = t)-limit of this vertex can be glued to 
obtain elliptic conformal blocks. The latter are equal to the elliptic conformal blocks that were 
computed in [36,46] by gluing copies of the refined vertex of [35], then gluing pairs of external 
legs.

8.3. Three off-critical deformations

Aside from the refinement parameter x/y, which preserves criticality, it appears that we 
have three parameters that push the underlying 2D conformal blocks off-criticality, namely the 
M-theory circle radius R, the Macdonald parameter q/t , and the nome parameter p. One can 
show by explicit computation that these three parameters coexist and that their effects are differ-
ent, but it remains unclear how to interpret these effects in statistical mechanics terms.

8.4. BPS states in M-theory

Following [24,50], topological string partition functions on a Calabi–Yau 3-fold encode the 
degeneracies of the BPS states in M-theory compactified on the Calabi–Yau 3-fold, and the 
interpretation of the xy-refinement (of the refined topological vertex) was discussed in [30,25]. 
What is the interpretation of the qt-deformation (of the Macdonald vertex) in the context of 
M-theory? In section 6, we argued that a topological string partition function on a Calabi–Yau 
3-fold with finitely-many homology 2-cycles, in the presence of a qt -deformation is equal, after 
a geometric transition, to a corresponding topological string partition function in the absence of
a qt -deformation, on a Calabi–Yau 3-fold with infinitely-many homology 2-cycles. From this 
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correspondence, we expect that the qt -partition functions encode the degeneracies of BPS states 
in M-theory compactified on the Calabi–Yau 3-fold with infinitely-many homology 2-cycles. 
A more direct and perhaps deeper interpretation at the level of the original Calabi–Yau 3-fold 
with finitely-many homology 2-cycles is beyond the scope of the present work.

8.5. Summary

In [9,10,35], a refinement of the original topological vertex was obtained, and the physical 
meaning of this refinement was clear and related to switching-on a non-self-dual �-background. 
In [58], an independent Macdonald-type qt -deformation of MacMahon’s generating function of 
plane partitions was obtained, and was used in [18] to qt -deformed the refined topological ver-
tex, but no physical meaning of this deformation was proposed. In the present work, we have 
presented a number of simple but clear examples of qt -deformed topological string partition 
functions, and showed in sections 4 and 5 that, in these cases, the qt -deformation is equivalent 
to switching-on infinitely-many brane insertions, or equivalently brane condensates. In section 6, 
we showed that a Calabi–Yau 3-fold with a simple topology in the presence of these condensates 
is equivalent to another Calabi–Yau 3-fold with a more complicated topology without conden-
sates, and argued that the condensates cause the Calabi–Yau 3-fold on which the topological 
string theory is formulated to undergo a geometric transition that changes its topology. Finally, 
in section 7, we studied the qt -quantum curves related to the unrefined limit of the qt -partition 
functions studied in section 5, and showed that their classical limit does indeed correspond to un-
deformed partition functions on infinite-strip geometry, in agreement with the conclusion that the 
qt -deformation is equivalent to brane condensates that drive a geometric transition. We expect 
these conclusions to hold for qt -deformations of more complicated topological string partition 
functions.
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Appendix A. Useful Schur function identities

The skew Schur functions satisfy the identities,

s Y

(
x ρ

) = x
1
2 κ Y s Y ′

(
x ρ

)
, (A.1)

s Y

(
x −ρ

) = x
1
2

∥∥Y ′∥∥ 2 ∏
�∈Y

1

1 − x H �
, (A.2)

s Y/∅ (x) = s Y (x) , (A.3)

s Y /Y (x) = 0 for Y 1 �⊃ Y 2, (A.4)
1 2
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s Y 1/Y 2 (c x) = c |Y 1| − |Y 2| s Y 1/Y 2 (x) , c ∈C, (A.5)

s Y 1/Y 2

(
x ρ + Y

)
= (−1) |Y 1| − |Y 2| s Y ′

1/Y ′
2

(
x − ρ − Y

)
(A.6)

The Cauchy identities for the skew Schur functions are,∑
Y

s Y/Y 1 (x) s Y/Y 2 (y) =
∑
Y

s Y 2/Y (x) s Y 1/Y (y)
∏

i,j=1

(
1

1 − xiyj

)
, (A.7)

∑
Y

s Y/Y 1 (x) s Y ′/Y 2 (y) =
∑
Y

s Y ′
2/Y (x) s Y ′

1/Y ′ (y)
∏

i,j=1

(
1 + xiyj

)
(A.8)
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