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Abstract

Quantitative evaluations of the thermodynamic properties of materials – most notably their

stability, as measured by the free energy – must take into account the role of thermal and

zero-point energy fluctuations. While these effects can easily be estimated within a harmonic

approximation, corrections arising from the anharmonic nature of the interatomic potential

are often crucial and require computationally costly path integral simulations. Consequently,

different approximate frameworks for computing affordable estimates of the anharmonic free

energies have been developed over the years. Understanding which of the approximations

involved are justified for a given system, and therefore choosing the most suitable method,

is complicated by the lack of comparative benchmarks. To facilitate this choice we assess

the accuracy and efficiency of some of the most commonly used approximate methods – the

independent mode framework, the vibrational self-consistent field and self-consistent phonons

– by comparing the anharmonic correction to the Helmholtz free energy against reference

path integral calculations. These benchmarks are performed for a diverse set of systems,

ranging from simple quasi-harmonic solids to flexible molecular crystals with freely-rotating

units. Our results suggest that for simple solids such as allotropes of carbon these methods

yield results that are in excellent agreement with the reference calculations, at a considerably

lower computational cost. For more complex molecular systems such as polymorphs of ice and

paracetamol themethods do not consistently provide a reliable approximation of the anharmonic

correction. Despite substantial cancellation of errors when comparing the stability of different

phases, we do not observe a systematic improvement over the harmonic approximation even

for relative free-energies. Our results suggest that efforts towards obtaining computationally-

feasible anharmonic free-energies for flexible molecular solids should therefore be directed

towards reducing the expense of path integral methods.
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Introduction

The free energy is a key thermodynamic quantity which provides a measure of phase stability.

Knowledge of the free energy and its derivatives with respect to temperature and applied fields can,

in principle, be used to calculate every other thermodynamic observable. Reliable predictions of free

energies from atomistic simulations remain a challenge because they require an accurate description

of inter-atomic interactions, as well as proper treatment of the statistical mechanics of the nuclear

degrees of freedom. The availability of computational resources combined with developments

in electronic structure theory1–10 have made it possible to calculate the Born-Oppenheimer (BO)

surfaces that govern nuclear motion routinely and accurately. Consequently, the accuracy of free

energy calculations is often limited by the statistical sampling of the nuclear degrees of freedom.11

This is most commonly performed within a harmonic approximation, which is reasonable for

quasi-harmonic systems, such as metals at low temperatures,12 but fails close to the melting

temperature12,13 and in the presence of defects.14 The problem is exacerbated for the case of organic

solids, which require a proper description of anharmonicity arising from quantum nuclear motion

even at room temperature.15–18 This is similarly true for (i) systems containing light elements,

such as hydrogen,19–21 helium22 and water,23 ice,24–26 metal organic frameworks ,27,28 the record

high-Tc conventional superconductor SH3,29 (ii) systems of reduced effective dimensionality such

as graphene30,31 and (iii) molecular systems such as paracetamol.18

Within the BO approximation32 and given the BO potential, exact anharmonic free energies can

be calculated using approaches based on imaginary time path integral (PI) simulations.33,34 How-

ever, the required number of force evaluations, when combined with accurate electronic structure

calculations, render these approaches impractical for any but the smallest systems. Consequently, a

small zoo of frameworks has been developedwhich approximately account for quantum anharmonic

motion at a much lower computational cost. These invoke different approximations and exhibit

different scaling behaviour with system size.

In this work, we present an extensive benchmark of the accuracy of some of the most common

approximate techniques — such as the harmonic approximation (HAR),35 self-consistent phonons
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(SCP),36,37 the independent mode framework (IMF),38 and the vibrational self-consistent field

(VSCF)38 — against reference results obtained using PI thermodynamic integration (QTI).18,39

Computationally efficient algorithms for these methods have been developed and implemented in

the universal force engine i-PI.40 The accuracy and the computational efficiency of the methods is

tested on a set of solids ranging from from simple allotropes of carbon, anharmonic but relatively

rigid polymorphs of ice to polymorphs of paracetamol that contain (nearly) freely rotating internal

degrees of freedom.

Theory

To briefly outline the different free energy methods we discuss, we consider a three-dimensional

periodic system, whose minimum potential energy, “equilibrium” atomic positions form a Bravais

lattice, noting that finite and aperiodic systems simply represent the limit of infinite period. The

full ionic Hamiltonian of such a system is

Ĥ = −
∑
p,i

~2

2mi
∇2

rpi +V
({

rpi
})

(1)

where mi is the mass of nucleus i, V is the BO potential governing nuclear motion, and p and i

run over the Bravais points and the nuclei within a unit cell, respectively. In practice we perform

supercell simulations using periodic Born-vonKarman simulation cells h consisting of Na×Nb×Nc

replicas of the unit cell and with cell vectors NaRa, NbRb, and NcRc.

In the following we only consider Γ-point vibrational motion within the simulation cell. We

thereby sample those K-points within the first vibrational Brillouin Zone (BZ) of the underlying

unit cell, for which exp (−iK ·R) = 1 ∀ R = NaRa + NbRb + NcRc. The Hamiltonian of the

system is then uniquely defined given the positions of the N particles within the simulation cell h:

Ĥ = −~
2

2
∇rM−1∇T

r +V (r,h) (2)
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where (∇r,r) ≡ ({∇r1 , . . . ,∇r3N }, {r1, . . . ,r3N }) denotes themomenta and positions of the 3N degrees

of freedom associated with the N particles and M = Diag [m1, . . . ,m3N ]. The canonical partition

function of the system at inverse temperature β = (kBT)−1 and volumeV = Det [h] is defined as

Z(N ,V, β) = Tr
[
exp

(
−βĤ

)]
, (3)

where the trace can be performed over any complete basis set. In the thermodynamic limit, the

Helmholtz free energy of the system is

A(N ,V, β) = −β−1 ln Z(N ,V, β) . (4)

Direct computation of A is hindered by the computational complexity of solving the Schrödinger

equation associated with the Hamiltonian Ĥ, motivating approximate but computationally more

affordable approaches.

Harmonic Approximation

For small displacements, r−r0, of the particles from their equilibriumpositions, r0 ≡ argminr V(r,h),

the potential can be Taylor expanded. Truncation after the quadratic term amounts to the harmonic

approximation

Vhar (r,h) = V (0)+
1
2
(r− r0)K(r− r0)T (5)

with V (0) ≡ V(r0) and K = ∇2V(r,h)
��
r=r0 . The spectral decomposition of the Hessian,

K =M
1
2 UΩ2UT M

1
2 = ŨΩ2ŨT (6)

provides the unitary matrix U, the mass-scaled transformation matrix Ũ, and the diagonal matrix

containing the normalmode frequenciesΩ=Diag [ω1, . . . ,ω3N ]. After transformation to the normal
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mode coordinates ∇q ≡ ŨT∇r and q ≡ Ũ(r− r0), the Hamiltonian

Ĥhar = −~
2

2
∇2

q+
1
2

qΩ2qT +V(r0)

= V (0)+ Ĥcm+
d∑

i=1

[
−~

2

2
∇2

qi +
1
2
ω2

i q2
i

] (7)

separates into V (0), the centre of mass term Ĥcm, and a term describing a system of d = 3N − 3

independent simple harmonic oscillators (SHO) whose energies and wave functions for a given

excitation state si, Ehar
i,(si) = (si+1/2)~ωi and |φ(si)i 〉, are known analytically. In finite systems, global

rotations decouple analogously. The centre of mass contribution to the free energy Acm is that of a

free particle in a three dimensional box with a volume and shape equal to that of the Wigner-Seitz

cell of the system, while the contribution from the free rotations of finite systems can be computed

within the rigid rotor approximation.41

For the remaining system of harmonic oscillators, the d-body wave function of the global state

described by the d-tuple s = (s1, . . . , sd) is a Hartree product of the independent normal mode wave

functions:

|Ψhar
(s) 〉 =

d∏
i=1
⊗

��φi,(si)
〉

(8)

and the free energy is:

Ahar(N ,V, β) = V (0)+ Acm+
d∑

i=1

[
~ωi

2
+ β−1 ln

(
1− e−β~ωi

)]
. (9)

Independent Mode Framework

A first approximation to anharmonic quantum nuclear motion is detailed in the work of Monserrat

et al. 38 The potential is expanded in terms of the normal mode coordinates

V(q) = V0+
d∑
i

V (1)(qi)+
1
2

d∑
i

d∑
j,i

V (2)(qi, q j)+ · · · , (10)
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where

V (1)(qi) = V(0, . . . , qi, . . . ,0)−V (0) , (11)

is the (anharmonic) independent mode term and

V (2)(qi, q j) =V(0, . . . , qi, . . . , q j , . . . ,0)

−V (1)(qi)−V (1)(q j)−V (0) .
(12)

describes pairwise coupling between normal modes. This expansion can be continued for more

general n-body terms V (n). Since one starts with the harmonic approximation, in which the normal

modes are non-interacting, the hope is that higher-order terms decrease in size with increasing

n. The validity of this assumption is discussed in section . Truncation after V (1) amounts to the

independent mode approximation with the Hamiltonian

Ĥimf = V (0)+
d∑
i

[
−~

2

2
∇2

qi +V (1)(qi)
]

. (13)

Despite the presence of anharmonicity the normal modes remain independent and a Hartree product

analogous to Eq. (8) of anharmonic normal mode wave functions solves the Schrödinger equation

yielding the eigenvalues E imf
i,(si). The Helmholtz free energy is

Aimf(N ,V, β) = V (0)+ Acm−
d∑

i=1

[
β−1 ln

∑
si

exp
(
−βE imf

i,(si)

)]
. (14)

Vibrational Self-consistent Field

Retaining terms involving V (2) (and / or higher order terms) leads to coupling of the previously

independent normal modes and complicates the solution of the Schrödinger equation. Monserrat

et al. 38 solve the equation

[
−~

2

2
∇2

q+V(q)
] ���Ψvscf

(s)

〉
= Evscf
(s)

���Ψvscf
(s)

〉
(15)
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within the iterative Vibrational Self-Consistent Field (VSCF) approach, where V(q) represents the

truncated form of Eq. (10). Using a Hartree product trial wavefunction amounts to a mean-field

(MF) treatment and leads to the VSCF equations

[
−~

2

2
∇2

qi + V̄i(qi)
] ���ψvscf

i,(si)

〉
= Evscf

i

���ψvscf
i,(si)

〉
(16)

where V̄i(qi) is the mean-field potential experienced by normal mode i,

V̄i(qi) =
∑
j,i

ρ(q j) V(q) (17)

with

ρ(q j) =

∑
sj exp

(
−βEvscf

j,(sj )

) ���ψvscf
j,(sj )

〉 〈
ψvscf

j,(sj )

���∑
sj exp

(
−βEvscf

j,(sj )

) . (18)

To lowest order the VSCF free energy becomes

Avscf(N ,V, β) = V (0)+ Acm− β−1 ln
∑

s
exp

(
−β

∑
i

Evscf
i,(si)

)
. (19)

A perturbation theory can be constructed in terms of the (assumed to be small) difference between

the mapped out and the MF potential, V(q) −∑
i V̄i(qi), leading to a second-order MP2 correction

to the energy of state s given by

Evscf,(2)
(s) =

∑
s′,s

〈
Ψvscf
(s′)

���V(q)−∑
i V̄i(qi)

���Ψvscf
(s)

〉2

Evscf,(1)
s −Evscf,(1)

s′
(20)

and the approximate free energy

Amp2(N ,V, β) = Avscf(N ,V, β)− β−1 ln
∑

s
exp

(
−βEvscf,(2)

s

)
(21)
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Self-consistent Phonons

Another way of calculating an anharmonic correction on top of a harmonic approximation exploits

the Gibbs-Bogoliubov inequality,42 which states that the true free energy of a system is always

bounded from above by the free energy Ascp computed using a trial density matrix, ρ̂scp:

A < Ascp =
〈
Ĥ + β−1 ln ρ̂scp

〉
Ĥscp ; ρ̂scp =

exp
(
−βĤscp

)
Tr

[
exp

(
−βĤscp

)] (22)

where 〈�〉Ĥscp = Tr [ρscp �] is an ensemble average defined by the the trial density matrix ρ̂scp.

Within the self-consistent phonons method,43,44 ρ̂scp is the density matrix of a harmonic Hamilto-

nian with Hessian Kscp and equilibrium positions rscp:

ρ̂scp(r) = (2πD)− 1
2 exp

(
−1

2
(r− rscp)D−1(r− rscp)T

)
(23)

where, D = M−
1
2 UQ2UT M−

1
2 and Q is a diagonal matrix containing the root-mean-square (RMS)

displacements:36

q̃i
scp(T) =

√√
~

2ωscp
i

coth
~ω

scp
i

2kBT
(24)

of the normal modes. The lowest upper bound to the true free energy is obtained by minimizing

the free energy with respect to rscp and Kscp. This leads to the steady state conditions36

〈fr(r)〉Hscp = 0

〈K(r)〉Hscp = Kscp
(25)

where fr(r) correspond to the forces of the potential V(r). The solution is obtained in a self

consistent manner by starting with educated guesses of (rscp,Kscp) =
(
rscp0 ,Kscp

0

)
– which are in
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practice chosen to be those obtained within the harmonic approximation – and updating

Kscp
Ĥscp
l+1
= 〈K(r)〉Ĥscp

l

rscp
Ĥscp
l+1
= rscp

Ĥscp
l

+Kscp
Ĥscp
l+1

−1 〈fr〉Ĥscp
l

(26)

until convergence is achieved. Here Ĥscp
l denotes the the trial Hamiltonian of the l-th SCP iteration.

The resultant free energy at the l-th iteration is calculated as:

Ascp = Acm+

[
~ω

scp,l
i

2
+ β−1 ln

(
1− e−β~ω

scp,l
i

)]
+

〈
V(r)− 1

2
(r− rscpl )K

scp
l (r− rscpl )

T
〉

Ĥscp
l

.
(27)

Thermodynamic Integration

Within the thermodynamic integration scheme the free energy differences between two states is

calculated as the work to reversibly transform one state into the other.45–47 For solids this method

can be used to calculate the classical anharmonic correction to the harmonic Helmholtz free energy

as the reversible work done while “switching on" the anharmonic part of the potential.48,49 In the

Hamiltonian Hλ = (1− λ)Hhar + λ H the Kirkwoord coupling parameter λ smoothly switches the

potential from harmonic (λ = 0) to fully anharmonic (λ = 1). The free energy difference is obtained

by computing the integral of the thermodynamic force along the switching path:

∆Acl = Acl− Ahar
cl =

∫ 1

0
dλ

(
∂A
∂λ

)
=

∫ 1

0
dλ

〈
V −Vhar〉

Hλ , (28)

where, 〈�〉Hλ represents an average over the classical canonical ensemble sampled by the interme-

diate Hamiltonian and Ahar
cl is the classical harmonic free energy. Setting aside statistical errors,

∆Acl can be computed exactly by sampling the thermodynamic forces at multiple values of λ ∈ [0,1]

using molecular dynamics simulations. Alternatively, ∆Acl can also be calculated by performing a

11



thermodynamic integration from a low temperature harmonic solid50,51 as

∆Acl = −T
∫ T

0
dT̃

〈
V −V (0)− 3N

2 kBT̃
〉

T̃

T̃2
, (29)

where 〈�〉T̃ is an average over the NVT̃ ensemble.

To include quantum anharmonic corrections due to zero- point energy, tunnelling, etc., a second

thermodynamic integrationmust be performed to calculate thework required to reversibly transform

the particles from classical to quantum.52,53 This can be achieved by defining the Hamiltonian

Ĥg = −g ~2

2 ∇rM−1∇T
r +V (r,h), where g scales the mass of the particles.16,39,54 As g is varied from

1 to 0, the de Broglie wavelength of the particles smoothly drops from its physical value to zero,

yielding the desired transformation from quantum to classical particles. The corresponding free

energy difference is:

∆Aqn = Aqn− Acl =

∫ 1

0
dg g−1 〈

T̂ −Tcl
〉

Ĥg . (30)

where
〈
T̂
〉

Ĥg represents the average kinetic energy for the intermediate Hamiltonian and Tcl is the

classical kinetic energy which is independent of the mass of the system. Eq. (30) can be computed

exactly (modulo statistical error) by sampling the quantum canonical ensembles for g ∈ [0,1] using

PI molecular dynamics (PIMD). The difference between the classical and quantum kinetic energy

can be computed directly using a centroid-virial kinetic energy estimator.22,55 The total anharmonic

free energy is computed as:

A = Acm+ Ahar
cl +∆Acl+∆Aqn (31)

Implementation

In order to perform a direct comparison of the different approximate methods, IMF, VSCF, and

SCP were implemented within i-PI,40 an open-source python package for atomistic simulations,

which couples to a variety of density-functional-theory (DFT) and empirical and machine-learning

potential codes. The IMF, VSCF, and SCP implementations are schematically shown in Figs. 1 to
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3. The reference free energies can simply be evaluated on the basis of (PI)MD simulations and

require no dedicated implementation.

Independent Mode Framework

Figure 1: Schematic representation of the independent mode approximation module.

Given the transformation matrix, Ũ, and normal-mode frequencies from the harmonic approx-

imation, we perform single-point energy and force evaluations for equally spaced configurations

q j
i = j f q̃i(T) along each normal mode i where q̃i is the RMS displacement of the normal mode at

a target temperature T . We increase j by one at a time until the sampled energy V (1)(q j
i ) exceeds a

user-defined multiple nE of the thermal harmonic energy V (1)(q j
i ) > nE Ehar

i (T). This ensures that

the potential is always mapped out far enough into the classically forbidden region (but only as

far as necessary) to localize the nuclear density, at temperatures lower or equal than the chosen

target. The independent mode potential
∑

i V (1)(qi) is then reconstructed by fitting cubic splines

to {(q j
i ,V (1)(q j

i ))}. The corresponding independent mode Hamiltonian is expanded in a basis of

SHO eigenstates and diagonalized to evaluate the independent mode anharmonic Helmholtz free
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energy. The Helmholtz free energy is converged with respect to the density of the frozen-phonon

samples q j
i by repeatedly halving f and supplementing the already collected {(q j

i ,V (1)(q j
i ))} with

corresponding samples, until the required convergence threshold is met. For each f the Helmholtz

free energy is converged with respect to the size of the SHO basis.

Vibrational Self-Consistent Field

The implementation of theVSCF framework is split into twomodules: one formapping the potential

energy surface (PES), and one for solving the VSCF problem. The mapping strategy mirrors that

employed in the IMFmodule. In a first loop over normalmodes, we collect {( j f q̃i(T),V (1)( j f q̃i(T))}

until the sampled potential exceeds a user-defined multiple of the harmonic energy V (1)( j f q̃i(T)) >

nE Ehar
i (T), thereby also determining the sampling range for the coupling corrections. In a second

loop over n-tuples of normal modes, we then sample {((q j1
i1

, . . . , q jn
in
),V (n)(q j1

i1
, . . . , q jn

in
))} in a similar

fashion and extract the coupling corrections V (n)(qi1 , . . . , qin) using cubic spline fits. Currently,

sampling and fitting of n = 2,3 are implemented. The extracted coupling corrections are stored for

use within the VSCF solver module.

The module for solving the VSCF problem consists of two submodules, the first of which

performs the VSCF calculation itself. The thermal density determining the mean-field potentials

{V̄i(qi)} is initialised as the IMF thermal density. Within a VSCF step the MF independent

mode Hamiltonians for the given MF potentials are constructed, expanded in an SHO basis, and

diagonalized to determine the updated MF thermal vibrational density and the free energy Avscf.

To stabilize the VSCF convergence, 50% of the thermal density resulting from the previous VSCF

iteration are mixed in before the mean-field potentials {V̄i(qi)} are updated and the next VSCF step

is initiated. This is repeated until self-consistency has been reached as indicated by convergence of

the associated free energy Avscf to within the required threshold.

The second submodule allows the calculation of anMP2 correction on top of theMF eigenstates

and -energies by looping over pairs of eigenstates (s,s′) to evaluate the MP2 corrections in Eq. (20)

on a real-space grid of predefined density. Care is taken to only consider eigenstates of the

14



(a)

(b)

Figure 2: Schematic representation of the (a) VSCF mapper and (b) VSCF solver module.
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self-consistent MF description with eigenenergies Evscf
s within a set multiple of kBT .

Self-Consistent Phonons

Our implementation of the SCP method is schematically shown in Fig. 3. In the first loop over SCP

steps, we construct the trial density matrix ρ̂scp(r) using the mean position rscp and Hessian Kscp

obtained from the previous step. In the first step ρ̂scp(r) are those obtained within the harmonic

approximation. In the second loop we calculate the ensemble averages of the forces and the

Hessian, necessary to perform the optimization steps described in equation 26. These are realized

as Gaussian integrals and computed using MC importance sampling as

〈�〉Hscp =
1
Ns

Ns∑
i=1
�+O

(
1/

√
Ns

)
(32)

where Ns is the number of samples. Samples are generated by translating 3(N − 1)-tuples of

(quasi-)random numbers on the interval [0,1] into atomic displacements from the mean position

rscp using the inverse cumulative distribution function of ρscp(r) with a Beasley-Springer-Moro

algorithm.56,57 To speed up the convergence of the averages with respect to the number of samples,

we employ the following tricks:

1. For small system sizes, instead of drawing pseudo random numbers, we use low-discrepancy

quasi-random numbers – specifically Sobol sequences58 – as was done in the implementation

of Brown and coworkers.36 This leads to a more uniform sampling, so that error in equation

32 decays as O
(
ln(Ns)d/Ns

)
which becomes ∼ O (1/N) for low dimensional integrals.59

For large system sizes, we resort to pseudo random numbers as the performance of Sobol

sequences degrades.60 We use the FORTRAN implementation of Burkardt61 to generate

Sobol sequences.

2. As was done in the implementation of Errea and co-workers,62 we re-use samples from

previous SCP iterations via a reweighting scheme. Given the updated trial density ρ̂scpl at the

l-th SCF iteration, the reweighted average using the Ns samples {r}k drawn from the trial

16



density ρ̂scpk at the k-th SCP iteration is

〈�〉k
Ĥscp
l

=
1
Ns

∑
r∈{r}k

[
wk

l (r)�(r)
]

wk
l (r) ≡ ρ

scp
l (r)/ρ

scp
k (r)

(33)

We minimize the error in the global estimates 〈�〉l at the l-th SCP iteration by weighting

samples drawn in the k-th SCP iteration according to a “batch weight”

〈�〉Ĥscp
l
≈

l∑
k=1

[
W k 〈�〉kl

]
W k = Var

(
�k

)−1
[∑

k ′
Var

(
�k ′

)−1
]−1 (34)

where �k ≡ �({r}k) and the variance of a generic observable over samples from k-th SCP

iteration is63

Var
(
�k

)
=

(
Var (�)+

〈
−� lnwk

l

〉) exp (
Var

(
− lnwk

l

))
Ns

(35)

where wk
l ≡ wk

l

(
{r}k

)
, provided both � and − lnwk

l are normally distributed. Neglecting〈
−� lnwk

l

〉
renders the batch weights independent of the observable being considered

W k
l =

exp
(
−Var

(
lnwk

l

(
{r}k

) ))
∑

m exp
(
−Var

(
lnwm

l ({r}m)
)) (36)

and thereby suitable for both Hessians and forces.

3. Taking inspiration from stochastic over-relaxation algorithms,64,65 we always draw pairs of

configurations (qi,qi+1), where qi+1 = −qi, ensuring that forces from the symmetric part of

V cancel out exactly.

4. To compute the average Hessian we use an integral by parts, as suggested in reference,36 and

to further reduce the variance, we express it in terms of the difference between the harmonic
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and the anharmonic forces:

〈K (r)〉k
Ĥscp
l

= Kscp
l −D−1

〈[
r− rscpl

]T [
fr(r)− fscpr (r)

]〉k

Ĥscp
l

fscpr (r) ≡ −Kscp
l

(
r− rscpl

) (37)

Samples are drawn in sets of Ns until at least one component of the average forces (in terms

of normal mode coordinates) is statistically significant, as assessed by whether the average over

samples is larger than the standard deviation.

We only update rscp along those normal modes which exhibit a statistically significant net force,〈
fqi

〉
, where

〈
fq

〉
= ŨT 〈fr(r)〉. Direct application of Eq. 26 (b) in Cartesian space may lead to

instability due to the residual statistical errors. The optimization continues until no statistically

significant force component remain or the “batch weights” become smaller than a preset threshold,

at which point a new SCP iteration begins.

While all modes must be real upon convergence, insufficient statistics may lead to spurious

imaginary modes with ω2
i < 0 before convergence is achieved. Such imaginary modes are treated

by setting ω2
i = −ω2

i in the effective harmonic description.

Results and discussion

Wefirst describe the systems that have been studied and the potentials that have been used to describe

inter-particle interactions. We then investigate the scaling of the computational cost of the methods

with respect to the system size, before assessing their accuracy by systematically comparing the

approximate free energies to reference quantum thermodynamic integrations. We neglect the centre

of mass contribution to the free energy throughout as it cancels out when comparing methods. We

converge all results with respect to the sampling of the vibrational BZ by increasing the simulation

cell size, allowing us to compare the different methods in equivalent and physically meaningful

conditions.
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Figure 3: Schematic representation of the SCP module.

Systems and Computational Details

Three sets of materials are studied in this work in order of increasing complexity. As a first example

we consider the diamond66 and lonsdaleite67 allotropes of carbon. These differ only in the stacking

of hexagonal bilayers of tetrahedrally-coordinated carbon atoms. Their room temperature densities

are identical to within experimental error,66,67 and equal to 3.51g/cm3. We consider simulation

cells containing up to 64 atoms, starting from the two- and four-atom primitive cells for diamond

and lonsdaleite respectively. All the cells were designed to be as close to cubic as possible to render

the effective sampling of the vibrational BZ as uniform as possible. Inter-atomic interactions are

modelled using the Gaussian Approximation Potential (GAP) of Deringer and Csányi,68 which is

based on LDA DFT calculations for configurations from MD simulations of liquid and amorphous

carbon. For crystalline carbon (including diamond and graphite) it has been shown to reproduce

DFT energies and forces to within RMS errors of 2 meV/atom and 0.1 eV/Angstrom, respectively.

As a second benchmark, we discuss two proton-ordered polymorphs of ice, hexagonal (XIh)69,70

and cubic (XIc)71 ice. These become thermodynamically (meta-)stable below the experimental
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transition temperature for proton-disordering of 72K.69,70 For XIc we assume I41/amd symmetry,

noting that the true experimental structure of XIc is still under debate.71 In direct analogy to the

above carbon allotropes the oxygen sublattices ofXIh andXIc only differ in the stacking of bilayers of

tetrahedrally-coordinated oxygen atoms. In view of the absence of experimental data for sufficiently

pure XIc we take its density to be identical to that of XIh. We use the experimental density at

ambient pressure and 10K of 0.93g/cm3, noting that the thermal expansion of ice XIh between

10K and 70K is less than 0.5%. We use simulation cells containing up to 16 molecules to allow for

the possibility of coupling between pseudo-translations, which are not present at the Γ-point of the

unit cell, and librational, bending and O–H bond stretching modes. The interatomic interactions

are described using a Behler-Parinello type neural network (NN),72 based on B3LYP+D3 DFT

reference calculations for around 20,000 liquid water and hexagonal ice configurations from MD

and PIMD trajectories. This potential successfully reproduces the density of states, pair correlation

functions and energy fluctuations of B3LYP+D3 liquid water73 and has been used to study the

quantum kinetic energy, proton momentum distribution, and vibrational density of states of solid

and liquid water.74,75

Finally we analyze two polymorphs of paracetamol (N-acetyl-p-aminophenol), the monoclinic

form I76 and the orthorhombic form II.77 The two forms differ in the packing of hydrogen bonded

sheets of molecules – zig-zag for form I and almost planar for form II. We consider the conventional

unit cells containing four and eight formula units for forms I and II respectively, at room temperature

experimental densities. Inter-atomic interactions are described on the basis of the Merk Molecular

Force field also used in Ref.18 The accuracy parameter of the PPPM method78 used for calculating

electrostatic interactions was set to 10−6 fractional error in the individual force components, which

is smaller than the value usually required, to ensure a smooth PES. While this simple potential

contains harmonic terms for bonds and angles, it remains highly anharmonic as the dihedral

interaction term describes a (almost) free rotation of the methyl groups at room temperature.
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Computational cost

We define the computational cost of an approximate method (�) as the minimum number of energy

or force evaluations required to converge the per atom anharmomic free energy (A�−Ahar) to within

10% of the reference value for the largest system size. For the case of diamond, this tolerance is

equal to a stringent 0.2meV/atom. Fig. 4 shows how the cost of these methods and the reference

QTI scales with the number of atoms in the simulation cell.

The cost of IMF calculations depends linearly on the number of normal modes – which scales

linearly with system size – and the number of points sampled along each mode. In our imple-

mentation, the later remains weakly dependent on the potential due to the variable, dynamically

optimized sampling point density.

Analogously the VSCF approach exhibits a rough scaling behaviour of Nm where m is the

dimensionality of the potential surfaces that are being sampled. For the case of diamond we use

m = 2 and therefore observe a N2 dependence for large N . As the anharmonicity of the potential

for diamond is very much dependent on BZ sampling (see SI S.1.1), the cost for the primitive cell

is an outlier.

The cost for the SCP scheme, using pseudo random numbers, arises from the use ofMonte Carlo

importance sampling of the optimal effective harmonic description, which scales independently

of system size. The statistical reweighting scheme reduces the cost for small sizes but becomes

increasingly less beneficial as N is increased.63 The net result is a near linear scaling behaviour for

the system sizes that we have considered. We note that the use of Sobol sequences improves the

convergence of the MC integrals for small system sizes, and thereby reduces the cost of the SCP,

but leads to an unfavourable exponential scaling (see SI S1.3) for large N .

The reference calculations (QTI) were performed using a combination of a TI from the harmonic

reference to the anharmonic potential using classical MD and a quantum TI over mass using PIMD.

One should note that the variance of the integrands and the cost of performing one molecular

dynamics step is different for classical and quantum MD. Thus the minimum number of force

evaluations required to reduce the error to within the tolerance is an optimization problem detailed
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in the supporting information (see SI S4). Since both the integrals are effective energies and the

fluctuations of the potential energy in the canonical ensemble display a ∼ 1√
N

behaviour with

respect to its mean, QTI also displays a ∼ 1√
N
scaling behaviour.

In summary, in the limit of small system size, SCP and IMF display the most favourable scaling.

The reference technique QTI displays a O(1/
√

N) behaviour, making it the least expensive method

in the limit of large system size. For carbon, however, as well as for all the system discussed in this

work, we do not reach this limit, and QTI requires a substantially larger number of force evaluations

than either SCP or IMF. It is worth noting that at fixed cell size (unlike all other methods) IMF

and VSCF also provide the temperature dependence of the free energy without any additional force

evaluations.

In the current implementation, none of the above free energymethods exploit crystal symmetries.

Exploiting crystal symmetries in HAR, IMF and VSCF is straightforward and the reduction in

computational cost is simply related to the reduction in the number of independent normal modes.

Crystal symmetries can similarly, albeit not quite as trivially, be exploited in SCP62 and the other

methods. However, crystal symmetries do not affect the overall scaling behaviour with respect to

the number of degrees of freedom considered in a given calculation and have therefore not been

considered in the benchmarks for the computational cost.

Accuracy

We gauge the accuracy of the approximate methods by studying the error incurred in the absolute

anharmonic free energy, and in the free energy differences between two phases of the samematerial.

Allotropes of Carbon

Diamond and lonsdaleite are mildly anharmonic systems which serve as excellent starting points

for our study. We find that 32-atom simulation cells suffice to converge the free energy difference

between diamond and lonsdaleite, with respect to BZ sampling. A detailed description of the

workflow and system size convergence can be found in the SI (see S1.1).
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Figure 5: Panels (a), (b) and (c) respectively show the quantum anharmonic Helmholtz free
energies A�− Ahar of diamond and lonsdaleite allotropes of carbon, and their free energy difference
A�diam− A�lons at 300 K with IMF (pink), VSCF (green), SCP (blue), and QTI (black).

As shown in panels (a) and (b) of Fig. 5, the quantum anharmonic contribution to the free energy

of both diamond and lonsdaleite is approximately 2meV/atom. IMF,which considers anharmonicity

only along normal modes, underestimates the anharmonic free energy by around 1meV/atom.

Including pairwise mean-field coupling using VSCF leads to a large over correction that increases

the error to over 2meV/atom, while SCP (which also includes a mean-field anharmonic corrections

within Gaussian statistics) gives excellent results in comparison to the reference. This indicates

that the error in VSCF arises from the truncation of the potential.

We also study the accuracy of the methods in reproducing the free energy difference between

diamond and lonsdaleite, as shown in panel (c) of Fig. 5. Notably, the free energy contribution

from quantum anharmonic motion for the two allotropes is almost identical so that the anharmonic

free energy difference is almost identical to the harmonic free energy difference. Fortuitously IMF

and VSCF benefit from large amounts of error cancellation and reproduce the exact result within

the errors in the anharmonic free energies. Overall, all approximate methods perform reasonably

well at reproducing both the (very small) anharmonic corrections and the free energy difference.
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Figure 6: Panels (a), (b) and (c) respectively show the quantum anharmonic Helmholtz free energies
A�− Ahar of hexagonal and cubic polymorphs of ice XI, and their free energy difference A�XIh− A�XIc
at 70 K with IMF (pink), VSCF (green), SCP (blue) and QTI (black).

Polymorphs of Ice

Ice XIh and ice XIc are a more challenging test-case because of the simultaneous large anharmonic

free energy due to the pronounced anharmonicity of the O–H bond, the coupling between the high

and low frequency modes,79 and the small free energy difference between the hexagonal and cubic

polymorphs.25,26 Supercells containing 16 molecules of water suffice to converge the free energy

difference for all methods. Details of the calculations can be found in the SI (see S2.1)

As shown in panels (a) and (b) of Fig. 6, the overall contribution from quantum anharmonicity

to the free energy is around 25meV/molecule for both systems. Contrary to the case of carbon, we

find the approximate methods do not accurately reproduce the reference anharmonic free energy.

For instance, the IMF technique produces qualitatively incorrect anharmonic corrections. The

VSCF approach with pairwise couplings of normal modes provides the best approximation, but

remains off by over 10mev/molecule. The SCP scheme incurs errors of around 20meV/molecule.

In line with previous path integral calculations on hexagonal and cubic ice,26 we find the free

energy difference between the polymorphs of ice XI to be almost zero, as shown in panel (c) of

Fig. 6. IMF predicts the hexagonal form to be more stable by around 7meV/molecule. After

adding mean field coupling corrections within VSCF the margin of stability reduces to around

5meV/molecule. The SCP scheme benefits from cancellation of errors and fortuitously gives the
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correct result within 1mev/molecule.

Polymorphs of Paracetamol

As a final test, we consider forms 1 and 2 of crystalline paracetamol. These are more complex

molecular crystals, for which free energy calculations are complicated by the presence of quasi-free

rotations of the methyl groups. Reference free energies are obtained by classical TI with respect to

temperature51 from 10K to 300K followed by quantum TI over masses. To ensure that all of the

three degenerate rotational conformers of the paracetamol molecules, are explored evenly at low

temperatures, the classical TI is performed using replica exchange molecular dynamics.80 At 10K

classical anharmonicity is almost completely suppressed and the classical anharmonic free energy

can be accurately estimated using a harmonic approximation (accounting for the three degenerate

conformers). For reference, the free energies were recalculated using the TI route employed in

Ref.18 which proves to reproduce the same result.

As shown in Figs. 7 (a) and (b), the overall quantum anharmonic corrections for forms I

and II are around -58 and -46meV/molecule. The degeneracy of the conformers contributes the

dominant part, −kBT ln(3) ≈ −28meV / molecule. All approximate anharmonic methods produce

qualitatively incorrect free energy corrections due to anharmonicity. Furthermore, just as the

harmonic approximation, they are unable to account for the degeneracy of the three conformers,

that would have to be identified and corrected for manually.

As shown inFig. 7 (c), the free energy difference between the two forms is around 12meV/molecule.

The difference with respect to Ref.18 arises due to the use of slightly different lattice constants (see

SI S3.1.4), a more accurate path integral sampling technique73 and a finer PPPM mesh for the

Ewald summation of electrostatics. As in the cases of carbon and ice, the IMF and SCP benefit

from significant error cancellation. The former correctly predicts form II to be more stable but

performs worse than a harmonic approximation in getting the correct magnitude. The latter also

predicts the correct sign but fortuitously estimates the magnitude to within 5 mev/molecule of the

exact result. VSCF doesn’t benefit from error cancellation to the same extent and overestimates the
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stability of form I by over 80meV/molecule.
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Figure 7: Panels (a), (b) and (c) respectively show the quantum anharmonic Helmholtz free
energies A� − Ahar of form I and form II polymorphs of crystalline paracetamol, and their free
energy difference A�I − A�II at 300 K with IMF (pink), VSCF (green), SCP (blue) and QTI (black).

The failure of normal mode based approaches for paracetamol is unsurprising, as the description

of quasi-free rotations requires curvilinear coordinates. In paracetamol the potential energy barrier

for rotational motion correspond to approximately 200KkB implies (even classically) quasi-free

rotation of the methyl groups at room temperature. For the force field used to describe paraceta-

mol, the potential governing rotation and breathing of methyl groups can be extracted explicitly

(neglecting coupling to the remainder of the molecule) and takes the simple form

V(r ,θ) = 1
2

k (r − r0)2+Vθ (1− cos (3θ)) (38)

where k = 53.114 eV/Å2, r0 = 1.09Å, and Vθ = 8.54meV. This allows us to study the failure of the

above approximate free energy methods with the activation of angular motion on the basis of a

simple toy model,

Ĥ = − ~
2

2µ

[
∂2

∂r2 +
1
r2

∂2

∂θ2

]
+V(r ,θ) (39)

which can easily be studied over a range of temperatures. The exact solution for this simple

model is obtained by exact diagonalization (ED) of the Hamiltonian matrix on a regular, square

two dimensional real space grid of 256× 256 points spanning from (x, y) = (−1.5r0,−1.5r0) to
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(x, y) = (1.5r0,1.5r0). We find that the reference free energy is converged to within 0.2meV.

The temperature dependence of the free energy of the model system is shown in Fig. 8. Since

none of the approximate methods are able to account for the three fold degeneracy of the system,

we remove −kBT ln3 from the exact results and study the anharmonic free energy of one of the

minima. The results show that above around 75K the VSCF approximation becomes increasingly

inaccurate as the amplitude of angular motion of methyl groups increases and the vibrational

density delocalizes over the three equivalent potential energy minima (see Fig. 8). Furthermore,

the harmonic, IMF, and SCP approximations severely overestimate of the free energy throughout.

For the harmonic and IMF approximation this can simply be explained by the fact that linear

coordinates mix angular and much higher frequency radial motion, so that the effective “angular

mode” is stiffened substantially, while the radial mode retains the true harmonic frequency.

Conclusions

Diamond and lonsdaleite, as examples of simple quasi-harmonic solids, highlight the utility of

approximate free energy methods. While the accuracy of the approximate Helmholtz free energies

varies, all approaches achieve sub-2meV/atom accuracy and, more importantly, consistently yield

a systematic improvement over the harmonic approximation at a substantially lower computational

cost than the reference QTI. On the other hand, ice and paracetamol, as examples of more com-

plex, molecular crystals, highlight the limitations of approximate techniques. The free energies

of the molecular crystals are substantially overestimated due to the inherent limitations of normal

modes based descriptions in the presence of large-amplitude curvilinear librational or quasi-free

rotational motion. The simple model description of the rotation of the methyl group in paraceta-

mol demonstrates that SCP, IMF and VSCF artificially stiffen the rotational modes, leading to an

overestimation of the total free energy. The failure of these methods for ice can also be understood

along the same lines: at larger displacements along the normal modes initially corresponding to

librational motion, O–H bonds are stretched and bent, leading to an overestimation of the effective
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frequency of librational motion and consequently the free energy. This is confirmed by the blue

shifts of the librational modes observed in the case of IMF and SCP with respect to the harmonic

approximation (see SI S2.3). Consequently, these methods do not consistently yield systematic

improvements over the harmonic approximation for free energies of solids that possess high ampli-

tude librational or quasi-rotational modes. However, we expect these techniques to perform well for

atomic and ionic solids, where the point-like nature of the atomic/ionic building blocks suppresses

large-amplitude curvilinear motion. It is worth mentioning that (in suitable applications) normal

modes based approximate methods lend themselves to identifying the atomistic/structural origins

of anharmonicity and facilitate analyses of, for example, spectral properties of strongly anharmonic

phonons, as probed by inelastic scattering processes, the formation charge-density-waves, and

ferroelectric instabilities.81

We also find that the approximate methods methods benefit from error cancellation, leading

to errors in free energy differences that are consistently smaller than the errors in the absolute

Helmholtz free energies. However, it is worth noting that we have compared systems with very

similar local environments. In general such beneficial cancellation of errors is not guaranteed. We

demonstrate this in section S5 of the SI by studying the free energy of a few high density phases of

ice (II, IX and XV) relative to that of XIh. As shown in in Fig. S5, SCP – that benefits from error

cancellation when comparing the cubic and hexagonal forms of ice – does not yield a qualitatively

correct order of relative free energies.

As the approximate results can vary from almost quantitatively accurate to qualitatively incorrect

results, QTI is the only free energy methods among those considered in this work that provides

reliable anharmonic free energies for large and complex organic solids. Given that it displays a

O(1/
√

N) computational cost, it may furthermore require comparable or fewer force evaluations

than a SCP or VSCF calculation for systems of interest, in particular when considering biological

or pharmaceutical compounds that involve large unit cells with flexible molecular units. It is further

worth noting that QTI (and other statistical sampling methods) are substantially less susceptible to

noise in the underlying PES than the harmonic approximation, IMF and VSCF.While random noise
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largely cancels out in the ensemble averages calculated in statistical sampling methods, especially

in combination with stochastic thermostats,82,83 the harmonic approximation relies on the ability

to determine a meaningful dynamical matrix and thus a differentiable PES, and the IMF and VSCF

require an interpolatable PES. This is demonstrated by performing the Ewald summation in the

description of paracetamol using a coarser PPPM mesh, which leads to discontinuities in the PES

of 0.50 meV (see SI S6). While the resultant QTI and SCP free energies remain largely unaffected,

the free energy estimates obtained from the analytic methods – at least in the implementation we

discuss here – depend heavily on the size of the finite displacements underlying the mapping of the

PES and the VSCF in particular eventually fails to converge altogether.

Efforts towards obtaining a computationally feasible anharmonic free energy should therefore

be channelled towards reducing the cost of performing a QTI or, at least, a classical-nuclei TI with

nuclear quantum contributions evaluated at a more approximate level.18,28 This includes stream-

lining hierarchical frameworks84 that perform the full free energy calculations using inexpensive

bespoke potentials85 or cheaper basis sets,12 reducing the cost to that of reversibly switching an ab

initio potential. Machine learning potentials offer exceptional promise to provide ab-initio-quality

potential energy surfaces to evaluate the anharmonic free energy,26 and approximate methods

could also constitute an effective sampling approach to generate data to train and validate such ML

potentials.
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