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Abstract
Vibrational properties ofmolecular crystals are constantly used as structuralfingerprints, in order to
identify both the chemical nature and the structural arrangement ofmolecules. The simulation of
these properties is typically very costly, especially when dealingwith response properties ofmaterials
to e.g. electric fields, which require a good description of the perturbed electronic density. In this
work, we useGaussian process regression (GPR) to predict the static polarizability and dielectric
susceptibility ofmolecules andmolecular crystals.We combine this frameworkwith ab initio
molecular dynamics to predict their anharmonic vibrational Raman spectra.We stress the importance
of data representation, symmetry, and locality, by comparing the performance of different flavors of
GPR. In particular, we show the advantages of using a recently developed symmetry-adapted version
ofGPR. As an examplary application, we choose Paracetamol as an isolatedmolecule and in different
crystal forms.We obtain accurate vibrational Raman spectra in all cases with fewer than 1000 training
points, and obtain improvements when using aGPR trained on themolecularmonomer as a baseline
for the crystal GPRmodels. Finally, we show that ourmethodology is transferable across polymorphic
forms: we can train themodel on data for one crystal structure, and still be able to accurately predict
the spectrum for a second polymorph. This procedure provides an independent route to access
electronic structure properties when performing force-evaluations on empirical force-fields or
machine-learned potential energy surfaces.

1. Introduction

Machine-learning (ML)models are becoming increasingly popular in the field of atomistic simulations,
providing away to obtain data-driven physical insights [1–3] and reduce the cost of simulations [4, 5].Most
efforts have been concentrated into predicting total energies and forces from atomic coordinates [5–13], which
aremost often the largest cost in afirst-principles simulation.More recently,machine-learningmodels have
been also applied to the prediction of response properties ofmolecules [14–18].When dealingwith the response
of amaterial to an applied field, the cost of afirst-principles calculation is often larger than that of force
evaluation. This is thus an areawhere one can also take advantage of supervised learning techniques in order to
reduce the cost ab initio simulations thatmake use of such response properties.

Vibrational Raman spectra are a good example of properties that requires the knowledge of the response of
the system to electric field perturbations. The Raman signal is very useful tomonitor phase transitions, as well as
for the identification of global and local structural patterns [19–21]. Any technique used to calculate this
property requires the calculation of several instances of the polarizability tensor (inmolecules) or the dielectric
susceptibility (in crystals). Previously, some of the present authors have shown that anharmonic vibrational
Raman spectra calculated through a time-correlation formalism can be a powerful tool to identify structural
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fingerprints inmolecular crystals [22, 23].Within this formalism, it is necessary to calculate ab initiomolecular
dynamics trajectories and compute the response quantities for subsequent atomic configuration, employing, for
instance, density-functional perturbation theory (DFPT) [22, 24–27]. These calculations are computationally
demanding, not only because of the tens of thousands of force evaluations that need to be performed to provide
sufficient statistical sampling, but also because eachDFPT calculation is typically four timesmore expensive
than a force evaluation [23]5. Furthermore, while there are several empirical potentials available that can be used
to simulate the dynamics ofmolecular crystals [28], empiricalmodels of the polarizability tensors are rare and
poorly transferable [29].

Here we investigate frameworks to obtain accurate predictions of the dielectric response properties for a
number of consecutivemolecular dynamics (MD) configurations, that are necessary to converge simulated
vibrational Raman spectra ofmolecules andmolecular crystals.We compare differentflavors of Gaussian
process regression (GPR), which is amethod that has already been proven to be efficient in predicting dielectric
response properties [14, 15, 17]. In particular, we compare standardGPR schemeswith symmetry-adapted (SA)-
GPR [30], which is advantageouswhen describing tensorial quantities. For the former, we exploit the internal
structural rigidity of the system in order tomodel each individual component of the polarizability tensor,
therefore remapping the tensor learning problemontomany separate scalar regression tasks. For the latter, we
employ a SA representation of the system in order to learn the irreducible spherical components of the tensor in
a covariant fashion. As a trial systemwe consider the Paracetamolmolecule and form I and form II of the
Paracetamol crystal, represented infigure 1. Aswe demonstrate below, SA-GPR comes out as themethodology
with the best performance.When predicting the Raman spectra of crystals, bothmethods can benefit fromusing
aGPR trained on themonomer as a baseline.We alsofind that ourmodel is transferable between different
polymorphic forms. Given that empirical andmachine-learned potential energy surfaces are becomingmore
accurate formolecular crystals, themethodology proposed here can be combined in a straightforwardmanner
to such potentials, giving access to the electronic polarization and polarizability of crystals.

In the following, section 2 introduces the generalmachinery describingGPR and SA-GPR, aswell as the
different representations used tomap structures to the inputs of theML scheme. In section 3, we present
applications on the Paracetamolmolecule andmonoclinic form I crystal, showing for the latter howourmodels
can be refined by the inclusion ofmolecular polarizability tensors. Finally, we illustrate in section 4 the
transferability of the SA-GPRmethod, by predicting theRaman spectrumof the orthorhombic form II crystal
without prior knowledge of the corresponding values of the dielectric response.

2. Theory

2.1. Vibrational Raman spectra
The central quantity needed for simulating vibrational Raman spectra is the electronic static polarizability
tensora. For simplicity, wewill refer to the polarizability tensor for all the rest of the paper, but one should
keep inmind that for solids the quantity of interest is rather the electric susceptibility tensor of the system.

As discussed in [23] and others [31, 32], the vibrational Raman spectrum can be calculated using several
approximations, the simplest of which is the harmonic approximation. The framework developed in this paper
can be applied to the harmonic case, as shown in the supplemental information, figure S8 available online at
stacks.iop.org/NJP/21/105001/mmedia, butwewill here focus on themore challenging task of applying it to

Figure 1.The systems considered in this work for the prediction of vibrational Raman spectra. (a) Isolated Paracetamolmolecule.
(b)Paracetamol crystal form I (monoclinic). (c)Paracetamol crystal form II (orthorhombic). Atomic color code: hydrogenwhite,
nitrogen blue, carbon grey, oxygen red. The unit cell is drawn in black.
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This number is clearly system- and settings-dependent, and simply represents the estimate reported in [23].
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the linear-response time-correlation formalism,which fully takes into account the anharmonicity of thepotential
energy surface. In this formalism, vibrationalRaman intensities can beobtained from the Fourier transformof the
static polarizability autocorrelation function [33] at thermodynamic equilibrium. Inparticular, the so-called
powder spectrum intensity is given by a combinationof the anisotropic and isotropic contributions as
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where n is the number of atoms in the system, the brackets á ñ· denote an ensemble average and Tr represents the
trace. ā and ã are, respectively, the isotropic and anisotropic parts of the polarizability tensor, defined as follows
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In this paper, we do not address the problemof obtaining forces, which are necessary to calculate a full
Raman spectrum from eithermolecular dynamics trajectories or in the harmonic approximation. Instead, we
focus on predicting only the Raman intensities and combine themwith pre-computed ab initio trajectories and
displacements.

2.2. Component-wise GPR
GPR is awell-establishedmethod based on a kernel function thatmeasures the similarity between structures. It
is formally equivalent to kernel-ridge regression, towhich it differsmostly by the fact that GPR frames the
construction of themodel in a Bayesian language. In this sense, the kernel represents the prior distribution for
the statistical correlations of the property we aim to predict. In the usual supervised-learning framework, a
dataset of structures (i.e. atomic coordinates) and associated polarizabilities is used to train themodel. Once the
training is complete, themodel is tested on a different set of configurations forwhich the polarizability is in
principle not known. If it is possible to align the system to a reference structure, a straightforwardway to apply
this procedure to tensorial quantities is to learn each component of the polarizability tensor separately. In
particular, aGPRprediction of each individual polarizability componentαγ δ reads
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whereN is the number of configurations included in the training set, γ and δ represent Cartesian coordinates,
wj
gd are the regressionweights that need to be determined from the training data for each component, and k is the

kernel that couples the target system, with the training structure j . The quantity aiagd¯ is the average (over the
training set) of the γδ polarizability component computed from an ab initiomethod, which effectively allows the
training to focus on thefluctuation of the property with respect to a known baseline value.

The kernel enteringGPR is based on aGaussian similaritymeasure between structures , given by
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withσ being a hyperparameter that controls themagnitude of the correlation between training points.We
optimize the value ofσ—aswell as that of other hyperparameters entering the definition of the features or the
kernel—by cross-validation (CV), even though in aGPR framework hyperparameters are often determined by
likelihoodmaximization (see SI, section 1 for further details). u is a vector that has the role ofmapping the
atomic coordinates of the structure to a given representation of dimensionM.

The regressionweights wgd are obtained byminimizing a loss function regularized by an L2-norm [34] over
the training set. This procedure leads to the following expression

w , 51 ah= + Dgd
gd

-( ) · ( )

where  is the identitymatrix,  is theN×N kernelmatrix associatedwith the reference structures, such that
k i j N, , , 1, ,ij i j  = = ¼( ) , and η is the regularization parameter which controls towhich extent the

fitted data can deviate from the training points. The quantity aD gd represents the vector containing allN entries

in the training set of j
j j

ai ai a a aD = -gd gd gd( ) ( ) ¯ .
The efficiency of anyGPRmodel strongly depends on the quality of the representation that is encoded in

u ( ). For a representation to be efficient, it should contain the least possible number of elements to express the
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identity of a given structure, while avoiding redundant information. Among the vast choice of representations
one could conceive, wewill employ two that are very similar in spirit. First, wewill consider a representation of
each structure in terms of its atomic density (AD), explicitly evaluated on a grid. This AD is combinedwith the
GPR framework, andwith an alignment procedure thatmakes it possible to learn tensor components
independently. Second, wewill consider a SA-GPR scheme [30], whose application is summarized in the next
section. The framework is based onλ-SOAP kernels, that are built by covariant integration of the atomdensity
[35], and therefore automatically incorporatemolecular symmetries.

Atomic-density grids consist of a conceptually simple representation. The construction introduces a
Cartesian reference frame centered on the systemunder study, and defines a three-dimensional grid around it.
For each grid-point r, we calculate theADdistribution, defined as
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r r
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where s identifies a specific atom type, ri are the nuclear positions and γs is an adjustable parameter. The feature
vector is given by u s Nr , 1, ,s s r= = ¼( ) ( ( )) , whereNs is the number of different atomic species. For the
applications using the standardGPR scheme shown in this paper, we have chosen the same γs=0.5Å for all
species. This choice was based on the fact that we observed veryminute changes when employing different values
of γs for different species, but this observation is likely to be system- andmethod- dependent.We have used a
grid of evenly-spaced points spanning themaximal extension of the system, althoughwe note thatmore refined
methods could be utilized to define physically-motivated grid points, based on the possible directions of
vibrations of atomic species [36]. Such a representation is illustrated infigure 2, which shows a two-dimensional
cut of the density distribution associatedwith a paracetamolmolecule. Note that one could use a combination of
different descriptors instead of a single one, whose elements would be concatenated to form the feature vector u.

Asmentioned above, the components of the polarizability tensor are not invariant to rotations inCartesian
space, and therefore a Cartesian space representation of this quantity, like the atomic densities, requires an
alignment to a reference structure. To do so, we have used theKabsch algorithm considering only heavy atoms
[37, 38].We note that this alignment procedure is not applicable to all systems, in particular to very flexible
molecules. For simple relatively rigidmolecules, it is known toworkwell, as has been shownpreviously for the
case of hyperpolarizabilities of watermolecules [15].Wewill showbelow that even for amore complex and
relatively flexiblemolecule like paracetamol, this representation still yields accurate predictions.

2.3. SA-GPRwithλ-SOAPKernels
SA-GPR [30] represents a generalization of theGPR formalism,where the tensorial nature of the target property,
togetherwith its covariant 3D transformations, are naturally incorporatedwithin the regression algorithm [12].
This technique removes the need of often arbitrary alignment procedures of the systems (like the one described
above) in order to predict tensorial quantities of any rank. As such, themodel focuses only on the portion of
variability of the tensor connectedwith an internal structural distortion of themolecular geometry, greatly
improving the regression performances. Furthermore, by effectively learning an atom-centeredmodel of the

Figure 2. 2D view of the nuclear density distribution of the Paracetamolmolecule for a given structure. Each grid point is represented
by a colored sphere. Blue (red) indicates a low (high) density.
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polarizability, a SA-GPR schememakes it possible to buildmodels that are transferable between different
molecules [17], althoughwe did not exploit this possibility in the present work.

A simplification of the learning problem can be obtained if the target property isfirst decomposed in its
irreducible spherical tensor components. The static polarizability (or the static susceptibility), in particular,
being a symmetric rank-2 tensor, can be formally decomposed into an isotropic contribution that transforms as
a spherical harmonic of angularmomentumλ=0, and an anisotropic contribution that transforms as a
spherical harmonic of angularmomentumλ=2. The former contribution, 0

0a aµ ¯( ) , being directly
proportional to the trace of the tensor (which is rotationally and translationally invariant), can be learned in the
usualmanner by a standardGPR. The tensorial nature of the polarizability is contained in theλ=2 term,

, , , ,2
2

2
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2
0
2
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2

2
2a a a a a a= - -( )( ) ( ) ( ) ( ) ( ) ( ) , which is related to the anisotropic part of the Cartesiana-tensor ã of

equation (2) by a linear transformation.Within SA-GPR, the prediction of this contribution is carried out by
making use of a tensorial kernel function k ,2  ( )( ) , which is amatrix of size 5×5, that describes at the same
time the structural similarity betweenmolecular configurations and the tensorial geometric relationship of
orderλ=2 between these configurations, as detailed in [30]. In general terms, such a kernel can be thought of
as a generalization of a scalar kernel function such as the one introduced in equation (4), whichmakes use of the
following covariant integration

k DR R R, d , , 72 2   ò k=( ) ˆ ( ˆ) ( ˆ ) ( )( ) ( )

where R̂ represents the rotation operator and D R2 ( ˆ)( ) the associatedWigner-Dmatrix which has the role of
expressing the rotation ofλ=2 spherical harmonics. In this definition, the scalar kernel , k( ) only needs to
be invariant under rigid translations and rotations of the laboratory reference framewith respect towhich both
 and  are defined. In the present work, , k( ) is given by a superposition of atom-centeredGaussian
densities, equivalent to the one used in the popular smooth overlap of atomic position (SOAP) kernel [39]. As
such, the kernel of equation (7) represents the tensorial generalization of SOAP, usually calledλ-SOAP, which
recovers the scalar case ofλ=0 as a special limit [16].

Formally, a covariantλ=2 prediction performedwith a SA kernel function of the same order reads
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where i and j run over theN reference configurations used to train the regressionmodel and η is the
regularization parameter. The set of tensorial regressionweights wi

2{ }( ) are determined by inverting the
(5×N)2 kernelmatrix 2( ) associatedwith the training structures, and projecting it on the vector of reference
tensors j

2a{ }( ) . In doing so, the statistical average of j
2a{ }( ) over the training set is assumed to be zero by

symmetry. As such, no baseline of the anisotropic part of the polarizability is adoptedwhen doing the regression.

2.4. Errors and uncertainty estimations
In order to gauge the accuracy of themachine-learned polarizability components, we calculate the rootmean
square error normalized by the standard deviation (STD) of the set wewant to evaluate the error on
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where j represents the jth configuration,N is the amount of points in the data set we consider, and the bar here
denotes the average of the polarizability component over the dataset of interest.

Whenever the referenceproperties of the testingdata are not available, one cannotmakeuseof equation (9) to
evaluate the errorof thepredictedpolarizabilities. In these circumstances, one typically needs to estimate the error
madeon thepredictedproperties bymakinguse of some aprioriprobabilistic criteria. In theparticular case ofGPR,
the expected error associatedwith a testing structure, canbe computed as k k I k I J, , ,IJ

1   e = - å -( ) ( ) ( ) ( )
k J , ( ), where I and J runover the training structures. As detailed in [40], this strategy is however not verypractical
because of its computational expense, so that other kindofmethods such as bootstrappingor subsampling can rather
beused to estimate theprediction errors. In addition, in theparticular case of thepresentworkonewould like to
propagate the error that occurs in thepredictionofa to theRaman spectrum.While this errorpropagationwouldbe
difficult to carry out on topof theGPR intrinsic covariance, it comesnaturally fromabootstrappingor subsampling
scheme.

In this work, NRS subselections of the training dataset are considered to generate an ensemble of predictions
for the polarizability. From these, NRS Raman spectra are computed by Fourier transforming the time series of
eachmodel in the ensemble. Finally, the average and the STDof the predicted spectra over them subselections
give the final Raman spectrumprediction and the propagated estimated error respectively. The downside of this
approach is that thismodel works under the assumption that the training data corresponds to independent
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identically distributed samples. This is of course not true in general, so that one needs to correct themodel to
take into account for the underlying correlations. Following [40], amaximum likelihood recipe can be adopted
to linearly scale the variance of the predictions by a constant factor ν2. The calibration of this scaling factor is
carried out by computing the actual prediction errors of the polarizabilites over a suitably selected validation set
Nval, for which the reference polarizabilities are known, and then considering

N

j j

j

1
, 10

j

N
2
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2

2

val

å
a a
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s

=
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whereσ2( j) are the variances of the predicted polarizabilities. Once the value of ν has been determined, each
polarizability prediction of a given trainingmodel k can be updated by considering

, 11k ka a a an¢ = + -¯ ( ¯ ) ( )

where ā is the predicted polarizability averaged over the NRS models. This scaling procedure guarantees that the
variance of themodels is consistent with the outcome of the likelihoodmaximization. By computing the Raman
spectrum for each scaledmodel k, the propagated uncertainty estimation associatedwith the spectra will
automatically take into account the calibration of the variance.

2.5. Simulation and training details
Toperform the ab initio calculations, we used the FHI-aims [41] programpackagewith light settings for all
atomic species.We obtained aiMD trajectories using the PBE functional withmany-body dispersion corrections
[42, 43], and employing a time step of 0.5 fs. The electronic polarizabily/susceptibility was instead computed
every 1 fs.Most of the data used herewas already available from [22, 23]. For each system,we had 20 picoseconds
of simulation in theNVT ensemble at 300K. From this trajectory, a few thousands of configurationswere
selected to define the training and test set of ourmodel. A full trajectory of 15 ps in theNVE ensemblewas
instead considered as our validation set to assess the quality of our predictions, by comparing the predicted
Raman spectra to the ones obtainedwith ab initio polarizabilities.We chose to train ourmodel on theNVT
ensemble and predict on theNVE ensemble. This choice is justified by the fact that—particularly for this
relatively short trajectory—canonical sampling should bemore ergodic thanmicrocanonical sampling, and
therefore sample a larger portion of configurational space.

3. Results

In the following, we apply the previously describedmethods to the calculation of the Raman spectra of
Paracetamol. Each timewementionGPR, it is used in combinationwith theAD representation. Similarly, each
time SA-GPR ismentioned, it is associated toλ-SOAP kernels.

3.1. Paracetamolmolecule
Wefirst consider the case of the isolated Paracetamolmonomer (figure 1(a)).We constructed the training
dataset by selecting 2000 structures with farthest point sampling using the scalar SOAPmetric from the full NVT
trajectory. ForGPR, the three-dimensional density fieldwas constructedwithin a box of 6 4 2.5´ ´ Å, where
themolecule had its longest axis along the x direction and the equilibrium geometry lied on the xy plane, and the
grid spacingwas dr=0.5Å. TheGPRwas computed usingσ=10 and η=10−3. Details about the
optimization of the hyperparameters are given in the supplemental information. Regression performances are
reported infigure 3(a), where the error ò, given by equation (9), computed on 500 randomly selected test
structures (that are excluded from training) out of the total of 2000 is shown as a function of the number of
trainingmonomers6.

Figure 3(a) shows that the learning capability of themodel does not reach saturationwithin the training set
sizes explored. The learning of all the polarizability components follow a similar slope, but they are predicted
with different accuracy because of the strong anisotropy of the dielectric response of the Paracetamolmolecule.
Because of theπ-conjugation of the system in themolecular plane, the system ismuchmore polarizable along
the x-axis rather than along other directions in this particular alignment,making it harder for the learning
algorithm to capture the corresponding variations across the dataset. Theαxx component presents the largest
error, going from about 40%with 300 training points to 17%with 1500 training points. The best learning
performance is instead obtained for theαyz component, where the prediction error can be brought down to
about 6%.

6
Learning performance when using only unprocessed atomic coordinates are also shown in the SI, figure S2.
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In order to validate themodel, we show infigure 4 the correlation between predicted and computed
polarizability components on the validation set composed by the full independentNVE trajectory, for a
representative training size of 900molecular configurations, including ò for each component. Althoughwe
observe aworsening of the predictionswhen compared to the previous case, wherewe trained and predicted on
the same ensemble (and trajectory), the predicted polarizabilities are still well correlated to the reference values.
The remaining question is how these errors translate to the actual prediction of the vibrational Raman spectrum.

Infigure 5, we show amachine-learned Raman spectrum averaged over 16 subselections of the training set of
900 configurations each, alongwith its STD (see section 2.4 for a detailed discussion about this procedure), and
compare it to the one calculated from fully ab initio data.Wefind that the estimated variance has to be scaled by a
factor of ν2=2.0. Despite a relatively small amount of training points, the agreement with the reference
spectrum is excellent in the entire frequency range. As shown infigure 3, increasing the number of training
points in themodel would decrease errors even further. From figures 3 and 5, it is clear that the errorwemake on
the polarizability components does not translate directly into an error of similarmagnitude on the spectrum.
This is a consequence of the fact that the Raman intensities depend on the derivatives of the polarizability
components with respect to atomic coordinates, and not on their absolute value. This simple procedure is able to
reproduce almost perfectly a reference Raman spectrumwith fewer than 1000 training points on a desktop
computer in just a fewminutes.

In order to assess whether the use of amodel that incorporates symmetries can be advantageous even for a
relatively rigidmolecular system,we then contrast theGPR and the SA-GPRmodel. To this end,λ-SOAP
kernels were constructed using aGaussianwidth of 0.3Å and an environment cutoff of 4.0Å. Details about the

Figure 3.Prediction error (as defined by equation (9)) on each component of the polarizability tensor of the paracetamolmolecule
with differentmodels. (a) Learning curves fromGPRusing atomic densities as a representation. (b) Learning curves fromSA-GPR
withλ-SOAP kernels.

Figure 4.GPRpolarizability tensor components versusDFPT ab initio ones. The components were trained on 900 configurations
coming from anNVT trajectory. The test set contains 20 000 configurations coming from anNVE trajectory. Numbers in brackets
indicate ò for a given component.
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SOAPparameters optimization can be found in the SI. The corresponding learning curve is shown infigure 3(b).
The improvement over a standardGPR scheme is systematic at any training set size, underlining the importance
of automatically incorporating the(3)-covariance of the tensor at the scale of individual atomic environments.
Similarly to the case of GPR, the accuracy of predictions differs between tensor components.With 300 training
points, theαxx component presents the largest error (about 14%), that reduces to only 6%with 1500 training
structures. The best learning performance is again obtained for theαyz component, for which the prediction
error can be remarkably reduced to less than 2%. As shown infigure 5, SA-GPR reproduces very accurately also
the ab initioRaman spectrumwith only 300 training points. Obviously, as reflected by the learning curves,
increasing the amount of points reduces this error even further, as exemplified infigure S4 of the SI, where the
machine-learned and ab initio spectra are virtually indistinguishable.

3.2. Paracetamol crystal
Wenow turn our attention to the first crystalline formof Paracetamol, containing four individual Paracetamol
molecules per unit cell, as shown infigure 1(b).

3.2.1. Direct approach
Sincewe are nowdealingwith a periodic system, wefirst build a supercell corresponding to the appropriate
crystal structure. Then, the AD representation is constructed following the same procedure discussed in the
previous section. A value ofσ=40 has been selected to build theGaussian kernel, and the regularization
parameter has been set to η=10−4 byCVoptimization. The three-dimensional density fieldwas evaluated
within a box of 12×14×20Å3, using a grid spacing of dr 0.75= Å7. For SA-GPR, theλ-SOAP kernels were
constructed using the same parameters as before.

The training set is built by considering a random selection of 2500 configurations extracted from aNVT
trajectory. A full NVE trajectory is once again considered to test the quality of the predicted Raman spectrum.
Learning curves for both regressionmodels are shown in figure 6 (solid lines).When comparing the two
methods, we always use the same configurations in both cases.

We observe that both the learning capability of GPR and SA-GPRdonot reach saturationwhen increasing
the number of training data, going from81% (respectively 73%with SA-GPR) of errorwith 25 training points to
17% (respectively 11%)with 2000 of them; again,making use of a kernel that is built on a SA comparison
between local environments brings a substantial improvement. Overall, however, for the same amount of
training points, the errors aremuch (typically between two and three times) larger than for themonomer case.

3.2.2. Incorporatingmolecular polarizability
To improve our results, we refined ourmodels by using the predictions of the non-interactingmonomers that
compose themolecular crystal, as we explain in the following.

Figure 5. (Black line)Raman spectrumGPRprediction of the Paracetamolmolecule averaged over 16 different trainingmodels. Each
trainingmodel is obtained by a random subselection of 900 configurations over a total of 1100, while the predictionwasmade on
20000 structures. (Shaded area) Standard deviation of the predicted spectra over the 16models, calibratedwith a likelihood
maximization procedure described in section 2.4. (Blue line)Reference ab initioRaman spectrum. (Red dotted line) Single SA-GPR
prediction using 300 training points.

7
Nonoticeable improvementwas observedwhen using a finer grid with rd 0.5= Å.
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Supposewe have amolecular crystalmade of Nmol molecular units (in the case of Paracetamol I, N 4mol = ,
while N 8mol = for Paracetamol II). Sincewe have already learnt the polarizability tensors of the individual
molecules, we can graspmost of the variability of the polarizability tensor of the crystal by summing up the
predictions for individualmonomers. Equation (3) ismodified according to

w k , , 12
j

N

j j
ML ai,crys

1

   åa a a a= + - +gd gd gd gd
S S

=

( ) ¯ ( ) ¯ ( ) ( )

whereaS denotes the sumof themolecular polarizability tensors and ai,crysagd¯ is the average of the ab initio
polarizability tensors of the full crystal over the training set. Specific details about the procedure are explained in
the appendix. An analogous expression to equation (12) is obtained for SA-GPR.

Figure 6 shows the advantage ofusing themolecular baseline for the regressionmodels (dashed lines). The
improvement ismost noticeable formodels basedon few trainingpoints.Molecular baselining leads to a large
decrease in error of about 25% for bothGPRandSA-GPR.Upon increasing thenumber of trainingpoints, the
differencediminishes, but an improvement remains visible. It isworthnoticing that, starting from250 training
structures, the direct applicationof SA-GPR (without anymolecular baseline)performsbetter than theGPR scheme
with the baseline.Note that the prediction accuracy canbe improved even further if one scales themolecular
polarizability tensors so that their averagematches that of the full crystal, as illustrated in the SI,figure S8.

Figure 7 shows the effect of the baselining procedure on the predicted SA-GPRRaman spectrum, when one
increases the amount of training points. Several observations can bemade. First, just like for themonomer, high
frequencies requiremore training points to be reproduced. Second, includingaS greatly enhances the spectrum
intensity accuracywhen few training points are used. This is especially true at high frequencies, where the
improvedmodel already gives the right structure of the peaks, albeit not with the right intensity, while the direct
learning does not show any peaks in this region. Overall, the predicted spectrum is extremely well reproduced
when employing enough training points.

Figure 8 shows the predicted Raman spectrum and the corresponding estimated error. In this case, different
learningmodels have beenfirst defined by considering 16 random subselections, each of themmade of 80%of
the training dataset. Then, for each of these learningmodels, the polarizabilities of the full NVE trajectory have
been predicted and the associated Raman spectra have been computed.We then estimated the STDof these
predictions according to the procedure detailed in section 2.4.Wefind that in this case the estimated variance
has to be increased by roughly an order ofmagnitude, i.e. ν2=10.9. One can observe that the excellent
agreement between the reference and predicted spectrum at low frequencies is consistent with a negligible
estimated error, while larger discrepancies and error bars can be observed in the high-frequency domain.

Results this far show that, even for a relatively rigidmolecular system, incorporating symmetries and
learning all the components of the polarizability tensor in a covariant fashion can improve the accuracy and the
efficiency of theseML schemes. As anticipated, an additional advantage of SA-GPR is that it is based on local
atomic environments. This results in a greater transferability, as wewill discuss in the following section.

Figure 6. Learning curves for the crystal polarizability tensor on anNVT trajectory, using different approaches. Here themean error
over all components is represented. Includingmolecular polarizability greatly improves themodel, bothwithGPR and SA-GPR,
especially with few training data.
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4. Extrapolation on other polymorphic forms

Within theλ-SOAP formalism, the polarizability of the system is effectively decomposed in local atom-centered
contributions that are summed in order to obtain the final predicted value ofa, making it possible tomodel the
susceptibility of amolecule or a crystal through the definition of effective atomic polarizabilities. This implies
that the information is learned at the local scale and, as such, can be transferred across systems that share a
similar chemical nature. In the case of paracetamol polymorphs, one can think of predicting the polarizability of
the form II crystal (figure 1(c))with themodel trained on form I only. Since different polymorphic forms are
mainly distinguished by the different intermolecular interactions,major difficulties in this extrapolation
procedure are expected to be associatedwith the low-frequency (intermolecular)modes of themolecular crystal.
To put this idea to the test, we used the SA-GPR trained on 2000 structures of form I tomake predictions for a
NVE trajectory of form II.We used an ensemble of 16 subsampledmodels to estimate uncertainty. As expected,

Figure 7.Raman spectrumof paracetamol I computed from aNVE trajectory, using either directlyλ-SOAP SA-GPR, or augmenting
this description by baselining it withmolecular polarizabilities. The trainingwas performed onNVT structures, the number of which
is indicated in each row,while the spectrumwas computed over 15 000 consecutiveNVE configurations.

Figure 8. (Black line)Raman spectrumprediction of paracetamol form-I averaged over 16 different trainingmodels. Each training
model is obtained by a random subselection of 2000 configurations over a total of 2500. (Shaded area) Standard deviation of the
predicted spectra over the 16models, calibratedwith a likelihoodmaximization procedure described in section 2.4. (Blue line)
Reference ab initioRaman spectrum.
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we observed that the rather large error in the prediction of the polarizability tensor ismostly associated to a small
offset in the time series of some of the polarizability components (detailed in the SI, figure S10), that however
does not have a substantial impact on the Raman spectrum.

As shown infigure 9, the general lineshape is excellent, and all themain features of the ab initio spectrum are
reproduced, even though few discrepancies in terms of relative intensities can be observed, and the error in the
intensities is overall higher than for the direct prediction of the first polymorph.We underline the difference in
behavior in contrast tofigure 8: now, high frequencies are better described and errors aremore pronounced at
low frequencies. This suggests that themodel can reproduce accurately changes in the polarizability associated
with intra-molecular vibrations, but is less accurate in predicting low-frequency components that are specific to
themolecular packing of form II, which is not represented in the training set for form I.We also observe that the
discrepancy between predictions and ab initio spectrum is reflected accurately in the estimated uncertainty, that
can therefore be used as a reliablemeasure of the accuracy of themodel also in an extrapolative regime.

5. Conclusions

In this work, we proposedGPRmodels to predict vibrational Raman spectra, based on learning polarizability
and susceptibility tensors obtained fromdensity-functional perturbation theory. As an example, we applied our
methodology to predict anharmonic Raman spectra of the Paracetamolmolecule and two polymorphs of the
Paracetamol crystal. Themethodology alsoworks for simpler harmonic Raman intensities. The use of an
ensemble ofmodels to estimate the uncertainty in the polarizability tensors allows us to propagate the error
estimation from theMLprediction of the polarizability tensors to the vibrational spectra, by generating an
ensemble of spectra out of which it is simple to compute frequency-dependent confidence intervals.

We showed that for themolecule a standardGPR scheme that takes as input a nuclear density representation
on a 3D gridworks extremely well and enables one to reproduce Raman spectra almost perfectly with a low
number of training points. For the crystal, such a scheme, albeit possible, ismore difficult to apply for several
reasons: the difficulty to compare crystal structures with different unit cell sizes, the redundancy of information
contained in afixed grid-based representation, and the increase of the number of grid points with system size.
We have shown that amore effective solution is to use a SA-GPR scheme, used here in combinationwith theλ-
SOAP representation [30]. Such a scheme yields accurate predictions formolecules and crystals, due to its
capability to better capture the local structural information in a covariant fashion.Moreover, sinceλ-SOAP is a
local representation, it is easy to treat larger systems sizes and even transfermodels to other polymorphs.We

Figure 9. (Black line)Average Raman spectrumprediction of paracetamol form-II associatedwith the same 16 trainingmodels already
used for the prediction of paracetamol form-I. (Shaded area) Standard deviation of the predicted spectra over the 16models, calibrated
with amaximum likelihood procedure described in section 2.4. (Blue line)Reference ab initioRaman spectrum.
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have shown this transferability by successfully predicting the Raman spectrumof Paracetamol II with amodel
trained only on Paracetamol form I. This suggests the possibility of predicting Raman spectra of any
polymorphic form, as long as amodel trained for one of them is available. In addition, for allmodels presented,
we observe a considerable improvement when using previously-trainedGPRmodels for themolecular units as a
baseline for the crystal prediction, thus reducing the amount ofmore costly condensed-phase calculations that
must be performed to train the bulkmodel. In a similarmanner, it is also straightforward to extend this
framework to other ensembles (e.g. NPT) or path-integralmolecular dynamics simulations, which include the
quantumnature of the nuclei.

Themodels we presented regard the electronic electric-field response properties, and can be extended to
dipoles and higher-order responses. They can thus be seamlessly combinedwith empirical potentials or other
machine-learned potentials that give access to forces. This presents an alternative route to including the training
of such quantities directly into these potentials [44], which can present a higher level of complexity. Finally, we
remark that even thoughwe applied our framework to polarizabilities andRaman spectroscopy, applying it to
any other kind of spectroscopy, like infrared, sum-frequency generation, etc., would be straightforward, as long
as reference electronic-structure data is available.
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Appendix.Molecular baseliningwithGPR

Whenbuilding amodel to predict the polarizability tensor of the crystal from its individualmolecular
components within theGPR andAD representation scheme, one should consider that eachmolecule is oriented
in a specific direction that differs from the onewe trained themolecule on. In order for the regressionmodel to
recognize the orientation at hand, wefirst need tofind the relationship between the orientation of themolecules
in the crystal and the reference one used in themolecular GPRprocedure described in section 2.2. The scheme is
depicted infigure A1.

Each geometryGim corresponding to the ithmolecule in the crystal of themth structure of the set is thus
rotated by a rotationmatrixRim as

G R G , A.1im im im
ref = ( )

where i N1 mol=  , with Nmol the number ofmolecular blocks per unit cell. Finally, once amolecular
polarizability i

ref,mola is predicted, we rotate the tensor back to its original orientation inside the crystal, i.e.

R R . A.2i m im i m im,
mol 1

,
ref,mola a= - ( )

Having defined the sumofmolecular polarizabilitiesaS as

, A.3
i

N

i
1

mol
mol

åa a=S

=

( )

we consider the regression target

, A.4crys crys  a a a a aD = - - -gd gd gd gd gd
S S( ) ( ) ¯ ( ( ) ¯ ) ( )

where, once again, the bar denotes the average over the training set. Finally, wemodify accordingly equation (3),
which becomes (see also equation (12))

w k , . A.5
j

N

j j
ML ai,crys

1

   åa a a a= + - +gd gd gd gd
S S

=

( ) ¯ ( ) ¯ ( ) ( )

Note that theweights in the previous equation are different than the ones in equation (3), as this time the
regression targetΔα contains themolecular polarizability tensors.
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An analogous expression is obtained for SA-GPR, but the rotation and alignments previously described do
not need to be carried out explicitly since the rotational covariance of the tensor is built in the structure of the
method.
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