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TWISTED K-THEORETIC GROMOV-WITTEN INVARIANTS

VALENTIN TONITA

ABSTRACT. We introduce twisted K-theoretic Gromov-Witten (GW) invariants in the frameworks
of both ”ordinary” and permutation-equivariant K-theoretic GW theory defined recently by Givental.
We focus on the case when the twisting is given by the Euler class of an index bundle which allows one
(under a convexity assumption on the bundle) to relate K-theoretic GW invariants of hypersurfaces
with those of the ambient space. Using the methods developedin [10] we characterize the range of
theJ-function of the twisted theory in terms of the untwisted theory. As applications we use theDq

module structure in the permutation-equivariant case to generalize results of [8]: we prove a general
”quantum Lefschetz” type theorem for complete intersections given by zero sections of convex vector
bundles and we relate points on the cones of the total space with those of the base of a toric fibration.

1. INTRODUCTION

K-theoretic Gromov-Witten invariants have been introduced by A. Givental and Y.-P. Lee([9],
[13]). They are holomorphic Euler characteristics of vector bundles on the moduli spaces of stable
maps toX.

One of the initial motivations was to provide a new way to count rational curves on the famous
Calabi-Yau quintic threefold. In this case the moduli spaces of stable maps are zero dimensional
and the Euler characteristics of their structure sheaves would give the number of curves. For this
purpose a formalism of twisted K-theoretic Gromov-Witten theory analogous to the cohomological
one needs to be developed. Roughly speaking the twisted invariants are defined by including in
the correlators Euler classes of index bundles. Then one would like to express them in terms of
the original (”untwisted”) invariants. If one starts with aconvex line bundle the genus zero twisted
invariants are actually GW invariants of the hypersurface given as the zero locus of a section of
the bundle. Thus the relation between the twisted and untwisted theories translates into a relation
between GW invariants of the hypersurface and those of the ambient space.

Givental recently introduced in [8] a new enriched version of the theory called permutation-
equivariant K-theoretic Gromov-Witten theory, which takes into account theSn action on the mod-
uli spaces permuting the marked points. The permutation-equivariant theory fits better within the
framework of mirror symmetry. In particular certainq-hypergeometric series associated with toric
manifolds lie on the cone of their permuation-equivariant K-theory.

In this paper we introduce twisted K-theoretic Gromov-Witten invariants in genus zero for both
versions of quantum K-theory. The generating functions of the invariants are called theJ-functions.
Their images are Lagrangian cones living in infinite dimensional loop spacesK. We use Kawasaki
Riemann Roch theorem to characterize the cone of the twistedtheory in terms of the cone of the
untwisted theory.

Our results allow us to significantly generalize Givental’sK-theoretic ”mirror formulas” for the
permutation-equivariant theories: we prove a ”quantum Lefschetz” type theorem for an arbitrary
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2 TONITA

smooth projective varietyX, namely we show that certain hypergeometric modifications of points
on the cone ofX lie on the cone of a complete intersection given as the zero locus of sections of
convex line bundles. Moreover we prove a similar statement for toric fibrations, describing points
on the cone of the total spaceE in terms of points on the base.

We include some short computations at the end. In particularwe show how one can count the
2875 lines on the Calabi-Yau quintic using our results. More generally one can use our results
to compute GW invariants of all complete intersections in projective spaces. According to recon-
struction theorems (see [8]) one can recover all genus zero ”ordinary” and permutation-equivariant
K-theoretic GW invariants of a projective manifold (under the assumption that the ringK0(X) is
generated by line bundles) from a point on their K-theoreticLagrangian cone. Hence in principle
we can determine the quantum K-theory for all projective manifolds for which our results can be
used to find a point on their K-theoretic Lagrangian cones.

The paper is organized as follows. In Section 2 we introduce the basic objects of K-theoretic1

GW theory in genus zero including theJ-function and the Lagrangian coneL. We also recall the
main result of [10] which characterizes the coneL in terms of the cone of the cohomological GW
theory. Section 3 contains a brief review of the formalism ofcohomological twisted GW theory. In
Section 4 we define twisted K-theoretic invariants and statethe main result in the non-permutation
equivariant case. This is Theorem 4.6 which describes the coneLtw in terms of the cone of the
untwisted one. The proof of Theorem 4.6 is done in Section 5 following the ideas in [10]. We write
Laurent expansions of theJ function near each root of unity and identify it with generating series
coming from certain twisted cohomological theories to characterize their ranges. Section 6 deals
with the permutation-equivariant theory: the relation between the twisted and untwisted cones turns
out ”nicer” in this case. This is the content of Theorem 6.3. We combine it with theDq module
structure of [8] to prove the applications mentioned above.We end with some computations of
K-theoretic GW invariants of complete intersections in projective spaces.

Acknowledgements. I would like to thank A. Givental for explaining to me the permutation-
equivariant theory and for useful discussions. Parts of these discussions took place during a visit at
IBS, Center for Geometry and Physics, Pohang. I would like tothank the institute for support and
hospitality. I would also like to thank the anonymous referee for the useful comments.

2. K-THEORETIC GROMOV-WITTEN THEORY

Let X be a complex projective manifold. We denote byX0,n,d Kontsevich’s moduli stack of
genus zero stable maps toX: they parametrize data(C, x1, . . . , xn, f) such that

• C is a connected projective complex curve of arithmetic genuszero with at most nodal
singularities.

• (x1, . . . xn) ∈ C is an orderedn-tuple of distinct smooth points onC (they are called marked
points).

• f : C → X is a map of degreed ∈ H2(X,Z).
• The data(C, x1, . . . , xn, f) has finite automorphism group, where an automorphism is de-

fined to be an automorphismϕ : C → C such thatϕ(xi) = xi for all i = 1, ..n and
f ◦ ϕ = f .

1when not specified it will always mean non permutation-equivariant
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For eachi = 1, .., n there are evaluation mapsevi : X0,n,d → X defined by sending a point
(C, x1, . . . , xn, f) 7→ f(xi) and cotangent line bundlesLi → X0,n,d whose fibers over a point
(C, x1, . . . , xn, f) are identified withT∨

xi
C.

K-theoretic Gromov-Witten (GW) invariants have been defined by Givental and Lee ([9],[13]) as
sheaf holomorphic Euler characteristics onX0,n,d obtained using the mapsevi and the line bundles
Li:

χ
(
X0,n,d,O

vir
n,d,X ⊗n

i=1 ev
∗
i (Ei)L

ki
i

)
∈ Z.

HereOvir
n,d ∈ K0(X0,n,d) (we will generally suppressX from the notation) is the virtual structure

sheaf defined in [13]. We will use correlator notation for theinvariants:
〈
E1L

k1 , . . . , EnL
kn
〉
0,n,d

:= χ
(
X0,n,d,O

vir
n,d ⊗

n
i=1 ev

∗
i (Ei)L

ki
i

)
.

The generating series of these invariants is called the (K-theoretic)J-function. Let

K+ := K0(X,C[[Q]])⊗ C[q, q−1],

K := K0(X,C[[Q]])⊗ C(q).

TheJ-function is

J : K+ → K,

J (t(q)) = 1− q + t(q) +
∑

d,n,a

Qd

n!
Φa
〈

Φa
1− qL

, t(L), . . . , t(L)

〉

0,n+1,d

.

Here{Φa}, {Φa} are bases ofK0(X) dual with respect to the pairing

(Φa,Φb) = χ(X,Φa ⊗ Φb)

andQd are monomials in the Novikov ring based on the cone of effective curves inEff(X) ⊂
H2(X).

The imageL ⊂ K of theJ function has been characterized in [10] in terms of the cohomological
GW theory ofX. We briefly recall the main result there, referring to [10] for details.

To express holomorphic Euler characteristics of a vector bundleV on a compact complex orbifold
Y as a cohomological integral one uses Kawasaki Riemann Roch (KRR) theorem of [11] (proven
by Töen in [14] for proper smooth Deligne-Mumford stacks).The integrals are supported on the
inertia orbifoldIY of Y :

χ(Y , V ) =
∑

µ

∫

Yµ

Td(TYµ) ch

(
Tr(V )

Tr(Λ•N∨
µ )

)
.(2.1)

We now explain this ingredients of this formula.IY is the inertia orbifold ofY , given set-theoretically
by pairs(y, (g)), wherey ∈ Y and(g) is (the conjugacy class of) a symmetry which fixesy. We
denote byYµ the connected components2 of IY .

For a vector bundleV , letV ∨ be the dual bundle toV . The restriction ofV toYµ decomposes in
characters of theg action. LetV (l)

r be the subbundle of the restriction ofV to Yµ on whichg acts

2We frequently refer to them as Kawasaki strata.
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with eigenvaluee
2πil
r . Then the traceTr(V ) is defined to be the orbibundle whose fiber over the

point (p, (g)) of Yµ is

Tr(V ) :=
∑

0≤l≤r−1

e
2πil
r V (l)

r .

Finally, Λ•N∨
µ is the K-theoretic Euler class of the normal bundleNµ of Yµ in Y . Tr(Λ•N∨

µ ) is
invertible because the symmetryg acts with eigenvalues different from1 on the normal bundle to
the fixed point locus.

X0,n,d is not smooth but it has a perfect obstruction theory which can be used to define its virtual
fundamental class (see [1]). For a stack(Y , E•) with a perfect obstruction theory that can be
embedded in a smooth proper stack (X0,n,d satisfies this assumption) one can choose an explicit
resolution ofE• as a complex of vector bundlesE−1 → E0. LetE0 → E1 be the dual complex.
Then the virtual tangent bundle ofY can be defined as the class[E0] ⊖ [E1] ∈ K0(Y) (see [6]).
Moreover the connected components of the inertia orbifold of Y inherit perfect obstruction theories
which can be used to define their virtual normal bundles.

It was proved in [15] that one can apply KRR theorem to the moduli spacesX0,n,d by replacing
all the ingredients in the formula with their virtual counterparts. The symmetries onX0,n,d which
have non-trivial action on the cotangent line bundleL1 create poles at all roots of unity in theJ-
function. For each primitive root of unityη of orderm denote byJη the Laurent expansion of the
J-function in(1 − qη) and regard it as an element in the loop space of such Laurent power series
with coefficients inK0(X)

Kη := K0(X)[
1

1− qη
, (1− qη)]].

Let us look atη = 1: the contributions in KRR formula come from the identity component of the
inertia orbifold ofX0,n,d. They were calledfakeK-theoretic GW invariants and are of the form:

〈t(L), . . . , t(L)〉fake0,n,d :=

∫

[X0,n,d]

n∏

i=1

ch(t(Li)) Td(T0,n,d).

where [X0,n,d] is the virtual fundamental class of the moduli space,T0,n,d is the virtual tangent
bundle and the product is the cohomological cup product.

Consider the generating series of the fake invariants, i.e.elements ofK1 of the form

Jfake(q, t(q)) := 1− q + t(q) +
∑

d,n,a

Qd

n!
Φa
〈

Φa
1− qL

, t(L), . . . , t(L)

〉fake

0,n+1,d

.

Here the argumentt(q) belongs to the space

K1
+ := K0(X,C[[Q]])[[q − 1]].

The range ofJfake spans a Lagrangian coneLfake ⊂ K1 which can be described explicitly in
terms of the cohomological GW theory ofX. We will make this precise in the next section.

The main theorem of [10] describes for allη the range ofJη(t(q)) in terms of the coneLfake.

Theorem 2.1. [10] The K-theoreticJ function ofX is completely characterized by the following
conditions
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(1) If η is not a root of unityJη(t(q)) does not have poles atq = η−1.
(2) J1(t(q)) ∈ Lfake.
(3) Letη be a primitive root of unity of orderk 6= 1 and letTk(J1(0)) be as in Definition 2.2

below. IdentifyKη with K1 via qη 7→ q. Then

Jη(t(q
1/kη−1)) ∈ exp

∑

i≥1

(
ψiT∨

X

i(1− η−iqi/k)
−

ψikT∨
X

i(1− qik)

)
Tk(J1(0)).

Definition 2.2. Let f be a point onLfake, letT (f) be the tangent space toLfake at f , considered as
the image of a mapS(q, Q) : K1

+ → K1. Recall the Adams operationsψk are ring isomorphisms of
K0(X) which act on line bundles asL 7→ Lk. Denote byψ

1
k the isomorphism ofK1

+ which is the
inverse ofψk onK0(X) and does not act onq, Qd. Then define

Tk(f) := Image of ψk ◦ S(qk, Qk) ◦ ψ1/k : K1
+ → K1.

3. TWISTED COHOMOLOGICAL GROMOV-WITTEN THEORY

The proofs of Theorem 2.1 as well as of the main statements in the upcoming sections rely
heavily on the machinery of twisted cohomological GW invariants. They were introduced in [5]
and generalized in various directions in [17] and [16]. We succinctly review it below, emphasizing
the example of the fake GW invariants. We use the same correlator notation for cohomological GW
invariants

〈ϕ1ψ
k1 , . . . , ϕnψ

kn〉0,n,d :=

∫

[X0,n,d]

n∏

i=1

ev∗i (ϕi)ψ
ki
i .

The different notation for the classes inside the correlators makes it easy to distinguish them from
the K-theoretic GW-invariants. The product in the integrand is the cohomological cup product.

LetH be the loop space of the cohomological GW theory ofX

H := H∗(X,C[[Q]])[z−1, z]].

It comes equipped with a symplectic form and carries a distinguished polarizationH+ ⊕H− where

H+ := H∗(X,C[[Q]])[[z]], H− :=
1

z
H∗(X,C[[Q]])[z−1].

TheJ-function of the cohomological GW theory is defined as

JH : H+ → H,

JH(t(z)) = −z + t(z) +
∑

d,n,a

Qd

n!
ϕa
〈

ϕa
−z − ψ

, t(ψ), . . . , t(ψ)

〉

0,n+1,d

.

It is identified with the graph of the differential of the genus zero potential

F0(t(z)) =
∑ Qd

n!
〈t(ψ), . . . , t(ψ)〉0,n,d ,

viewed as a function oft(z) − z with respect to the polarization above. The image ofJH is a
Lagrangian cone which we will denoteLH .

Remark 3.1. The translation by−z is called the dilaton shift. We will often refer tot(z) asthe
input.
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Twisted GW invariants are defined by considering in the integrals characteristic classes of push-
forwards along the universal family of three types of tautological classes (they were called of type
A,B, C in [16] ). Recall that the universal family of the moduli spacesX0,n,d can be identified with
the mapπ : X0,n+1,d → X0,n,d which forgets the last marked point. The correlators of a twisted
theory are typically cohomological integrals of the form

∫

[X0,n,d]

(
n∏

m=1

ev∗m(ϕm)ψ
km
m

∏

i

Ai(π∗(ev
∗
n+1E))

∏

j

Bj(π∗[F (L
∨
n+1)− F (1)])

∏

k

Ck(π∗i∗OZ)

)
,

whereAi,Bj , Ck are a finite number of multiplicative characteristic classes.

One can similarly as above associate a Lagrangian cone to a twisted theory. The formalism of
twisted GW theory (in genus zero, for the purpose of this paper) describes the correlators of a
twisted theory in terms of the correlators of the untwisted theory. More precisely the three types of
twistings and their effect on the correlators are :

• twistings by characteristic classes of index bundlesπ∗(ev
∗
n+1E). They correspond to ro-

tation of the coneLH by symplectomorphisms ofH given byEndH∗(X) valued Laurent
series inz. These symplectomorphisms are called loop group transformations.

• kappa classes twistings by characteristic classes ofπ∗[F (L
∨
n+1)−F (1)], whereF is a poly-

nomial with values inK0(X). These correspond to a change of dilaton shift in the applica-
tion point of theJ-function.

• twistings by characteristic classes ofπ∗i∗OZ , wherei : Z → X0,n+1,d is the codimension
two locus of nodes. These affect the generating series by a change of the spaceH− of the
polarization.

Example 3.2.Let us consider the twisted theory which we called fake in theprevious section. It is
given by inserting in the correlators the classesTd(T0,n,d).

The virtual tangent bundle ofX0,n,d can be written as a K-theoretic class (see [3], Section 2.5)

T0,n,d = π∗(ev
∗
n+1TX − 1)− π∗(L

∨
n+1 − 1)− (π∗i∗OZ)

∨.

We identifyK1 andH via the Chern character

qch : K1 → H,

Φ 7→ ch(Φ), q 7→ ez.

Theorem 3.3. ([4], [3]) The invariants of the fake theory are related to the cohomological GW
invariants ofX by the following ingredients:

• the coneLfake is given explicitly in terms ofLH by

qch(Lfake) = △LH ,

where the loop group transformation△ is determined only by the characteristic classTd
and the first summand in the expression ofT0,n,d.

• the change of dilaton shift in the application point of theJ-functions of the theories from
−z to qch(1− q) is determined by the classTd and the second summand inT0,n,d.
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• the generating series of the fake invariants is considered with respect to a different negative
space onH determined by the nodal class. More precisely the negative spaceK1

− of the

polarization is spanned by elements of the form{Φa
qi

(1−q)i+1 }i≥0. One way to see this is by
formally expanding

1

1− qL
=
∑

i≥0

qi

(1− q)i+1
(L− 1)i.

The spaceH− on the other hand is spanned by elements{ϕa
zi
}i≥1. It is easy to see that the

mapqch does not identify them.

We refer the reader to [16] for explicit computations of thisexample as well as a treatment in full
generality of the formalism of twisted GW theory.

It will sometimes be convenient for us to write loop group operators as Euler-Maclaurin asymp-
totics of infinite products.

Definition 3.4. Given a functionx 7→ f(x), the Euler-Maclaurin asymptotics of the product∏∞
r=1 e

f(x−rz) is obtained by writing
∞∑

r=1

f(x− rz) = (

∞∑

r=1

e−rz∂x)f(x) =
z∂x

ez∂x − 1
(z∂x)

−1f(x)

=

∫ x
0
f(t)dt

z
−
f(x)

2
+
∑

k≥1

B2k

(2k)!
f (2k−1)(x)z2k−1.

The operator△ in Example 3.3 is the Euler-Maclaurin asymptotics of

△ ∼
∏

i

∞∏

r=1

xi
1− e−xi+rz

,

wherexi are the Chern roots of the tangent bundle toX.

4. TWISTED K-THEORETIC GROMOV-WITTEN INVARIANTS

We define twisted K-theoretic GW invariants by inserting in the correlators invertible multiplica-
tive classes of index bundlesEn,d := π∗(ev

∗
n+1E), whereE ∈ K0(X).

The value of a general K - theoretic invertible multiplicative class on a bundleV is

exp(
∑

l

slψ
lV ).(4.1)

We will mainly work with l < 0 summation range. We treatsl as formal parameters and expand the
ground-ring of the theory by tensoring it withC[[s1, s2, . . .]].

Hence the twisted invariants are defined by inserting in the correlators multiplicative classes of
En,d

〈t(L), . . . , t(L)〉tw0,n,d := χ

(
X0,n,d;O

vir
n,d ⊗

n
i=1 t(Li)⊗ exp(

∑

l

slψ
lEn,d)

)
.
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The twisted K-theoretic potential is defined as:

F tw =
∑

d,n

Qd

n!
〈t(L), . . . , t(L)〉tw0,n,d .

The J-function of the twisted theory is

J tw : K+ → K,

J tw(t(q)) = 1− q + t(q) +
∑

d,n,a

Qd

n!
Φa
〈

Φa
1− qL

, t(L), . . . , t(L)

〉tw

0,n+1,d

.

Remark 4.1. The bases{Φa}, {Φa} involved in the definition ofJ tw are dual with respect to the
twisted pairinggiven by

(Φa,Φb) = χ(X,Φa ⊗ Φb ⊗ e
∑
slψ

lE).

We will have to consider various twisted theories. As a general rule the pairing of a twisted theory
is given by correlators onX0,3,0 ≃ X

(Φa,Φb) = 〈Φa,Φb, 1〉
tw
0,3,0,

where the meaning of〈..〉tw depends on the theory. To relateJ-functions of different theories we
need to regard them as elements of the same loop space. This involves rescaling the elements in
loop spaces.

Let us define the coneLtwfake ⊂ K1 the Lagrangian cone of the theory whose correlators are

〈t(L), . . . , t(L)〉fake,tw0,n,d :=

∫

[X0,n,d]

n∏

i=1

ch(t(Li)) Td(T0,n,d) exp(
∑

slψ
l chEn,d),

whereT0,n,d is the virtual tangent bundle and the product is the cohomological cup product. Notice
that the coneLfake is the twisted fake cone atsl = 0. TheJ-function of the theory is

J twfake(t(q)) := 1− q + t(q) +
∑

d,n,a

Qd

n!
Φa
〈

Φa
1− qL

, t(L), . . . , t(L)

〉fake,tw

0,n+1,d

.

For now we restrict ourselves and make the following

Assumption 4.2.The twisting class is the K-theoretic Euler classeK(En,d). It is determined by its
values on line bundleseK(L) = 1 − L∨. To achieve this we sum afterl < 0 in the multiplicative
class (4.1) and setsl = −s−1/l. We allow the twisting class to depend formally on one parameter
s−1 . At s−1 = −1 (4.1) becomes the Euler class.

Remark 4.3. In generalEn,d can be written as the difference of two genuine bundlesAn,d ⊖ Bn,d

onX0,n,d (see [5]). We extend the definition ofeK to such objects by working torus-equivariantly -
where the action rotates the fibers ofE. TheneK(En,d) = eK(An,d)e

−1
K (Bn,d).

Remark 4.4. The case of the Euler class is the main motivation for considering twisted GW invari-
ants: it can be used to relate GW of the ambient spaceX with GW invariants of a subvariety given
by the zero locus of a section ofE.
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The image ofJ tw is a Lagrangian coneLtw. Our main result describesLtw in terms of the cone
Ltwfake.

Convention 4.5. As the operators in the theorems are given as sums afterl ≥ 1 we adopt the
conventionsl = s−l for all l, rather than writings−l in all formulae.

Theorem 4.6.LetJ tw
η be the expansion in(1− qη) of the twistedJ-function. Then

(1) If η is not a root of unity thenJ tw
η is a power series in(1− qη).

(2) J tw
1 lies on the cone

Ltwfake = exp(
∑

l≥1

sl
ψlE∨

1− ql
)Lfake.

(3) Assumeη 6= 1 and that Assumption 4.2 holds. LetT tw
k (f tw) be as in Definition 2.2 but

starting with a pointf tw ∈ Ltwfake. Then

J tw
η (q1/kη−1) ∈ exp

∑

i≥1

(
ψiT∨

X

i(1− η−iqi/k)
−

ψikT∨
X

i(1− qik)

)
RηR

−1
k T tw

k (J tw
1 (0)),

whereRk, Rη are defined by

Rk := exp

(
∑

l≥1

slk
kψlkE∨

1− qlk

)
,

Rη := exp

(
∑

l≥1

sl
ψlE∨

1− ql/kη−l

)
.

Remark 4.7. As the first part of the theorem can be used to describe the tangent space at0 toLtwfake
in terms of the coneLfake, Theorem 4.6 gives a complete characterization of the twisted cone in
terms of the untwisted one.

Remark 4.8. The operatorsexp
(∑

i≥1
ψiT∨

X

i(1−η−iqi/k)
−
∑

i≥1
ψikT∨

X

i(1−qik)

)
andRηR

−1
k do not have poles

at q = 1. For exampleRη has polesskl′ψ
kl′E

l′
at q = 1 for l = l′k, they cancel the poles of

Rk. Otherwise the last conditions of both Theorems 2.1 and 4.6 could not be true because modulo
Novikov variablesJη is a power series.

5. THE PROOF OFTHEOREM 4.6

We follow the proof of [10].

The first condition in the theorem is obvious. For the second statement, let̃t(q) = contributions
in theJ-function of poles6= 1. Then we claim that

Proposition 5.1.

J tw
1 (t(q)) = J twfake(t(q) + t̃(q))

= 1− q + t(q) + t̃(q) +
∑

d,n,a

Qd

n!
Φa
〈

Φa
1− qL

, t(L) + t̃(L), . . . , t(L) + t̃(L)

〉fake,tw

0,n+1,d

.
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Proof. This is completely analogous to the untwisted case: the contributions in theJ-function with
poles atq = 1 correspond to Kawasaki strata where the symmetries act trivially on the irreducible
component - call itC+ - carrying the distinguished marked pointx1. Such irreducible components
can carry other special points - marked points or nodes. Letp be such a node and callC− the
irreducible component which intersectsC+ at p. The Euler class of the normal direction of the
Kawasaki stratum which smoothens the nodep is (1 − L+L−), whereL+, L− are cotangent line
bundles atp to the respective branches. The contribution in KRR coming from this normal direction
is

1

1− ch(L+) ch(Tr(L−))
.

Notice that the symmetry can not act with eigenvalue1 on L− otherwise we could smoothen the
node while staying in the same Kawasaki stratum (equivalently the class in the denominator would
be nilpotent).

Moreover the twisting class factorizes ”nicely” over nodalstrata, i.e. ifi is the inclusion of a
divisorX0,n1+1,d1 ×X X0,n2+1,d2 parametrizing nodal curves inX0,n,d andp1, p2 the projections on
the two factors the following holds (see [5]):

i∗(ψlπ∗(ev
∗E)) = p∗1(ψ

lπ∗(ev
∗E)) + p∗2(ψ

lπ∗(ev
∗E))− ψlev∗nodeE.

The third summand is absorbed by the pairing at the node (see Remark 4.1), the other two ensure
that the twisting class distributes on the factors as twisting classes of the same form.

This shows that the insertion in the correlators corresponding to the nodep comes from̃t(L+).
In fact when we sum after all possibilities of degrees and number of marked points of curvesC−

the insertion becomes̃t(L+). For a marked point onC+ the insertion ist(L) hence the generating
seriesJ tw

1 (t(q)) is of the form

J tw
1 (t(q)) = 1− q + t(q) + t̃(q) +

∑

d,n,m,a

Qd

n!m!
Φa
〈

Φa
1− qL

, t(L), . . . , t̃(L)

〉fake,tw

0,n+m+1,d

,

where there aren insertions oft(L) andm insertions of̃t(L) in the correlators. Keeping in mind
that there are

(
n+m
m

)
ways of choosing then marked points among then+m special points we can

rewriteJ tw
1 (t(q)) as

J tw
1 (t(q)) = J twfake(t(q) + t̃(q)),

and henceJ tw
1 lies on the fake twisted coneLtwfake. �

The correlators〈..〉fake,tw are obtained from〈...〉fake by inserting one more multiplicative char-
acteristic class

ch
[
exp(

∑
slψ

lEn,d)
]
.

This meansLtwfake is obtained fromLfake by applying a loop group transformation, which we com-
pute explicitly below.
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Let us extend theψl operations on cohomology using the Chern character. It readsψlϕ = ljϕ for
ϕ ∈ H2j(X). Hence

ch
[
exp(

∑
slψ

lEn,d)
]
= exp

(
∑

j≥0

(
∑

l<0

sll
j) chj En,d

)
.(5.1)

According to [5] the cone of a theory twisted by a general multiplicative characteristic class of the
form

exp(
∑

wj chj En,d)

is obtained from the cone of the untwisted theory by applyingthe operator
∑

m,j≥0

w2m−1+j
B2m

(2m)!
chj E · z2m−1.

Here the Bernoulli numbersB2m are defined by

t

1− e−t
= 1 +

t

2
+
∑

m≥1

B2m

(2m)!
t2m.

We apply this to our twisting class(5.1) and we extract the coefficient ofsl in the corresponding
loop group transformation:

∑

m,j≥0

l2m−1+j B2m

(2m)!
chj E · z2m−1 =

=
∑

m,j≥0

lj chj E
B2m

(2m)!
(lz)2m−1 =

=
∑

j≥0

ψl chjE

(
lz

lz(1 − e−lz)
−

1

2

)
=

=
ψlE

1− e−lz
−
ψlE

2
=
ψ−lE∨

1− q−l
−
ψlE

2
.

The second summand is killed when we identify loop spaces (see Remark 4.1). The first summand
agrees with the operator in part(2) of the Theorem 4.6.

We now proceed to prove part(3) of Theorem 4.6: letη be a primitive root of unity of orderk 6= 1.
The Kawasaki strata inX0,n,d which give contributions with poles atq = η−1 in theJ-function were
calledstem spacesin [10]. They parametrize maps whose restriction to the componentC+ carrying
the first marked point factor through degreek coversz 7→ zk. These maps can be identified with
stable maps to the orbifoldX × BZk (of degreek times less). The only points fixed by automor-
phisms of such maps are0,∞ ∈ C+. However we can encounterk-tuples of nodes permuted by the
symmetry. Let(C1, .., Ck) be the curves adjacent to these nodes: then the restriction of the stable
map toCi have to be isomorphic and moreoverCi are not allowed to carry marked points, as they
have to be fixed by the symmetry.

Hence the contributions in theJ-functionJ with poles atq = η−1 are cohomological integrals on
the moduli spaces of maps toX×BZk involving certain multiplicative characteristic classescoming
from the tangent and normal directions to the Kawasaki strata and from the index twisting (4.1). It
turns out these tangent and normal directions can be expressed in terms of the universal families over
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the moduli spaces(X × BZk)0,n,d, which we denote byp. LetCηi be the line bundle onX × BZk

which is topologically trivial and on whichg acts as multiplication byηi, for i = 0, 1...k − 1.

We definethe twisted stemtheory to be the cohomological GW theory of the target orbifold
X × BZk twisted by all the classes which contribute in the KRR formula applied toJ tw. We now
list the classes:

• the summandπ∗(ev∗n+1TX) of T0,n,d contributes the class

Td(p∗(ev
∗TX))

k−1∏

i=1

Tdηi(p∗(ev
∗(TX ⊗ Cηi))),(5.2)

where

Tdλ(L) =
1

1− λe−c1(L)
.

• the summandTd(p∗(1− L∨
n+1)) of T0,n,d contributes the class

Td(p∗(1− L∨))
k−1∏

i=1

Tdηi(p∗((1− L∨)⊗ ev∗Cηi)).(5.3)

• the nodal contributions in KRR formula differ depending on the type of node. Denote by
Zg the nodes which can be smoothed within the same Kawasaki stratum and byZ0 the
non-stacky nodes (these are disjoint fromZg). Then the nodal twisting is given by

Td(−(p∗i∗OZg)
∨) Td(−(p∗i∗OZ0)

∨)

k−1∏

i=1

Tdηi(−(p∗i∗OZ0 ⊗ ev∗Cηi)
∨).(5.4)

• the class (4.1) contributes

ch ◦Tr
[
exp

(∑
slψ

lπ∗ev
∗E
)]
.(5.5)

The first three types of twisting classes are present in [10](Section8), where it is explained why
they account for the tangent and normal directions to Kawasaki strata. We will express the class
(5.5) as a pushforward alongp in Proposition 5.4.

We denote the correlators of the twisted stem theory by〈..〉stem,tw. TheJ function of the theory
is

J st,tw(t(z)) = −z + t(z) +
∑

d,n,a

Qd

n!
ϕa
〈

ϕa
−z − ψ

, t(ψ), . . . , t(ψ)

〉stem,tw

0,n+1,d

.

Hence the polar part ofJ tw
η (q) comes from correlators of the twisted stem theory. Let us denote

by t̄tw(q) the contributions in the twistedJ-function not having poles atη−1. Then we claim that

Proposition 5.2.

J tw
η (q) = t̄tw(q) +

∑

n,d,a

Qdk

n!
Φa

〈
Φa

1− qηL1/k
,T(L), . . . ,T(L), t̄tw(η−1L1/k)

〉stem,tw

0,n+2,d

,

where the evaluation maps at the marked points land in components ofIBZk labeled by the se-
quence(g, 1, .., 1, g−1) andT(L) = ψkT̃(L), with T̃(q) = J tw

1 (0).
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In the aboveψk acts on cotangent line bundlesL 7→ Lk, elements ofK0(X) and on Novikov
variablesQd 7→ Qkd.

Proof. As already mentioned the twisting class factorizes ”correctly” over strata of symmetries,
hence the proposition is completely analogous to the same statement in [10](Section7, Proposition
2). We give a concise outline below.

Recall that stem spaces parametrize mapsC+ → C → X, where the first map isz 7→ zk. The
first and last seats in the correlators are0,∞ ∈ C+ which are fixed by the symmetry. The insertion

1
1−qηL1/k in the first seat occurs becauseTr(L1) = ηL1 and the cotangent lines on the cover and
quotient curve differ by a power ofk. Summing after all possibilities for∞ ( it can be a node, a
marked point or a non-special point ofC+) gives the insertion̄ttw(η−1L1/k) for the last seat in the
correlators.

Let us explain the statement about the inputT(L), to which we will refer asthe leg: these are
nodes on the quotient curve whose preimages on the cover arek-tuples of nodes connectingC+

with curves(C1, ..., Ck) which do not carry marked points . The mapsCi → X, i = 1, ..k are
isomorphic. Summing after all possibilities of degrees of mapsCi → X we get contributions
J tw

1 (0) for each such node. Notice that on the cover curve there arek copies of cotangent line
bundles at thek nodes toCi, whereas on the quotient curve only one such cotangent line.Hence
one needs to compute the trace ofZk on the tensor product of thek cotangent line bundles, where
the generatorg ∈ Zk permutes the factors. The statementT(L) = ψkT̃(L) follows from the fact
that for such an action ofZk on thek-th power of a vector spaceV we haveTr(g|V ⊗k) = ψkV (see
[10],Lemma in Section7). �

HenceJ tw
η (η−1q

1
k ) is obtained from a tangent vector to the cone of the twisted stem theory of

X × BZk:

δJ st,tw(δt,T) := δt(q1/k) +
∑

n,d,a

Qd

n!

〈
Φa

1− q1/kL1/k
,T(L), ....,T(L), δt(L1/k)

〉stem,tw

0,n+1,d

,(5.6)

after changingQd 7→ Qdk (but not inδt).

The Lagrangian cone of the cohomological GW theory ofX ×BZk is the product ofk copies of
Lagrangian cone of the GW theory ofX. We will refer to each copy as asector. They are labeled by
elements ofBZk or equivalently connected components ofIBZk. The tangent cone is accordingly
a direct sum ofk copies of tangent spaces. Our tangent vectorδJ st,tw(δt,T) has application point
in the sector labeled by1 of the cone but is tangent in the direction labeled byg−1.

To locateδJ st,tw(δt,T) we process the classes involved in the twisted stem theory according to
the formalism of twisted cohomological GW theory ofX × BZk.

• The class (5.2) rotates the sectors labeled by1 , g−1 by operators✷k,✷η. If xi are Chern
roots ofTX then they are defined as asymptotics of the infinite products

✷k ∼
∏

i

∞∏

r=1

xi − rz

1− e−kxi+rkz
,

✷η ∼
∏

i

∞∏

r=1

xi − rz

1− η−re−xi+rz/k
.
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• The class (5.3) contributes to the change of dilaton shift which becomes1− qk.
• the nodal class (5.4) contributes a change of polarization.In the sector labeled by the iden-

tity the new polarization is given by expanding

1

1− qkLk
,

whereas in the sector labeled byg−1 is given by

1

1− q1/kL1/k
.

• The index twisting class (5.5) rotates the cone according toProposition 5.4 below.

Remark 5.3. The operator✷η✷
−1
k almost equals the operator in conditions 3 of Theorems 2.1,4.6.

To see this (assumexi = x) recall thatq = ez and write

ln(✷η✷
−1
k ) = −

(
∑

r≥1

ln(1− η−re−kxerz/k)

)
+
∑

r≥1

ln(1− e−kxerkz)

= −
∑

r≥1

∫
η−re−xerz/k

1− η−re−xerz/k
dx+

∑

r≥1

∫
ke−kxerkz

1− e−kzerkz
dx

= −
∑

r≥1

∫ (∑

i≥1

η−ire−ixeriz/k

)
dx+

∑

r≥1

∫ (∑

i≥1

ke−ikxerikz

)
dx

=

∫ ∑

i≥1

e−ix
η−ieiz/k

1− η−ieiz/k
dx+

∫ ∑

i≥1

ke−ikx
eikz

1− eikz
dx

=
∑

i≥1

ψiT∨
X

i(1− η−iqi/k)
−
∑

i≥1

ψikT∨
X

i(1 − qik)
+ ln

1− T∨
X

1− ψkT∨
X

.

The constant factor1−T
∨

X

1−ψkT∨

X
is absorbed by the change of pairing when identifying loop spaces as

explained in Remark 4.1. We will ignore it from now on and slightly abusively write

✷η✷
−1
k = exp

(
∑

i≥1

ψiT∨
X

i(1− η−iqi/k)
−
∑

i≥1

ψikT∨
X

i(1− qik)

)
.

We now express the class (5.5) in terms of the universal family p and compute its effect on the cone.

Proposition 5.4. Twisting by the class (5.5) rotates the sector labeled byg−1 of the Lagrangian
cone ofX × BZk by

Rη := exp

(
∑

l≥1

sl
ψlE∨

1− ql/kη−l

)
.(5.7)

The sector labeled by the identity is rotated by

Rk := exp

(
∑

l≥1

slk
kψlkE∨

1− qlk

)
.(5.8)
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Proof. This is a computation based on Tseng’s theorem [17]. First weexpress the class (5.5) in
terms of the universal familyp over the moduli spaces(X ×BZk)0,n,d. Recall that

Trg(π∗(ev
∗E)) =

k−1∑

i=0

η−ip∗(ev
∗E ⊗ Cηi).(5.9)

Hence

Trg(ψ
lπ∗(ev

∗E)) =
k−1∑

i=0

η−ilψlp∗(ev
∗E ⊗ Cηi).(5.10)

Using the fact thatψl chj E = lj chj(E) we get

ch ◦Tr
(
ψlπ(ev∗E)

)
=

k−1∑

i=0

η−il(ψl ch p∗(ev
∗E ⊗ Cηi)) =

=
k−1∑

i=0

η−il

(
∑

j≥0

lj chj p∗(ev
∗E ⊗ Cηi))

)
.(5.11)

Therefore the contribution from (5.9) in the integrals equals:
k−1∏

i=0

exp

(
∑

l≤−1

slη
−il(
∑

j≥0

lj chj p∗(ev
∗E ⊗ Cηi))

)
.(5.12)

This gives us a theory twisted by multiplicative characteristic classes ofk index bundles.

Let us recall Tseng’s result on such twisted theories for thecase of the target orbifoldX ×BZk.
Its inertia orbifold consists ofk disjoint copies(X, gi) for i = 0, 1, ..k − 1. Consider a theory
twisted by a characteristic class of the form

exp

(
∑

j≥0

wj chj p∗(ev
∗E)

)
.

The Lagrangian cone defined by this theory is obtained from the Lagrangian cone of the untwisted
theory after multiplication by

exp

(
∑

j≥0

wj

(
∑

m≥0

(Am)j+1−mz
m−1

m!
+

chj E
(0)

2

))
.(5.13)

The operatorAm is defined by

(Am)|(X,gi) =
k−1∑

r=0

Bm(
r

k
) ch(E

(r)
i ),(5.14)

whereE(r)
i (respectivelyE(0)) is the vector bundle over(X, gi) on whichgi acts with eigenvalue

e2πir/k(respectively1). (Am)j is the degreej piece of the operatorAm. The Bernoulli polynomials
are defined by

∑

m≥0

Bm(x)
tm

m!
=

tetx

et − 1
.(5.15)
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Let us compute the symplectic transformation corresponding to the twisting (5.12) restricted to
(X, g−1). We denote△i the symplectic transformation corresponding to the contribution ofE⊗Cηi

in the product in (5.12). Then:

△i = exp

(
∑

j≥0

(
∑

l≤−1

slη
−illj

)(
∑

m≥0

Bm(i/k) chj+1−mE

m!
zm−1

))
.(5.16)

Let us extract the coefficient ofsl in Rη =
∏

i△i. It equals:

k−1∑

i=0

∑

j≥0

η−illj

(
∑

m≥0

Bm(i/k) chj+1−mE

m!
zm−1

)
=

=

k−1∑

i=0

η−il
∑

j≥0

(
∑

m≥0

Bm(i/k)(l
mzm)(lj+1−m chj+1−mE)

lz ·m!

)
=

=

k−1∑

i=0

η−il
∑

s≥0

(ls chsE)

(
∑

m≥0

Bm(i/k)(l
mzm)

lz ·m!

)
=

=
k−1∑

i=0

η−il
∑

s≥0

ψl chsE
zlelzi/k

lz(elz − 1)
=

= ψl ch(E)
k−1∑

i=0

η−il
elzi/k

elz − 1
=

= ψl ch(E)
elz − 1

(elz/kη−l − 1)(elz − 1)
=

ψl ch(E)

elz/kη−l − 1
.(5.17)

Keeping in mind thatl < 0 we rewrite the result as

ψl ch(E)

elz/kη−l − 1
=

ψ−lE∨

1− q−l/kηl
− ψlE.

The first term is the coefficient ofsl in the answer stated in the theorem. The second terms give the
correction

exp
(∑

slψ
lE
)
,

which is absorbed by the change of pairing onK as explained in Remark 4.1.

For the sector corresponding to the identity the analogous computation withBm(i/k) replaced
byBm(0) reveals the coefficient ofsl to be0 if k does not dividel and

kψ−lE∨

1− q−l

if k dividesl. �

Recall thatLH ⊂ H is the cone of the (untwisted) cohomological GW theory ofX.
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Proposition 5.5.qch δJ st,tw(δt,T) lies in the tangent space✷ηRη✷
−1
k R−1

k (TItw✷kRkLH) and the
application pointT is expressed in terms ofItw by

qch(1− qk +T(q)) = [Itw]+.(5.18)

Here[..]+ means projection along the negative space of the polarization of the sector labeled by
1.

Proof. The series (5.6) can be identified with a tangent vector to thecone of the twisted stem theory
ofX/Zk in the sector labeled byg−1. The application point belongs to the sector labeled by1, hence
to the cone✷kRkLH . Since theg−1-sector rotates by✷ηRη the series belongs to the tangent space
in the proposition. However the twisting by kappa classes and nodal classes in the twisted stem
theory change the dilaton shift and the polarizations. The denominator1− q1/kL1/k is equivalent to
applying the polarization of theg−1-sector to the same space. And the new dilaton shift is1 − qk,
hence the relation between application points. �

We are left with identifying the tangent spaceTItw✷kRkLH with theTk in the Theorem. We first
show that

Proposition 5.6. Under the Assumption 4.2 the coneqch−1(✷k · RkLH) = ψkLtwfake.

Proof. It is shown in [10](Section8, Proposition9) thatqch−1(✷kLH) = ψk(Lfake). SinceLtwfake =
R1 · Lfake andRk = ψkR1 under the Assumption 4.2, the proposition follows. �

Proposition 5.7. Let Ifake be the point onLtwfake such thatψk(Ifake(T̃)) = Itw(T). ThenψkT̃ =
T.

Proof. Recall thatItw is a point on the identity sector of the twisted stem theory: it lies on the cone
✷kRkLH , with the corresponding dilaton shift1 − qk and polarization whose negative space is
spanned by{ qki

(1−qk)i+1}i≥0 = ψk(K1
−). Then

Ifake(T̃) = (1− q) + T̃+
∑ Qd

n!
Φa

〈
Φa

1− qL
, T̃(L), . . . , T̃(L)

〉fake,tw

0,n+1,d

,

Itw(T) = (1− qk) +T+
∑ Qd

n!
Φa

〈
Φa

1− qkLk
,T(L), . . . ,T(L)

〉st,tw

0,n+1,d

.

Now usingψk(Ifake) = Itw it follows thatT = ψk(T̃). The constraints of the leg contributions
in KRR impose that̃T is J tw

1 (0). �

Moreover if we differentiate the relationψk(Ifake) = Itw it follows that

ψk

(
f(q) +

∑ Qd

n!
Φa

〈
Φa

1− qL
, T̃(L), . . . , T̃(L), f(L)

〉fake,tw

0,n+2,d

)
=

ψkf(q) +
∑ Qd

n!
Φa

〈
Φa

1− qmLm
,T(L), . . . ,T(L), ψkf(L)

〉st,tw

0,n+2,d

.
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On the RHS we have a point in the tangent spaceTItw✷kRkLH (in the direction ofψkf(q)). But
on the LHS we haveψk[S(q, Q)f(q)] which almost belongs toTk defined in Definition 2.2: we also
need to changeQd 7→ Qdk in S because the degrees inJ tw

η are multiplied byk. This concludes the
proof of Theorem 4.6.

6. THE PERMUTATION-EQUIVARIANT THEORY

There is a naturalSn action on the moduli spacesX0,n,d given by renumbering the marked points.
Givental has recently generalized the definition of K-theoretic GW invariants in this setting. He
considers theSn modules

[t(L), . . . , t(L)]0,n,d :=
∑

(−1)mHm
(
X0,n,d;O

vir
n,d ⊗

n
i=1 t(Li)

)

where the inputt(q) is a Laurent polynomial inq with coefficients inK(X) ⊗ Λ. HereΛ is
an algebra which carriesψk operations. Moreover for convergence purposes we assumeΛ has a
maximal idealΛ+ and we endow it with the correspondingΛ+-adic topology. The natural choices
for Λ satisfy these conditions - in general we want it to include the Novikov variables, the algebra
of symmetric polynomials in a given number of variables and/or the torus equivariantK-ring of the
point. For suitable choices ofΛ the permutation-quivariant invariants encode all the information
about theSn modules above. We refer to [8] for details.

The invariants :

〈t(L), . . . , t(L))〉Sn0,n,d

are defined as K-theoretic push forwards of the classesOvir
n,d⊗

n
i=1 t(Li) along the mapX0,n,d/Sn →

[pt.].

One can define theJ-function in the permutation-equivariant setting

JS∞
(t(q)) := 1− q + t(q) +

∑

d,a

QdΦa
〈

Φa
1− qL

, t(L), . . . , t(L)

〉Sn

0,n+1,d

Givental noticed that the combinatorics of the Kawasaki strata works the same as in the non
permutation-equivariant theory. He used this to describe the Laurent expansion ofJS∞

near each
value ofq.

Theorem 6.1. ([8], Part III) The values ofJS∞
are characterized by:

(1) JS∞
has poles only at roots of unity.

(2) The expansion atq = 1 (JS∞
)(1) lies on the coneLfake.

(3) (JS∞
)η(q

1/kη−1) ∈ ✷η✷
−1
k Tk(JS∞

(t)(1)) , whereTk(f) is the space of Definition 2.2.

Basically, one applies KRR and identifies the Laurent expansions ofJS∞
with generating series

of certain twisted theories as before. The only difference is that the legs are allowed to carry marked
points, and condition(3) of the theorem is modified accordingly.
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We now proceed to define twisted permutation-equivariant K-theoretic GW invariants by tensor-
ing theSn modules with multiplicative classes ofπ∗E:

〈t(L), . . . , t(L)〉Sn,tw0,n,d := χ

(
X0,n,d/Sn;O

vir
n,d ⊗

n
i=1 t(Li)⊗ exp(

∑

l

slψ
lEn,d)

)
.

TheJ-function of the twisted permutation-equivariant quantumK-theory is

J tw
S∞

(t(q)) := 1− q + t(q) +
∑

d,a

QdΦa
〈

Φa
1− qL

, t(L), . . . , t(L)

〉Sn,tw

0,n+1,d

.

The characterization of the range ofJ tw
S∞

extends to this setup.

Theorem 6.2.The values ofJ tw
S∞

are characterized by:

(1) J tw
S∞

has poles only at roots of unity.

(2) The expansion atq = 1 (J tw
S∞

)(1) lies on the coneLtwfake.

(3) (J tw
S∞

)η(q
1/kη−1) ∈ RηR

−1
k ✷η✷

−1
k Tk(J tw

S∞
(t)(1)) , whereT tw

k (f tw) is given by the procedure
described in Definition 2.2, but starting with the pointf tw ∈ Ltwfake.

Proof. Again the main difference with the non permutation-equivariant case is that we do not im-
pose the conditiont(q) = 0 on the definition ofT(q) because we are allowed to permute marked
points. Hence the spaceT tw

k in condition (3) is obtained from the tangent space toLtwfake at
J tw
S∞

(t)(1). �

Remarkably, from the twolocal characterizations above we obtain aglobal relation, albeit under
the restrictions of the Assumption 4.2

Theorem 6.3.Assume the characteristic class in the permutation-equivariant twisted theory is the
Euler class. LetLS∞

andLtwS∞
denote the ranges of theJ-functionsJS∞

andJ tw
S∞

respectively.
Then

LtwS∞
= e

∑
l>0 sl

ψlE∨

(1−ql)LS∞
.

Proof. Let

g(q) = e
∑
l>0 sl

ψlE∨

(1−ql) f(q),

wheref ∈ LS∞
. We will prove thatg satisfies the conditions in Theorem 6.2 assumingf satisfies

the conditions of Theorem 6.1. The first one is obvious.

For the second condition notice that

g(1) = e
∑
l>0 sl

ψlE∨

(1−ql) f(1).
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Since we assume by Theorem 6.1 thatf(1) ∈ Lfake and we proved that

Ltwfake = e
∑
l>0 sl

ψlE∨

(1−ql)Lfake,

it follows thatg(1) ∈ Ltwfake.

Also notice that if the tangent space atf(1) toLfake is given as the image of a map

S(q, Q) : K+ → K,

then the same tangent space atg(1) to Ltwfake is given by

S ′(q, Q) = e
∑
l>0 sl

ψlE∨

1−ql S(q, Q) : K+ → K.

According to our assumption

f(q1/kη−1) ∈ ✷η✷
−1
k S(qk, Qk)Kfake

+ .

It is an easy computation to see that

g(q1/kη−1) = e
∑
l>0 sl

ψlE∨

(1−ql/kη−l) f(q1/kη−1) =

= Rηf(q
1/kη−1) ∈ RηR

−1
k ✷η✷

−1
k S ′(qk, Qk)Kfake

+

if all sl = −1/l. This concludes the proof. �

Remark 6.4. In the non permutation-equivariant case it was difficult to express the application
point of the twistedJ function in terms ofJ (t(q)). In the permutation-equivariant case , Theorem
6.3 above allows us to achieve this very nicely. More precisely the projection toK+ of an element

e
∑
l>0

ψlE∨

l(ql−1)JS∞
(t(q))

is 1− q + t(q)− E∨.

As a consequence of Theorem 6.3 we can describe the cone of a theory twisted by a general
multiplicative class. Define a twisted theory by inserting in the correlators the general multiplicative
class

exp

(
∑

l<0

slψ
lEn,d

)

and assume for convergence purposes that the classE ∈ K0(X,Λ+) ( andψl acts on the coefficient
in Λ+). Denote byLtwS∞

the range of itsJ-function. Then

Corollary 6.5.

LtwS∞
= e

∑
l sl

ψlE∨

(1−ql)LS∞
.

Proof. We want to express the multiplicative class as a linear combination of Euler classes ofψkE:

exp

(
∑

l<0

slψ
lEn,d

)
=
∏

k≥1

(eK(ψ
kE))tk
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This gives the system

∑

l

slψ
lV =

∑

k>0

tk

[
∑

i<0

ψkiV

i

]
,

or equivalently

lsl =
∑

k|l,k>0

ktk, l = −1,−2, ...

It can be solved by Möbius inversion formula. Using then Theorem 6.3 concludes the proof. �

Let us now recall theDq module structure recently proved in [8]. For a Novikov variableQi let
pi ∈ H2(X) the dual cohomological class and letPi = e−pi ∈ K0(X). It is known ([10]) that in
the non-permutation equivariant case the operatorPiq

Qi∂Qi preserves tangent spaces to the coneL.
The analogue statement in the permutation-equivariant theory is the following

Theorem 6.6. ([8], Part IV) Letλ ∈ Λ+. Then the coneLS∞
is invariant under expressions of the

form

exp

(
∑

k>0

ψk(λD(Piq
Qi∂Qi , q))

k(1− qk)

)
,

whereD is a Laurent polynomial inPiqQi∂Qi , q with coefficients fromΛ independent ofQ.

We combine Theorem 6.6 with Theorem 6.3 to prove a ”quantum Lefschetz” general result.

Theorem 6.7. Let V ⊂ X be a hypersurface given as the zero section of a convex line bundleL.
Let3

JX =
∑

d∈Eff(X)

JdQ
d

be a point on the cone of the permutation equivariant theory of X. Then the point

IV =
∑

d∈Eff(X)

JdQ
d

〈c1(L),d〉∏

r=1

(1− L∨qr)

lies on the cone of the permutation-equivariant K-theory ofV .

More precisely ifi : V → X is the inclusion then

eK(L)IV = i∗JV (i
∗t(q)),

wheret(q) can be explicitly computed via projection toK+ and i∗ on the RHS acts also on the
Novikov variables via the natural mapi∗ : H2(V ) → H2(X).

Proof. The arguments of [12] extend in K-theory to show that

Ovir
n,d,V = eK(Ln,d)⊗Ovir

n,d,X .

3We discardS∞ from the notation as we will only talk about permutation-equivariant theory from now on.
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Hence the K-theoretic GW theory ofX twisted by the Euler class ofLn,d gives the K-theoretic GW
theory ofV .

Let us writeL as a monomialf(P−1
i ). Let

Γq(x) = e
∑
k>0

xk

k(1−qk) ∼
∞∏

r=0

1

1− xqr
.

Then the operator

Γq−1(f(Pi))

Γq−1(f(Piq
Qi∂Qi ))

(6.1)

acts as

Qd 7→ Qd

〈c1(L),d〉∏

r=1

(1− L∨qr),

hence we get

eK(L)IV = e
∑
k>0

ψkL∨

k(qk−1)
1

Γq−1(f(Piq
Qi∂Qi ))

JX .

According to Theorem 6.6 the operator in the denominator preserves the cone of the untwisted
theory ofX. The other operator on the RHS moves the point on the cone of the theory twisted by
eK(Ln,d). The claim follows. �

In particular forX = CP
N we confirm results of [8], where the following was proved using

localization

Corollary 6.8. ([8], Part V) LetV ⊂ CP
N be a hypersurface given as the zero section ofO(l) for

somel > 0. Then

IV = (1− q)
∑

d≥0

Qd

∏dl
r=1(1− P lqr)

∏d
r=1(1− Pqr)N+1

is a point on the cone of the permutation equivariant K-theory of V .

Proof. TheJ-function ofCPN at t(q) = 0 is known ([9]) to be

J
CP

N (0) = (1− q)
∑

d≥0

Qd

∏d
r=1(1− Pqr)N+1

.

Applying Theorem 6.7 to this series gives the result. �

Remark 6.9. Theorem 6.7 has a straight forward generalization for complete intersections given as
zero sections of direct sums of convex line bundles onX.

Another application of our Theorem 6.3 is to find points on thecone of the total spaceE of a
toric fibrationE → B given a point on the baseB of the fibration. The proof is along the lines of
[2] where it was done in cohomological GW theory.

First let us introduce notation. LetX be a toric non-singular compact Kähler manifold. It can
be described by symplectic reduction. Let the torusTN act onCN endowed with the canonical
symplectic form in the usual way. The moment map of this action isµ : CN → RN , µ(z1, ..., zN) =
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(|z1|2, ..., |zN |2). For the action of a subtorusTK ⊂ TN the moment map is obtained as the com-
positionm ◦ µ : CN → Rk, wherem : RN → RK is the dual of the embedding of Lie algebras
Lie(TK) ⊂ Lie(TN). We denote the elements of the matrixm bymij . Applying symplectic reduc-
tion over a regular valueω of the moment map we get a toric varietyX = CN//ωT

K of dimension
N −K.

The fibration(m ◦ µ)−1(ω) → X endowsX with K tautological line bundles which we denote
Pi. They represent a basis ofPic(X) and generateK0(X).

LetB be Kähler manifold,Li line bundles onB, i = 1, .., N . We replace the fiber of⊕Li with
the toric manifoldX, obtaining this way a toric fibrationπ : E → B. It carries a fiberwise action
of TN . The total spaceE carriesK tautological line bundlesPi which restrict toPi on each fiber.
They generateK0(E) as an algebra overK0(B).

Similarly a degreeD ∈ H2(E,Z) ”breaks up” as a degreeD = π∗(D) ∈ H2(B,Z) and degrees
di := −〈c1(Pi),D〉 along the fibers. We will denote the two sets of Novikov variables byQB, Q
i.e.QD

B representsD in the Mori cone ofB andQd = Qd1
1 · .. ·QdK

K . Let us define forj = 1, ...N

Uj(P) =
K∏

i=1

P
mij
i L∨

j , Uj(D) =
K∑

i=1

dimij + 〈c1(Lj), D〉.

We can now state

Theorem 6.10.Let

JB(t(q)) =
∑

D∈Eff(B)

JdQ
D
B

be a point on the Lagrangian cone of the permutation-equivariant K-theory ofB. Then

IE :=
∑

d∈ZK ,D∈Eff(B)

JdQ
D
BQ

d
N∏

j=1

∏0
r=−∞(1− Uj(P)qr)

∏Uj(D)
r=−∞(1− Uj(P)qr)

lies on the cone of the total spaceE.

Proof. We use localization along the fibers. Most of the details are common with [2] - where it was
carried in the cohomological theory and [8] -where it was done for the caseB = pt.

Let us denote byC[Λ±1
1 , . . . ,Λ±1

N ] the ringK0(BTN). We will work torus-quivariantly and
deduce the statement of the theorem as the limitΛi → 1. Let us label the fixed points of the torus
action onX by multiindexesα = (j1, ..., jK) which specifyK-dimensional faces of the first orthant
whose image under the mapm containsω. Toric one dimensional orbits connecting the fixed points
α andβ exist precisely whenα ∪ β has cardinalityK + 1. For a fibrationπ : E → B with fibers
isomorphic toX fixed points of the fiberwise action ofTN form sectionsα : B → E, one for each
fixed pointα ∈ X. The normal bundle of the sectionα is the sum ofN −K line bundles

Uj(P
α) := α∗Uj = ⊗i(P

α
i )

mijL∨
j Λ

−1
j , j /∈ α

whereP α
i are determined by

⊗i(P
α
i )

mijL∨
j = Λj, j ∈ α.
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Let f be a point on the coneLE of permutation-equivariant quantum K-theory ofE. We denote by

fα := α∗f

its restriction to the fixed point sectionα. Then localization gives

f =
∑

α

α∗

(
fα∏

j /∈α e
T
K(Uj(P

α))

)
,

whereeTK is the torus equivariant K-theoretic Euler class.

The characterization of points on the cones of toric varieties using localization given in [8] ex-
tends to this setting in the following way:

Proposition 6.11.The point{fα} belongs to the coneLE iff the following are satisfied

(1) As a meromorphic function near the roots of unityfα ∈ Lα, whereLα is the cone ofα(B)
twisted by the inverse of the Euler class of the normal bundle(eTK)

−1(Nα). The variables
Λ±1
i and the Novikov variables are considered as elements of the coefficient ring.

(2) The other poles, which are simple for generic values ofΛi, come from factors of the form
(1− qmUj(P

α)) for j /∈ α. They have residues controlled recursively in degrees by

Resq=λ1/m fα(q)
dq

q
=

Qmdαβ

eTK(N
m
αβ)

fβ(λ1/m),

whereλ = Uj(P
α), β is determined byj, dαβ is the degree of the one-dimensional orbit

≃ CP
1 connectingα with β andNm

αβ is the normal bundle to the moduli spaces of maps to
the orbit of degreekdαβ with two marked points at the point which is the degreem cover of
the orbit.

We need to check that the equivariant version ofIE satisfies the two conditions in Proposition
6.11. First notice that

IαE =
∑

D,d

JDQ
D
BQ

d

∏
j∈α

∏Uj(D)
r=1 (1− qr)

∏
j /∈α

∏Uj(D)
r=1 (1− qrUj(P α))

.

The second condition is verified by the computation in [8] which carries over without any modifi-
cations. To verify the first condition introduce monomials in the Novikov variablesQα

j such that∏
j∈αQ

α
j = Qd. Forj /∈ α introduce monomialsQα

B,j dual to the cohomology class−c1(Uj(P α)).
Notice that the operator

∏

j∈α

Γq(Q
α
j )
∏

j /∈α

Γq−1(Uj(P
α)q

QαB,j∂QαB,j )

Γq−1(Uj(P α))

transformsJB into IE . According to theDq module structure the first factors and the numerators
maintainJB on the cone of the untwisted theory ofα(B), according to Theorem 6.3 the denomina-
tors move points on the coneLα of the theory twisted byeTK(Nα)

−1. This concludes the proof.�

In the end we illustrate some computations how one can use ourresults to compute K-theoretic
Gromov-Witten invariants of the complete intersections and toric fibrations of the Theorems 6.7
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and 6.10 starting from theirI-functions. LetX ⊂ CP
4 be a hypersurface given as the zero section

of O(5). Then we have proved that the hypergeometric series

IX = (1− q)
∑

d≥0

Qd

∏5d
r=1(1− P 5qr)

∏d
r=1(1− Pqr)5

lies on the coneL of the permutation-equivariant quantum K-theory ofX. Write the coefficient of
Q as

Q
(1− q)

∏5
r=1(1− P 5qr)

(1− Pq)5
:= Q · f(P, q) +

Q · g(P, q)

(1− Pq)5
,

wheref(P, q) is a polynomial inq (hence contributes tot(q)) and the fractionQ·g(P,q)
(1−Pq)5

belongs to
K− and hence comes from correlators. An immediate degree argument shows that we must have

g(P, q)

(1− Pq)5
=
∑

a

Φa〈
Φa

1− qL
〉X0,1,1.

Pairing this expression against other classes using the K-theoretic Poincare pairing onX we get all
one point degree one invariants:

〈
Φa

1− qL
〉X0,1,1 =

(
g(P, q)

(1− Pq)5
,Φa

)

X

= −ResP=1
g(P, q)Φa(1− P 5)

(1− P )5(1− Pq)5
dP

P
.

TakingΦa = 1 above we get the one point invariants

〈
1

1− qL
〉X0,1,1 =

2875(1− 3q)

(1− q)2
.

Notice that settingq = 0 one computes the invariant〈1〉X0,1,1 = 2875. This is unsurprising as
according to the K-theoretic string equation〈1〉X0,1,1 equals the number of lines inX.

Our results hold independent of the degrees of the equationscutting out the complete intersections
in projective space. For another example, considerY ⊂ P5 given as the intersection of two quadric
hypersurfaces. Then the same computation as above startingfrom theI-function

IY = (1− q)
∑

d≥0

Qd

∏2d
r=1(1− P 2qr)2
∏d

r=1(1− Pqr)6
,

gives the one point invariants ofY

〈
1

1− qL
〉Y0,1,1 =

32(q2 + q3)

(1− q)4
.
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