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TWISTED K-THEORETIC GROMOV-WITTEN INVARIANTS

VALENTIN TONITA

ABSTRACT. We introduce twisted K-theoretic Gromov-Witten (GW) ineents in the frameworks
of both "ordinary” and permutation-equivariant K-theacegs W theory defined recently by Givental.
We focus on the case when the twisting is given by the Eules@éan index bundle which allows one
(under a convexity assumption on the bundle) to relate Kbtic GW invariants of hypersurfaces
with those of the ambient space. Using the methods develiogd@] we characterize the range of
the J-function of the twisted theory in terms of the untwisteddtye As applications we use tlfe,
module structure in the permutation-equivariant case tegize results of [8]: we prove a general
"quantum Lefschetz” type theorem for complete interseigiven by zero sections of convex vector
bundles and we relate points on the cones of the total spdheahmise of the base of a toric fibration.

1. INTRODUCTION

K-theoretic Gromov-Witten invariants have been introdlibg A. Givental and Y.-P. Lee([9],
[13]). They are holomorphic Euler characteristics of vettondles on the moduli spaces of stable
maps toX.

One of the initial motivations was to provide a new way to daational curves on the famous
Calabi-Yau quintic threefold. In this case the moduli spaskstable maps are zero dimensional
and the Euler characteristics of their structure sheavesdagive the number of curves. For this
purpose a formalism of twisted K-theoretic Gromov-Witteadry analogous to the cohomological
one needs to be developed. Roughly speaking the twistedants are defined by including in
the correlators Euler classes of index bundles. Then onddwike to express them in terms of
the original ("untwisted”) invariants. If one starts witlcanvex line bundle the genus zero twisted
invariants are actually GW invariants of the hypersurfaimemas the zero locus of a section of
the bundle. Thus the relation between the twisted and utgditeories translates into a relation
between GW invariants of the hypersurface and those of theemspace.

Givental recently introduced i |[8] a new enriched versidrthe theory called permutation-
equivariant K-theoretic Gromov-Witten theory, which taketo account the,, action on the mod-
uli spaces permuting the marked points. The permutatiaivagant theory fits better within the
framework of mirror symmetry. In particular certagFhypergeometric series associated with toric
manifolds lie on the cone of their permuation-equivariasthi€ory.

In this paper we introduce twisted K-theoretic Gromov-¥fitinvariants in genus zero for both
versions of quantum K-theory. The generating functiondefivariants are called thefunctions.
Their images are Lagrangian cones living in infinite dimenal loop spacek’. We use Kawasaki
Riemann Roch theorem to characterize the cone of the twibtaaty in terms of the cone of the
untwisted theory.

Our results allow us to significantly generalize Givent&Fsheoretic "mirror formulas” for the

permutation-equivariant theories: we prove a "quantunstieétz” type theorem for an arbitrary
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smooth projective varietyX', namely we show that certain hypergeometric modificatidnmoots
on the cone ofX lie on the cone of a complete intersection given as the zengslof sections of
convex line bundles. Moreover we prove a similar statementdric fibrations, describing points
on the cone of the total spaéein terms of points on the base.

We include some short computations at the end. In particwdashow how one can count the
2875 lines on the Calabi-Yau quintic using our results. More galte one can use our results
to compute GW invariants of all complete intersections iojgctive spaces. According to recon-
struction theorems (selel [8]) one can recover all genus zethriary” and permutation-equivariant
K-theoretic GW invariants of a projective manifold (undbee tassumption that the ring°(X) is
generated by line bundles) from a point on their K-theorketigrangian cone. Hence in principle
we can determine the quantum K-theory for all projective fiadois for which our results can be
used to find a point on their K-theoretic Lagrangian cones.

The paper is organized as follows. In Secfidn 2 we introdheeblsic objects of K-theoreflc
GW theory in genus zero including thefunction and the Lagrangian core We also recall the
main result of [10] which characterizes the cafién terms of the cone of the cohomological GW
theory. Sectiofil3 contains a brief review of the formalisne@fiomological twisted GW theory. In
Sectior’# we define twisted K-theoretic invariants and dteemain result in the non-permutation
equivariant case. This is Theoréml4.6 which describes the £8° in terms of the cone of the
untwisted one. The proof of TheorémM#.6 is done in Se¢fiorl&viing the ideas in[[10]. We write
Laurent expansions of thé function near each root of unity and identify it with genérgtseries
coming from certain twisted cohomological theories to elstarize their ranges. Sectibh 6 deals
with the permutation-equivariant theory: the relationAzstn the twisted and untwisted cones turns
out "nicer” in this case. This is the content of Theorem 6.3= ¥mbine it with theD, module
structure of [[8] to prove the applications mentioned abowe end with some computations of
K-theoretic GW invariants of complete intersections injpctive spaces.

Acknowledgements. | would like to thank A. Givental for explaining to me the partation-
equivariant theory and for useful discussions. Parts dfeligsscussions took place during a visit at
IBS, Center for Geometry and Physics, Pohang. | would likénémk the institute for support and
hospitality. | would also like to thank the anonymous reéei@r the useful comments.

2. K-THEORETIC GROMOV-WITTEN THEORY

Let X be a complex projective manifold. We denote By, , Kontsevich’s moduli stack of

genus zero stable mapsia they parametrize dat@’, 4, . . ., x,, f) such that

e ( is a connected projective complex curve of arithmetic gerare with at most nodal
singularities.

e (z1,...1,) € Cisanordered-tuple of distinct smooth points afi (they are called marked
points).

e f:C — Xisamap of degreé € Hy(X,Z).

e The data(C, x4, ..., z,, f) has finite automorphism group, where an automorphism is de-
fined to be an automorphism : ¢ — C such thatp(x;) = «x; foralli = 1,..n and
fop=1.

Lwhen not specified it will always mean non permutation-egpiant
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For eachi = 1,..,n there are evaluation maps; : X,,, — X defined by sending a point
(Cyxq,...,2y, f) — f(x;) and cotangent line bundleds, — X, , whose fibers over a point
(C,z1,..., 1, f) are identified withl C.

K-theoretic Gromov-Witten (GW) invariants have been defihg Givental and Lee[([9],[13]) as
sheaf holomorphic Euler characteristics ®p,, ; obtained using the map®; and the line bundles
L;:

X (Xoma, OFF « @7y evf (E) L) € Z.
Here(’);’jg € Ko(Xon.a) (We will generally suppres&” from the notation) is the virtual structure
sheaf defined ir [13]. We will use correlator notation for tfneariants:
(BALM, . EnLkn>o,n,d = X (Xona, Oply @1y evf (B L) .

The generating series of these invariants is called thén@é+etic)./-function. Let
Ky = KX, ClQI) ® Clg. g7,
K = K°(X,Cl[Q])) @ C(g).
The J-function is
J KL= K,

Jt(@)=1—q+t(@)+ Q—q>a<1 i{)‘;L,t(L),...,t(L)>O -

Here{®,}, {®*} are bases ok °(X) dual with respect to the pairing

(q)au q)b) - X<X7 (I)a ® (I)b)
andQ? are monomials in the Novikov ring based on the cone of effeaturves inEf f(X) C
Hy(X).

The imagel C K of the J function has been characterized(inl[10] in terms of the cadlogical
GW theory ofX. We briefly recall the main result there, referring[tol[10] ftails.

To express holomorphic Euler characteristics of a vectodi®i” on a compact complex orbifold
Y as a cohomological integral one uses Kawasaki Riemann RGRR) theorem of([11] (proven
by Toen in [14] for proper smooth Deligne-Mumford stack$he integrals are supported on the
inertia orbifold/) of YV:

(2.1) YV, V) Z/y Td(Ty,) ch (%)

We now explain this ingredients of this formul&) is the inertia orbifold of/, given set-theoretically
by pairs(y, (¢)), wherey € Y and(g) is (the conjugacy class of) a symmetry which fixes\We
denote byy, the connected componeEtef ).

For a vector bundl&’, let V" be the dual bundle to". The restriction of/ to ), decomposes in
characters of the action. LetV,\" be the subbundle of the restriction Bfto Y, on whichg acts

2We frequently refer to them as Kawasaki strata.
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with eigenvalue=*". Then the tracdr (V) is defined to be the orbibundle whose fiber over the
point (p, (g)) of V), is

Te(V)= > ey

0<i<r—1

Finally, A*N/ is the K-theoretic Euler class of the normal bundig of ), in ). Tr(A°N}/) is
invertible because the symmetyyacts with eigenvalues different froinon the normal bundle to
the fixed point locus.

Xo.n,q 1S NOt smooth but it has a perfect obstruction theory whichlmused to define its virtual
fundamental class (sekl [1]). For a std@k E*) with a perfect obstruction theory that can be
embedded in a smooth proper stack,(, ;, satisfies this assumption) one can choose an explicit
resolution of £* as a complex of vector bundlds! — E°. Let £, — E; be the dual complex.
Then the virtual tangent bundle 9f can be defined as the clads)] © [E1] € K°(Y) (see [6]).
Moreover the connected components of the inertia orbifo[ mherit perfect obstruction theories
which can be used to define their virtual normal bundles.

It was proved in[[15] that one can apply KRR theorem to the nicghacesX ,, ; by replacing
all the ingredients in the formula with their virtual courgarts. The symmetries oKy ,, 4 Which
have non-trivial action on the cotangent line bundlecreate poles at all roots of unity in the
function. For each primitive root of unity of orderm denote by7, the Laurent expansion of the
J-function in(1 — ¢n) and regard it as an element in the loop space of such Laurerermeries
with coefficients inK°(X)

1
K" = K% X)[——, (1 —qn)]].
(Ol= o ( )]
Let us look aty = 1: the contributions in KRR formula come from the identity qoonent of the
inertia orbifold of X, ,, 5. They were callediakeK-theoretic GW invariants and are of the form:

n

(L), . (L) = [X Ttz T 0

where [ X, , 4] is the virtual fundamental class of the moduli spafe, , is the virtual tangent
bundle and the product is the cohomological cup product.

Consider the generating series of the fake invariantseieanents ofkC! of the form

Qd (ba fake
Trane(d,8(9)) 7= 1 = q +t(q) + Y =0 <1 — qL,t(L), . ,t(L)> .
: 0,n+1,d

dn,a
Here the argumertt(q) belongs to the space
KL= K (X, CQI)Ilg - 1]].
The range of/;.. spans a Lagrangian cor& ... C K' which can be described explicitly in
terms of the cohomological GW theory af. We will make this precise in the next section.
The main theorem of [10] describes for althe range of7,(t(q)) in terms of the con& ;...

Theorem 2.1.[10] The K-theoretic/ function of X is completely characterized by the following
conditions
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(1) If nis not a root of unity7,(t(¢)) does not have poles at=1n""'.

(2) Ti(6(0)) € Lo

(3) Letn be a primitive root of unity of ordek # 1 and let7,(J7:(0)) be as in Definitio 2]2
below. IdentifylC” with KC* via gn — ¢. Then

iT\/ ikT\/
jn(t(ql/kn_l)) € exp; <2(1 ipn—fqz‘/k) B z(;b— ;k:)) Ti(J1(0)).

Definition 2.2. Let f be a point onC .., let T'(f) be the tangent space 1ty atf, considered as
the image of amap(q, Q) : K} — K'. Recall the Adams operationd are ring isomorphisms of

K9(X) which act on line bundles as — L*. Denote by the isomorphism ofC} which is the
inverse ofiy* on K°(X) and does not act ap Q<. Then define

Ti(f) := TImage of "o S(¢", Q") otk . ler — KL

3. TWISTED COHOMOLOGICAL GROMOV-WITTEN THEORY

The proofs of Theorern 2.1 as well as of the main statementedrupcoming sections rely
heavily on the machinery of twisted cohomological GW ingats. They were introduced in/[5]
and generalized in various directions|in|[17] and [16]. Wecsnuctly review it below, emphasizing
the example of the fake GW invariants. We use the same ctorelatation for cohomological GW
invariants

n

<%011/1k1, cey Qpnwkn>07n’d = / H evj(¢2)¢fl

[Xo,m,d] j—1
The different notation for the classes inside the corretatoakes it easy to distinguish them from
the K-theoretic GW-invariants. The product in the integk&ithe cohomological cup product.

Let H be the loop space of the cohomological GW theoryXof
H = H'(X,C[Q)]="", 7).
It comes equipped with a symplectic form and carries a djsished polarizatioft!, & H_ where

Hy = H'(X, CIQIDI=,  H- = %H*(X,CHQH)[Z‘I]-

The J-function of the cohomological GW theory is defined as
JH : H+ — H,

d
Inlt(a) = ==+ t(2) + 30 Lt (—E ) )

d,n,a F T w

It is identified with the graph of the differential of the gesmero potential

Fo(t(z) = 32 L (6(0), 60

viewed as a function of(z) — = with respect to the polarization above. The image/gfis a
Lagrangian cone which we will denot&;.

0,n+1,d

Remark 3.1. The translation by-z is called the dilaton shift. We will often refer tot(z) asthe
input.
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Twisted GW invariants are defined by considering in the irgksgcharacteristic classes of push-
forwards along the universal family of three types of taogital classes (they were called of type
A, B,Cin [16] ). Recall that the universal family of the moduli spa, ,, » can be identified with
the mapr : Xo,+1.4 — Xona Which forgets the last marked point. The correlators of sted
theory are typically cohomological integrals of the form

/[X | (H e (om0l [T A (evB) T] By [F(LY,0) = F(L)) Hckmwz)) ,

m=1 7 k
whereA;, B;, C;, are a finite number of multiplicative characteristic classe

One can similarly as above associate a Lagrangian cone ts@daheory. The formalism of
twisted GW theory (in genus zero, for the purpose of this pagescribes the correlators of a
twisted theory in terms of the correlators of the untwistegbry. More precisely the three types of
twistings and their effect on the correlators are :

e twistings by characteristic classes of index bunditggv;  , E). They correspond to ro-
tation of the coneC; by symplectomorphisms ¢ given by EndH*(X) valued Laurent
series inz. These symplectomorphisms are called loop group transfoms.

e kappa classes twistings by characteristic classes[6f(L,, ;) — F'(1)], whereF is a poly-
nomial with values ink°(X). These correspond to a change of dilaton shift in the applica
tion point of the/-function.

e twistings by characteristic classesmf.Oz, wherei : Z — X, 4 IS the codimension
two locus of nodes. These affect the generating series bypagehof the spac# _ of the
polarization.

Example 3.2. Let us consider the twisted theory which we called fake ingitexious section. Itis
given by inserting in the correlators the clas3e{7y ,, q).
The virtual tangent bundle of, ,, ; can be written as a K-theoretic class (s€e [3], Section 2.5)
Tona=m(ev; 1 Tx —1) = m (L, — 1) — (mi,0z)".
We identify ! and via the Chern character
qch : ' — A,
O — ch(P),q — €.

Theorem 3.3. ([4], [3]) The invariants of the fake theory are related to the cohogicé GW
invariants ofX by the following ingredients:

e the coneLl s, is given explicitly in terms ofZ ; by
th('Cfake) = AﬁHa

where the loop group transformatiah is determined only by the characteristic cldss
and the first summand in the expressiorf gf, 4.

¢ the change of dilaton shift in the application point of théunctions of the theories from
—ztoqch(1 — ¢) is determined by the clagsd and the second summandih,, 4.
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e the generating series of the fake invariants is consider#drespect to a different negative
space ort{ determined by the nodal class. More precisely the negatiseesC! of the

polarization is spanned by elements of the fc{mﬁ}izo. One way to see this is by
formally expanding

1 q :
SN < N -
L—ql & (1-g™

The spacé{_ on the other hand is spanned by elemgris};~,. It is easy to see that the
mapqch does not identify them.

We refer the reader t6 [16] for explicit computations of tei@mple as well as a treatment in full
generality of the formalism of twisted GW theory.

It will sometimes be convenient for us to write loop group igters as Euler-Maclaurin asymp-
totics of infinite products.

Definition 3.4. Given a functionz — f(z), the Euler-Maclaurin asymptotics of the product
[1:2, e/(*="=) is obtained by writing

[e.e]

S fa—r2) = (3 e ) () = 2 (20,)7 f ()

e#dx — 1

r=1

_ fox [t f(x) +Z By f(2k—1)(x)22k—1.

z 2 (2k)!

k>1
The operator\ in Exampld_3.B is the Euler-Maclaurin asymptotics of

ANHHl_:—ixi+m’

i r=1

wherez; are the Chern roots of the tangent bundleto

4. TWISTED K-THEORETIC GROMOV-WITTEN INVARIANTS
We define twisted K-theoretic GW invariants by insertinghia torrelators invertible multiplica-
tive classes of index bundlds, ; := 7. (ev}:,, E), whereE € K°(X).
The value of a general K - theoretic invertible multiplieaticlass on a bundl€ is

(4.1) exp()_ sip'V).
l

We will mainly work with! < 0 summation range. We tregtas formal parameters and expand the
ground-ring of the theory by tensoring it witB[sq, so, . . .]].

Hence the twisted invariants are defined by inserting in treetators multiplicative classes of
En,d

(t(L),..., t(L))g" 4 ==X (Xovn,d; O @y t(Li) @ exp() Sﬂ/)lEn’d)> .
l
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The twisted K-theoretic potential is defined as:
P = 3 o )
= iy e omd -
d,n
The J-function of the twisted theory is
jtw . IC+ — IC,

d
) =1-a+ el + Y Do {

d,n,a

tw

P,
1—qL

(L), .. .,t(L)>

0,n+1,d

Remark 4.1. The baseg®,}, {®*} involved in the definition of7™ are dual with respect to the
twisted pairinggiven by
(B, Bp) = Y (X, Dy @ By @ X 5V'F),

We will have to consider various twisted theories. As a gainelle the pairing of a twisted theory
is given by correlators oX 5 o ~ X

(q)aa q)b) - <q)a7 q)bv 1>67:%707
where the meaning of.)*” depends on the theory. To relatefunctions of different theories we

need to regard them as elements of the same loop space. Vblgeis rescaling the elements in
loop spaces.

Let us define the cong’y, . C K' the Lagrangian cone of the theory whose correlators are

n

(6(L), ..., t(L)ore™ = /{X | [ ch(t(L:) TA(To.a) exp(d _ st ch E,.4),
0,n,d} j=1

whereTy , 4 is the virtual tangent bundle and the product is the cohogiodd cup product. Notice
that the cone s, is the twisted fake cone at = 0. The J-function of the theory is

t Qd o fake,tw
JW (t(q)):=1—q+t P L t(L),...,t(L :
fake( (q)) q + (q) + Z <1 — QL’ ( )’ ’ ( )>O7n+1,d

For now we restrict ourselves and make the following

Assumption 4.2. The twisting class is the K-theoretic Euler clagsg £, ). It is determined by its
values on line bundlesi (L) = 1 — LY. To achieve this we sum aftér< 0 in the multiplicative
class[(4.1l) and set = —s_;/I. We allow the twisting class to depend formally on one pateme
s_1.Ats_; = —1 (4I) becomes the Euler class.

Remark 4.3. In generalE,, ; can be written as the difference of two genuine bundigs © B, 4
on Xy, 4 (See[[5]). We extend the definition ef; to such objects by working torus-equivariantly -
where the action rotates the fibersiof Theney (E, 4) = eK(An,d)ef{l(Bn,d).

Remark 4.4. The case of the Euler class is the main motivation for comsigeéwisted GW invari-
ants: it can be used to relate GW of the ambient spaegth GW invariants of a subvariety given
by the zero locus of a section &f.
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The image of7' is a Lagrangian coné. Our main result describe&™ in terms of the cone
ﬁ?{ike'
Convention 4.5. As the operators in the theorems are given as sums lafterl we adopt the
conventions; = s_; for all [, rather than writing:_; in all formulae.
Theorem 4.6.Let 7" be the expansion il — ¢n) of the twisted/-function. Then

(1) If nis not a root of unity thel/;’™ is a power series ifil — gqn).
(2) J/* lies on the cone
lEV
Efake = €Xp Z Si—— ¢ q )Efake

>1

(3) Assume) # 1 and that Assumption 4.2 holds. LEf“(f') be as in Definitiof 2]2 but
starting with a point™ € L, . Then

" sz\/ 77bik:T'V B " "
jt ( l/k E eXP; < 1 — n_lqz/k) - Z(l _ ;fk)) RﬁRklﬁ ( lt (O>)7

whereRy,, R, are defined by

k lk:E\/
Ry, := exp (Z Slklw_iqlk> :

1>1

le\/
Rn = exXp (Z Slm .

>1 N

Remark 4.7. As the first part of the theorem can be used to describe thetasgace &i to £%* Jake
in terms of the cone ..., Theoreni 46 gives a complete characterization of the édisbne in
terms of the untwisted one.

Remark 4.8. The operatorsxp (Zm (11677% — D> ZE”:%) andR, R, ' do not have poles

atg = 1. For exampleR, has polesM atq = 1 for [l = l'k, they cancel the poles of

R;.. Otherwise the last conditions of both Theoréms$ 2.1[and dudanot be true because modulo
Novikov variables7, is a power series.

5. THE PROOF OFTHEOREMZ.G

We follow the proof of [10].

The first condition in the theorem is obvious. For the secdatément, let(q) = contributions
in the J-function of poles# 1. Then we claim that

Proposition 5.1.

T (4(0) = Tiane(t(a) + t(q))
faketw
=1—q+t(q Z < qL,t(L)+£(L),...,t(L)+E(L)> .

dna
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Proof. This is completely analogous to the untwisted case: theitomibns in the/-function with
poles at; = 1 correspond to Kawasaki strata where the symmetries ad@llyion the irreducible
component - call i, - carrying the distinguished marked point Such irreducible components
can carry other special points - marked points or nodes. pll®# such a node and call_ the
irreducible component which interseais at p. The Euler class of the normal direction of the
Kawasaki stratum which smoothens the nede (1 — L, L_), whereL,, ._ are cotangent line
bundles ap to the respective branches. The contribution in KRR contiamfthis normal direction
is

1
1 —ch(Ly)ch(Tr(Lo))

Notice that the symmetry can not act with eigenvaluen L._ otherwise we could smoothen the
node while staying in the same Kawasaki stratum (equivigiéme class in the denominator would
be nilpotent).

Moreover the twisting class factorizes "nicely” over nod#data, i.e. ifi is the inclusion of a
divisor Xo »,+1,4, Xx Xon,+1,4, Parametrizing nodal curves i ,, , andp;, p, the projections on
the two factors the following holds (se€ [5]):

i (' (ev B)) = pi(¥'mi(ev” B)) + py(¥'m(ev” E)) — v'ev; 4 E.

The third summand is absorbed by the pairing at the node (ese®fR(4.1), the other two ensure
that the twisting class distributes on the factors as tngstiasses of the same form.

This shows that the insertion in the correlators correspmnth the node» comes fromt (L. ).
In fact when we sum after all possibilities of degrees and lemof marked points of curves_
the insertion becomes L ). For a marked point of’, the insertion is(L) hence the generating
series7"(t(q)) is of the form

t ~ Z Qd 1) R faketw
“(t(q)) =1 —q+t(q) +t(q) + <I>a< “ ,t(L),...,t(L)> ,
1 d,n,m,a nim! 1- qL 0,n+m+1,d
where there are insertions oft(L) andm insertions oft(L) in the correlators. Keeping in mind
that there art{":;m) ways of choosing the marked points among the-+ m special points we can

rewrite 7/ (t(q)) as

1(t(q) = Jrare(t(q) + t(q)),

and hence/," lies on the fake twisted cong’;, .. O

The correlatorg..)/**™ are obtained fron{...)/®* by inserting one more multiplicative char-
acteristic class

ch [exp(z Sllen,d)] .

This meansC’;, is obtained from_ .. by applying a loop group transformation, which we com-

ake

pute explicitly below.
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Let us extend the' operations on cohomology using the Chern character. Isréad= /¢ for
¢ € H*(X). Hence

(5.1) ch [exp(z sllen,d)} = exp (Z(Z sil?) ch; Emd) )

ji>0 1<0

According to [5] the cone of a theory twisted by a general iplidative characteristic class of the
form

exp(z wj ch; B, 4)

is obtained from the cone of the untwisted theory by applyimegoperator

Z Wom— 1+] ) Ch E - Z

m,j>0
Here the Bernoulli numberB,,, are defined by

t t BZm 2
=14+ - e,
1—et +2+Z(2m)!

We apply this to our twisting clasg.1]) and we extract the coefficient of in the corresponding
loop group transformation:

Z [2m—1+j (B2m ch; E - S2m—1 _

m,j>0 2 )
=y v ch; B Do T )Pt =
m,j >0
:Z@chhE( lz pp —1):
7>0 ) 2
B le _¢lE_¢_lEv_le
1l -l 2 1—q! 2

The second summand is killed when we identify loop spacesReenark 411). The first summand
agrees with the operator in p#t) of the Theoren 4]6.

We now proceed to prove pdft) of Theoreni.4.6: lety be a primitive root of unity of ordek +# 1.
The Kawasaki strata i ,, o Which give contributions with poles at= n~* in the J-function were
calledstem spaces [10]. They parametrize maps whose restriction to the cameptC', carrying
the first marked point factor through degreeoversz — z*. These maps can be identified with
stable maps to the orbifold x BZ, (of degreek times Iess) The only points fixed by automor-
phisms of such maps abeco € C,.. However we can encountgstuples of nodes permuted by the
symmetry. Let(C}, .., Cy) be the curves adjacent to these nodes: then the restridtitie stable
map toC; have to be isomorphic and moreovgrare not allowed to carry marked points, as they
have to be fixed by the symmetry.

Hence the contributions in thefunction 7 with poles at; = 1~! are cohomological integrals on
the moduli spaces of mapsox BZ, involving certain multiplicative characteristic classesning
from the tangent and normal directions to the Kawasakiagtaat from the index twisting (4.1). It
turns out these tangent and normal directions can be exgor@sterms of the universal families over
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the moduli space€X x BZj)o.n,4, Which we denote by. LetC,; be the line bundle oX' x BZ,
which is topologically trivial and on which acts as multlpllcatlon by', fori =0,1...k — 1.

We definethe twisted stentheory to be the cohomological GW theory of the target ottifo
X x BZ, twisted by all the classes which contribute in the KRR foranapplied ta7*“. We now
list the classes:

e the summand, (ev; ,,Tx) of Ty ,, 4 contributes the class

k—1
(5.2) Td(p.(ev*Tx)) [ | Tdy(p.(ev”(Tx @ Cy))).
i=1
where
1
TdA(L) = 71 — )\6—01([,)
e the summand'd(p.(1 — Ly, ,)) of Tg,, 4 contributes the class
k—1
(5.3) Td(p.(1 — L) [ [ Tdy (p((1 = LY) @ ev*Cy)).

i=1
e the nodal contributions in KRR formula differ depending be type of node. Denote by
Z, the nodes which can be smoothed within the same Kawasakuistrand byZ, the
non-stacky nodes (these are disjoint frﬁp. Then the nodal twisting is given by

(5.4) Td(—(psin0z,)") Td(—(p.i.Oz,)" HTd —(ps1.0z, @ ev*Cyi)).

e the class[(4]1) contributes
(5.5) choTr [exp <Z slwlw*ev*Eﬂ .

The first three types of twisting classes are preserit ih §6({on8), where it is explained why
they account for the tangent and normal directions to Kalwasteata. We will express the class
(5.8) as a pushforward alongn Propositiod 5.14.

We denote the correlators of the twisted stem theory.hy<™. The J function of the theory
IS

stem,tw

T ) = =460+ T L (o )te))

d,n,a 0,n+1,d

Hence the polar part of,*(¢) comes from correlators of the twisted stem theory. Let ustien
by t?(q) the contributions in the twisted-function not having poles at~!. Then we claim that

Proposition 5.2.

stem,tw

jtw ttw Z Qdk e T(L) T(L) Etw(,r]—lLl/k)
1_an1/k7 AR Y )

0,n+2,d

n,d,a

where the evaluation maps at the marked points land in coemgerof/ BZ; labeled by the se-
quence(g, 1,..,1,971) andT(L) = ¢*T(L), with T(¢) = J*(0).
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In the above)* acts on cotangent line bundlés— L*, elements ofk°(X) and on Novikov
variablesQ? — Q*.

Proof. As already mentioned the twisting class factorizes "cdlygover strata of symmetries,
hence the proposition is completely analogous to the saatensént in[[10](Sectiof, Proposition
2). We give a concise outline below.

Recall that stem spaces parametrize maps— C' — X, where the first map is — z*. The
first and last seats in the correlators @yec € C', which are fixed by the symmetry. The insertion
W in the first seat occurs becau$e(L,) = nL; and the cotangent lines on the cover and
guotient curve differ by a power df. Summing after all possibilities faso ( it can be a node, a
marked point or a non-special point 6f.) gives the insertion* (n~' L'/*) for the last seat in the
correlators.

Let us explain the statement about the infiytL), to which we will refer aghe leg these are
nodes on the quotient curve whose preimages on the covéranges of nodes connecting.
with curves(C1, ..., Cx) which do not carry marked points . The maps — X, i = 1,..k are
isomorphic. Summing after all possibilities of degrees @&psiC; — X we get contributions

1w (0) for each such node. Notice that on the cover curve therd a@pies of cotangent line
bundles at thé nodes toC;, whereas on the quotient curve only one such cotangent Heeace
one needs to compute the traceZgfon the tensor product of thecotangent line bundles, where
the generatoy € Z; permutes the factors. The statem@Ht) = ¢*T(L) follows from the fact
that for such an action ¢, on thek-th power of a vector spadé we haveTlr(g|Ve*) = ¢V (see
[10],Lemma in Sectiom). O

Hencej;“’(n—lq%) is obtained from a tangent vector to the cone of the twistethgheory of
X X BZy:
stem,tw

(5.6) 6T (5t, T) = 5t (¢**) + Z p <W,T(L),....,T(L),at(Ll/’f)> ,

n,d,a 0,n+1,d

after changing)? — Q% (but not indt).

The Lagrangian cone of the cohomological GW theoryok BZ, is the product of: copies of
Lagrangian cone of the GW theory &f. We will refer to each copy assector They are labeled by
elements ofBZ,, or equivalently connected componentd &fZ,. The tangent cone is accordingly
a direct sum of: copies of tangent spaces. Our tangent ve&tbi-*(dt, T) has application point
in the sector labeled by of the cone but is tangent in the direction labeled;by.

To locates 75" (4t, T) we process the classes involved in the twisted stem theeording to
the formalism of twisted cohomological GW theory ¥fx BZ,.

e The class[(5]2) rotates the sectors labeled by~ by operatorsJ,, 0,. If 2; are Chern
roots of T’y then they are defined as asymptotics of the infinite products

—Trz
oo~ T e
1— e—k:pl+rkz

i r=1

D ™~ H H 1 —nTe % +rz/k

i r=1
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e The class[(5]3) contributes to the change of dilaton shiftiwbecomes — ¢*.
e the nodal class$ (5.4) contributes a change of polarizatiothe sector labeled by the iden-
tity the new polarization is given by expanding

1
whereas in the sector labeled by' is given by
1
1 — qU/kL1/k
e The index twisting clas$ (3.5) rotates the cone accordirRropositiod 5.4 below.

Remark 5.3. The operatord, 0, ' almost equals the operator in conditions 3 of TheorlemE B.1,4
To see this (assume = z) recall thaty = ¢* and write

In (D D—l (Z ln —r —k:v rz/k > _|_Zln —km rkz)
r>1 r>1
—x rz/k ke~ kx rkz
- Z/ —Te— xerz/k T+ Z/ 1— 6—kzerkz
r>1 r>1

_ _Z/ (m S /k> dx+Z/ (Zk‘ _ike,, k>

r>1 r>1 i>1

—2 zz/k ikz

/Ze_ml - _Zew/kdx+ /Zke—zlmlijgmd

T\/ sz\/ 1— T\/
s VIX oy VI g, Lo TR
i(L—nigh) il —g%) 1Ty

The constant factow is absorbed by the change of pairing when identifying lo@xrsg as
explained in Remark4.1. We will i ignore it from now on and ktlg abusively write

) U VT
0.0 1 - eXp T T~ O~ .
e (; i(1—n~ig'/*) ZZ; i(1—q™*)
We now express the clasgs (5.5) in terms of the universal fgmahd compute its effect on the cone.

Proposition 5.4. Twisting by the clasg(5l5) rotates the sector labeled blyof the Lagrangian
cone of X x BZ, by

le\/
(57) Rn = exXp (Z SIT/ICU_[ .
>1
The sector labeled by the identity is rotated by

k lkE'\/
(5.8) Ry :=exp (Z S”flw_iqlk> )

>1



TWISTED K-THEORETIC GROMOV-WITTEN INVARIANTS 15

Proof. This is a computation based on Tseng’s theorem [17]. Firsexygess the clast (5.5) in
terms of the universal family over the moduli spacgsX x BZj), 4. Recall that

k—1

(5.9) Try(m.(ev*E)) = Z N 'pe(ev' E® C).
i=0

Hence
k—1

(5.10) Try (¢!, (ev* E)) = Zn_il@blp*(ev*E ®C,i).
=0

Using the fact that)! ch; £ = 17 ch;(F) we get

choTr (¢Y'm(ev*E)) Zn (' chp.(ev*E® C,)) =

(5.11) - Zn"’ (Z U chjp.(ev'E®C, )))

7>0
Therefore the contribution frorh (3.9) in the integrals dgua

(5.12) H exp (Z s () U chy pu(ev’E @ @nl-))) :
<-1 >0

This gives us a theory twisted by multiplicative charastigziclasses of index bundles.

Let us recall Tseng’s result on such twisted theories foctse of the target orbifold x BZ,.
Its inertia orbifold consists of disjoint copies(X, ¢°) for i« = 0,1,..k — 1. Consider a theory
twisted by a characteristic class of the form

exp (Z wj ch; p*(ev*E)> .
Jj=0

The Lagrangian cone defined by this theory is obtained freanh #fyrangian cone of the untwisted
theory after multiplication by

o ml gy 5O
(5.13) exp (Z w; (Z (Am>j+ﬂll—'m n ChJ2E| )) )

>0 m>0

The operator,, is defined by
k—1
(5.14) m)|(X,g%) Z Bm ) ch( E(r )
=0

whereE (respectivelyE ) is the vector bundle overX, g') on which g’ acts with eigenvalue
2’”7"/"C(respect|vely1). (A,,); is the degreg piece of the operatad,,,. The Bernoulli polynomials
are defined by

(5.15) 3 Bm(x)%m! _ e

et — 1
m>0
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Let us compute the symplectic transformation correspanttinthe twisting [(5.12) restricted to
(X,g7"). We denote), the symplectic transformation corresponding to the cbation of EQ C,:
in the product in[(5.12). Then:

(5.16) A; = exp (Z (Z Sm_illj> (Z Bm(i/k);f!lm_m Ezm_1>> |

>0 \I<—1 m>0

Let us extract the coefficient of in R, = [[, A;. It equals:

— iy Bn(i/k) chjir-m E 0y
ZZW l (Z m! : ) -

=0 j>0 >0
—il m(3/R) (2™ (P chyy E)>
>y (x -
>0 \m>0 lz - ml
- B (i/k)(I™2"™)
_ il s _
_Z” >_(ch, B) (Z Iz - m! -
s>0 m>0
L l Zlelzz/k
= n " chg E
Z ; elz _ ]_)
z k-1 z l#ilk
W' ch( );n e
=1 Leh(E
(5.17) — ¢! ch(E) ‘ _ Y ch(E)

(elz/k,r]—l _ 1)(612 _ 1) elz/k,r]—l -1
Keeping in mind that < 0 we rewrite the result as

Yleh(E) TRV
elelbp=l =1~ 1 — g-t/kyl

—J'E.

The first term is the coefficient af in the answer stated in the theorem. The second terms give the

correction
€xp <Z Sl¢lE> )

which is absorbed by the change of pairing/oras explained in Remafk4.1.
For the sector corresponding to the identity the analogouspatation withB,,(i/k) replaced
by B,,(0) reveals the coefficient of to be0 if £ does not dividé and
kY~ EY
1—qg7!
if k& dividesl. O

Recall thatLy C H is the cone of the (untwisted) cohomological GW theoryof
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Proposition 5.5. qch 6 7°4**(4t, T) lies in the tangent spade, R, 0, ' R, ' Tz« 0, Ry L) and the
application pointT is expressed in terms @f* by

(5.18) qch(1 — ¢* + T(q)) = [T™]..

Here[..], means projection along the negative space of the polasizafithe sector labeled by
1.

Proof. The seried(516) can be identified with a tangent vector tadine of the twisted stem theory
of X /7 in the sector labeled hy!. The application point belongs to the sector labeled,thence

to the coned, R, L. Since they!-sector rotates bia, R, the series belongs to the tangent space
in the proposition. However the twisting by kappa classes rmodal classes in the twisted stem
theory change the dilaton shift and the polarizations. Téredinator — ¢'/* L'/* is equivalent to
applying the polarization of thg~!-sector to the same space. And the new dilaton shiftisg*,
hence the relation between application points. O

We are left with identifying the tangent spagg. 0, R L ; with the T, in the Theorem. We first
show that

Proposition 5.6. Under the Assumptidn4.2 the coneh™ (0, - R, Ly) = w’“ﬁfake

Proof. Itis shown in [10](Sectio®, Propositiord) thatqch ™ (0, L) = ¢¥* (L fare)- Sinceﬁﬁfgke =
Ry - L jare and Ry, = ¢* R, under the Assumptidn 4.2, the proposition follows.

O

Proposition 5.7. Let Z,;. be the point orC’;,  such thaﬁpk(Ifake( )) = Zt(T). Theny*T =
T,

Proof. Recall thatZ* is a point on the identity sector of the twisted stem thedrljes on the cone
O, R Ly , with the corresponding dilaton shift— ¢* and polarization whose negative space is

spanned b){ o= biso = Y*(KL). Then

9

Ho N N fake,tw
,T(L),..., T(L)>

1 —qL 0,n+1,d

st,tw

_ N d
Trare(T) = (1—q) + T+ ) %(I)a <

d a
(T =(1—¢")+T+> %@a <1_LM,T(L), o T(L)>

0,n+1,d

Now usingy*(Za..) = Z™ it follows that T = " (T). The constraints of the leg contributions
in KRR impose thafl is 77 (0). O

Moreover if we differentiate the relation”(Z;...) = Z™ it follows that

d a . _ fake,tw
P <f(CI)+Z%<I>a<1(_I>ﬁ,T(L),...,T(L),f(L)> >:

0,n+2,d
Qd oo st,tw
V() + D P (e T(L), - T(L), U (L)
q 0,n+2,d
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On the RHS we have a point in the tangent spaged, R, Ly (in the direction of)*f(q)). But
on the LHS we have*[S(q, Q)f(q)] which almost belongs 1@, defined in Definitio 212: we also
need to chang@’ — Q% in S because the degreesJff* are multiplied by. This concludes the
proof of Theoren 416.

6. THE PERMUTATION-EQUIVARIANT THEORY

There is a naturad,, action on the moduli spaces, ,, s given by renumbering the marked points.
Givental has recently generalized the definition of K-tle¢iorGW invariants in this setting. He
considers thes,, modules

[6(L), - 6(D)]g g = Y (F)"H™ (Xoga; Oty @1y t(Li))

where the inputt(q) is a Laurent polynomial iy with coefficients inK(X) ® A. HereA is
an algebra which carries” operations. Moreover for convergence purposes we asguhss a
maximal idealA . and we endow it with the corresponding -adic topology. The natural choices
for A satisfy these conditions - in general we want it to includeXovikov variables, the algebra
of symmetric polynomials in a given number of variables antfie torus equivariamt’-ring of the
point. For suitable choices of the permutation-quivariant invariants encode all the rimi@tion
about theS,, modules above. We refer tal [8] for detalls.

The invariants :

(B(L), - (D))o
are defined as K-theoretic push forwards of the claésgs®y, t(L;) along the mapXy .4/ S, —
[pt.].

One can define thé-function in the permutation-equivariant setting
i) Sn
1—qL’

t(L), ... ,t(L)>

0,n+1,d

Ts..(t(q) :==1—q+t(q) + Z Qo <

Givental noticed that the combinatorics of the Kawasakatatiworks the same as in the non
permutation-equivariant theory. He used this to deschiee iurent expansion Qfs_ near each
value ofg.

Theorem 6.1. ([8], Part Ill) The values of7s__ are characterized by:
(1) Js.. has poles only at roots of unity.
(2) The expansion at =1 (Js..)q) lies on the cone ;.
3) (T )n(q"*n™") € 0,07 " Ta(Ts.. (t) ) , whereTx(£) is the space of Definitio 2.2.
Basically, one applies KRR and identifies the Laurent exjoassof, 75 with generating series

of certain twisted theories as before. The only differesdbat the legs are allowed to carry marked
points, and conditiori3) of the theorem is modified accordingly.
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We now proceed to define twisted permutation-equivariatiiécretic GW invariants by tensor-
ing the S,, modules with multiplicative classes of E:

(t(L),- - t(L)gm = X (Xo,n,d/sn; Ol ©y t(Li) @ exp()_ szlem) :
l
The J-function of the twisted permutation-equivariant quantistheory is

Sh,tw

TE (@) =10+ tl0) + Q0 (12 e(D), (D))

0,n+1,d
The characterization of the range @§" extends to this setup.
Theorem 6.2. The values of/¢"” are characterized by:

(1) J& has poles only at roots of unity.
(2) The expansion at= 1 (J§" )« lies on the conely, .

(3) (T&), (¢ *n) € R Ry 0,0, T (T (t) 1)) , whereT, (£%) is given by the procedure
described in Definition 212, but starting with the poffit € L%, ..

Proof. Again the main difference with the non permutation-equasarcase is that we do not im-
pose the conditioi(¢) = 0 on the definition ofT'(¢) because we are allowed to permute marked
points. Hence the spacg in condition (3) is obtained from the tangent space 4g;, . at

T (8) ) m
Remarkably, from the twiocal characterizations above we obtaiglabalrelation, albeit under

the restrictions of the Assumptién 4.2

Theorem 6.3. Assume the characteristic class in the permutation-egisauaatwisted theory is the
Euler class. Lets and £’ denote the ranges of théfunctions7s. and 7" respectively.
Then

LV
S oo E
Et’lgo —e >0 (1,ql)£Soo.

Proof. Let

SEY
g(g) = e~ =M E(g),

wheref € Ls__. We will prove thatg satisfies the conditions in Theoréml6.2 assunfisgtisfies
the conditions of Theorefm 6.1. The first one is obvious.

For the second condition notice that

I\
g(l) — eZl>0 Sl(di*EjZl)f(l)_
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Since we assume by Theoréml6.1 thate L. and we proved that

W'E

v
tw D087
fake — € (1~a )Efakeu

it follows thatg,) € L%,
Also notice that if the tangent spacefat to L. is given as the image of a map
S(q,Q) : Ky = K,
then the same tangent spacgaj to L%, _ is given by

T s Y
S'(q,Q) === S(q, Q) : Ky — K.
According to our assumption
f<q1/kn—1) c Dnmlzls<qk7 Qk)lciake.
It is an easy computation to see that

LoV

g4y = 0 D £ (g M) =
_ Rnf(ql/kn_1> c RnRI;IDnD]zlsl<qku Qk)]ciake
ifall s, = —1/1. This concludes the proof. O

Remark 6.4. In the non permutation-equivariant case it was difficult xpress the application
point of the twisted/ function in terms of7 (t(¢)). In the permutation-equivariant case , Theorem
above allows us to achieve this very nicely. More prégihe projection toC, of an element

LpV

b
0D T (6())
is1l—qg+t(q) — EY.
As a consequence of Theorém|6.3 we can describe the cone ebgy ttwisted by a general

multiplicative class. Define a twisted theory by insertingtie correlators the general multiplicative
class

exp (Z Sllen,d>

I<0

and assume for convergence purposes that the Elas#(°(X, A, ) (andy! acts on the coefficient
in A,). Denote byL’ the range of its/-function. Then

Corollary 6.5.

lpV
T, sy LEY
¢ =emta=d Ly

Proof. We want to express the multiplicative class as a linear coatlain of Euler classes of* F:

exp (Z Sllen,d> = H(eK(lbkE))tk

1<0 k>1
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This gives the system

v =X S

k>0 <0

or equivalently
sy = Y kty, 1=-1,-2 .

It can be solved by Mdbius inversion formula. Using then diieen[6.8 concludes the proof. [

Let us now recall thé, module structure recently proved [ [8]. For a Novikov val&®); let
p; € H?(X) the dual cohomological class and IBt= ¢ € K°(X). Itis known ([10]) that in
the non-permutation equivariant case the operBigf:?2: preserves tangent spaces to the cne
The analogue statement in the permutation-equivariaotyhis the following

Theorem 6.6. ([8], Part IV) Let A € A,. Then the con&__ is invariant under expressions of the

form
YF(AD(Pyq@?%;, q))
exp (Z K1 — ) ,

k>0

whereD is a Laurent polynomial itP,¢q?%2: | ¢ with coefficients fromA independent of).

We combine Theorem 8.6 with Theoréml6.3 to prove a "quantufadbetz” general result.

Theorem 6.7.LetV C X be a hypersurface given as the zero section of a convex lineléu.

Lef]
= 2
deEff(X)
be a point on the cone of the permutation equivariant theéry oThen the point
(c1(L),d)
= Y Q' J[ a-rv¢)
deEff(X) r=1

lies on the cone of the permutation-equivariant K-theory of

More precisely ifi : V' — X is the inclusion then
ex (L) Ty = i.Jv(i"t(q)),

wheret(q) can be explicitly computed via projection 10, and:, on the RHS acts also on the
Novikov variables via the natural map: Hy (V) — Hy(X).

Proof. The arguments of [12] extend in K-theory to show that

vir vir
n,d,V eK( n,d) ® On,d,X‘

3We discardS,, from the notation as we will only talk about permutation-eguant theory from now on.
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Hence the K-theoretic GW theory &f twisted by the Euler class df, ; gives the K-theoretic GW
theory of V.

Let us writeL as a monomiaf (P, '). Let

k o0
Zk 0 - k 1
I = 0 k(1-qF) ~ | | .
q(x> € ¢ s 1 _ xqr

Then the operator
L1 (f(F))
Ly1(f(Pig9%:))

(6.1)

acts as
(c1(L),d)
Q=" J[ -1,
r=1
hence we get
kL\/ 1

Y0 TR
6K(L)Iv =€ >0 k(gh-1) -
o (F(Pg07))

According to Theorenm 616 the operator in the denominatosgres the cone of the untwisted
theory of X. The other operator on the RHS moves the point on the coneedhtfory twisted by
ex (Lyq). The claim follows. O

TIx.

In particular forX = CP" we confirm results of [8], where the following was proved gsin
localization

Corollary 6.8. ([8], Part V) LetV ¢ CP" be a hypersurface given as the zero sectio@® @ for
somel > 0. Then

(1 _ d Hil:1(1 - qur)
Ty = (1 q)dzzo@ (= Py

IS a point on the cone of the permutation equivariant K-thedr.

Proof. The J-function of CP" att(q) = 0 is known ([9]) to be

Ter0) = (1=0) Y ?qu)m

Applying Theoreni 67 to this series gives the result. O

Remark 6.9. Theoreni 6.7 has a straight forward generalization for cetephtersections given as
zero sections of direct sums of convex line bundleskon

Another application of our Theorem 6.3 is to find points on ¢bee of the total spacg of a
toric fibration £ — B given a point on the bask of the fibration. The proof is along the lines of
[2] where it was done in cohomological GW theory.

First let us introduce notation. Let be a toric non-singular compact Kahler manifold. It can
be described by symplectic reduction. Let the tafts act onC» endowed with the canonical
symplectic form in the usual way. The moment map of this adq : CV — RY | ju(21, ..., 2y) =
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(|z1)?, ..., |z2n|?). For the action of a subtori&® c T the moment map is obtained as the com-
positionm o i : CV — R¥, wherem : RY — R is the dual of the embedding of Lie algebras
Lie(TX) C Lie(T"). We denote the elements of the matuixby m;;. Applying symplectic reduc-
tion over a regular value of the moment map we get a toric variety= C"/ /T of dimension
N - K.

The fibration(m o p)~'(w) — X endowsX with K tautological line bundles which we denote
P;. They represent a basis Bfic(X) and generaté®(X).

Let B be Kahler manifold[; line bundles onB, i = 1, .., N. We replace the fiber abL; with
the toric manifoldX, obtaining this way a toric fibration : £ — B. It carries a fiberwise action
of TV. The total spacé carriesK tautological line bundle®; which restrict toP; on each fiber.
They generaté(°(£) as an algebra ovet®(B).

Similarly a degreé® € H,y(E,Z) "breaks up” as a degrel = w,.(D) € Hy(B,Z) and degrees
d; == —(c1(P;), D) along the fibers. We will denote the two sets of Novikov vaeatby Q) s, Q)
i.e. QF representd in the Mori cone ofB andQ? = .. Q?{. Let us define foj = 1,...N

K K
Ui(P)=T]P" L), U;(D)=>_ dim+ (cr(L;), D).
-1 i=1

We can now state

Theorem 6.10.Let
Tst(@) = Y. JQB

DeEff(B)

be a point on the Lagrangian cone of the permutation-equevdK-theory of B. Then

N 0
[T (1 =U;(P)g")
Ip= Y. Q'] o
deZK DEEff(B) j=1 Hff;@o(l = U;(P)q")

lies on the cone of the total spaée

Proof. We use localization along the fibers. Most of the details arernon with [2] - where it was
carried in the cohomological theory and [8] -where it waseltor the casé3 = pt.

Let us denote byC[AF, ..., A%'] the ring K°(BT™). We will work torus-quivariantly and
deduce the statement of the theorem as the limit> 1. Let us label the fixed points of the torus
action onX by multiindexesy = (ji, ..., jx ) which specifyK -dimensional faces of the first orthant
whose image under the mapcontainsv. Toric one dimensional orbits connecting the fixed points
« andg exist precisely whewa U 5 has cardinalityX” + 1. For a fibrationr : £ — B with fibers
isomorphic toX fixed points of the fiberwise action @ form sectionsy : B — E, one for each
fixed pointa € X. The normal bundle of the sectianis the sum ofV — K line bundles

Uj(P) 1= a"U; = (PO LYAS, G ¢ a
where P> are determined by

@i(PY)™ L) = A;, j €.
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Let f be a point on the conég of permutation-equivariant quantum K-theoryof We denote by
fo .= a*f
its restriction to the fixed point sectien Then localization gives

fa
£=2 o (Hj@ eﬁ(Uj<Pa>>> |

whereeZ is the torus equivariant K-theoretic Euler class.

The characterization of points on the cones of toric vargetising localization given in[[8] ex-
tends to this setting in the following way:

Proposition 6.11. The point{f~} belongs to the congy, iff the following are satisfied

(1) As a meromorphic function near the roots of urfityc £*, whereL* is the cone ofv(B)
twisted by the inverse of the Euler class of the normal butele —*(N,). The variables
A" and the Novikov variables are considered as elements obeféicient ring.

(2) The other poles, which are simple for generic valued  ottome from factors of the form
(1—q™U;(P%)) for j ¢ a. They have residues controlled recursively in degrees by

dq Qs 1
Res,_yi/m £%(q)— = 7mf6()\ m,
4= q 6%—‘(( aﬁ)

where\ = U,(P%), ( is determined by, d,s is the degree of the one-dimensional orbit
~ CP' connectingy with 3 and 7 is the normal bundle to the moduli spaces of maps to
the orbit of degreéd,,s with two marked points at the point which is the degreeover of

the orbit.

We need to check that the equivariant versiorf gfsatisfies the two conditions in Proposition
6.11. First notice that

« JDQg ¢
I =2, U;(D) ; U;(D) T pay)
D,d HjEQ [ (1—q¢ )Hj@ [[2 (1 —qU;(P))
The second condition is verified by the computatioriin [8] eth¢arries over without any modifi-
cations. To verify the first condition introduce monomiaigtie Novikov variableg)¢ such that

[[c. QF = Q?. Forj ¢ o introduce monomialg)$; ; dual to the cohomology classc, (U;(P?)).
Notice that the operator

o 77 Dot (U;(P) 7478
H Pq(Qj ) 1;[ qu’l (Uj(Pa))

transforms7; into Z. According to theD, module structure the first factors and the numerators
maintain7; on the cone of the untwisted theory®fB), according to Theorefn 6.3 the denomina-
tors move points on the con® of the theory twisted by’ (N,,)~!. This concludes the proof.[J

In the end we illustrate some computations how one can useesults to compute K-theoretic
Gromov-Witten invariants of the complete intersectiond &aric fibrations of the Theorenis 6.7



TWISTED K-THEORETIC GROMOV-WITTEN INVARIANTS 25

and6.10 starting from thei-functions. LetX ¢ CP* be a hypersurface given as the zero section
of O(5). Then we have proved that the hypergeometric series

5d 5.7
S,(1-P
o= (1-q Y @l = 20
d>0 Hr:1<1 — Pqr)
lies on the cone of the permutation-equivariant quantum K-theoryXof Write the coefficient of

Q as
(1-IL,=Pq) Q- g(P.q)

where f(P, q) is a polynomial ing (hence contributes t6(¢)) and the fractior27*4} belongs to
K_ and hence comes from correlators. An immediate degree agishows that we must have

g(P,q) o, |y
= g ¢ ——— .

Pairing this expression against other classes using thegretic Poincare pairing ok we get all
one point degree one invariants:

o x _( 9(Pq) R g(P,q)®.(1 — P°) dP
Tz ((1—Pq>5’®“)x_ RSP Py = Py P

0,1,1 —
Taking®, = 1 above we get the one point invariants

1 2875(1 — 3q)
o= —a_gr
1—qL (1-4q)
Notice that setting; = 0 one computes the invariarit);, , = 2875. This is unsurprising as
according to the K-theoretic string equati()lr)g’fl,1 equals the number of lines iK.
Our results hold independent of the degrees of the equatigtisg out the complete intersections

in projective space. For another example, consider P° given as the intersection of two quadric
hypersurfaces. Then the same computation as above stirdmgheZ-function

2d 272
Tv = (1 — dHr:l(l_Pq) 7
Y ( Q);Q Hf:1<1 _ qu)6

gives the one point invariants &f
Loy 320"+
< — >0,1,1 = Y
1—qL (1-q)
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