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Summary

Investigation of exciton properties in organic materials via many-
body perturbation theory

In this thesis the properties of bound electron-hole pairs, so called excitons, in
organic materials are investigated using computer simulations. Central to the de-
scription of these molecular excitations are quantum mechanical methods to re-
solve the very short length scale phenomena, which largely determine the effi-
ciency of molecular devices. To model the excitations the GW -BSE formalism is
employed, a many-body perturbation theory approach, which is well suited to de-
scribe excitons in organic materials, as it accurately models the correlation and
long range interaction between electrons.

To account for the influence of the environment on individual molecules in bulk
and interface structures, a coupled quantum mechanical/molecular mechanics (QM-
/MM) framework using a polarizable environment is used here. This necessitated
the implementation of density functional theory (DFT) to provide an accurate start-
ing point for GW -BSE calculations, as well as improvements to speed and accuracy
of the GW -BSE implementation itself. The combined DFT/GW -BSE formalism was
successfully benchmarked for a set of small molecules. The QM/MM framework is
then used to investigate charge transfer states inside a solvated DNA strand, high-
lighting the stabilization a polarizable environment provides to these bimolecular
excitations. Building on the accurate description of excited states, a method to cal-
culate electronic couplings for singlet and triplet states was developed and bench-
marked against explicit dimer calculations. Furthermore, possible approximations
for large systems were discussed. The electronic couplings in conjunction with clas-
sical electrostatics were then used to provide input for a set of coarse-grained rate
equations, which allows to model exciton diffusion in DCV5T-ME(3,3), a crystalline
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organic semiconductor. The inclusion of singlet radiative decay rates derived from
GW -BSE results allows for an explicit treatment of exciton decay. Long range elec-
tronic couplings were classically treated using distributed charge representations of
transition densities. The combination of rate models and atomic structure reduced
to a directed graphs, which were solved using kinetic Monte Carlo simulations.
The thesis concludes with an analysis of the exciton dynamics with regards to the
impact of short and long ranged couplings as well as energetic disorder and the
relevance of trap states on exciton diffusion length.
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Chapter 1

Introduction

The work behind this thesis was started to create a framework which allows to
simulate electronic properties of organic semiconductors from only structural ex-
perimental data, whilst all other quantities are calculated from quantum mechan-
ics. Such an approach has the potential to greatly aid experimental research on
organic semiconductors by revealing the fundamental microscopic processes and
linking them to experimentally available quantities. As we are facing global warm-
ing and the exhaustion of fossil fuels, more efficient photovoltaics are needed to
ensure that the world’s hunger for energy is stilled. In this chapter, I give a general
overview over the current state of solar cell design and argue that solar cells based
on organic semiconductors can greatly supplant the current energy mix.

In all photovoltaic cells sunlight is directly converted into electricity, using the
following working principle: A semiconducting material absorbs photons which
have energies larger than the energetic band gap of the semiconductor. This creates
an exciton, a bound pair consisting of an electron and a hole. These excitons are
then dissociated into free charges, which drift to the electrodes due to a built-in
potential.

The efficiency of an (organic) solar cell is determined by three steps: 1) How many
photons can the solar cell absorb and at which energy, 2) how many of these ab-
sorbed photons will be separated into electrons and holes, 3) how many of these
electrons and holes make it to the electrodes and how much energy have they lost
in the process. As only photons with energies above the band gap are absorbed,



2 Introduction

designers of solar cells face the problem of either using high band gap materials,
yielding a few high energy excitons or using a low band gap material which absorbs
most of the solar spectrum yielding many excitons of only low energy. The power
produced by a solar cell is proportional to the number of excitons times their en-
ergy. Given our solar spectrum this limits the maximum efficiency of an otherwise
perfect single junction solar cell to 33.7% at an optimal band gap 1.34 eV, the so
called Shockley-Queisser limit [1]. Even after the successful absorption of a pho-
ton, a multitude of loss mechanisms can annihilate the exciton or trap electrons or
holes, thus further limiting the efficiency of the solar cell. As the band gap and also
the losses are material and processing specific, a wide range of materials has been
tried to find better solar cells.

In Fig. 1.1 the evolution of solar cell design since 1975 is shown. Most commer-
cial solar cells today use crystalline silicon as the semiconducting material (blue
lines in Fig. 1.1). Providing over 20% power conversion efficiency (PCE)1 and
little material degradation over their life span, they have been the workhorse of
photovoltaics for the last 20 years. Unfortunately, the production of highly crys-
talline silicon is complicated and costly. Among the most promising replacements
are currently perovskite solar cells (yellow dots), whose PCE has risen from 3.8%
in 2009 to 22.7% in 2017 [2]. Although they are cheap to produce, they suffer
from toxicity problems due to the lead inside the perovskite material [3] and from
severe efficiency degradation in moist environments [4]. Competing developments
are thin film cells, using strongly absorbing semiconductors like amorphous silicon
or combinations of copper, indium, gallium, and selenide (CIGS cells), which are
less energy consuming to produce, whilst being as efficient as crystalline silicon
cells [5].

The top performing solar cells with efficiencies of up to 46% [6] are multi-junction
solar cells, which absorb a broader range of the incident light by stacking multiple
single-junction subcells with varying gaps. At the bottom end of the efficiency spec-
trum we find organic solar cells. In these cells the active layer is formed by highly
light-absorbing molecules instead of an inorganic semiconductor. The remainder
of this thesis will be about them.

These highly absorbing molecules are either polymers or small molecules, which
like all organic materials are mostly composed of hydrogen, carbon, and nitrogen.
These substances are abundantly available on earth. Cheap raw materials and the

1Power conversion efficiency is generated electric power/incident solar power (the solar power dis-
tributed over the solar spectrum, attenuated by the atmosphere.)
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option to employ the whole arsenal of organic chemistry fabrication techniques
reduces the production cost [7]. Polymer materials are usually deposited from
liquid using ink printing, which allows the easy fabrication of large areas. Small
molecules are typically deposited from vapor, requiring high vacuum conditions.
In both cases though, fabrication can be performed below 400 K, which is much
more energy efficient than the production of inorganic solar cells, where tempera-
tures in excess of 1000 K are needed. The low processing temperature also allows
to use polymer as substrates, allowing the creation of light, flexible solar cells [8].
Furthermore, the material properties can be altered by attaching different func-
tional side groups, allowing application specific tuning (e.g., making them flexible
or transparent at certain frequencies).

Such features make organic solar cells a promising addition to the range of solar
cells with the potential for opening up new applications in architectural design,
like solar cell coated facades or window pane solar cells, working in the ultraviolet
range. To achieve full market penetration organic solar cells still have to overcome
two challenges. First, the long term stability is still inferior to inorganic solar cells
(2-3 years [9, 10] vs 20 years [11]) and secondly, power conversion efficiency still
has to be improved, as the current record efficiency is only 15.7% [12]. Substantial
improvements require a deeper understanding of the individual processes which
lead to charge generation inside the organic solar cell and how they are influenced
by the chemical structure.

Especially, establishing a clear link between chemical structures of the molecular
building blocks, the resulting molecular arrangement upon processing, and finally
the electronic properties would greatly aid the design of efficient organic solar cells.
In Chapter 2 the current understanding of these dependencies and in particular
charge generation and the role and properties of excitons in organic materials are
described.

From a computational point of view, the description of electrons in molecules lies
in the realm of quantum chemistry. Driven by exponential growth of computational
power in the last 50 years and using the fundamental interactions between elec-
trons and atomic nuclei, so-called ab initio methods can predict molecular proper-
ties without any experimental input besides the chemical composition. Since the
Schrödinger equation, which describes the interaction between quantum mechan-
ical particles, is fully known, one might assume that computational chemistry is
now just a problem of throwing enough computational power at a chemical sys-
tem. Unfortunately, the difficulty of solving the Schrödinger equation does not
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increase proportionally to the size of the system, which is typically denoted as
N . As an example, the most accurate approximate methods, which try to find
the wave function of the system, scale as N 7, e.g., doubling of the system size re-
quires a 27 = 128-fold increase in computing power to finish in the same time. Thus
simply increasing the computational power will in a reasonable time not allow
us to access industrially relevant molecules with hundreds of electrons. Instead
further approximations were introduced to capture the essential parts of the quan-
tum mechanical interactions and treat smaller effects, e.g., electron correlation,
approximately. In Chapter 3 we discuss two approaches, density functional theory
(DFT) for ground state and GW -BSE for excited state calculations, which scale as
N 3 and N 5, respectively. Whereas DFT describes the ground state of an electron
system, the GW -BSE approach models the electron and hole via Green’s functions
G, whose behavior is governed by the screened Coulomb potential W and whose
interaction is described by the Bethe-Salpeter equation (BSE). These approaches
allow us to study the chemical properties of technologically relevant molecules for
organic photovoltaics applications.

While the simulation of electrons and excitons is already computationally expen-
sive, the simulation of the combined motion of atomic nuclei and electrons is even
more computationally demanding, as the methods mentioned earlier then have to
be integrated over time. Unfortunately, the combined motion of nuclei and elec-
trons is required for an explicit modeling of exciton dynamics, as will be shown in
later chapters. Experimentally, the distance excitons traverse before dissociation or
decay is roughly 10 nm [13]. A cube with the same side length, filled with organic
molecules, contains of the order of 80000 atoms, which is far beyond the capabil-
ities of ab initio methods, let alone time integration. Still, for smaller molecules
and or smaller systems, the explicit simulation has already been performed using
large supercomputers using partially parameterized quantum mechanical methods
like Tight-Binding DFT [14].

In this thesis we focus instead on the development and application of a combination
of two coarser, simpler computational chemistry methods to simulate the nuclear
and electronic dynamics in a multiscale approach. First the atomistic structure of
a large set of molecules, also called the morphology, is simulated using classical
molecular dynamics (MD). In classical MD the atoms are approximated as classical
point particles, which interact via potentials parameterized either from ab initio

calculations or experimental results. Second we reintroduce the exciton into the
simulation via a model, where exciton dynamics are described as a series of hops
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from molecule to molecule. The individual hop is the result of excitation transfer

reaction, which is quantified by a reaction rate. Each reaction rate depends on
several factors: the chemical structure of the molecules, their relative positions
and orientations and the chemical environment. The mathematical form of these
rate equations, an explanation of the respective input parameters, as well as a
concise treatment of molecular dynamics, can be found in Chapter 4.

The rate model formalism of excitation dynamics typically requires the calcula-
tion of thousands of quantities from ab initio methods, as each individual rate
has to be determined independently. For this multiscale approach an efficient im-
plementation of ab initio methods, namely DFT and GW -BSE is required. Their
implementation inside the VOTCA-XTP software package is described in Chapter 5
with respective benchmarks. To accurately describe the electronic properties of a
molecule inside a atomistic environment, we incorporate electrostatic and polar-
ization effects of classical environments into ab initio calculations via a quantum
mechanics/molecular mechanics (QM/MM) framework. The implementation and
the application to a DNA strand in an aqueous environment are discussed towards
the end of Chapter 5.

Among the input quantities for the rate model, the electronic coupling between
two molecules, plays an eminent role, as it incorporates the effects of the relative
molecular orientations and alignment. As the exciton is still a two-particle exci-
tation, the transfer of an exciton from one molecule to another can proceed via
various intermediate charge transfer (CT) states, where electron and hole reside
on different molecules. All these pathways have to be accounted for in the elec-
tronic coupling to calculate the correct value of the excitation transfer rates. In
Chapter 6 we develop an algorithm for the calculation of electronic couplings in
the framework of GW -BSE. Additionally, we discuss approximations to reduce the
computational footprint for large systems.

In Chapter 7 we employ the methods developed in previous chapters to a crys-
talline system of dicyanovinyl-sub-stituted oligothiophene (DCV5T) molecules to
simulate exciton transport. Taking exciton decay explicitly into account we discuss
the influence of various approximations on the diffusion length of excitons and
outline optimization strategies for efficient screening of exciton properties.

The thesis concludes with a summary and a discussion of further developments,
which may increase the predictive power of multiscale simulations for the elec-
tronic properties of organic materials, in Chapter 8.
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Figure 1.1: Improvements of solar cell efficiency from 1975 until 2017. Image is provided by the American National Renewable
Energy Laboratory (NREL) at http://www.nrel.gov/pv/assets/.



Chapter 2

Organic electronics

Functional organic photovoltaic devices (OPVs) were first manufactured in labs in
the 1980s, after the discovery of polymers with semi-conducting properties in the
1970s. In 2000 this discovery was rewarded with the Nobel prize in chemistry for
Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa [15].

Since then organic solar cells have come a long way, reaching power conversion
efficiencies of up to 15.7% [12]. Similarly organic light emitting diodes (OLEDs)
and organic field effect transistors (OFETs) have reached commercialization. Re-
sponsible for this success are the unique properties of organic semiconductors.
The combination of mechanical flexibility and chemical tuneability, combined with
new production techniques, e.g., solution processing and spray coating [16] have
opened new applications and markets for electronic materials.

In this chapter we discuss the chemical composition and molecular arrangement
which are responsible for the unique properties but also limitations of organic semi-
conductors. We proceed by outlining how these properties influence the charge
generation in organic solar cells. The step by step process from light absorption to
the extraction of charges is described including loss mechanisms, which limit the
efficiency of solar cells. At the end of the chapter we return to the exciton, whose
creation by absorption of photons is the first step in the conversion of sunlight into
electricity.
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Figure 2.1: Depiction of crystalline, semi-crystalline and amorphous organic materials from
left to right. Crystalline materials exhibit near perfect ordering, which periodi-
cally repeats. Amorphous materials are characterized by the absence of period-
icity and long range order. Semi-crystalline materials mix crystalline (red box)
with amorphous areas.

2.1 Organic semiconductors

Organic semiconductors are molecular solids. They consist of an arrangement of
individual molecules, which agglomerate in a solid state. These molecules, mostly
made up of carbon and hydrogen, are referred to as organic molecules. Carbon
atoms can bind to up to four neighboring atoms, which allows them to form long
chains, sheets and a near infinite variety of other structures and arrangements as
building blocks for molecules. The different sizes and structures of these molecules
agglomerate in a range of spatial arrangements, which can vary from perfectly
crystalline, to semi-crystalline, or fully amorphous, as shown in Fig. 2.1.

Organic materials typically fall into either of two categories: small molecule and
polymer materials. Polymers are larger molecules, which consist of chemically
linked basic repeating units, the monomers. Polymers can contain thousands of
atoms, whereas small molecules typically have less than a hundred atoms. Due
to the size difference, different production methods are employed. Polymer based
organic semiconductors like P3HT1[17] or P(NDI2OD-T2)2[18], are produced us-
ing solution processing techniques and subsequent solidification by solvent re-
moval [19]. Small molecule based semiconductors, like DCV5T (see app. A) [20]
or Alq33 [21] are typically produced via vapor deposition techniques [22].

1poly(3-hexylthiophene)
2poly[N,N’-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5’-(2,2’-

bithiophene)
3Tris (8-hydroxyquinoline)aluminum
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Figure 2.2: (a) Schematic representation of benzene, with hydrogen atoms removed, form-
ing a conjugated system. The pz orbitals form a delocalized electronic state.
(b) DFT( explained in Chapter 3 density plot of the highest occupied molecular
orbital (HOMO) of the benzene molecule. This is a superposition of the HOMO
and HOMO-1, as the states are degenerate. (c) Conjugated system of a distorted
molecule. The distortions lead to a localization of the electronic state.

What distinguishes organic semiconductors from other organic materials is simply
their ability to conduct electrical charges. In contrast to most organic materials
electrons in organic semiconductors are able to spread out over large parts of the
molecule, which considerably eases the movement of electrons. This spreading
out, or delocalization, happens because the molecules contain conjugated systems,
where due to the chemical structure, electronic states extend over multiple atoms.
Figure 2.2(a) shows a schematic view of the conjugated system in benzene. In
this picture the carbon atoms in the ring bind to each other forming covalent σ

bonds by overlapping the singly occupied atomic sp2 orbitals. This leaves a singly
occupied pz orbital for each atom sticking out of the plane of the ring. These
orbitals overlap to form a delocalized occupied π-orbital and an unoccupied π∗

orbital. The delocalization typically also leads to only a small energy gap between
the π and π∗ orbitals which is around 1−3 eV [23]. This gap is close to the average
photon energy of sunlight, which leads to improved absorption in the visible range.
Consequently, molecules with conjugated systems are often very good dyes and
make excellent absorbers in organic solar cells.

Besides the electronic structure of the constituent molecules, the mutual inter-
action between molecules also influences the electronic properties of the organic
semiconductor. The bonding, which causes the molecules to condensate into a
solid, derives mostly from the Van der Waals interaction. Also known as dispersion
interaction, it stems from the correlated fluctuations in the charge distributions
of neighboring molecules, giving rise to an induced dipole-dipole interaction. In
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addition to Van der Waals forces, electrostatic forces are very relevant for the mu-
tual alignment of molecules, as will be discussed in Chapter 4. These interactions
are typically an order of magnitude weaker than the covalent bonding inside the
molecules. Thus the electronic structure of the individual molecules is only per-
turbed by the environment as depicted in Fig. 2.3(a,b). While the single molecule
has a discrete spectrum of energy levels, an amorphous solid will show a distri-
bution of states, because each molecule inside the solid experiences a different
chemical environment, shifting the electronic state, as indicated in Fig. 2.3(b). At
low temperatures and in perfectly ordered organic semiconductors narrow bands
can emerge [24], as shown in Fig. 2.3(c).

The role of structural disorder and molecular interaction between molecules is a
recurring theme in this thesis. Generally, the stronger the interaction between
molecules, the more electronic states tend to delocalize and form bands. Strong
interaction also leads to smaller vibrations, creating less thermal disorder at the
same temperature. Consequently, weak interaction leads to more localization of
the electronic states. Besides temperature, static disorder, created by mismatches in
the crystalline structure, impurities or other defects also localize electronic states.

2.2 Organic solar cells

The excellent absorption properties of organic semiconductors motivate the con-
struction of organic photovoltaic devices. The organic material absorbs the pho-
tons, which transfer their energy to the electrons during the absorption process.
The electrons are promoted to an excited state across the HOMO-LUMO gap, as
shown in Fig. 2.4(a). The gap is essential, as without it the electron can transfer
back to the ground state via a series of intermediate states, using phonon emission,
i.e., thermalization. Instead with the gap the electron has to lose the complete gap
energy in one big chunk to return to the ground state, which is significantly less
likely4.

In organic semiconductors the promoted electron is not free to move but bound to
a hole, forming an electron-hole pair or exciton (see Fig. 2.4(a)). The exciton con-
cept will be explained later in more detail. Important is that in order to convert an

4This does not mean, that enlarging the gap leads to longer decay times, as other decay mechanisms,
e.g. radiative decay become more effective at larger gaps.
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Figure 2.3: Depiction of electronic localization and corresponding energy levels for different
molecular arrangements. (a) For a single organic molecule in vacuum the elec-
tronic state is localized on the molecule with exponential decay into the vacuum.
The corresponding energy levels are discrete. The highest occupied molecular
orbital (HOMO) is the highest occupied level and the lowest unoccupied molec-
ular orbital LUMO is the first unoccupied level. (b) In organic semiconductors,
due to structural and thermal disorder, the electronic states localize on individ-
ual molecules, with only small overlap with neighboring molecules. Due to the
different environment of every molecule and the interaction between molecules,
the discrete energy levels of each molecule create a smeared out distribution.
(c) In crystalline semiconductors, the electronic states typically extend over the
whole system, leading to formation of a band structure, with a bandgap of en-
ergy Egap between occupied and unoccupied states.

exciton into free charges one has to overcome the exciton binding energy by pro-
viding a chemical environment in which it is energetically favorable for the exciton
to split up. Although the exact mechanism is still subject of intense investigation, it
was experimentally found that placing two different types of molecules with vastly
different affinities to electrons and holes adjacent to each other can create such
an energetically favorable situation. The energetic offset created at the interface
between these two types of molecules, called donor and acceptor molecule, can
greatly improve the dissociation of excitons [25]. In modern organic solar cells
acceptor and donor molecules absorb photons, which are then split up at the in-
terface and transported to the electrodes (see Fig. 2.4(a)). The energetic offset is
typically denoted ∆ and is the energetic difference between the LUMO of the donor
material and the LUMO of the acceptor material. For the design of an organic solar
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Figure 2.4: (a) Energy alignment of a donor-acceptor heterojunction, which splits excitons
into free charge carriers via an energetic offset ∆, producing an open-circuit volt-
age Voc. (b) Energy diagram of an organic solar cell under operating conditions,
producing drift currents of charge carriers towards the electrodes.

cell ∆ must be larger than the exciton binding energy to successfully split excitons
but not too much larger than that, as the excess energy is wasted.

It has to be stressed that the exact energetics and kinetics of exciton dissociation
are still not fully understood [26, 27]. The most widely accepted model of how
the separation of the exciton into free electron and free hole actually proceeds,
assumes that an intermediate step exists, the formation of a charge transfer state
(CT) at the interface (see Fig. 2.5).

The efficiency of an organic solar cell critically depends on excitons reaching the
interface and splitting up. As explained later in this chapter, excitons typically
have a short lifespan and quickly decay back to the ground state [13, 28]5. The
exciton, thus, has to be split up before it can decay. As the average distance an
exciton moves before decaying is around 10 nm [13, 28], the absorber area must
be close to the acceptor molecules. As the functional region thus is restricted to a
thin strip along the donor-acceptor interface, increasing the efficiency of the solar
cell demands maximizing the contact surface between both materials. Therefore,
a finely interdispersed blend of acceptor and donor material providing a large in-
terface area, called a heterojunction, is used. The structure of the heterojunction is
critical for the efficiency of the organic solar cell, as all excitons which decay before
reaching the donor-acceptor interface, do not contribute to the photo current. Bet-
ter morphology control directed towards maximizing the exciton diffusion length
is reported to increase power conversion efficiency by up to 30% [29].

5I mentioned earlier that the gap in an organic semiconductor protects against fast decay of excitons.
This is true, as a gap blocks the fastest path to the ground state, but there are many other paths,
hundreds of times slower, but still of the order of nanoseconds
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After the dissociation the free charge carriers drift and diffuse towards the elec-
trodes. The diffusion of charge carriers is driven by the concentration gradient
inside the solar cell. The driving force behind the drift currents is the difference
in work functions of the electrodes, which creates an internal electric field inside
the solar cell (see Fig. 2.4(b)). At all stages of the free charge carrier generation,
loss processes take place, which reverse the charge separation and lead to recom-
bination and subsequent thermalization, as depicted in Fig. 2.5. To increase the
efficiency of organic solar cells, it is paramount to suppress these loss mechanisms
and increase the efficiency of the gain processes. In the next section we will fo-
cus on the first steps to generating electricity, the creation of an exciton and its
diffusion to the donor-acceptor interface.

2.3 Electronic excitations

Calculating the electronic structure of a molecule with quantum mechanics yields a
set of discrete set of energy values or energy levels the electrons can occupy. Each
of these levels can be occupied by up to two electrons6. If all electrons occupy the
energetically lowest state available to them, the molecule is in its ground state, as
shown in Fig. 2.6.

If one of the electrons is stimulated by light or temperature and the right amount
of energy is transferred to it, it may transition to a higher level, creating an excited
state. Although this excitation is nothing more than a rearrangement of electrons,
it is more intuitive to describe the excitation as a difference to the ground state. So
the excitation has one electron more in an excited state and lacks one electron in
the normally occupied states. This “lack” of electron is the aforementioned hole,
which is charged positively with regards to the ground state (see Fig. 2.6). The
negatively charged electron is attracted to the hole via the Coulomb interaction
and consequently they form the already introduced bound electron-hole pair, or
exciton in short. The bound exciton is lower in energy than electron and hole
independently.

For electron-hole pairs the strength of the interaction strongly depends on the re-
sponse of other electrons in the system. These electrons will agglomerate around

6This is only true within the single particle picture, but we gloss over this at the moment. See Chap-
ter 3 for a more precise formulation.
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Figure 2.5: The creation of free charge carriers inside an organic solar cell, happens via
intermediate stages and various length scales. Depicted are the various steps as
well as the loss mechanism, which reduce the solar cell efficiency. On the right
the energetic landscape of the respective processes is depicted.
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Figure 2.6: Depiction of the definition of a hole. In the ground state all levels from the bot-
tom up are filled, i.e. below the Fermi energy EF . Upon excitation an electron is
promoted to a higher state. “Subtracting the ground state from this excited state
configuration leaves a hole in the HOMO and an electron in the LUMO. Their
interaction is caused by the rearrangement of all other electrons in response to
this excitation (not shown).

the hole and so shield it from the excited electron, lowering the excitation bind-
ing energy (see Fig. 2.7). Depending on the availability of other electrons and
their ability to relocate without incurring large energy penalties, excitons are ei-
ther strongly bound, small, localized entities or extend over considerable distance.
The material’s reaction to the exciton is approximately described by the dielectric
constant ǫ of the material.

Silicon, which in comparison to organic semiconductors has more free charge car-
riers, has a relative dielectric constant of 12 [30]. Consequently, in silicon the
interaction between electron and hole is strongly screened. The exciton binding
energy is 10− 100meV and thus excitons at room temperature can be easily split
by thermal energy, which is of the order of 25meV. Due to the strong screening
the binding is weak and the exciton is delocalized over many unit cells. These
delocalized excitons are called Wannier-Mott excitons.

In organic materials the relative dielectric constant is much lower, ǫ = 3−4 [23],
thus the excitons are more tightly bound and localized. Binding energies are typ-
ically around 0.1−1eV. These tightly bound excitons are called Frenkel excitons.
Especially at interfaces another configuration is possible7, in which the electron
is localized on one molecule and the hole on a neighboring molecule. These bi-
molecular states are the aforementioned charge-transfer (CT) states, which are
assumed to play a major role in the dissociation of Frenkel excitations at donor-

7The energetic offset ∆ is important here, but the exact processes are still debated.
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Figure 2.7: Depiction of different types of excitons. Depending on the dielectric constant,
e.g. the screening of the electron-hole interaction, different localization are ob-
served. In inorganic semiconductors (A) free charges are available which screen
the exciton well, leading to small binding energies < 0.1eV and delocalisation
over many unit cells, creating Mott-Wannier excitons. In organic semiconductors
(B/C) charge densities are low and the excitons are strongly bound (0.1−1eV).
The localized excitons are called Frenkel exciton (B). Due to the two-particle
nature of the excitation, the electron and hole can also reside on neighboring
molecules, forming charge transfer states (C).

acceptor interfaces.

Before we address which challenges organic solar cells thus face, let us briefly
discuss the topic of exciton lifetimes.

Electron-hole pairs or excitons are mostly created by incident light, which promotes
an electron to a higher state. Sometimes an exciton is created due to nuclear
motion, i.e., thermal excitation. Thinking in terms of particles either a photon, the
force mediating particle of the electro-magnetic field or a phonon, the collective
excitation of atomic nuclei, is absorbed by the electron cloud and leads to the
creation of an exciton.

Similarly, the two main channels for exciton decay are radiation of a photon and
thermalization. In the former case light is emitted from the molecule. In the latter
case the solar cell heats up a bit. Both cases are rather detrimental to the design of
an efficient photovoltaic device, but which one is more prevalent?

To answer this question, we have to look at a quantum mechanical peculiarity, spin.
All quantum mechanical particles have this additional degree of freedom, which
separates them into two categories: those with fractional spin called fermions,
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e.g., electrons, neutrons, and protons and those with integer spin, called bosons,
of which the most prominent is the photon. Fermions are the building blocks of
all matter and quantum mechanics dictates that two fermions cannot have exactly
the same value for all of their quantum numbers, e.g., spin and energy. In the
case of a quantum system which has discrete energy levels, e.g., the molecules we
talked about before, each energy level can be occupied by two electrons. This is
because electrons have a total spin s= 1

2 . Its projection on an arbitrary axis, usually
the z-axis, can have two values sz = ± 1

2 , which are referred to as spin up (down)
configurations. Each level can accommodate one electron with spin up and one
with spin down. In heavier elements, the spin of individual electrons couples to the
angular momentum via spin-orbit coupling. In this case the electronic states cannot
be exactly distinguished by spin up or down configurations anymore, instead the
total angular momentum has to be used to differentiate different states.

Let us consider the ground state of a molecule with all energy levels up to a certain
level occupied with two electrons each. This ground state we will call |0〉. It has a
total spin of 0 and is called closed shell, because all electrons are paired up. Some
molecules (e.g. O2) and most atoms (non-noble gases) have unpaired electrons,
but we ignore these cases for the moment.

If we create an exciton, i.e., promote an electron to a higher state, we have a set of
possible combinations of spin states. Either the spin down electron or the spin up
electron can be promoted to a higher level. If we also allow spins to flip we arrive
at four distinct configurations. We describe these as arrows, with the first arrow
being the spin of the electron and the second arrow indicating the spin of the hole.
(Note that the spin of a hole is the inverse of the spin of an electron occupying that
level.)

| ↑↑〉, | ↓↓〉, | ↑↓〉, | ↓↑〉 (2.1)

Without going into the details, the spins of the electron and the hole have to be
added using the quantum mechanical rules for spin addition resulting in a total
spin S[31]. Photons cannot change the total spin of a system, as shown later.
Consequently, from an S= 0 ground state, only transitions to other S= 0 states are
possible.

None of the four states in eq. 2.1 is a S = 0 state8. Instead these states have to
be linearly combined, which splits the four combinations into two subgroups. One

8This is again a consequence of the spin or more generally angular momentum addition [31].
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state with total spin S= 0 and three states with total spin S= 1, which are called
singlets and triplets, respectively.

1
p

2
(| ↓↑〉− | ↑↓〉)

︸ ︷︷ ︸
S=0 Singlet

| ↑↑〉, | ↓↓〉, 1
p

2
(| ↑↓〉+ | ↑↓〉)

︸ ︷︷ ︸
S=1 Triplets

(2.2)

Triplet (T ) and singlet (S) states have quite different electronic properties. To
first order light absorption can only create singlets. The converse is also true,
only singlets can, to first order, decay under emission of a photon, which is called
fluorescence. Take a light wave, which can be mathematically modeled as a plane
wave, with wave vector k and energy E =ħ|k|, so its quantum mechanical operator
Â is

Â = exp(i kr̂) ≈ 1+ i kr̂. (2.3)

The latter approximation, also called “dipole approximation” holds if the wave-
length of the light is much larger than the extension of the molecule. This is true
for typical molecules (1−10nm vs λ= 300−500nm).

The transition probability PT between the ground state |0〉 and the excited state |S〉
is then proportional to the square of the transition dipole matrix element, µTr .

PT ∝|〈0|r̂|S〉|2 =µ2
Tr (2.4)

This equation explains that pure triplet states in the dipole approximation do not
couple to photons (assuming a singlet ground state). A triplet state |T 〉 = |Ts〉|Tr〉
is the product of a spin |Ts〉 and space |Tr〉 component. As r̂ only acts on the space
component, this leads to:

PT ∝|〈0r |〈0s|r̂|Tr 〉|Ts〉|2 = |〈0r |r̂|Tr 〉|2| 〈0s|Ts〉︸ ︷︷ ︸
=0

|2 = 0. (2.5)

Here, we assume that the ground state is a spin singlet state. Irrespective of the
spatial part of the wave function, the spin components of the singlet ground state
and triplet excited state are orthogonal to each other.
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To compare the coupling of different states to the electromagnetic field, the tran-
sition dipole is normalized with the excitation energy of the state, ΩS , leading to
oscillator strength f :

f = 2

3
µ2

TrΩS . (2.6)

f can be interpreted as the ratio of the quantum mechanical transition rate to the
classical absorption rate of an electron at the same energy. Not all singlets have
large transition dipoles, so singlets fall into either of two categories: dark ( f ≈ 0

and bright f > 0). As only bright singlet states can be created via light absorption,
how can triplets or dark singlets be created? As shown in Fig. 2.8 a range of other
transitions can occur inside a molecule.

• Eq. 2.3 is only the first order expansion of the electromagnetic field. Electric
quadrupole and magnetic dipole interaction allow dark singlets to be created.
These interactions are orders of magnitude smaller and thus do not dominate
the spectrum when bright singlets exist.

• The nuclear vibrations also known as phonons couple with the electrons,
as will be described in more detail in the next chapters. These phonons
occasionally “knock” an electron into a higher excited state of the same spin.
The reverse process of converting an electronic excitation into a lower excited
or ground state plus a vibration is referred to as internal conversion.

• Separating the electronic states into S = 0 singlet and S = 1 triplet is only
approximately true. Spin-orbit coupling, which is most pronounced in heavy
atoms, couples the electron angular momentum L to its spin. Thus both
are no longer good quantum numbers and do not describe the electronic
states properly. Instead the total angular momentum J = S+ L has to be
used. The coupling between singlets and triplets is not strong in organic
molecules, as they typically only contain light elements. However, even the
small effect allow triplets to turn into singlets, which is referred to as an
intersystem crossing. The intersystem crossing from T1 to the ground state
under emission of a photon is also called phosphorescence.

As already mentioned earlier the mechanisms of how excitons reach the hetero-
junction and how they split up (see Fig. 2.5) is not fully understood. However,
it is clear that for an efficient solar cell, excitons have to get to the heterojunc-
tion before decaying. Singlet lifetimes are typically on the order of 0.5 ns. Triplets
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Figure 2.8: Different excitations inside an organic molecule. The vibrational levels on top of
the electronic excitation are depicted in gray. (Adapted from [32])

lifetimes due to the spin-forbidden transition to the ground state are usually 6 or-
ders of magnitude larger, as lightweight organic compounds have only very small
spin-orbit coupling [13]. Triplets seem to be a much better suited to transfer the
absorbed photon energy to the interface due to their longer lifetime, but they have
two problems. Firstly, triplet excitons cannot be generated by light absorption
(see eq. 2.5), which requires intersystem crossings. Secondly, triplets move slower
than singlets as will be discussed below and in Chapter 6.

In organic semiconductors exciton movement is often described as a hopping from
one molecule to the next [14, 33–35]. This is a result of the localization of elec-
tronic states in organic semiconductors (see Fig. 2.3), with only weak coupling to
neighboring molecules. This coupling, which we will describe in detail in Chap-
ter 6, is different for singlets and triplets. Triplets can only hop to their next
neighbors, as the coupling is mediated by molecular overlap [36, 37] and thus
exponentially decays with distance. Singlets can hop up to 1-5 nm[38, 39], as their
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coupling is mediated by exchange of a virtual photon with distant molecules.

In the following chapter we will first develop the quantum mechanical framework
for calculation ground- and excited state properties. Afterwards we will look at the
hopping models, which allow us to quantify and finally simulate exciton transfer.





Chapter 3

Electronic structure theory

Over the last 60 years computer simulations have become increasingly useful to
predict properties of material compounds, such as molecular geometries and spec-
tra, and to gain insight into processes on length and time scales experiments cannot
resolve. This chapter will give an overview of the most important methods to pre-
dict properties of organic materials. The list of methods is nowhere near complete
so many interesting approaches are not included. I chose to mainly explain meth-
ods which were used in this thesis.

The chapter is divided into two sections. First we will deal with quantum mechan-
ical methods, which require no additional input besides the geometric structure
to provide accurate information about the electronic structure of the molecule in
question. The most popular of these ab initio methods is Density Functional The-
ory or DFT. DFT is arguably is not a fully ab initio method, because parts of the
electron-electron interaction are captured by the exchange correlation functional,
whose exact form is not known. Instead one of many approximations of the ex-
change correlation functional has to be chosen. Nonetheless, because of its relative
ease of use and good balance between speed and accuracy, it has become the domi-
nant technique to access ground state properties. Its use has become so widespread
and the insights into physics, chemistry, and biology it generated so important, that
in 1998 one of its inventors, Walter Kohn, received a Nobel prize for it [40].

While DFT produces very accurate ground state properties provided the right func-
tional is chosen, it fails to predict accurate band gaps and excited state properties
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for nearly all materials [41]1. Without going into the details of why DFT fails, we
introduce a more advanced method, the GW and Bethe Salpeter Equation method
(GW -BSE) in the second part of this chapter. GW -BSE is a Green’s function based
approach, which originates from condensed matter physics but is now used to cal-
culate excited state properties in molecular systems. A more in-depth treatment of
ab initio methods, DFT and GW -BSE, can be found in [42–46].

3.1 The many electron system

A molecule consists of N electrons at positions r, and M nuclei at positions R.
Here we use the following notation: a Fraktur quantity represents a whole set of
values, e.g., r= {r1,r2, . . . ,rN }.

The non-relativistic Hamiltonian of the system then reads

Ĥ = T̂el + T̂nuc + V̂nuc-nuc + V̂el + V̂nuc-el (3.1)

with T̂el and T̂nuc as the kinetic energy operators of electrons and nuclei, V̂nuc-nuc

and V̂el-el as the nuclei-nuclei and electron-electron interaction operator, respec-
tively, and finally V̂nuc-el the nuclei-electron interaction. The individual terms read:

T̂el =
∑

i

p̂2
i

2me
(3.2)

T̂nuc =
∑

K

P̂2
K

2MK
(3.3)

V̂nuc-nuc =
1

2

∑

K 6=L

ZL ZK e2

|RL −RK |
(3.4)

V̂el-el =
1

2

∑

i 6= j

e2

|ri − r j |
(3.5)

V̂nuc-el =−
∑

i ,K

ZK e2

|ri −RK |
. (3.6)

1DFT results vs experiment: silicon 0.56 eV vs 1.17 eV; carbon 4.1 eV vs 5.5 eV. So the error is about
20-40 times the thermal energy at room temperature (25 meV)
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p̂i (P̂K ) is the momentum operator of an electron (nucleus), with me (Mk) the
corresponding mass and e (ZK e) the corresponding charge2.

The time evolution of the nuclear and electron dynamics is governed by the Schrö-
dinger equation

Ĥ Ψ(r,σ,R, t ) = i
∂

∂t
Ψ(r,σ,R, t ), (3.7)

where Ψ(r,σ,R, t ) is the wave function of the system. Here, σ denotes the spin
variable and is only listed for completeness, as the Hamiltonian above does not
explicitly depend on spin. The spin is only needed for the correct particle statistics,
which we will cover later and otherwise neglect from now on3. Furthermore, H

does not explicitly depend on t , so eq. 3.7 is separable into a spatial(Ψs) and
temporal part(Ψt ):

Ψ(r,σ,R, t ) =Ψs (r,σ,R)Ψt (t ), (3.8)

with Ψt (t ) = exp(−i Et ) and H Ψs (r,σ,R) = EΨs (r,σ,R).

Unfortunately the Schrödinger equation can only be solved analytically for a few
special cases, in particular for N = 1 and M = 1, i.e., the hydrogen atom. For larger
and technologically relevant systems, these equations become impossible to solve
even with the help of large computers.

We will now outline possible approximations, which simplify the problem and
make calculations of larger and more relevant systems feasible. We know that nu-
clei are about three orders of magnitude heavier than electrons. Electrons can thus
react nearly instantaneously to the movement of the heavy nuclei. If we keep the
nuclei fixed, the system would be governed by an electronic Schrödinger equation,
in which the nuclear coordinates R enter the electronic part of the Hamiltonian
only as a parameter, which is denoted by the semi-colon in the function argument:

Ĥelψa(r;R) = Ea(R)ψa(r;R). (3.9)

The energies Ea and wave functions ψa are called adiabatic energies and wave
functions, with Ĥel = T̂el + V̂el-el + V̂nuc-el. The whole set of adiabatic wave functions

2We will use atomic units from here on: me ≡ 1, e ≡ 1, ħ≡ 1, 1/4πǫ0 ≡ 1.
3For heavy atoms the spin couples with the angular momentum due to relativistic effects, which we

neglect here as well.



26 Electronic structure theory

forms the complete adiabatic electronic basis, which can be used to expand the full
wave function in eq. 3.7 according to

Ψ(r,R) =
∑
a

Λa(R)ψa(r;R)), (3.10)

where Λa represent the nuclear wave functions belonging to the electronic config-
uration ψa(r;R)). Inserting eq. 3.10 into eq. 3.7 and using the electronic Schrödin-
ger equation (eq. 3.9) and the real space representation of the nuclear momentum
operator P̂K =−i∇K , we arrive at an equation for each Λa:

Ĥ a
nuc(R)Λa(R)+

∑

b 6=a

Θ
ab
Λb(R) = i

∂

∂t
Λa(R), (3.11)

where we have introduced the nuclear Hamiltonian Ĥ a
nuc(R):

Ĥ a
nuc(R) = T̂nuc + V̂nuc-nuc +Ea(R)+ Θ̂

aa

︸ ︷︷ ︸
U a (R)

(3.12)

and the non-adiabacity operator:

Θ̂
ab = 〈Λa(R)|T̂nuc|Λb(R)〉+

M∑

K=1

1

MK
〈Λa(R)|P̂K |Λb(R)〉P̂K , (3.13)

which operates on Λb(R) and thus couples the equations of motion for different
nuclear states. Integrals over electronic degrees of motion are abbreviated by

〈Λa(R)|Ô|Λb(R)〉 =
∫

drψa(r;R)Ôψb(r;R). (3.14)

Eq. 3.11 can now be interpreted as follows: The nuclear coordinates are propa-
gated by the nuclear Hamiltonian operator Ĥ a

nuc(R), as long as the electrons re-
main in the adiabatic state ψa . The nuclei thus move in the effective adiabatic
potential U a(R). This potential geometrically represents a surface in the space
of nuclear coordinates, called the adiabatic potential energy surface (PES). The
non-adiabacity operator occasionally triggers the nuclei to transition from one adi-
abatic state ψa to another adiabatic state ψb . These transitions correspond to the
vibrational relaxation and excitation mentioned in sec. 2.3 (also see Fig. 2.8).
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Figure 3.1: Adiabatic potential energy surfaces for the ground state and the first excited state
of a two coordinate molecular system. In the center they approach each other,
so that the adiabatic approximation is no longer valid to describe the dynamics.

Actually solving for the equation of motion of the nuclei requires the determination
of every ψa and Ua(R) for every nuclear configuration R by solving eq. 3.9. How
to determine these quantities will be described later in this chapter. There we will
see in detail why even for a handful of atoms the calculation of the full set of PESs
is plainly impossible with any degree of accuracy. Fortunately, for many systems
the full set of PESs is not required. For many chemical systems the ratio between
the energy spacing of different PESs 〈∆E〉el and the vibrational energy of the nuclei
ωnuc can be estimated as

〈∆E〉el

ωnuc
≈

√
M

me
. (3.15)

As nuclei are roughly 1000 times heavier than electrons, the electronic separation
is 1-2 orders of magnitude larger than the vibrational energy of the nuclei, making
transitions between PESs extremely unlikely, i.e., the off-diagonal elements of the
non-adiabacity operator can be neglected. This is known as the adiabatic approxi-
mation, which only requires the calculation of a single PES. It only breaks down if
two PES come very close to each other for some nuclear configuration R. This is
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exactly the case for exciton dynamics in organic materials and will be explained in
more detail in Chapter 4.

If we completely neglect the non-adiabaticity operator we arrive at the Born-Oppen-
heimer approximation. We can write the complete wave function Ψ as a product
of electronic and nuclear wave functions:

ΨaM (r,R) =ψa(r;R)ΛaM (R), (3.16)

where a denotes the electronic and M the vibrational level of the nuclei. Accord-
ingly, eq. 3.11 reduces to:

[
T̂nuc +U a(R)

]
Λa(R) = i

∂

∂t
Λa(R). (3.17)

At higher temperatures and for heavier elements we can use the Ehrenfest theorem
to transform eq. 3.17 into a classical equation of motion for the nuclei, which move
on the ground state PES U 0:

MK
∂2RK

∂t 2
=−∇K U 0(R). (3.18)

We will come back to this equation in sec. 4.1 and focus for now on the electronic
Schrödinger equation (eq. 3.9) and the corresponding Hamiltonian

Ĥel =
∑

i

p̂2

2
−

∑

i ,K

ZK

|ri −RK |
+ 1

2

∑

i 6= j

1

|ri − r j |
. (3.19)

3.1.1 Non-interacting electrons

The hardest part to deal with is the electron-electron interaction because the dy-
namics of each electron are influenced by the dynamics of every other electron.
Consequently, each of these interactions between quantum mechanical particles
has to be taken into account, which is computationally impossible even for the
smallest of systems. If instead the electrons did not interact, each electron would
move independently in a static potential generated by the nuclei. Let us assume
this simplistic case first and neglect the electron-electron interaction. The Hamil-
tonian then reduces to a sum of single-particle Hamiltonians ĥ:
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Ĥel =
∑

i

p̂2
i

2
−

∑

i

∑

K

ZK

|ri −RK |
=

∑

I

[
p̂2

2
−

∑

K

ZK

|ri −RK |

]
=

∑

i

ĥi , (3.20)

with:

ĥi =
p̂2

i

2
−

∑

K

ZK

|ri −RK |
. (3.21)

This allows to solve each single particle problem independently, ĥiφi = εiφi , where
φi is a single particle wave function and εi the corresponding single particle energy.
As the electrons are non-interacting, the Hamiltonian of electron i does not contain
any interaction-term with electron j , thus ĥiφ j = 0. The exact wave function of the
non-interacting Hamiltonian (eq. 3.20) is then simply the product of these single-
particle wave functions, the Hartree wave function:

ψH(r) =
∏

i

φi (ri ). (3.22)

The Hartree wave function is not physical because any fermionic wave function
Φ

F has to be anti-symmetrical with respect to particle exchange due to the Pauli
principle:

Φ
F(r1,r2, . . . rk ,rl , . . . ,rN ) =−ΦF (r1,r2, . . . rl ,rk , . . . ,rN ). (3.23)

Anti-symmetrizing ψH yields the Hartree-Fock wave function (HF-wf) ψHF(r):

ψHF(r) = 1
p

N !

∑
perm

pP
[
ψH(r)

]
, (3.24)

where the sum runs over all possible permutations of the ensemble of electron
coordinates r in ψH (r). P is the operator which permutes the electrons and p is
signature of the permutation4.

The mathematical structure of ψHF(r) allows to write it as a determinant over the
matrix of single particle wave functions φi (ri ). Thus, the Hartree-Fock wave func-
tion is also called a Slater determinant.

4The signature of a permutation is +1, if an even number of pair exchanges is required to achieve a
given permutation and −1 otherwise.
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Figure 3.2: Energy levels for independent electrons. In the independent particle picture
the particles just fill in the single particle levels. Excitation energies are simply
differences between energy levels.

For a two-level system with states φ1 and φ2 the Hartree-Fock wave function is
given by

ψHF(r1,r2) = 1
p

2
(φ1(r1)φ2(r2)−φ2(r1)φ1(r2))

= 1
p

2

∣∣∣∣∣
φ1(r1) φ2(r1)

φ1(r2) φ2(r2)

∣∣∣∣∣ ,

where | · · · | is the determinant of the matrix.

Each single particle orbital can be occupied by two electrons due to the spin and
the total energy is simply the sum of the single particle energies. A convenient
advantage of the non-interacting particle picture is that the energy levels are only
determined by the nuclear interaction and do not depend on the position of the
electrons relative to each other. Therefore, we can move electrons from one en-
ergy level to another without changing these levels. After the introduction of the
electron-electron interaction this will no longer be the case.

3.1.2 Hartree-Fock and the variational principle

Now we have solved the non-interacting system of electrons, but does this help
with the interacting system? Let us assume we had the ground state solution Ψ0

to eq. 3.19 and the corresponding energy eigenvalue E0. In quantum mechanics
any energy calculated using Ĥel (eq. 3.19) and a trial wave function Ψtrial is larger
than or in the case we hit the exact solution equal to E0:
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〈Ψtrial|Ĥel|Ψtrial〉 ≥ E0. (3.25)

This is also known as the variational principle of quantum mechanics5. So we only
have to calculate a “good” trial wave function and can then get as close as necessary
to the real ground state energy E0. Unfortunately, the space of possible functions is
extremely large and so it is important to find a good approximation which captures
the necessary physics but is also numerically convenient. The independent electron
solutions are just such a basis.

So the next step is to introduce the electron-electron interaction. We use the
Hartree-Fock wave function as a guess and insert it into the full Hamiltonian Ĥel.
For the rest of this section we will drop the HF label from ψ(r). Furthermore, we
are mainly interested in finite system for which ψ(r) can be chosen to be real, we
thus drop the complex conjugation for the rest of the chapter, i.e.,

〈ψ(r)|Ĥel|ψ(r)〉 =
∫

drψ(r)Ĥel ψ(r). (3.26)

Using definitions eq. 3.24 and eq. 3.19, this leads to:

〈ψ(r)|Ĥel|ψ(r)〉 =
N∑

i

hi +
1

2

N∑

i , j

(φiφi |φ jφ j )− (φiφ j |φ jφi ) (3.27)

with:

hi =〈φi |ĥi |φi 〉 (3.28)

(φiφi |φ jφ j ) =
Ï

d3rd3r′ |φi (r)|2 1

|r− r′|
|φ j (r′)|2 (3.29)

(φiφ j |φ jφi ) =
Ï

d3rd3r′φi (r)φi (r′)
1

|r− r′|
φ j (r)φ j (r′). (3.30)

The first term is again only the single particle energies’ contribution. The second
term can be interpreted as a simple classical electrostatic energy of a charge density

n(r) =
N∑

i

φi (r)2. (3.31)

5As we assume that 〈Ψtrial|Ψtrial〉 = 1, the term on the left hand side is just the Rayleigh quotient, as
Ĥel is hermitian.
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This term usually is called Coulomb or Hartree energy. The last term has no simple
interpretation, as there is no classical analogue. It is called exchange energy, as
the term originates from the fact that the HF-wave function is constructed to be
anti-symmetric under particle-exchange. Note that for i = j both terms cancel each
other exactly, so that a single particle does not interact with itself.

We can now seek one-particle functions that minimize 〈ψ(r)|Ĥel|ψ(r)〉. Variation of
the total energy with respect to these functions is expressed via a set of functional
derivatives and yields a set of N equations:

δ〈ψ(r)|Ĥel|ψ(r)〉
δφi

= 0. (3.32)

Explicitly the functional derivative yields a system of equations for the single-
particle wave functions, the Hartree-Fock equations:

[
ĥi +VH +Vx

]
φi = ǫHF

i φi (3.33)

with VH the Hartree potential:

VH =
∫

d3r′
N∑

j

|φ j (r′)|2 1

|r− r′|
=

∫
d3r′

n(r′)

|r− r′|
(3.34)

and Vx the exchange-potential defined as:

Vxφi (r) =
N∑

j

∫
d3r′φ j (r′)

1

|r− r′|
φi (r′)φ j (r). (3.35)

The solution to equation eq. 3.33 then yields the independent electron energies
ǫHF

i
, but due to eq. 3.34 and eq. 3.35 the solution is not straightforward:

1. Solving eq. 3.33 yields a set φi but as an input also requires the set of φi . So
this equation has to be solved self-consistently, which means an initial guess
for the φi , φi

(0) has to be given. Solving eq. 3.33 with φi
(0) inserted on the

left, results in a new set of φ(1)
i

, which are inserted into eq. 3.33 again. This
is repeated until after n iterations, the difference between φi

(n−1) and φi
(n)

vanishes and thus the solution φi
(n) is self-consistent within numerical limits.
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2. The Vx (eq. 3.35) operator is non-local. Its value depends on φi at all coordi-
nates r′ due to the spatial integration. So Vx does act on φi but requires the
value of it at every point in space, not just at r.

3. The operators VH and Vx sum over all electrons, so the individual electron
does not see all the individual contributions of the other electrons but only
their averaged (often called mean field) potential. Thus the Hartree-Fock
approximation is called a mean-field theory.

4. In addition to the last point, the wave function in eq. 3.24 is a single deter-
minant wave function. Being a single Slater determinant and not a linear
combination of determinants has two consequences. First HF cannot model
dissociation of molecules into smaller molecules, because it would have to
distribute the electrons equally on both molecules [47, 48]. A one deter-
minant approach cannot do this. For these cases multi reference methods
have to be used (e.g. Multi-configurational self-consistent field theory[49]).
Secondly, using a linear combination of determinants as the starting wave
function ψ, actually introduces “correlation” between electrons:

ψ=ψHF +
∑

i

ψi +
∑

i 6= j

ψi j . . . , (3.36)

with {ψi } being the set of all singly excited Slater determinants and {ψi j }

being the set of all doubly excited Slater determinants6. Inclusion of inde-
pendent electron excited states, provides the approximate wave function the
mathematical flexibility to model the individual response of one electron to
another. So the inclusion of independent electron excited states equates to
the inclusion of correlation effects, but at the cost of making the calcula-
tion exponentially more costly. A number of methods approximate this ex-
pansion to capture most of the correlation effects at reduced cost (Coupled
cluster [50], Configuration interaction [51], Møller-Plesset perturbation the-
ory [52]).

The effects of correlation and the associated correlation energy are thus the hard-
est part to accurately model in quantum mechanical simulations. The definition
of correlation itself is a bit circular. Exchange interaction certainly is a correlation

6The ground state determinant is |φ1(r1)φ2(r2)·· · ··φi (ri )·· · ··φN (rN )|, with N the number of electrons.
A singly excited determinant, with excited state j , j > N , has a single particle excited state of electron i

yielding |φ1(r1)φ2(r2) · · · · ·φ j (ri ) · · · · ·φN (rN )|.
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effect between electrons of the same spin, but correlation is defined as the differ-
ence between the best possible HF result and the exact result. Typically, correlation
energies are quite small in comparison to the total energy of the system. Unfortu-
nately, the energy differences between different molecular structures or different
chemical environments are of the same order of magnitude or even smaller. De-
spite the small absolute contribution correlation effects may have a large impact
on chemical properties. In the next section we discuss a different approach to
approximately handle correlation effects at low computational cost.

3.2 Density functional theory

In the last section we introduced the electronic wave function of an N -electron
system, ψ(r1,r2, ...,rN ), which depends on 3N coordinates and is difficult to model
mathematically. Even worse, it is not an observable of the physical system. We can
measure the electron density n, which is related to ψ via

n(r1) = N

∫
d3r2 ...d3rN |ψ(r1,r2, ...,rN )|2. (3.37)

This is a simple quantity as it only depends on one position alone. To be coherent
with literature we will drop the index on r1 now and instead only write r, which
only refers to one position. The electron density describes how the electrons ar-
range themselves in a molecule. They will certainly do so to minimize the total
energy of the system. So it is not unreasonable to assume that the total energy of
the system is a functional of the electron density. It turns out you actually can write
the total energy as a functional of the electron density, which naturally led to the
name Density functional theory or in short DFT.

The inventors of DFT, Hohenberg and Kohn, proved that the total energy is a func-
tional of the density, Etot[n], and furthermore that the approach is even varia-
tional [53]. The correct electron density will yield the lowest total energy Etot:

Etot[n] ≥ Etot[n0] ≡ E0, (3.38)

where E0 is the energy of the ground state and n0 the corresponding ground state
density. This furthermore means that at the ground state the functional derivative
of Etot with respect to the density must be zero:
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δEtot[n]

δn

∣∣∣∣
n=n0

= 0. (3.39)

This allows you to actually find n0 and consequently E0. The challenge here is to
find an explicit form for Etot[n]

Etot[n] = Enuc-el[n]+Tel[n]+Eel-el[n]+Exc[n]. (3.40)

Only Enuc-el[n] explicitly depends on the nuclear coordinates and charges, whereas
all other terms solely describe electron behavior and are thus chemistry indepen-
dent. The functional form of the classical electrostatic contributions Eel-el and
Enuc-el are well known:

Eel-el[n] = 1

2

Ï
d3rd3r′

n(r)n(r′)

|r− r′|
(3.41)

Enuc-el[n] =
∫

d3rV̂nuc-el(r)n(r), (3.42)

where V̂nuc-el is the nuclear potential defined in eq. 3.6. Nobody knows how to
exactly calculate the kinetic energy from the electron density and so the exact
functional form of Tel[n] is unknown. The same holds for the exchange-correlation
functional Exc[n]. A first approximation to Tel[n] is the Thomas-Fermi functional [54]:

T TF
el [n] = 3

10

(
3

8π

)2/3 ∫
d3rn(r)5/3. (3.43)

Combining it with an Exc[n] functional leads to orbital-free DFT. It offers a very
simple and cheap way to arrive at an electron density but unfortunately it can
neither predict the shell structure of individual atoms nor does it predict even
simple molecules to be stable [55]. This failure directly derives from the failure of
purely density dependent functionals as the Thomas Fermi functional.

To better approximate the real kinetic energy functional, a different approach was
devised by Kohn and Sham [56]. They postulated that as the electron density is
the fundamental quantity, the real wave function is important but instead a factious
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wave function can be used, as long as it produces the same density. So they imag-
ined this density not coming from the real complicated N -electron wave function
ψ but from a system of non-interacting fermions:

n(r) =
N∑

i=1

φKS
i (r)2, (3.44)

where the φKS
i

are the single particle wave functions for the non-interacting fer-
mions, also called Kohn-Sham (KS) wave functions. This allows us to use the
formalism of non-interacting particles, which we developed earlier. As before
we drop the KS label and reintroduce it at the end of the section. We can now
rewrite eq. 3.40 as

Etot[n] = T KS
el [n]+

∫
d3rV̂nuc-el(r)n(r)+ 1

2

Ï
d3rd3r′

n(r)n(r′)

|r− r′|
.

+

Ẽxc︷ ︸︸ ︷
Exc[n]+ (Tel[n]−T KS

el [n]) (3.45)

As Ẽxc can only be approximated anyway, the distinction between Ẽxc and Exc is
commonly ignored. One should still be aware though that the kinetic energies can
differ significantly if there is not at least some similarity between the KS-system
and the real system.

We first ignore the issue of Exc and derive an equation for φKS
i

, from which n and
then E0 can be calculated. Eq. 3.39 says that we have to find a stationary point of
the energy with respect to density. Unfortunately, the kinetic energy is a function
of φi , so instead we vary the set of φi , i.e.,

δEtot

δφi
= 0. (3.46)

So we have a set of equations, one for every φi . We cannot vary the φi freely but
have to modify them in a way which forces them to remain orthonormal to each
other ∫

d3rφi (r)φ j (r) = δi j , (3.47)

where δi j is the Kronecker-symbol. This is a constrained optimization, which is
mathematically implemented by adding Lagrange multipliers ǫi j , which enforce
the orthonormality constraint according to
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δ

δφi

[
Etot[n]−

∑

j ,k

ǫ j k

(∫
d3rφkφ j −δ j k

)]
= 0. (3.48)

Inserting equation eq. 3.45 into eq. 3.48 yields:

0 = δ

δφi

[
Etot −

∑

j ,k

ǫ j k

(∫
d3rφkφ j −δ j k

)]
(3.49)

= δ

δφi
Etot −2

∑

j

ǫi , jφ j +0

2
∑

j

ǫi , jφ j =
δ

δφi

[
T KS

el [n]+
∫

d3rV̂nuc-el(r)n(r)+ 1

2

Ï
d3rd3r′

n(r)n(r′)

|r− r′|
+Exc

]

= δ

δφi
T KS

el [n]+ δ

δn

[∫
d3rV̂nuc-el(r)n(r)+ 1

2

Ï
d3rd3r′

n(r)n(r′)

|r− r′|
+Exc

]
∂n

∂φi

= δ

δφi
T KS

el [n]+


V̂nuc-el +

∫
d3r′

n(r′)

|r− r′|︸ ︷︷ ︸
=VH

+Vxc




∂n

∂φi
. (3.50)

We simply defined δExc[n]
δn

= Vxc to be the exchange-correlation potential, Vxc, used
the definition of VH and used the chain rule in the third step.

Using
∂n

∂φi
=

∂
∑

j φ
2
j

∂φi
= 2

∑

j

ǫi jφ j (3.51)

we arrive at

δ

δφi
T KS

el [n]+
[
V̂nuc-el +VH +Vxc

]
2φi = 2

∑

j

ǫi jφ j . (3.52)

We focus on the derivative of the kinetic energy, which for a non interacting system
is defined as:

T KS
el [n] =−1

2

∑

i

∫
d3rφi∇2φi . (3.53)
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δT KS
el [n]

δφi
=−1

2

δ

δφi

∑

j

∫
d3rφ j∇2φ j (3.54)

=−1

2

∑

j


δi j∇2φ j +∇2φ jδi j + surface terms︸ ︷︷ ︸

=0


 (3.55)

=−2

2
∇2φi (3.56)

Inserting the result into eq. 3.53 and dividing by 2, we arrive at

[
−1

2
∇2 + V̂nuc-el +VH[n]+Vxc[n]

]

︸ ︷︷ ︸
ĤDFT[n]

φi =
∑

j

ǫi jφ j . (3.57)

As the total electron density is invariant under rotation of the φi , we choose a set
of φi , which diagonalize ǫi j and denote them as φKS

i
, leading to

ĤDFT[n]φKS
i (r) = ǫKS

i φKS
i (r). (3.58)

This resembles a Schrödinger equation of the full system but it is not. It describes
a fictional system of non-interacting particles, whose density is identical to the
density of the real system.

The Kohn-Sham energies ǫKS
i

are not physical energies, they are simply Lagrange
parameters to enforce orthogonality of the Kohn-Sham orbitals. φKS

i
in eq. 3.58

depends on n, which in turn depends on φKS
i

. Thus the problem of self-consistency
as discussed for the Hartree-Fock approach appears again. Eq. 3.58 also resembles
the Hartree-Fock equation (eq. 3.33), but there are important differences. Hartree-
Fock is an approximate theory, as it uses a product of single particle wave functions
to model the exact wave function, but can be solved exactly. In contrast, DFT
is an exact theory, where the exchange correlation potential Vxc encapsulates all
the effects of many-particle quantum mechanics. Its exact form is unknown and,
though, in principle DFT is an exact theory, approximations to Vxc have to be used,
which we will discuss in the next section.
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3.2.1 Exchange-correlation functionals

In density functional theory all the many-body complications are buried in the
exchange-correlation functional Vxc. Unfortunately, the exact form of Vxc is not
known and thus it has to be approximated. Nowadays, a large zoo of exchange
correlation functionals exist, which can produce very different results. Most func-
tionals in use today are either fitted to reproduce experimental or wave function
method data e.g. B3LYP [57, 58] or interpolate between limiting cases, where the
result for the exact Vxc is known e.g. PBE [59].

The first and simplest approximation ignores the impact of the external potential
and takes the exchange and the correlation part from the homogeneous electron
gas and assumes that it is also locally valid for a spatially varying density n(r). In
this approximation Vxc only depends on the local density and thus is known as the
Local Density Approximation or LDA. LDA yields poor thermochemistry data for
most molecules and other systems with strongly varying electron density [60].

To improve on the LDA, Vxc is assumed to not only depend on n(r) but also on
the density gradient |∇n(r)|. This is known as the Generalized Gradient Approxi-
mation. Functionals belonging to this group are commonly denoted as GGAs. An
often used example is PBE [59], which significantly improves on LDA for most sys-
tems. The inclusion of |∇n(r)| takes the immediate vicinity around r into account.
Consequently these functionals are also referred to as semi-local.

As the exact exchange-correlation functional is known to be non-local, many func-
tionals mix the GGAs with some portion of exact Hartree Fock exchange V HF

x

(see eq. 3.35)[61]

Vxc =V GGA
c +αmV HF

x + (1−αm)V GGA
x , (3.59)

with αm ranging from 0.2 to 0.5 for most functionals. The most prominent examples
are B3LYP (αm = 0.2) and PBE0 (αm = 0.25) [62], which yield improved results for
thermo chemistry, geometries and energies, especially for molecular systems.

A critical shortfall of the approximate Vcc functionals is the wrong long-range be-
havior, as the real Vcc is known to decay as 1/r , whereas GGAs in the asymptotic
limit fall off proportional to the density as ∝ exp(−r ) and hybrid functionals fall
off as αm/r . This is especially problematic for the treatment of spatially separated
charge transfer states, which are ubiquitous in organic electronic systems [63].
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Range-separated functionals can partially overcome this weakness. Here αm is
replaced by a range dependent cutoff function c(r), typically c(r) = erf(µ|r|), with
erf the error function and µ as a cutoff parameter. Thus at short ranges, DFT
exchange is used, whereas at long separations only exact Hartree Fock exchange is
used, giving the correct asymptotic behavior. Although this approach alleviates the
DFT problems with charge transfer states, transferability and generality of these
functionals is limited. Often the parameter µ is optimized for a specific system
to agree with quantum chemistry or experimental results, reducing the predictive
capabilities of DFT [64].

Due to the approximate treatment of correlation effects in current exchange-correla-
tion functionals, dispersive interaction between molecules is not modeled. There is
a number of solutions to this problem from empirical forcefields [65] or introduc-
ing correlation effects from higher order wave function methods [66, 67]. Despite
all these problems, DFT offers excellent results for a wide variety of systems, as the
application range and validity of the common functionals is well-established [64,
68–70].

3.2.2 Basis functions

In the beginning of the chapter we mentioned optimizing single-particle wave func-
tions, φi (r). But what exactly do we optimize? This question is intimately related
with the task of representing φ(r) on a computer efficiently. As φi (r) has a certain
value at every point and consequently, infinitely many points, an exact represen-
tation is impossible. Instead φ(r) is expanded in some finite basis with M basis
functions χm(r) and expansion coefficients Xi m

φi (r) =
M∑

j=1

Xi jχ j (r). (3.60)

If we insert this into eq. 3.58 and multiply from the left with χk (r), we arrive at

M∑

j=1

〈χk |ĤDFT|χ j 〉︸ ︷︷ ︸
Fk j

Xi j =
M∑

j=1

〈χk |χ j 〉︸ ︷︷ ︸
Sk j

.Xi j ǫi . (3.61)

The expectation value of the DFT Hamiltonian and the basis functions is typically
called the Fock-Matrix F, whereas the overlap between basis functions 〈χk |χ j 〉 is
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r

ψ(r )

Figure 3.3: Decomposition of a wave function into basis functions. To approximate the real
wave function (black line) a linear combination of Gaussian basis functions can
be used. A linear combination of Gaussians with different decay coefficients
yields an approximation but fails to capture the cusp at r = 0 and the correct
exponential decay.

called the overlap matrix S.

In matrix notation this reduces to:

FXi = ǫi SXi . (3.62)

The electron density, defined before in eq. 3.44, can then be rewritten as:

n(r) =
N∑

i=1

|φi (r)|2 =
N∑

i=1

M∑

j=1

Xi jχ j (r)
M∑

k=0

Xi kχk (r) =
M∑

j k

Dk jχ j (r)χk (r). (3.63)

Here we introduce D, the density matrix:

Dk j =
N∑

i=1

Xi k Xi j , (3.64)

which is the representation of electron density in the basis of Kohn-Sham orbitals.

Which kind of basis function should you choose? On the one hand basis func-
tions should be as close as possible to φ(r), as it allows to keep the number of
basis functions M small, which reduces matrix sizes and computational effort. On
the other hand integrals over basis functions like 〈χk |ĤDFT|χ j 〉 should be easy to
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calculate. A third consideration is how to approach the limit of an exact basis.
Preferably increasing the number of basis functions M should converge results to-
wards the limit of a complete basis. This is not necessarily true for non-orthogonal
basis sets, where 〈χk |χ j 〉 6= δk j . Adding more functions to a non-orthogonal basis
can lead to linear dependencies and finally numerical problems. All basis sets are
different compromises between these considerations. A few options for finite, i.e.,
non-periodic, systems will be presented below.

1. Numerical orbitals represent φ(r) as a large array of φ(ri ) for many ri . This
allows for great flexibility, but integrals over operators require numerical in-
tegration and thus are rather slow. As the value of φ at every grid point ri

could be varied, the number of optimization parameters is extremely large.
Instead groups of grid points with fixed ratios are used and only the coeffi-
cients for these groups are optimized.

2. For molecular systems using linear combinations of solutions to the hydrogen
atom, so called Slater Type Orbitals or STOs are useful. They, as the real wave
function, decay as exp(−|r|) and have cusps at the atomic nuclei. Their func-
tional form is χ(r) = Nl ,αYl m(υ,φ)|r|l exp(−α|r|), with normalization constant
Nl ,α and spherical harmonic Yl m(υ,φ)7. The exponential form does not lead
to easy evaluation of integrals, as all integrals of basis functions with opera-
tors have to evaluated numerically. Due to their similarity to the orbitals of
the hydrogen atom, these functions are also named as s, p, d , f . . . depending
on the value of l (0,1,2,3. . . ). All functions with the same l and α are collec-
tively referred to as a shell. A big disadvantage of STOs is, that they do not
form an orthogonal basis. So adding more basis functions does not guarantee
convergence towards the infinite basis limit controlled by a single parameter.
Instead individual sets of basis functions for each element were created by
hand. These basis sets differ in size and composition and are benchmarked
to yield results up to a given accuracy.

3. A less accurate but much faster alternative to STOs is to use Gaussian Type
Orbitals or GTOs. Their functional form χ(r) = Nl ,αYl m(υ,φ)r l exp(−αr 2) al-
lows all but the Vcc matrix elements to be evaluated analytically, accelerating
calculations massively[71]. As they do not really resemble real molecular or-
bitals, linear combinations of GTOs are used to approximate one STO. These

7φ here simply denotes an angle not any sort of wave function.
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are called contractions:

χ(r) =
∑

i

ci Nl ,αi
Yl m |r|l exp(−αi |r|2) (3.65)

with fixed contraction coefficients ci . Due to the contractions, GTO imple-
mentations have to evaluate many more integrals than STO codes but even
then GTO evaluation is still much faster than numerical integration over
STOs. Unfortunately, GTOs are neither able to simulate the cusp at the nuclei
positions nor the correct exponential asymptotic decay of the wave function
(see Fig. 3.3). Otherwise they share all the same advantages and disadvan-
tages of STOs and, especially, due to the speed advantage over STOs a large li-
brary of basis sets exits. A widely used example is the def2-svp basis set [72],
which for carbon has: 3 contracted contracted s-shells, 2 contracted p-shells
and 1 simple d-shell for a total of 3·1+2·3+1·5 = 14 variable coefficients. The
functions of the d-shell are referred to as polarization functions, as they are
not needed for the isolated atom, but add more degrees of freedom to allow
the electron cloud to be polarized in a molecular environment.

Basis sets enable us to express the quantum mechanical equations of infinite di-
mensions, as a finite dimensional matrix equations. We want these basis sets to
be as complete as possible but also as small as possible to reduce the computa-
tional cost. One approach, described in the next section, is to reduce the number
of electrons taken explicitly into account, which cuts the number of basis functions
needed for a specific accuracy.

3.2.3 Pseudo potentials

The properties of most molecules and solid state systems are governed by the outer
shell electrons, also referred to as valence electrons. The core electrons are typi-
cally energetically separated by multiple eV from the valence electrons and hardly
contribute to the chemical properties: in carbon the Kohn-Sham energies of the 1s

core electrons are separated by about 260 eV 8 from the valence 2s electrons. De-
spite hardly contributing to the chemical properties, the description of the spatially
localized core electrons requires many additional basis functions. Especially the
valence electron states oscillate rapidly in the core region because they have to be
orthogonal to the core states (see Fig. 3.4). To reduce the computational cost, the

8single atom, ORCA-PBE/def2-svp ε0 =−273.1191eV and ε1 =−13.0731eV
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core electrons and the nucleus are replaced by a pseudo potential, which is much
smoother in the core region, typically defined by a cutoff rc . Outside the cutoff the
pseudo potential exactly reproduces the combined behavior of the nucleus and the
core electrons.

Pseudo potentials require that we can energetically separate the electronic states
|φ〉 into valence |φv 〉 and core states |φc

n〉

|φ〉 = |φv 〉+
∑
n

an |φc
n〉. (3.66)

As |φv 〉 must be orthogonal to all core states, the an coefficients are fixed via:

〈φc
n |φ〉 = 〈φc

n |φv 〉+an = 0. (3.67)

For |φ〉 we then find:

|φ〉 = |φv 〉−
∑
n

|φc
n〉〈φc

n |φv 〉. (3.68)

Inserting eq. 3.68 into the electronic Schrödinger equation (see eq. 3.9) Ĥel|φ〉 =
E |φ〉 and assuming that the core state problem can be solved, e.g. Ĥel|φc

n〉 = E c
n |φc

n〉
leads to:

Ĥel|φv 〉−
∑
n

E c
n |φc

n〉〈φc
n |φv 〉 = E

(
|φv 〉−

∑
n

|φc
n〉〈φc

n |φv 〉
)

, (3.69)

which can be rearranged to give an effective Schrödinger equation for the valence
states with a non-local pseudo potential.

[Ĥel +
∑
n

(E −E c
n)|φc

n〉〈φc
n |

︸ ︷︷ ︸
V̂pseudo

] |φv 〉 = E |φv 〉. (3.70)

V̂pseudo depends on E but if (E −E c
n) is large, e.g. core and valence levels are well

separated, then replacing E by the atomic valence energy for |φv 〉 is a reasonable
approximation. To increase the transferability of the pseudo potential E is chosen in
order to obtain the same scattering properties for the all-electron and the pseudo
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Figure 3.4: Pseudo potential and real potential and the corresponding wave functions. The
pseudo potential (lower red line) is constructed to avoid the singularity at r = 0

(black line) of the Coulomb potential. Omission of core states leads to a much
smoother wave function (upper red line). Beyond the cutoff rc the all-electron
wave function (upper black line) and the pseudo wave function agree.

potential case. This requires the radial part Rall
l

and R
pseudo
l

for an atomic all-
electron and pseudo potential calculation at given angular momentum l to fulfill:

∫rc

0
r 2Rall

l (r )dr =
∫rc

0
r 2R

pseudo
l

(r )dr. (3.71)

Pseudo potentials which fulfill this condition are called norm-conserving.

Pseudo potentials greatly reduce the number of basis functions needed to describe
a molecule within a given accuracy, especially for heavy elements with hundreds
of core electrons. Furthermore, as the pseudo potential is typically constructed
from an atomic all-electron calculation of the element in question, relativistic core-
corrections can be incorporated without having to modify the rest of the DFT pro-
cedure. Despite these advantages, pseudo potentials introduce a lot of additional
parameters into the calculation. These approximations can reduce the accuracy of
a calculation, as the separation into valence and core orbitals, the reference all-
electron calculation for the construction and the choice of the cutoff rc limit the
transferability of the pseudo potential from one chemical environment to another.
The ambiguity in the construction lead to the creation of a zoo of pseudo potentials,
all optimized towards different objectives.
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3.3 Electronically excited states via GW -BSE

Whereas density functional theory has done an excellent job at calculating ground
state properties even of larger systems, excited state properties are still very much
harder to compute. GW -BSE describes the behavior of electron- and hole-like ex-
citations on the ground state electron configuration. Originally more rooted in the
solid-state community, it has recently received increasing attention from several
groups for the treatment of electronically excited states of molecular systems [73–
76]. It can in contrast to time dependent density functional theory (TDDFT) de-
scribe localized (Frenkel) and bimolecular charge transfer (CT) excitons on an
equal footing [75, 77, 78] because it correctly accounts for long and short ranged
interaction. Its computational footprint is close to that of TDDFT but avoids the
weaknesses of the exchange correlation functional. For molecules using efficient lo-
calized orbital based implementations GW -BSE can be readily applied to molecules
or clusters of molecules of technological relevance [79–81].

Before we recapitulate the major concept behind GW -BSE, let us emphasize that
to keep the notation simple we restrict the discussion to the following case. We
consider a closed shell system, with a total spin of 0, allowing us to neglect spin,
as we did in the previous paragraph. Furthermore we again work in the Born-
Oppenheimer approximation: the geometry of the molecule is fixed, the electron-
phonon interaction and with it satellite peaks and geometry reorganization are not
taken into account.

3.3.1 One-particle-excitations

GW -BSE builds on Green’s function theory of many-particle systems. As a starting
point we go back to the electronic Hamiltonian Ĥel (eq. 3.19) and rewrite it in
second quantization,

Ĥel =
∫

d3r φ̂†(r)h(r)φ̂(r)+ 1

2

Ï
d3rd3r′ φ̂†(r)φ̂†(r′)ν(r,r′)φ̂(r)φ̂(r′), (3.72)

with h(r) the single particle Hamiltonian operator in real space, defined in eq. 3.21,
and ν(r,r′) = |r− r′|−1. φ̂† (φ̂) is the single particle electron creation (annihilation)
operators for the single particle wave function:
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φ̂†(r) =
∑

i

φi (r)â†. (3.73)

The one-particle Green’s function G1 then is:

G1(rt ,r′t ′) =−i 〈n,0|T̂
[
φ̂(rt )φ̂†(r′t ′)

]
|n,0〉, (3.74)

with |n, s〉 being the n-electron s-th excited state of the system with Hamiltonian
Ĥel:

Ĥel|n,0〉 = En,0 Ĥ |n +1, s〉 = En+1,s |n +1, s〉. (3.75)

T̂ is the fermionic time ordering operator, which with the help of the Heaviside
function, Θ(t − t ′), can be written as:

T̂
[
φ̂(rt )φ̂†(r′t ′)

]
=Θ(t − t ′)φ̂(rt )φ̂†(r′t ′)−Θ(t ′− t )φ̂(r′t ′)φ̂†(rt ), (3.76)

where φ̂†(rt ) (φ̂(rt )) is a single particle electron creation (annihilation) operator in
the Heisenberg picture,i.e., φ̂(rt ) = exp(i Ĥ t )φ̂(r)exp(−i Ĥ t ).

The 1-particle Green’s function describes single particle-like excitation processes
in which an electron is added to (n → n + 1) (or removed from (n → n − 1)) the
system, propagated from t to t ′ and then removed (added) as schematically shown
in Fig. 3.5. The process of removing or adding an additional electron corresponds
to the experimental photo emission or inverse photo emission effect, respectively
(see Fig. 3.6). Note that the single particles we insert into the many body system
are not eigenstates of Ĥel, so they do not have an eigenenergy. When they are
propagated in time the inserted particles will spread out until they are completely
delocalized. If the delocalization happens slowly we can describe the evolution of
the whole many body system as the evolution of one particle with finite lifetime, or
a complex energy. The lifetime then will depend on the “how much” the many body
system deviates from the independent particle picture, i.e., how strong correlation
is.
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Figure 3.5: Single particle Green’s function for different time arguments. (a) For t > t ′ create
electron at (r′, t ′), propagate and then annihilate at (r, t ). (b) For t ′ > t annihilate
electron (create hole) at (r, t ), propagate and then create electron (annihilate
hole) at (r′, t ′).

Figure 3.6: Ground state and excited states of a many-particle system. The inverse photo
emission adds an outside electron to the system. The properties of that ad-
ditional electron are described by G1 for t > t ′. Photo emission removes one
electron from the system and creates a hole, which is described by G1 for t ′ > t .
The excitation of an electron to a higher state is a two-particle process, creation
of an electron and a hole requires a 2-particle Green’s function.
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Excitation energies can be calculated from:

〈n,0|φ̂(rt )|n +1, s〉 = 〈n,0|exp(i Ĥ t )φ̂(r)exp(−i Ĥ t )|n +1, s〉
= 〈n,0|exp(i En,0t )φ̂(r)exp(−i En+1,s t )|n +1, s〉

= 〈n,0|φ̂(r)|n +1, s〉︸ ︷︷ ︸
fs (r)

exp


−i (En+1,s −En,0)︸ ︷︷ ︸

εs

t


 . (3.77)

A useful representation of G1 can be derived from eq. 3.74, where we assume t > t ′

for simplicity:

G1(rt ,r′t ′) =−i 〈n,0|φ̂(rt )φ̂†(r′t ′)|n,0〉
=−i 〈n,0|exp(i Ĥ t )φ̂(r)exp(−i Ĥ t )exp(i Ĥ t ′)φ̂†(r)exp(−i Ĥ t ′)|n,0〉
=−i 〈n,0|φ̂(r)exp

[
−i (Ĥ −En,0)(t − t ′)

]
φ̂†(r)|n,0〉

=−i
∑

s

fs (r) f ∗
s (r′)exp

[
−i (En+1,s −En,0)(t − t ′)

]
. (3.78)

In the last line we used the identity
∑

s |n +1, s〉〈n +1, s| = 1̂ and eq. 3.77. Switching
from the time to the frequency domain via Fourier transformation (t − t ′) →ω leads
to

G1(r,r′,ω) =
∑

s

fs (r) f ∗
s (r′)

ω−εs − iη
, (3.79)

where we introduced a small imaginary part η to ensure convergence of the Fourier
transform. Eq. 3.79 is the spectral representation of the Green’s function.

From the equation of motion of the field operators in the Heisenberg picture,

i
∂

∂t
φ̂(r, t ) =

[
φ̂(r, t ), Ĥ

]
, (3.80)

we can derive an equation of motion for the Green’s function G1:

[
∂

∂t
− ĥ

]
G1(rt ,r′t ′)+ i

∫
d3r′′ν(r,r′′)G2(r′′t ,r′t ′,r′t ′,rt ) = δ(r− r′)δ(t − t ′), (3.81)
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where G2(r′′t ,r′t ′,r′t ′,rt ) is the two-particle Green’s function

G2(1,2,3,4) = i 2〈n,0|T̂
[
φ̂(1)φ̂(3)φ̂†(4)φ̂†(2)

]
|n,0〉. (3.82)

To simplify the notation we combine the time and space variables into a single
variable (r1, t1 ≡ 1). So the equation of motion for the 1-particle Green’s function
contains a 2-particle Green’s function. This continues for higher order Green’s
functions as well and leads to an infinite system of equations. To arrive at a closed
system of equations we introduce the self-energy Σ(rt ,r′′t ′′) via

i

∫
d3r′′ν(r′,r′′)G2(r′′t ,r′t ′,r′t ′,rt ) =−

∫
d3r′′dt ′′Σ(rt ,r′′t ′′)G1(r′′t ′′,rt ). (3.83)

This simplifies eq. 3.81 to:

[
∂

∂t
− ĥ

]
G1(rt ,r′t ′)−

∫
d3r′′dt ′′Σ(rt ,r′′t ′′)G1(r′′t ′′,rt ) = δ(r− r′)δ(t − t ′). (3.84)

The task is now to find the self-energy operator, which is a highly complicated
object, being non-local and non-hermitian. Before we continue, the independent
particle contribution has to be addressed. Although in the derivation we used
non-interacting particles with ĥ = Vkin +Vext, in most practical applications better
starting points are used, either Hartree, Hartree-Fock, or even Kohn-Sham parti-
cles. This modifies the definition of Σ accordingly. We will use the most common
formulation with ĥ0 = ĥ+V̂H, which yields ΣH =Σ−V̂H. For the ease of notation we
will drop the subscript immediately.

Without derivation the self-energy can now be obtained from a closed set of cou-
pled equations [45]:
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G1(1,2) =G0(1,2)+
∫

d34G0(1,3)Σ(3,4)G1(4,2) (3.85)

Σ(1,2) = i

∫
d34G1(1,3)W (1,4)Γ(4,2,3) (3.86)

Γ(1,2,3) = δ(1,2)δ(1,3)+
∫

d4567
δΣ(1,2)

δG1(4,5)
G1(4,6)G1(5,7)Γ(6,7,3) (3.87)

P (1,2) =−i

∫
d34G1(1,3)G1(4,1)Γ(3,4,2) (3.88)

W (1,2) = ν(1,2)+
∫

d34ν(1,3)P (3,4)W (4,2). (3.89)

Here G0 is the non-interacting Green’s function, Γ the vertex correction, P the
polarizability, W the screened Coulomb interaction and ν the Coulomb interaction.
Inverting equation eq. 3.89 for W leads to another common form:

ε(1,2) = δ(1,2)−
∫

d3ν(1,3)P (3,2) (3.90)

W (1,2) =
∫

d3ε−1(1,3)ν(3,2), (3.91)

where we defined ε as the microscopic dielectric function and its inverse as

∫
d2ε(1,2)ε−1(2,3) = δ(1,3). (3.92)

Evaluating this system of coupled equations poses severe computational problems,
especially the calculation of the derivative with respect to G in Γ (eq. 3.87). The
GW approximation reduces the vertex correction to

Γ(1,2,3) = δ(1,2)δ(1,3). (3.93)

Eq. 3.85 to eq. 3.89 thus simplify.

Σ(1,2) = iG1(1,2)W (1,2) (3.94)

P (1,2) =−iG1(1,2)G1(2,1) (3.95)

ε(1,2) = δ(1,2)−
∫

d3ν(1,3)P (3,2) (3.96)

W (1,2) =
∫

d3ε−1(1,3)ν(3,2) (3.97)
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Figure 3.7: Schematic representation of Hedin’s equations for G, Σ, W , P , Γ

The GW approximation is not a formal perturbation expansion, but it makes phys-
ical sense to expand the self-energy in W and not in ν, as the screened interaction
is much more docile at long range. Furthermore, the approximation conserves par-
ticle number. The dielectric function is reduced to Random Phase Approximation
(RPA) screening, i.e., the other electrons react to the excitation as if they were
non-interacting.

To proceed we express G1 in its spectral representation, where to facilitate the next
steps we extend ω from a real to a complex quantity z ∈C:

G1(r,r′, z) =
∑

i

ψi (r, z)ψ̄i (r′, z)

z −Ei (z)
, (3.98)

where ψi (r, z) (ψ̄i (r′, z)) are the right (left) eigenvectors of the non-Hermitian op-
erator Ĥ = ĥ0+Σ(r,r′, z) and Ei (z) the corresponding eigenvalues. Inserting eq. 3.98
into the frequency representation of eq. 3.84 leads to

ĥ0ψi (r, z)+
∫

d3r′Σ(r,r′, z)ψi (r′, z) = Ei (z)ψi (r, z). (3.99)

One of the large problems in solving eq. 3.99 is the frequency dependence of Σ(z).
To solve it we have to evaluate Σ at all frequencies ω. We now assume that the
low-lying excitations can be described via quasi-particles with complex energies
ε

qp
i

. The particle-like excitations have energies, corresponding to the poles of G1

(eq. 3.98), i.e.:
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Figure 3.8: The many-particle system of interacting particles (a) is approximated by Quasi-
particles (b), which take the screening due to the other particles into account by
using the screened interaction W = ǫ−1ν instead of the Coulomb interaction ν.
Neglecting the dashed interactions in (a) corresponds to RPA screening in (b)

ω−Ei (z) = 0 ⇒ ε
qp
i

−Ei (ε
qp
i

) = 0. (3.100)

Inserting this into eq. 3.99, using Σ = iGW and returning to the bra-ket notation
we arrive at:

[
ĥ0 +Σ(εQP

i
)
]
|φQP

i
〉 = ε

QP
i

|φQP
i

〉, (3.101)

where 〈r|φQP
i

〉 =ψi (r, z = ε
qp
i

). We now use ’QP’ instead of ’qp’ as the state label to
indicate the use of the GW approximation for Σ.

Returning to quasi-particles, it has to be pointed out that these are not real particles
but mathematical constructs which allow us to reduce the many-particle problem
to a single particle one. The quasi-particles interact not via the Coulomb interac-
tion ν but via the screened Coulomb interaction W , as each quasi-particle can be
thought of as a real particle and a cloud of screening particles (see Fig. 3.8). This
approximation only holds if the quasi-particles are in some sense “close” to the
real particles, so they have to have long lifetimes, i.e., the imaginary part of the
self-energy is small( ℑΣi i → 0) and correlation should be small. If we look at the
spectral function A(ω) of G1 (Fig. 3.9), which is defined as:

A(r,r′,ω) =− 1

π
ℑ(G1(r,r′,ω))sgn(ω−µ), (3.102)

where µ is the chemical potential and sgn(ω) the signum function, we see that
the full spectral function decomposes into a coherent and incoherent part. The
coherent part is centered around εGW , which is shifted from the non-interacting
energy ε0 by ℜ(Σ(εGW ), with a spectral broadening proportional to ℑ(Σ(εGW )). The
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Figure 3.9: Spectral function of an infinite system, the spectral function becomes a contin-
uous function, depicted in blue. The line A0 corresponds to the non-interacting
system with excitation energy ε0. The quasi-particle approximation neglects
all structure outside the peak at εGW and describes it via a Lorentzian peak of
FWHM=ℑ(Σ).

incoherent part may include satellite peaks but is neglected in the Quasi-particle
approximation.

How do we start solving eq. 3.94-eq. 3.97 and then eq. 3.101? First, G0 is approx-
imated by the Green’s function of Kohn-Sham orbitals φKS from a preceding DFT
calculation. Although strictly Kohn-Sham orbitals carry no physical meaning, they
are empirically found to often resemble quasi-particle states, as they already carry
some, although approximate correlation corrections from the exchange-correlation
functional:

G0(r,r′,ω) =
∑

i

φKS
i

(r)φKS
i

(r′)

ω−εKS
i

± iη
(3.103)

From there we calculate Σ via eq. 3.94-eq. 3.97. As mentioned earlier ĥ0 = ĥ+V̂H ≈
ĥDFT

0 = ĤDFT − V̂xc, so we have to subtract Vxc from Σ via

[
ĤDFT +Σ(εQP

i
)− V̂xc

]
|φQP

i
〉 = ε

QP
i

|φQP
i

〉, (3.104)
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Using the assumption that Kohn-Sham states actually approximate the GW quasi-
particle states well,

|φQP
i

〉 ≈ |φKS
i 〉, (3.105)

we can write eq. 3.104 with help of eq. 3.105 as:

εGW
i −εKS

i = 〈φKS
i |Σ(εGW

i )− V̂xc|φKS
i 〉, (3.106)

where we introduce εGW
i

as 〈φKS
i

|Σ(εGW
i

)|φKS
i

〉, as the GW corrected KS-state en-
ergies9. Now we can approximate Σ(εGW

i
) ≈ Σ(εKS

i
). This approach is typically

denoted as G0W0. Instead we can also insert the energies from a G0W0 calcula-
tion back into Σ and iterate until εGW

i
are converged. This is commonly denoted

as GW0. The εGW
i

can then be used to calculate a new W , e.g.Σ = G(εGW
i

)W (εGW
i

)

and iterated until convergence. Self-consistency of εGW
i

in G and W is known as
evGW [82]. More details on this can be found in Chapter 5.

Eq. 3.105 holds, if the off-diagonal elements of Σ(εGW
i

) are small. Otherwise, we
have to expand the quasi-particle states in Kohn-Sham states, |φKS

j
〉:

|φQP

i
〉 =

∑

j

Ci j |φKS
j 〉 (3.107)

and explicitly solve eq. 3.101. As Σ is still non-Hermitian in this case, it is typically
approximated by:

〈φQP
i

|Σ|φQP
j

〉 = 1

2

[
〈φQP

i
|Σ(εQP

i
)|φQP

j
〉+〈φQP

j
|Σ(εQP

j
)|φQP

i
〉
]

(3.108)

as outlined by Faleev et al [83].

Although the GW framework is excellent for single particle excitations, like indi-
vidual electrons and holes it cannot simulate excitons. Due to the neglect of the
vertex correction according to eq. 3.93, quasi-particle quasi-particle interaction is
not included in the GW approximation. Thus the simulation of excitons requires
another approach for the description of the electron-hole interaction.

9To iterate, three different excited state energies have appeared so far: εGW : GW corrected ener-
gies for KS levels. εQP: quasi particle energies in the GW approximation. εqp: quasi particle energy
including vertex corrections.
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3.3.2 Two-particle-excitations

Whereas single particle-excitations can be accurately modeled via single-particle
Green’s functions, as demonstrated in the last section, this approach fails for charge
neutral excitations. The quantity, which defines these excitations is the already in-
troduced dielectric function ǫ(ω) in eq. 3.90. It describes the reaction of the system
to small perturbations, e.g., incident light. These are typically charge displace-
ments respective to the ground state, which can be interpreted as an electron-hole
pair. Although we have calculated ǫ(ω), we did so in the GW approximation, in
which the vertex correction Γ was neglected. Without the vertex correction the
screening reduces to the RPA, which is the screening of independent particles. So
the GW via the RPA throws away the quasi-particle interaction we are looking for.
We could reintroduce the vertex correction, but as said in the last section the whole
set of Hedin’s equations, eq. 3.85-eq. 3.89, would have to be iterated, as a simple
expansion of P would depend on higher order polarization functions. Additionally,
the form of the vertex correction makes a numerical treatment very difficult [84,
85].

Instead we will expand the two point Green’s functions to four point quantities to
rigorously describe electron-hole interactions of the kind |n,0〉 → |n,S〉, which do
not change the number of electrons in the system.

A natural quantity to start from is the two-particle correlation function, which al-
lows to model the correlated motion of electron and hole

L(12,1′2′) =−G2(12,1′2′)+G1(12)G1(1′2′), (3.109)

where the second term represents the independent movement of electron and hole
as a product of single particle Green’s functions and the first term, G2, is the two-
particle Green’s function the correlation. It can be found using a Dyson-like equa-
tion for L, the Bethe-Salpeter-Equation (BSE), which reads

L(12,1′2′) = L0(12,1′2′)+
∫

d3456L0(14,1′3)K (35,46)L(62,52′), (3.110)

with L(12,1′2′) the two-particle Green’s function for electron and hole, K (35,46) the
interaction kernel, explained below, and L0(12,1′2′) = G1(1,1′)G1(2,2′) is the two-
particle non-interacting Green’s function.
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As optical excitations involve the simultaneous creation and annihilation of quasi-
particles we can reduce the four time variables to two. Furthermore, as in the pre-
vious paragraph we assume a Hamiltonian without an explicit time dependence,
so L(12,1′2′) can be reduced to L(12,1′2′,ω), with the indices only representing po-
sition.

The Kernel K is given by the functional derivative of the full self-energy with respect
to non-interacting Quasi-particles10:

K (35,46) = δ[Σ(3,4)+VH]

δG1(6,5)
, (3.111)

using the GW approximation Σ= iGW and assuming δW /δG1 ≈ 0, i.e. the screening
is not influenced by the excitation, we arrive at:

K (35,46) =−iδ(3,4)δ(5,6)ν(3,6)+ iδ(3,6)δ(4,5)W (3,4) (3.112)

= K x (35,46)+K d (35,46).

K d is normally called the direct interaction and originates from the screened in-
teraction W between electron and hole and is responsible for the binding in the
electron hole pair. K x originates from the unscreened interaction ν and is respon-
sible for the singlet-triplet splitting. It is normally denoted exchange interaction.

L0 can be now be written as a combination of independent quasi-particles excita-
tions, which in position space yields:

L0(r1,r2,r′1,r′2,ω) = i
∑
v,c

[
φc (r1)φv (r2)φ∗

v (r′1)φ∗
c (r′2)

ω− (εc −εv )+ iη
−
φv (r1)φc (r2)φ∗

c (r′1)φ∗
v (r′2)

ω+ (εc −εv )− iη

]

(3.113)

where c runs over all occupied hole states and v over all empty electron states.
This suggests a basis of product states of single-particle wave functions χex :

χex (r1,r2) =
∑

n1,n2

φn1 (r1)φ∗
n2

(r2), (3.114)

10As the particles are non-interacting, VH has to be explicitly included.
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allowing us to rewrite eq. 3.110 as a matrix equation:

L(ω) = L0(ω)+L0(ω)K(ω)L(ω). (3.115)

Multiplying with −i and transforming L0(r1,r2,r′1,r′2,ω) to L
n1,n2,n3,n4
0 (ω) yields:

− i L
n1,n2,n3,n4
0 (ω) =

∑
v,c

δn1cδn2vδn3cδn4v

ω+ (εc −εv )− iη
−
δn1cδn2vδn3cδn4v

ω− (εv −εc )+ iη
(3.116)

So in this basis −i L
n1,n2,n3,n4
0 (ω) is diagonal n1 = n3, n2 = n4. Furthermore, only

transitions from occupied→unoccupied and unoccupied→occupied carry a weight.
In the matrix representation:

− i L0(ω) =

n1n2\n3n4 v v cc vc cv






v v 0 0 0 0

cc 0 0 0 0

vc 0 0 1
∆εn2n1−ω 0

cv 0 0 0 −1
∆εn2n1−ω

, (3.117)

where ∆εn2n1 = εn2 − εn1 . Now we can rewrite −i L
n1,n2,n3,n4
0 (ω) using occupation

factors fi ( fv = 1, fc = 0):

− i L
n1,n2,n3,n4
0 (ω) =

fn2 fn1δ(n1,n3)δ(n2,n4)

∆εn2n1 −ω
. (3.118)

This allows us to introduce an occupation matrix F, with components:

F n1,n2,n3,n4 = fn2 fn1δ(n1,n3)δ(n2,n4). (3.119)

We now restrict the further derivation of L0 to the physically meaningful subspace
(vc)(cv) belonging to occupied→unoccupied and unoccupied→occupied transitions

L0 = L̃0F with F =




f2 − f1︸ ︷︷ ︸
=−1

0

0 f2 − f1︸ ︷︷ ︸
=1


 . (3.120)



3.3 Electronically excited states via GW -BSE 59

So we can solve eq. 3.115 for L:

− i L(ω) =
[
−i L−1

0 (ω)− i F K(ω)
]−1

. (3.121)

As −i L̃
−1
0 (ω) is diagonal the inverse is readily calculated:

− i L̃
−1
0 (ω) =

(
∆εn2n1 −ω 0

0 ∆εn2n1 −ω

)
. (3.122)

This allows us to single out the frequency dependence:

− i L̃
−1
0 (ω) =

(
∆εn2n1 0

0 ∆εn2n1

)
−ω

(
1 0

0 1

)
, (3.123)

which enables us to rewrite the denominator introducing an effective two-particle
Hamiltonian HBSE:

HBSE =
(
∆εn2n1 0

0 ∆εn2n1

)
− i F K(ω) (3.124)

=
(
∆εn2n1 0

0 ∆εn2n1

)
+ i

(
Kvc,v ′c ′ Kvc,c ′v ′

−Kcv,v ′c ′ −Kcv,c ′v ′ .

)

This Hamiltonian is in general non-Hermitian and is typically labeled:

HBSE =
(

H res K

−K −H res

)
(3.125)

The resonant part H res treats transitions between occupied and unoccupied states,
whereas −H res is also the called anti-resonant part and describes unoccupied to
occupied transitions with negative frequencies. K couples these resonant and anti-
resonant transitions. As in sec. 3.3.1, we now do not try to solve eq. 3.121, as it
involves inverting a four index quantity for every ω. Instead we can use the spectral
representation of L(ω):

− i L(ω) = (HBSE −ω)−1 =
∑

S

|χ̄S〉〈χS |
ΩS −ω

(3.126)
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and find the eigenvalues to the anti-Hermitian eigenvalue problem:

HBSE|χS〉 =ΩS |χS〉, (3.127)

which using eq. 3.125 is typically written as:

(
H res K

−K −H res

)(
AS

B S

)
=ΩS

(
AS

B S

)
, (3.128)

with:

〈r1,r2|χS〉 =χS (r1,r2) = AS
vcφc (r1)φ∗

v (r2)+B S
vcφv (r1)φ∗

c (r2). (3.129)

For many systems the off-diagonal blocks K in eq. 3.128 are small and can be
neglected. This leads to the Tamm-Dancoff approximation (TDA) [46]:

H res AS
TDA =Ω

TDA
S AS

TDA (3.130)

and the resulting electron-hole amplitude:

χTDA
S (r1,r2) =

∑
vc

AS
vc,TDAφc (r1)φ∗

v (r2) (3.131)

This approximation halves the size of the the BSE matrix11. Additionally it helps
to reduce triplet instabilities [86], but especially for small molecules the error due
to the neglect of the anti-resonant parts can be quite significant [87].

Explicitly, H res and K are given by:

H res
vc,v ′c ′ (ω) = Dvc,v ′c ′ +H x

vc,v ′c ′ +H d
vc,v ′c ′ (3.132)

Kcv,v ′c ′ (ω) = H x
cv,v ′c ′ +H d

cv,v ′c ′ . (3.133)

11Although the full matrix has size 2N ×2N , due to its anti-Hermitian structure, the problem can be
recast into problem of the two matrices Hres −K and Hres +K
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In the basis of non-interacting quasi-particle states the respective matrix elements
are:

Dvc,v ′c ′ = (εv −εc )δv v ′δcc ′ (3.134)

H x
vc,v ′c ′ =

∫
d3rd3r′φ∗

c (r)φv (r)ν(r,r′)φc ′ (r′)φ∗
v ′ (r′) (3.135)

H d
vc,v ′c ′ =

∫
d3rd3r′φ∗

c (r)φc ′ (r)φv (r′)φ∗
v ′ (r′)W (r,r′,ω= 0). (3.136)

Here we assume, that the dynamic properties of W (ω) are negligible and use the
static approximation, which reduces the computational cost significantly by not
demanding self-consistency. This is only valid if ΩS − (εc −εv ) ≪ωl , where ωl is the
plasmon frequency, which determines the screening properties.

The spin structure of the BSE solutions depends on the spin-orbit coupling. If the
ground state is a spin singlet state and spin-orbit coupling is small, the Hilbert
space of the electron-hole pairs has four distinct subspaces:

| ↑↑〉, | ↓↓〉, | ↑↓〉, | ↓↑〉,

where the first arrow indicates the spin of the electron and the second arrow the
spin of the hole. Most of matrix elements eq. 3.134-3.136 between these subspaces
are zero 12

HBSE =




D +H x +H d 0 0 H x

0 D +H d 0 0

0 0 D +H d 0

H x 0 0 D +H x +H d




| ↑↓〉
| ↑↑〉
| ↓↓〉
| ↓↑〉

(3.137)

This Hamiltonian can be diagonalized, yielding

| ↑↑〉, | ↓↓〉, 1
p

2
(| ↓↑〉+ | ↑↓〉)

︸ ︷︷ ︸
S=1 Triplets

,
1
p

2
(| ↓↑〉− | ↑↓〉)

︸ ︷︷ ︸
S=0 Singlet

.

This allows to solve the BSE equation separately for both spin types. H x vanishes
for spin-triplet solutions, whereas it is non-zero and typically repulsive for singlets.
The exchange interaction is thus responsible for the singlet-triplet energy splitting.

12A spin of ↓ for a hole corresponds to ↑ of an electron, that could be there. This yields 〈↑e | ↓h〉 = 1

and 〈↑e | ↑h〉 = 0
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HBSE
singlet = D +H d +2H x (3.138)

HBSE
triplet = D +H d (3.139)

If spin-orbit coupling is large, the matrices no longer decouple and instead the BSE
Hamiltonian must be evaluated using the full spin structure, which increases the
size of the Hamiltonian by a factor of four. More complex spin contributions also
arise for open shell systems, where the ground state is not a singlet.

With the solution of the BSE eigenvalue equation, we arrive at exciton excitation
energies and oscillator strengths, which are two important quantities we intro-
duced in the last chapter. In the next chapter we will discuss more approximate
methods, which allow us to deal with systems, which are too large to handle with
GW -BSE or even DFT. The actual implementation of DFT and GW -BSE in the soft-
ware package VOTCA-XTP will be discussed in Chapter 5.



Chapter 4

Coarse-grained methods

Although quantum mechanical methods have pushed the envelope of accessible
system size further and further due to algorithmic and hardware developments,
their practical applicability is still limited to at maximum a few thousand atoms
[88]1. In order to treat larger systems, degrees of freedom have to be grouped
together, which is generically called coarse graining. Which degrees of freedom to
group together and which to keep separate essentially depends on the property of
interest. In the following section we will look at two different strategies, molecular

dynamics and rate models, which help to answer very different questions. This
chapter covers the all the non-quantum methods employed in this thesis.

A simple way to reduce the degrees of freedom in a molecular system is to neglect
the explicit dynamics of electrons if one is only interested in structural or morpho-
logical features. Instead their effects are incorporated into an effective potential for
interatomic interaction. The collection of these interatomic interactions is typically
called a force field. Elimination of electrons reduces the degrees of freedom by a
factor of 10-100. If electronic degrees of freedom are not explicitly of interest, and
good force fields exist, this is a viable approach. Additionally, atoms are much heav-
ier than individual electrons and can thus often be treated classically. Integrating
the classical equations of motion for atoms is called classical molecular dynamics
and is summarized in some detail in the following. However, often systems of in-

1A DFT calculation with BigDFT, a linear scaling implementation of DFT has achieved 15000 water
molecules on 9600 cores running for 25 minutes.
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terest, e.g., large polymers, proteins, or cell walls, are still larger than what can
realistically be handled by such atomistic molecular dynamics. A widespread ap-
proach is then to group neighboring atoms into one effective particle, called a bead.
This reduces molecules of hundreds of atoms to a handful of beads, which interact
via an effective potential, which mimics important effects of the underlying atoms.
This approach is what is most commonly understood as coarse graining. Coarse
graining on the atomistic and higher level is, however, not part of this thesis.

What do you do, if the electronic states are still of interest but the system is be-
yond the size of quantum mechanical methods. System specific strategies have to
be employed. For highly ordered crystalline systems the electronic structure can
be calculated from a single unit cell. To derive the transport properties from the
electronic structure then only requires additional knowledge of scattering sources,
such as phonons or defects, which can also be extracted from calculations on su-
per cells. Although small defect densities still require large supercells to reduce
defect-defect interaction, in general periodicity helps to reduce the computational
cost.

Although some organic molecules form crystals and sometimes even exhibit nar-
row electronic bands [89], most organic semiconductors are rather disordered,
as molecules are only weakly bound to each other at room temperature. Conse-
quently, thermal fluctuations are not just a small perturbation but have a large
influence on the local ordering [90]. This and the static disorder, inherent to many,
especially amorphous, organic materials localizes the wave functions to individual
molecules with only small overlap to neighboring molecules (see Fig. 2.3).

Aiming at the understanding of electron dynamics, this allows us to focus on iso-
lated molecules and introduce interactions with the neighboring molecules as small
perturbations. Excitons or charge carriers are thus mostly confined to individual
molecular units and move only in rare, often phonon/temperature assisted, hops
to neighboring molecules. Localization enables us to describe each molecule as
a single site, where the population of each site is connected to neighboring site
populations by a certain transition rate. The evolution of site populations and con-
sequently the exciton movement can than be calculated via kinetic Monte Carlo,
after all the input parameters for the rates are calculated from the molecular prop-
erties.

For more information on the topics in this chapter see [43, 91, 92].
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4.1 Molecular dynamics

As mentioned above, classical molecular dynamics uses atoms as the principle en-
tities. The interatomic potential between N atoms U (1,2, . . . , N ), in general, is a
very complicated quantity, as it has to incorporate all the nuclear and electronic
contributions to the interaction between atoms. Due to the difficulty of calculating
such a high dimensional quantity, the interatomic potential is instead expanded in
n-body interactions:

U (1,2,3, . . . , N ) ≈
N∑

i< j

Vi j +
∑

i j k

Vi j k +
∑

i j kl

Vi j kl + . . . , (4.1)

where the expansion is typically truncated at n < 5. The two-body interaction
usually is the largest contribution to U (1,2, . . . , N ).

The challenge is to find expression for these potentials, which reproduce the real
dynamics as well as possible and are easy to calculate at the same time. These
sometimes conflicting requirements led to a large zoo of different functional forms
and parameters for these interaction potentials. In the following a short summary
of the most common forms is given.

For the simulation of molecular materials interaction potentials fall into one of two
categories:

• bonded potentials comprise 2, 3, 4 body interactions between bonded atoms.
Their purpose is to keep individual molecules close to the quantum mechani-
cally or experimentally predicted shape by reproducing the covalent interac-
tion inside the molecule.

• non-bonded potentials describe the interaction between different molecules
and spatially separated areas in large molecules itself.

The bonded potentials typically consist of three different terms, as shown in Fig. 4.1:

1. The bond stretching potential, often harmonic, which enforces fluctuations
around correct interatomic distance r 0

i j
.

Vi j =
1

2
ki j (ri j − r 0

i j )2. (4.2)
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Figure 4.1: 2,3 and 4 body bonded interaction potentials in classical forcefields. These are
bond stretching, bond angle and dihedral potential.

2. The bond angle potential for a triplet of atoms (i − j −k), allows for harmonic
fluctuations around the equilibrium angle θ0

i j k

Vi j k = 1

2
kθ

i j k (θi j k −θ0
i j k )2. (4.3)

3. The dihedral potential, which describes torsion of the molecule. A common
form is the Ryckaert-Bellemans potential given as:

Vi j kl =
5∑

n=0
Cn cosn(φ), (4.4)

where φ=ψ−π is the dihedral angle and Cn the force constants. The poten-
tial here is periodic and thus allows for rotation around the bond. Dihedral
potentials which allow for this are called proper dihedreal, whereas also sim-
ple harmonic dihedrals are used, which do not allow for a full rotation and
are typically referred to as improper dihedreals. They are mainly used to keep
planar groups planar.

The two major non-bonded potentials are:

• The Coulomb interaction for atoms i , j carrying charges qi , q j is given by
Coulomb’s law:

V C
i j =

qi q j

ri j
, (4.5)

with ri j the interatomic distance.

• The dispersion interaction, which accounts for the correlated motion or mu-
tual polarization of the electron clouds of atoms i and j , is classically de-
scribed via an attractive r−6

i j
law. To model the quantum mechanical Pauli re-

pulsion between the clouds a repulsive r−12
i j

is added. Whereas the functional
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form of the dispersion term has a clear physical justification, the repulsion
term is chosen for computational simplicity, as r 6

i j
has only to be squared to

arrive at r 12
i j

. Both terms together are called the Lennard-Jones potential:

V LJ
i j = 4εi j

[(
σi j

ri j

)12

+
(
σi j

ri j

)6]
. (4.6)

In contrast to the Coulomb potential, which is strictly a two-body potential,
the dispersive interaction is not. A third atom in the vicinity of atoms i and
j will change the polarization response as well as the quantum mechanical
repulsion between atoms i and j . As this effect requires advanced quantum
mechanical calculations, it is neglected in nearly all computations and the
dispersion is instead evaluate as the two-body Lennard-Jones potential.

The set of parameters qi ,εi j ,σi j ,ki j ,ki j k ,Cn , besides the functional form of the
potential, determine the forces acting on the atoms and are called the force field.
For a system of a few distinct elements these can already number hundreds of
parameters. As even atoms of the same element, situated in different chemical
environments, may require different sets of parameters, the number of parameters
increases even more. Many force fields use combination rules of the type σi j =p
σi i ·σ j j to reduce the number of free parameters, but the remaining parameters

have to be either fitted to experimental or quantum chemistry data. As the fitting
is quite ambiguous, a huge variety of different force fields exists, which all have
different areas of application and validity.

Although molecular dynamics simulations can treat millions of atoms, it is nowhere
near macroscopic scale. Even a cluster of a million atoms still has still

Nedge =
3p

N → Nsurface

Nbulk
≈

N 2
edge

N 3
edge

= N−1/3 N=106

= 1% (4.7)

of the atoms directly at the surface. If a bulk material has to be simulated, a
common strategy to reduce the surface effects is to introduce periodic boundary
conditions. A particle located at x, y, z in a cubic2 simulation box of length L

thus is copied to all x +nx L, y +ny L, z +nz L with nx ,ny ,nz ∈ Z. The downside of
this approach is the introduction of an artificial periodicity with period L and the

2Chosen for simplicity: most MD packages offer cubic, orthogonal,or even trigonal simulation boxes
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interaction distance between molecules has to be restricted to rc = L/2 to avoid
self-interaction between mirror images of the same particle.

Once you have chosen a force field and the appropriate boundary conditions, the
force Fi acting on each atom can be calculated according to

Fi =−∂U

∂ri
, (4.8)

which allows to solve the classical equations of motion

dri

dt
= vi ;

dvi

dt
= Fi

mi
, (4.9)

where mi is the mass of the atom i and vi its velocity. From the velocities of the
system the kinetic energy Ekin at time t can be calculated as

Ekin(t ) = 1

2

∑

i

mi v2
i . (4.10)

This opens an avenue to calculate the instantaneous, absolute temperature T of the
system, as the kinetic energy is related to T as 1

2 N f kBT = Ekin, where kB is Boltz-
mann constant and N f are the degrees of freedom of the system. They comprise
the 3N translational degrees of freedom of each atom minus the center of mass
translation. If periodic boundary conditions are not applied three additional de-
grees of freedom for the rigid rotations of the whole system have to be subtracted.
The same holds for any additional constraints placed on the system.

As eq. 4.9 cannot be analytically integrated for more than two bodies, a numeri-
cal integration scheme with a discrete time step ∆t is used. One commonly used
algorithm to update positions and velocities is the velocity Verlet [93] integration:

r(t +∆t ) = r(t )+∆tv+ ∆t 2

2m
F(t ) (4.11)

v(t +∆t ) = v(t )+ ∆t

2m
[F(t )+F(t +∆t )] , (4.12)

where we dropped the atom index i for clarity. Other integration schemes like
the leap-frog algorithm are also feasible, as long as they are symplectic and time-
reversible. Symplectic integrators conserve the phase space volume of a system
and thus the calculated energy remains close to exact solution for arbitrary many
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integration steps. So these integrators avoid a drift of the total energy due to the
discrete time step [94]. Time-reversibility allows to integrate backwards from a
system at t = n∆t to t = t0 by simply changing the sign of the time step from ∆t to
−∆t and arrive at exactly the initial structure at t = t0. Although these properties
help to keep the integration stable, the non-linear form of the interaction potential
and floating point arithmetic of computers lead to numerical instabilities, if the
time step is not small enough. Typically ∆t is chosen to be ten times smaller than
the smallest oscillation period in the system. For systems containing hydrogen,
these are typically the hydrogen bond vibrations (ωH ≈ 10−14 Hz[95], so the time
step is often chosen as ∆t = 1fs.

As the symplectic integrators conserve the total energy, molecular dynamics simu-
lation are conceptually performed in the micro canonical, or NV E , ensemble (con-
stant particle number N , constant volume V and constant energy E). Experiments
are typically performed in the NV T or canonical ensemble. Although all ensembles
lead to the same result in the thermodynamic limit, meaning infinite system size,
numerical calculations require small systems. Thus, thermostats are required to
drive the system to the target temperature T0.

The simplest thermostat, known as velocity rescaling, rescales all velocities by a fac-
tor λ =

p
T0/T (t ). This approach can transfer heat in each time step but does not

sample the canonical ensemble (i.e., the velocities are not Boltzmann-distributed
after rescaling). This can be remedied by using stochastic velocity rescaling, where
the target kinetic energy in each rescaling step is drawn from a canonical distribu-
tion [96].

A more gentle approach uses weak coupling to an external heat bath with the
target temperature T0. The Berendsen thermostat [97] slowly corrects the system
temperature by rescaling all velocities according with

λ=
[

1+ ∆t

τ

(
T0

T (t )
−1

)]1/2

. (4.13)

This allows the temperature to fluctuate but it is exponentially dampened towards
T0, with the damping determined by the coupling to the external bath τ. Due to the
temperature rescaling the Berendsen thermostat still does not sample the canonical
ensemble. An example of a non-stochastic thermostat, which correctly adjust the
temperature to produce a canonical ensemble, is the Nosé-Hoover thermostat. It
adds a heat bath coordinate to the equations of motion [98], leading to a much
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slower oscillatory dampening of the temperature fluctuations. A more extensive
review of thermostats can be found in [99]. In the same vein as temperature,
pressure can be adjusted via barostats leading to the N pT ensemble [97, 100].

Despite the limitations of molecular dynamics for the simulation of electronic prop-
erties of organic materials due to neglecting the explicit electronic degrees of free-
dom, it has proven crucial for the larger scale simulation of interfaces and amor-
phous molecular structures. The reliance on a parameterized force field is probably
the greatest weakness, as it limits transferability to new molecules and introduces
additional arbitrariness into the simulation. This can be remedied in principle by
employing ab initio molecular dynamics. Here the nuclear motion is classically de-
scribed, while interatomic forces are explicitly calculated by the solution of the
electronic Schrödinger equation. There are different schemes to achieve this cou-
pling, e.g., Carr Parrinello [101] or Ehrenfest dynamics [43]. Although these meth-
ods constitute the most complete approach to simulating disordered matter, they
are also by far the most expensive computationally.

To accurately model disorder in organic electronic systems, large system sizes are
required [102], which necessitates classical molecular dynamics simulations or al-
ternatively, Monte-Carlo simulations [103]. Both approaches conventionally do
not treat electrons explicitly. How to extract approximate electronic dynamics from
morphologies by using rate models is explained in the next section.

4.2 Rate models

As discussed before, the electronic properties of organic semiconductors are in-
fluenced by processes on many different length and timescales, which span many
orders of magnitude. Thus a multi scale approach is needed, which can capture the
important contributions at each level, but allows us to integrate out or collect less
important contributions in effective quantities. The large difference between inter-
and intra-molecular interaction strengths indicate a possible approach. Excitations
are localized on individual molecules, which only interact weakly with each other.
The weak interaction also leads to dynamics where excitations remain on one site
for a comparably long time and only move infrequently from molecule to molecule,
assisted by thermal motion. This sparsity of transition events allows us to define
transition rates for the movement from one site to another. These rates obviously
incorporate the effects of the underlying electronic and nuclear arrangements, e.g.,
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fast intramolecular nuclear/thermal vibrations, relative molecular arrangement, or
electrostatic environment. Nuclear vibrations, especially, critically influence exci-
tation transport. High frequency oscillations provide the energy required for ex-
citation hopping, whereas the slower molecular rearrangement is basically frozen
on the time scales of excitation transfer and only contributes by increasing the
static disorder. This separation into fast and slow degrees allows the fast electronic
processes to happen on a mesoscopically frozen morphology, which thus can be
computed beforehand using molecular dynamics.

In this section we will briefly outline how rate models arise from the coupled nu-
clear and electronic motion via the introduction of diabatic states. Afterwards we
will outline how the input quantities for the appropriate rate model can be cal-
culated using classical and quantum mechanical models. The chapter concludes
with an outline of the kinetic Monte-Carlo algorithm which allows us to extract
transport properties from rate models.

4.2.1 Excitation transfer reactions

The basic process of all rate models is the excitation transfer reaction from a donor
molecule A to an acceptor molecule B:

A∗B −→ AB∗, (4.14)

where A∗ denotes a molecule A in its excited state. The excitation can either be a
single particle excitation, such as a hole or electron, or a two-particle excitation,
like a singlet or triplet exciton. For the two molecule system we introduce the
adiabatic states |0〉 and |1〉, which depend on the set of nuclear coordinates, R, as
discussed in Chapter 3. Instead of this multidimensional space, we focus on the
one-dimensional reaction coordinate ξ, which is some linear combination of all
nuclear coordinates. The ground state and first excited state adiabatic potential
energy surfaces are plotted as red dashed lines in Fig. 4.2. For a given molecular
arrangement, denoted ξA, the excitation localizes on molecule A and for ξB on
molecule B . Expanded in the adiabatic states, the full Hamiltonian of the dimer
complex can be expressed as

H
AB =

∑

i=0,1

Ĥ i
nuc(ξ)|i 〉〈i |+ Θ̂

01(ξ)|0〉〈1|+ Θ̂
10(ξ)|1〉〈0|. (4.15)
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Figure 4.2: Diabatic (black) and adiabatic (red dashed) potential energy surfaces along the
reaction coordinate ξ. Whereas the adiabatic surfaces do not cross, but change
character, the diabatic states retain their chemical character but cross. The elec-
tronic coupling J AB can be read of as half the energetic separation between |0〉
and |1〉 at ξ∗.

Transitions between these states are mediated by the matrix elements Θ̂
01 and Θ̂

10

of the non-adiabicity operator 3
Θ̂

i j . If the system is in either state |0〉 or |1〉 the
nuclear dynamics are governed by:

Ĥ 0/1
nuc(ξ) = T̂nuc + V̂nuc-nuc + Θ̂

0/1(ξ)+E 0/1
el (ξ)

︸ ︷︷ ︸
=U 0/1(ξ)

. (4.16)

In the case of a delocalized system, the electronic excitation is well described by
|0〉 and the nuclear motion will be governed by Ĥ 0 from eq. 4.16. This situation
corresponds to a large split of the adiabatic energy surfaces (J AB in Fig. 4.2).

If the electronic excitation is strongly localized on molecule A, |0〉 alone would
describe it poorly. Instead a mixture of adiabatic states is needed to describe the
localized state, i.e. something along the state |A〉. Describing this localized state in
terms of |0〉 and |1〉 is difficult, as they couple via the non-adiabacity operator. To
ease the calculation we introduce a localized electronic basis, known as the diabatic

basis.
3Here we use the indices i , j for summing over adiabatic states instead of a,b as in Chapter 3 to

avoid confusion with diabatic states |A〉 and |B〉.
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The diabatic states |A〉, |B〉 are related to the adiabatic basis |0〉,|1〉 via a basis
transformation: (

|A(ξ0)〉
|B(ξ0)〉

)
= T(ξ)

(
|0(ξ)〉
|1(ξ)〉

)
. (4.17)

The transformation matrix T(ξ) is chosen in a way to absorb the dependence on
the nuclear coordinates ξ. In Fig. 4.2 the adiabatic and diabatic states are shown.
Whereas adiabatic states localize or not localize depending on the nuclear geome-
try, diabatic states are always localized. They are defined in one reference nuclear
configuration4, ξ0, and so do not carry any dependence on the nuclear coordinates
anymore, hence their matrix elements with the non-adiabicity operator vanish:

〈X |Θ̂|Y 〉 = 0 with X ,Y ∈ {A,B }. (4.18)

They are no longer eigenstates of the electronic Hamiltonian, except at ξ0:

Ĥel(ξ0)|X 〉 = E X
el |X 〉,with X ∈ {A,B }. (4.19)

In the thus defined diabatic basis the Hamiltonian reads:

H
AB = Ĥ A

nuc(ξ)|A〉〈A|+ Ĥ B
nuc(ξ)|B〉〈B |+ J AB (|A〉〈B |+ |B〉〈A|) . (4.20)

As all terms containing the non-adiabicity operator vanish, electronic coupling be-
tween the diabatic states is introduced via:

J AB (ξ) = 〈A|Ĥel(ξ)|B〉. (4.21)

If the system is in one of the diabatic states |A〉 or |B〉, the nuclear dynamics are
described by the following Hamiltonian:

Ĥ A/B
nuc = T̂nuc + V̂nuc-nuc + J A A/BB (ξ)+E A/B

el︸ ︷︷ ︸
=U A/B (ξ)

(4.22)

In Fig. 4.2 the diabatic energy surfaces cross at ξ∗. This is necessary as diabatic
states are localized, i.e., for certain molecular configurations (ξ > ξ∗ state |B〉 is
energetically more optimal than |A〉). Adiabatic states/surfaces exhibit an avoided
crossing at ξ∗, as they cannot cross because an adiabatic state is always defined

4Basically you pick a molecular arrangement ξ0, calculate the adiabatic states, then mix these states
to get states, which are completely localized on A or on B and use these states as basis for all molecular
configurations ξ
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with respect to its energy, i.e. the ground state adiabatic state is defined as the
lowest energy state. Instead the adiabatic state changes character from being more
localized on A to being more localized on B .

How to calculate J AB for excitons will in detail be described in Chapter 6.

Using the diabatic basis, we proceed by calculating the rate expression ωA→B . As
the excitation is localized J AB is small and can be treated as a perturbation [104,
105]. Using Fermi’s golden rule yields:

ωA→B = 2π

ħ
|J AB |2

∫
dξ f (ξ)δ(UA(ξ)−UB (ξ)), (4.23)

with the integration over all configuration ξ weighted by the Boltzmann factor
f (ξ) ∝ exp(−UA(ξ)/kB T ). The delta-function enforces energy-conservation, as a
transition can only happen at the crossing point ξ∗, where UA(ξ∗) = UB (ξ∗). We
also neglect the dependency of J AB on ξ as in the Condon approximation.

If the diabatic PESs UA(ξ) and UB (ξ) are known the rate equation eq. 4.23 can
be solved. For most systems the computational cost of calculating the PES is too
large and so the PESs have to be approximated. The first simplification is the
introduction of the reaction coordinate ξ. If we go back one step and look at a
general PES U (R), with some minimum at R0, we can expanded it to second order
around that minimum:

U (R) =U 0 +
∑

i j

hi j (Ri −R0
i )(R j −R0

j ) =U 0 +
∑
a

ωa(Qa −Q0
a)2 =U (Q), (4.24)

where Qa are mass weighted normal mode coordinates with eigenfrequencies ωa ,
obtained by diagonalizing the Hessian matrix hi j . The excitation transfer reaction
is typically triggered by a subset of these eigenmodes. Often the nuclear motion
can be described as a linear combination of these eigenmodes, yielding the reaction
coordinate, ξ, with its eigenfrequency ωξ and conjugate momentum operator P̂ξ.
The corresponding nuclear Hamiltonian then reads:

Ĥnuc =
1

2
P̂ 2
ξ +U 0 + 1

2
ωξ(ξ−ξ0)2. (4.25)

Treating the oscillations along ξ, i.e. the promoting mode, classically we arrive at
the Marcus rate equation [104, 105]:

ωA→B = 2π

ħ
|J AB |2√
4πλkB T

exp

[
− (UAB −λ)2

4λkB T

]
. (4.26)
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Here λ denotes the classical reorganization energy, which describes the molecular
rearrangement necessary for the excitation transfer to happen

λ= 1

2
ωξ(ξA −ξB )2. (4.27)

If the dimer complex is surrounded by other molecules environmental reorganiza-
tion effects may also contribute. These can be described by an additional harmonic
mode ξ̃, yielding the outer sphere reorganization energy:

λout = 1

2
ωξ̃(ξ̃A − ξ̃B )2. (4.28)

UAB in eq. 4.26 is the energy difference:

UAB =UA(ξA)−UB (ξB ) (4.29)

The Marcus rate has been used to great success to describe charge transfer in so-
lution and solids [106]. The classical treatment of the promoting modes ξ, ξ̃ is
only justified if kB T ≫ωξ,ωξ̃. This is rarely the case in organic electronics, as intra
molecular vibrations have zero-point energies of around 0.1 eV, which is roughly
four times the thermal energy at room temperature. Yet, the Marcus theory has
been shown to give good results even at the limits of its validity [34, 92, 107].
Other rate expression like, Marcus-Levich-Jortner rates, which treat the promot-
ing mode quantum mechanically or Weiss-Dorsey rates [108, 109], which treat
the whole system quantum mechanically, extend the formal applicability of trans-
fer rate theories. Unfortunately, these rates require additional input parameters to
describe the PES, which can only be obtained at substantial computational cost.

Computational cost is already a major concern, as diabatic states, defined via
eq. 4.18, are very difficult or even impossible to calculate [110]. Practically, the
diabatic states have to be approximated. As the diabatic state |A〉 resembles an
excited monomer A and a ground state molecule B , the following simplification is
used:

|A〉 ≈ |1a〉⊗ |0b〉. (4.30)

The diabatic state is approximately the product of the adiabatic excited state of the
isolated monomer A, |1a〉 and the ground state of the isolated monomer B , |0b〉.
This product ansatz reduces the number of states, that have to be calculated for N

molecules, from 1
2 N (N−1) to N . All energetic contributions separate into monomer

contributions as well, i.e.,
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UAB =UA(ξA)−UB (ξB ) ≈U 1
a (ξ1

a)+U 0
b (ξ0

b)− (U 0
a (ξ0

a)+U 1
b (ξ0

b)

= (U 1
a (ξ1

a)−U 0
a (ξ0

a))︸ ︷︷ ︸
∆Ea

− (U 1
b (ξ1

b)−U 0
b (ξ0

b))
︸ ︷︷ ︸

∆Eb

=∆Eab , (4.31)

where ∆Eab is the site energy difference between the molecules and ξ0/1
a/b

are the
molecular configuration of monomer A/B in state 0/1.

So for a system of N molecules N site energies, N reorganization energies and
N (N −1)/2 electronic couplings have to be calculated.

4.2.2 Partitioning of the system

Before the exciton dynamics can be calculated using rate models, a given mor-
phology has to be divided into sites, on which excitations localize. This requires
knowledge of the localization of the electronic states, as each site should preferably
contain a single diabatic state of the complete system. In detail knowledge of the
localization requires electronic structure calculations of the whole system, which
are not feasible for larger systems. Instead the partitioning into segments can only
be justified a posteriori by assessing the magnitude of the electronic coupling be-
tween segments. In many systems chemical intuition allows to define partitioning,
which satisfies this test retrospectively, e.g., in most organic electronic systems a
conjugated system (see Chapter 2) is a good minimal guess. As shown in Fig. 4.3
all atoms belonging to a single site are collectively referred to as a conjugate seg-
ment.

In small molecule systems each molecule is typically chosen as a single conjugated
segment, because electronic structure calculations typically show complete delo-
calization of electronic states over the individual molecules. In polymeric systems
this simple approach may fail, as torsion of the backbone and electron-phonon in-
teraction may lead to localization on polymeric subunits instead of delocalization
over the whole polymer chain. In these cases quantum mechanical calculations of
the whole chain are necessary to determine localization sites [90, 111, 112].

After the system is partitioned into segments, these segments are additionally sep-
arated into rigid fragments, as depicted in Fig. 4.3. These fragments are typically
insensitive to thermal fluctuations, e.g., a thiophene or benzene ring stays planar
even at elevated temperatures. Although the fragment definitions are theoretically
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S

S

CN
NC

NC
CN

Figure 4.3: Partitioning scheme as employed in VOTCA. a) For small, inflexible molecules,
the whole molecule is replaced by a rigid fragment. b) For larger molecules,
more fragments are used to allow for some flexibility for the slower degrees of
freedom. The whole molecule is still one segment. c) For a polymer, the chain is
cut into segments, using input from quantum mechanical studies. Each segment
may also contain more than one rigid fragment.

not necessary for the calculation of rates, the molecular dynamics configurations of
the rigid fragments are often replaced with quantum mechanically optimized rigid
fragments in order to “integrate out” fast degrees of freedom, e.g., the promoting
modes, which are already described in the rate models. This has the additional ben-
efit of removing some of the mismatch between quantum mechanically obtained
geometries and molecular dynamics results.

4.2.3 Site energies

The site energy, ∆Ea , of a molecule a is basically defined via eq. 4.31. Although
this is a simple definition it is frayed with computational difficulties as the energy
Ua not only depends on the isolated molecule but also the chemical environment
it is located in. As discussed before, the electronic state also must be sufficiently
localized on the molecule to even make the definition of a site energy valid. Suffi-
cient localization entails weaker coupling to the surrounding, allowing us to treat
the chemical environment as a small perturbation to the electronic state.

Although there are exchange, dispersion, and electrostatic interactions between



78 Coarse-grained methods

molecules, we focus only on the last, electrostatic interaction. There are a couple of
reasons for this approximation. Firstly, we are not really interested in the absolute
values of site energies but in differences between different electronic states, i.e.,
∆Ea = U 1

a −U 0
a . Consequently, all interactions which influence both states nearly

equally, e.g. dispersion interaction, cancel out [113, 114]. Secondly, electrostatic
interaction is very directional, thus it is very sensitive to changes in the charge
distribution on the molecules. Thirdly, and most importantly, it is typically the
strongest interaction present due to its slow decay with distance. So the site energy
of a molecule a in state i is decomposed into the energy from the internal degrees
of freedom Eint and the electrostatic contribution from the environment Eestat:

U i
a(ξi

a) ≈ E i
int +E i

estat. (4.32)

The internal site energy difference ∆Eint = E 1
int −E 0

int can be calculated from the
vacuum PES of the single molecule via:

∆Eint =U 1
vac(ξ1

a)−U 0
vac(ξ0

a). (4.33)

Theoretically ∆Ea is an adiabatic excitation energy calculated from the respective
geometries for the ground and excited state. Depending on the electronic exci-
tation (electron, hole, exciton) and the system at hand, slow (compared to the
timescale of hopping) vibrational modes may seriously change the local excitation
energy by distorting molecular geometries. These distortions lead to disorder in
the internal site energies. Using vacuum optimized geometries may not be a good
approximation, as they optimize out this dynamic, but on the time scale of elec-
tronic motion, frozen disorder. In practice geometries from molecular dynamics
simulations are used for the ground and excited states, using the mapping proce-
dure described earlier to account for the geometry reorganization upon excitation
in the site energies (see Chapter 7).

As mentioned above, the electrostatic contribution to the site energy of a molecule
E i

estat depends on the surrounding. The question is how to treat this effect. A fully
quantum mechanical treatment of the whole system is impossible. Instead the in-
teraction between the quantum mechanical excitation and the environment can be
modeled on different levels (see Fig. 4.4). Starting with the quantum mechani-
cal excitation in vacuum, Fig. 4.4(a), either the electrostatic potential of the sur-
rounding molecules can be fully added to the Hamiltonian operator of the quantum
mechanical region Fig. 4.4(c). Instead the interaction can be described as classi-
cally interacting charge densities, Fig. 4.4(b), which will be described in the next



4.2 Rate models 79

Figure 4.4: Overview of the site energy calculation options in the VOTCA suite using either
a perturbative classical approach or a coupled QM/MM approach. For the clas-
sical approach the initial starting point is a vacuum QM calculation, yielding the
ground state and excited state energies in vacuum (a). Adding purely classi-
cal electrostatic leads to different environments for every molecule and thus a
spread of the HOMO and LUMO energies (b). (d) Adding classical polarization
(indicated by black arrows) on neighboring molecules allows the system to re-
lax and reduce the energetic disorder. Likewise the QM/MM treatment inserts
a fully quantum mechanical description of the molecule surrounded by classi-
cal charges (c) or as in the classical model a full polarization response of the
environment (d). The difference being, that a the polarization response of the
molecule in question is more flexible in the QM/MM treatment, as charge can
flow over the whole molecule.

paragraphs. The effects of polarization contributions, Fig. 4.4(d), which allow the
environment to react to excitations will be described later.

Focusing on one molecule, the electrostatic contribution of the environment to its
Hamiltonian reads:

Ĥext =
∫

d3r ρ̂(r)ϕ(r), (4.34)



80 Coarse-grained methods

where ρ̂(r) is the molecule’s charge density operator and ϕ(r) is the external elec-
trostatic potential due to the environment. It can be written as:

ϕ(r) =
∑

K

∫
d3r′

ρK (r′)

|r′− r|
, (4.35)

where K runs over all molecules in the environment and ρK (r′) is the molecu-
lar charge density belonging to molecule K . Here, we modeled the neighboring
molecules as classical entities by replacing their charge density operator with the
respective classical charge densities.

Calculating the external potential, eq. 4.35, requires an integration over the charge
densities of the adjacent molecules, which although possible is computationally
very demanding for large systems. Instead a distributed multipole expansion is
used to calculate the external potential. In a distributed multipole expansion, the
molecular charge density ρ(r) is not expanded via multipoles centered around a
single point. Instead the molecule is divided into regions, which are described by
their own multipole moments. A region typically comprises a single atom, with
the origin located at the atom. The potential of a single region of molecule can be
expanded as

ϕ(r)el = T (r)q −Tα(r)dα+
1

3
Tαβ(r)Θαβ−·· ·+ (−1)n

(2n −1)!!
T (n)
αβ...ν

(r)ζ(n)
αβ...ν

, (4.36)

with q being the charge of that region, d the dipole moment, Θαβ the cartesian
quadrupole tensor and ζ(n)

αβ···ν the corresponding higher moments. The cartesian

interaction tensor T (n)
αβ···ν is defined as:

T (n)
αβ···ν(r) =∇α∇β . . .∇ν

1

|r|
. (4.37)

Finally, ϕ(r) reduces to a sum over all regions r (K ) of all adjacent molecules K :

ϕ(r) =
∑

K

∑

r (K )

ϕ(r)
single
K ,r (K ). (4.38)

The resulting potential can then be inserted into eq. 4.34 and in conjunction with
the ab initio methods from Chapter 3 the excited and ground state energy can
be calculated. This corresponds to the first QM/MM approach in Fig. 4.4, where
the quantum mechanical charge density reacts to the static environment. This
approach still has two drawbacks. Firstly, performing an ab initio calculation for
every molecule in a large system can be computationally infeasible. Secondly, so
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far we have assumed that the environment does not react to the excitation. In
reality, the environment tries to lower the total energy by screening the excitation,
i.e., the environment polarizes. The polarization response of the environment in
turn will lead to a polarization of the center molecule. This feedback loop requires
a self-consistent treatment, regardless of whether the central molecule is described
classically or quantum mechanically.

To address the first problem, we simply substitute the quantum mechanical treat-
ment of the center molecule by a classical description via distributed multipole
moments. The electrostatic interaction V AB

elstatic between two molecules A and B

then reduces to

V AB
elstatic =

∑

a∈A

∑

b∈B

[
T ab q a qb +T ab

α (q ad b
α−d a

αqb)+

T ab
αβ (

1

3
q a

Θ
b
αβ−d a

αd b
β + 1

3
Θ

a
αβqb)+ . . .

]
(4.39)

with T ab = T (ra − rb).

The electrostatic contribution to the site energy of molecule A in state i then reads:

E i
estat =

∑

B

V AB
elstatic(ai ), (4.40)

where (ai ) denotes that the multipoles belonging to the state i should be used.
B runs over all other molecules, with their respective ground state multipoles.
The classical environment correction for a transition from the ground state to n-th
excited state then be ∆E = E 0

estat −E n
estat.

The second problem of how to incorporate the polarization response of the envi-
ronment requires an extension of the distributed multipole model. Every atom a of
a molecule is also assigned a polarization tensor αa

αβ
. An external field F a

α will lead
to an induced dipole moment on site a. The induced dipoles are not only caused
by the external field originating from the by static multipoles on other atoms but
also by the fields originating from induced dipole moments on other atoms. The
total field at a thus is a combination of the static external field F a

α as well as the
induced fields from the induced dipoles on all other atoms. The induced dipole on
a is

∆d a
γ =αa

αβ

(
F a
α +

∑

b 6=a

T ab
αβ∆d b

β

)
. (4.41)

The assignment of atomic polarizabilities is called the Applequist model [115].
Here, the polarizations are only correlated via the fields they generate (see eq. 4.41)
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and cannot model the flow of charges across the whole molecule. For molecules
with large conjugated systems, which can displace charges over larger distances,
necessitating more advanced polarization models [116, 117] or a full quantum me-
chanical treatment are necessary (see Fig. 4.4 and sec. 5.4). The system of equa-
tions, eq. 4.41, has to be solved self-consistently or via matrix inversion, which
both increase the computational cost approximately by one order of magnitude in
comparison to a static approach.

Letting the environment react to the excitation on the center molecule explicitly
couples the QM and MM system to each other. So energy differences cannot be
calculated for a the embedded molecule but instead total energies have to be sub-
tracted. For example, the first excitation energy Ω1 has to be calculated via

Ω1 = [GS(BG[Ω1])+Ω1(BG[Ω1])]−GS(BG[GS]), (4.42)

with GS(BG[Ω1]) being the ground state energy, in a background/environment po-
larized for the first excited state. As a result, for each site energy the excited
state in its polarization environment as well as the ground state in its polarization
environment have to be calculated, further increasing the computational cost in
comparison to a simple static approach.

Finally, the induced-induced interaction of the Applequist model leads to a po-
larization catastrophe at short distances. This is an artifact of the point-dipole
description of polarization, as in reality the polarization response is smeared out.
An empirical fix, called Thole damping [118], avoids this overpolarization by in-
troducing a smeared out charge density ̺(u) with u = r /Sab and Sab = (αaαb)1/6,
which modifies the dipole-dipole interaction between atoms a and b with mean
polarizabilities αa , αb as follows

T̃ ab
αβ =

fe R2δαβ−3 ft RαRβ

R5
. (4.43)

Here fe and ft are the corresponding damping functions, which depend on the form
of the smeared out charge density. We use the smeared density from the AMOEBA
force field [119]:

̺(u) = 3a

4π
exp(−au3). (4.44)

This leads to fe = 1−exp(−λu3) and ft = 1−(1+λu3)exp(−λu3). In this work we use
λ = 0.37. The atomic polarizabilities α were taken from a generic set of element-
based polarizabilities (αC = 1.334Å3, αH = 0.496Å3, αN = 1.073Å3, αO = 0.873Å3,
αS = 2.929Å3). These are sufficient to reproduce the molecular polarizability of
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many organic compounds. However, π-conjugated molecules with their delocal-
ized π-orbitals have higher polarizabilities which cannot be reproduced with the
generic atomic polarizabilities. In this case the atomic polarizabilities are scaled to
match the molecular polarizabilities from ab-initio calculations for the respective
compounds[113, 120].

A technical difficulty that may even arise from the simple electrostatic summation
in eq. 4.39 is the question of how many neighboring molecules have to be consid-
ered. Traditionally a cut-off based approach is used, taking all molecules within a
certain distance into account. This is problematic because the electrostatic interac-
tion does not converge with increasing cutoff size. Although this is ameliorated by
the fact, that most systems are not charged and thus the charge-charge interaction
cancels out, even charge-quadrupole interaction is only conditionally convergent.
Depending on the dimensionality of the system and the excitation of interest more
advanced methods like long-range aperiodic embedding [121] have to be used.

This finally leaves the question of how to reduce the molecular density ρ(r) to a
set of multipole moments located on the atoms {Q i

αβ
}. There is a number of differ-

ent methods to arrive at atom-centered multipoles, from Mulliken charges [122]
over NBO [123] charges to GDMA [124] multipoles. We will briefly outline the
CHELPG (CHarges from ELectrostatic Potential, Grid-base) method [125], which,
although it does not produce chemically intuitive charges, is designed to repro-
duce the electrostatic potential outside the molecule optimally via point charges.
The point charges derived from molecular charge densities are typically referred to
as partial charges.

CHELPG partial charges {qi } are derived by calculating the electrostatic potential
φel (r) from the electron density ρ(r) at a large number of grid points outside the
molecule {gi } and then adjusting the partial charges to reproduce the potential in a
least square sense as optimally as possible, e.g., by minimizing:

min=
(

K∑

j=0

φel (g j )−
N∑

i=0

qi

|ri −g j |

)2

−λ

(
qmol −

N∑

i=0

qi

)
, (4.45)

where j runs over all grid points, φel (g j ) is the respective potential at that grid
point and N is the number of atomic sites. λ is a Lagrange multiplier to constrain
the optimization to the desired total charge of the molecule qmol.
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Figure 4.5: Absorption and emission inside a molecule.

4.2.4 Reorganization energies

In Marcus theory, the nuclear rearrangement on excitation and deexcitation of a
molecule are expressed in the two reorganization energies:

λA→B =UB (ξA)−UB (ξB ) (4.46)

λB→A =UA(ξB )−UA(ξA). (4.47)

Using the approximation that the diabatic state can be written as a product of
monomer states (eq. 4.30) the energy of a diabatic state UB (ξA) splits into a sum
of monomer contributions:

λA→B =U 1
b (ξ0

b)+U 0
a (ξ1

a)− (U 1
b (ξ1

b)+U 0
a (ξ0

a))

λB→A =U 1
a (ξ0

a)+U 0
b (ξ1

b)− (U 1
a (ξ1

a)+U 0
b (ξ0

b)). (4.48)

U 1
b

(ξ0
b

) is the energy of monomer B , in its first excited state, evaluated at the nuclear
coordinates ξ0

b
of the ground state of B . Consequently, within this approximation

the reorganization energy for a pair of molecules can be calculated from monomer
properties of the individual molecules.

A better understanding of the reorganization energy can be gained if we first avoid
the dimer problem and look at the single molecule problem of light absorption
and emission in a single molecule as depicted in Fig. 4.5. Upon absorption of
a photon with energy ∆Eabs. the molecule transitions from the electronic ground
state ,|0(R0)〉, where R0 is the minimum of the ground state PES, to an excited



4.2 Rate models 85

state, |1(R0)〉. Here it is assumed, that during the absorption the geometry does not
change. This is again the Condon approximation. After absorption the molecule
then releases the energy λ1 thermally, reaching the minimum of the excited state
PES, |1(R0)〉. Afterwards the molecule emits a photon of energy ∆Eem., returning
to the electronic ground state |0(R1)〉, but at an excited geometry. Through ther-
malisation of the energy λ0 the molecule finally “descends” to |0(R0)〉. If we look
at exciton transfer reactions between two molecules, the transfer can be conceptu-
alized as the emission of a photon on one molecule and adsorption on the other.
Assigning the emission and, thus, λ0 to molecule A and λ1 to molecule B , we also
arrive at equation eq. 4.48. Figure 4.5 also shows that ∆Eem. is always smaller
than ∆Eabs.. The difference between the two is called the Stokes-shift and can be
experimentally determined from spectroscopic measurements. Measurements of
the Stokes-Shift allow us to compare theoretical reorganization energies with ex-
perimental values. As mentioned before in the derivation of the Marcus rates, for
excitation transfer to happen ∆Eabs.

B
must equal ∆Eem.

A
to conserve energy. An en-

ergy quantum, corresponding to the Stokes shift, has to be provided by thermal
fluctuations.

The calculation of U 1(ξ1) requires a geometry optimization to find the nuclear con-
figuration with the lowest energy. Especially for excited states, these geometry
optimizations are extremely costly. As a further approximation the reorganization
is assumed to be independent of the molecular environment. In doing so, the value
λ only has to be calculated once for each molecular species in the system at hand,
instead of for every molecule.

4.2.5 Directed graphs

After calculating all rates between the segments we have reduced the real system of
molecules to a discrete irregular lattice of sites5, which are connected (see Fig. 4.6).
These connections are also called edges. The combination of vertices and edges is
called a graph. The graph that results from transfer rate theory is weighted, as
the edges connecting vertices A and B have different rates for each pair, and also
directed as the weights differ in both directions:

ωA→B 6=ωB→A . (4.49)

5In most texts about graphs these sites are referred to as vertices
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Figure 4.6: Molecular structure and the resulting directed graph. The rates calculated from
the molecular properties reduce the molecular structure allow us to build a di-
rected and weighted graph, with edges weighted by the appropriate rates and
vertices carrying occupation probabilities.

As we assume that the excitation hops from site to site and that hopping is a rather
rare event, the excitation resides on the site long enough for the thermal vibration
to dissipate the information of where the excitation came from. The transport is
said to be incoherent, meaning the excitation has lost its memory and the next hop
of the excitation is independent of the last hop. Such a process is called Markovian.
It allows us to formulate an equation of how the occupation probabilities of each
vertex p A evolve in time is:

∂

∂t
p A(t ) =

∑

B

pB (t )ωB→A −p A(t )ωA→B . (4.50)

This continuity equation simply states that change in occupation of site A is equal
to the probability current flowing in minus the current flowing out and so con-
serves the total probability. It is also referred to as the Master Equation. In this
formulation it only describes the motion of a single excitation, as it does not ac-
count for interaction between excitations. Although there are ways to incorporate
interaction between excitations into eq. 4.50, we will first deal with its solution.
The master equation is simply a system of linear differential equations and can be
solved using standard numerical methods. Although this has approach has its mer-
its, we instead choose a very different option using the kinetic Monte Carlo or KMC
method, because it allows us to easily add excitation interaction, excitation decay
and conversion from one species to another. Furthermore, KMC is better suited for
very large systems, in which explicitly setting up a large rate matrix is prohibitively
expensive, and for systems with widely varying rates, as solvers otherwise run into
numerical difficulties.

In KMC, we explicitly simulate the hopping of individual excitations. Using a vari-
able step size method, we promote time and at each time step we randomly choose
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Figure 4.7: KMC trajectory of an exciton. ∆r denotes the end-end distance of the trajectory.
The small box indicates the initial simulation box. Diffusion coefficients can be
calculated from averaging over trajectories.

an excitation and its next hopping destination [126]. The probability of choosing
a hopping destination is weighted by the rate assigned to that transition. As these
rates can vary by orders of magnitude we do not increment time by a fixed amount
but instead use the variable step size method (VSSM) [127].

From the resulting ensemble of trajectories (see Fig. 4.7) the diffusion coefficient
Dαβ can be calculated via:

6Dαβt = 〈∆rα∆rβ〉. (4.51)

Here t is the temporal length of the trajectories, ∆r denotes the distance vector
between initial and last site and 〈. . .〉 denotes an average over the ensemble of
trajectories.

With the calculation of the diffusion constant conceptually the bridge between ab-

initio input and macroscopic transport properties has been build. So using the
molecular dynamics approach we are able to simulate morphologies of organic
semiconductors and then reintroduce electronic dynamics via rate models. This
workflow relies on electronic structure theories to solve the electronic Hamilto-
nian as introduced in Chapter 3. The actual implementation of these concepts for
ground and excited state and the integration of classical environments for, e.g., the
calculation of site energies is discussed in the next chapter.





Chapter 5

Numerical implementation of

DFT/GW -BSE and

quantum-classical approaches

in VOTCA

The theoretical concepts outlined in the previous chapters are implemented in the
VOTCA (versatile object-oriented toolkit for coarse-graining and energy-transport
applications) suite of tools1. VOTCA is an open source software and available for
download at github.com/votca.

The VOTCA suite consists of five subparts, namely TOOLS, CSG, MOO, CTP, XTP
and KMC (see Fig. 5.1). TOOLS is a low level library, which contains linear alge-
bra and other convenience functions. CSG is a library which adds coarse graining
routines for molecular dynamics simulations [128]. MOO is an library used for the
calculation of electronic couplings for electrons and holes in the ZINDO formal-
ism [129]. CTP implements electrostatic and electronic coupling calculations for

1This chapter is mostly based on Jens Wehner, Lothar Brombacher, Joshua Brown, Christoph Jung-
hans, Onur Çaylak, Yuriy Khalak, Pranav Madhikar, Gianluca Tirimbò and Björn Baumeier. "Electronic
Excitations in Complex Molecular Environments: Many-Body Green’s Functions Theory in VOTCA-XTP"
J. Chem. Theory. Comput. 14 (12) (2018), pp 6253–6268

github.com/votca


90 Numerical implementation of DFT/GW -BSE/MM in VOTCA

VOTCA
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Figure 5.1: Overview of the VOTCA suite of packages. Interfaces to MD packages are im-
plemented via CSG and DFT code interfaces are implemented via XTP. The blue
box are the packages in which the majority of the implementation happened.

charge carriers and implements the rate theory formalism [92]. XTP extends this
formalism for excitations, including a DFT and GW -BSE implementation, capable
of QM/MM calculations using CTP electrostatics. Finally the KMC module solves
the master equation, eq. 4.50, via kinetic Monte-Carlo simulations.

In this chapter we will only look at the implementation and results of the quantum
mechanical methods provided by XTP.

As the software package VOTCA-XTP grew and contributions of different develop-
ers came in. Modern software practices had to be adopted to ensure that the code
has as little bugs as possible and maintain that state, despite modifications, as well
as increase the user friendliness. So in the following I will briefly outline the de-
sign choices for VOTCA and the adaptation of recent software development best
practices.

5.1 Developing for VOTCA

As mentioned above VOTCA consists of five subparts, which are developed by
groups in Germany, the United States, and the Netherlands. The complete set
of libraries is hosted on Github as part of the VOTCA organization. Github, which
necessitates the use of Git as version control tool, allows for decentralized devel-
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Figure 5.2: Software development workflow in VOTCA using the Git. Feature development
happens on feature branches, which can only be merged into the master branch
after code review. This guarantees, that the master branch can always compile.

opment and stringent version control. The basic idea revolves around saving each
major change of the source code including the documentation as a commit. A
string of these commits is referred to as a branch. Fortunately, version control was
already set up for the CSG library, on which XTP is build. We rely heavily on the
branch idea of Git. The master branch is the current fully working version, from
which people can establish their own branches to work on specific features. For
XTP we established code review practices, so that code from feature branches can-
not be simply merged into the master branch, without at least another pair of eyes
checking and reviewing it. The complete workflow is outlined in Fig. 5.2.

In parallel the master branch CSG and XTP and all branches which want to merge
into it are build on external servers, to check if compilation succeeds. Additionally,
each function and class has to have unit tests which guarantee that the behavior of
that function remains stable under code changes. These tests are also run on any
code, that is to be merged into the master branch. To guarantee that individual
classes work together correctly, we also created a set of larger scale integration
tests, which also double as a tutorial for novice users of the library.

As the CSG library was implemented in the C++ programming language, XTP
could capitalize on that, as C++ is among the top 3 programming languages in raw
performance, which is advantageous for running the expensive quantum chemistry
calculations. Besides the efforts in testing, code review and version control, XTP
has upgraded the C++standard from C++98 to C++11 to use more abstract and
powerful language features, especially for memory management. Furthermore,
XTP now heavily relies on the Eigen3 library for linear algebra[130], which offers
a modern and efficient interface to vector and matrix operations. It allows to write
abstract, vectorizable code. For even higher performance we link the linear algebra
against the Intel MKL library, which is a highly optimized BLAS/LAPACK library for
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intel chipsets. Finally, to take advantage of thread parallelism in modern CPU ar-
chitectures, we employ the OpenMP library to distribute calculations over multiple
threads in a shared memory environment [131].

5.2 Density functional theory in a Gaussian basis

To provide a starting point for GW -BSE calculations XTP provides, next to the in-
terfaces to standard quantum-mechanical packages, a native implementation of
density functional theory. Next to development purposes, the native implemen-
tation provides additional functionality, such as the inclusion of point dipole and
quadrupole potentials, required for coupled quantum-classical calculations using
the distributed multipole expansion for environment molecules. The Kohn-Sham
implementation uses Gaussian basis functions, as the code is primarily used for
molecular systems. As these systems are finite, also the Kohn-Sham orbitals can
be represented as real quantities. At the moment, explicit spin dependence is not
implemented and only closed shell systems can be treated.

Various parametrization for exchange correlation functionals are provided by the
LibXC library [132]. Currently, XTP supports the LDA, GGA, and hybrid functionals.
To evaluate the contributions of the exchange correlation functional to the Hamil-
tonian matrix, as well as the total energy, numerical integration is performed us-
ing a superposition of atom-centered spherical Lebedev and radial Euler-Maclaurin
grids, as used in NWChem [133]. Besides integration of the exchange functional,
the grids can also be used to numerically integrate external potentials, e.g., the
long-range embedding potential [121].

To start the self-consistency cycle discussed in Chapter 3.2, two initial guess al-
gorithms are available. Either non-interacting electrons can be chosen, in which
case eq. 3.20 is simply diagonalized. The non-interacting orbitals are typically
much too localized, as no electron-electron repulsion pushes them apart. So many
iterations are required to reach convergence. A better guess is the superposition of
atomic densities, where one atomic DFT calculation is performed for each element
separately and the resulting densities are added up [134].

To speed up the convergence of the SCF iteration procedure the density matrix
resulting from the new coefficients is not simply inserted into the next iteration,
instead a linear combination of Hamiltonians from previous iterations is used in-
stead. The coefficients are either chosen to reduce an approximate energy func-
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Figure 5.3: Convergence of the DFT total energy with the number of self-consistency iter-
ations in methane for different initial guesses using PBE/def2-svp. The initial
guess is either atomic, which refers to the superposition of atomic densities, or
non-interacting electrons. Convergence acceleration is provided by DIIS algo-
rithms and simple mixing.

tional, ADIIS [135], or the commutator of the Fock and density matrix, DIIS [136,
137].

The advantage of these methods can be seen in Fig. 5.3. The total energy at each
iteration is shown for CH4 using an all-electron calculation with the def2-svp basis
set [72]. The non-interacting starting guess requires 20% more iterations to reach
convergence than the atomic superposition. The use of the DIIS method halves
the amount of steps till convergence compared to mixing of density matrices, e.g.
Dn+1 =αDn + (1−α)Dn−1, with α= 0.3 typically.

The usage of Gaussian basis functions introduces a number of integrals over said
functions. Most prominently the electron-electron interaction integrals between
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basis functions χi and χ j have to be calculated according to eq. 3.50:

〈χi |V̂H |χ j 〉 =
Ï

drdr′χi (r)χ j (r)
1

|r− r′|
ρ(r′) (5.1)

=
Ï

drdr′
∑

kl

Dkl

χl (r′)χk (r′)χi (r)χ j (r)

|r− r′|
(5.2)

=
∑

kl

Dkl

Ï
drdr′

χi (r)χ j (r)χk (r′)χl (r′)

|r− r′|
(5.3)

=
∑

kl

Dkl (i j |kl ), (5.4)

where we used eq. 3.63 in the second line and defined:

(i j |kl ) =
Ï

drdr′
χi (r)χ j (r)χk (r′)χl (r′)

|r− r′|
. (5.5)

These are also called 4-center integrals. Similar integrals also appear in the matrix
elements for the exchange interaction eq. 3.35. The evaluation of these integrals
is the costliest part of the DFT calculation and requires N 4 calculations, if N is
the number of basis functions. In VOTCA-XTP these integrals over Gaussian ba-
sis functions are evaluated using the modified recursive algorithms by Obara [71,
138]. In total VOTCA-XTP can compute these integrals for contracted gaussian
basis functions with up to l = 4.

In order to reduce the scaling, we make use of the fact that the set of product
functions χi (r)χ j (r) contains N 2 distinct functions. This space of products of basis
functions is highly linearly dependent and can thus be well approximated by a
smaller space of auxiliary basis functions ξν, which contains only (3−5)N functions.
This approximation, also known as density-fitting, reduces the scaling from N 4 to
N 3. The 4-center integrals can be written as a combination of 3-center and 2-center
repulsion integrals [139]:

(i j |kl ) ≈
∑
ν,µ

(i j |ν)(ν|µ)−1(µ|kl ), (5.6)

where (ν|µ)−1 is the inverse of the 2-center repulsion matrix

(ν|µ) =
Ï

d3r1 d3r2 ξν(r1)
1

|r1 − r2|
ξµ(r2) (5.7)

and (i j |ν) is the 3-center repulsion matrix

(i j |ν) =
Ï

d3r1 d3r2χi (r1)χ j (r1)
1

|r1 − r2|
ξν(r2). (5.8)



5.2 Density functional theory in a Gaussian basis 95

Formally, eq. 5.6 appears like the insertion of a resolution of the identity with
metric (ν|µ)−1. As the 2-center repulsion matrix (ν|µ) is often also abbreviated as
Vνµ, this method is also known as RI-V. This method is implemented in VOTCA-
XTP to use for larger systems. The error due to the RI-approximation is of the
order of 1µHa/atom and can be improved upon by choosing a larger auxiliary
basis set [140]. Currently, VOTCA-XTP precalculates all integrals at the start of
the calculation and stores them in memory. For larger systems VOTCA-XTP has to
use the RI approximation, as using explicit 4-center integrals as in eq. 5.5 would
exceed the available memory.

Apart from the typical 2-, 3- and 4-center integrals, VOTCA-XTP has the option
to calculate electrostatic interaction integrals with dipoles, d, or quadrupoles, Θ,
located at C outside the molecule.

(i |dα| j ) =
∫

drχi (r)
rα−Cα

|r−C|3
χ j (r); (α= x, y, z) (5.9)

(i |Θαβ| j ) =
∫

drχi (r)
(rα−Cα)(rβ−Cβ)

|r−C|5
χ j (r) (α,β= x, y, z). (5.10)

This allows for more accurate representations of external electrostatic potentials,
which is useful in QM/MM calculations. Especially dipole integrals are useful to ac-
curately model the effect of classical induced dipoles as outlined in the last section
of this chapter.

To further reduce the computational cost, VOTCA-XTP allows for the usage of
pseudo potentials, eliminating the core electron and thus reducing the number
of basis functions [141, 142].

The complete workflow of a DFT calculation is depicted in Fig. 5.4. First the over-
lap matrix, S and the sum of independent particle hamiltonians, H0, are calculated
and stored in memory. Additionally, the 3-center repulsion integrals are stored
and kept in memory. The memory requirement of these integrals at the moment
defines the accessible system size. Direct approaches, which only calculate the
3-center matrix elements when needed, are not implemented yet. Afterwards an
initial guess is produced and the resulting density matrix constructed. From the
density matrix the first exchange correlation matrix and electron repulsion matri-
ces are constructed, which yields the first Fock matrix. In later iterations this Fock
matrix is then linearly combined with older Fock matrices to optimize the next iter-
ation in the DIIS procedure. The resulting KS-orbitals are then used to calculate a
new density matrix. The iterative procedure is stopped, when the change in energy
falls below a specified input and the final energies and KS-orbitals are written out.
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Table 5.1: Total energies in Hartree for methane (CH4), DCV2T and DCV5T, calculated with
three different DFT implementations, XTP-DFT engine, Gaussian09 and ORCA,
using PBE as the exchange correlation functional [59]. ECP denotes pseudo-
potential calculations using ubecppol as the basis set and Stuttgart-Köln effective
core-potentials [148]. For the all-electron calculations the def2-svp basis set was
used. RI denotes density fitting used.

CH4 SVP SVP-RI ECP ECP-RI

g09 −40.4141862 −40.4142835 −8.0692929 −8.0720562

ORCA −40.4142150 −40.4143118 −8.0732375 −8.0732566

XTP −40.4141995 −40.4142963 −8.0720495 −8.0720620

DCV2T SVP SVP-RI ECP ECP-RI

g09 −1626.37096 −1626.3715863 −154.554602 −154.5506801

ORCA −1626.3717225 −1626.3723483 −154.5926740 −154.5933087

XTP - −1626.3721822 - −154.5507288

DCV5T SVP SVP-RI ECP ECP-RI

g09 −3358.5602481 −3358.5614893 −270.7297088 −270.730097

ORCA −3358.5617132 −3358.5629540 −270.8209578 −270.822384

XTP - −3358.5623371 - −271.086210

In table Tab. 5.1 a comparison of VOTCA-XTP results with two popular DFT codes,
ORCA [143] and Gaussian09 [144], is shown for methane, DCV2T and DCV5T-
Me(3,3). DCV2T and DCV5T-Me(3,3) are dicyanovinyl end-capped oligothiophenes
used as donor material in state-of-the-art organic solar cells [145–147]. The chem-
ical structures can be found in app. A. The VOTCA-XTP DFT implementation yields
very similar results for all molecules. Slight deviations between the values arise
because each code uses slightly different numerical grids for the exchange correla-
tion functional, as well as different cut-off and numerical stabilization procedures
for matrix inversion.

In summary the DFT implementation of VOTCA-XTP allows to calculate accurate
Kohn-Sham energies and orbitals in a localized gaussian basis for finite systems.
The algorithms can be coupled to classical electrostatics in QM/MM calculations
and also used as input for excited state calculations via GW -BSE as described below.
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Figure 5.4: DFT workflow as implemented in VOTCA-XTP. The self-consistency circle ends if
the change of the total energy and the commutator of Fock and density matrix
are smaller than a specified amount.
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5.3 GW-BSE in a Gaussian basis

The GW -BSE implementation in VOTCA-XTP uses a preceding DFT-calculation as a
starting point, which are either calculated in XTP itself or in an external DFT imple-
mentation. VOTCA-XTP possesses interfaces to Gaussian versions 03 or 09 [144,
149], NWChem [133], and ORCA [143] to run and retrieve the Kohn-Sham states,
as stated in Chapter 3. The exchange correlation functional matrix elements needed
for the evaluation of the self-energy (eq. 3.106) is obtained from the XTP-DFT im-
plementation.

The Kohn-Sham orbitals, φKS
i

(r), from the preceding calculation are not only used
as a starting point but also as the basis functions, in which all quasi-particle states
and later electron-hole states are expressed. Additionally we use the already in-
troduced auxiliary basis with functions ξµ and their orthogonalized versions ξ′

µ′ =∑
µ S−1/2

µ′µ ξµ, where S is the overlap matrix of auxiliary basis functions.

The polarizability, which in the GW approximation is calculated as the convolution
of the initial Green’s function eq. 3.103, is written as:

P (r1,r2,ω) = 2
∑

m,l

φK S
l

(r1)φKS
l

(r2)φK S
m (r1)φK S

m (r2)

ω− (εKS
m −εKS

l
)+ iη

−
φKS

l
(r1)φK S

l
(r2)φKS

m (r1)φKS
m (r2)

ω+εKS
m −εKS

l
− iη

,

(5.11)
where m runs over unoccupied and l over occupied KS functions. The factor 2

accounts for the fact that in a closed shell system, each level is occupied by two
electrons. As will be apparent later, it is numerically beneficial to introduce the
symmetrized Coulomb interaction ν̃(r1,r2) =π−3/2/|r1 − r2|2, leading to:

ǫ̃(1,2) = δ(1,2)−
Ï

d3,4 ν̃(1,3)P (3,4)ν̃(4,2) (5.12)

for the symmetric dielectric function. The symmetrized Coulomb interaction con-
voluted with itself results in the full Coulomb interaction, i.e.,

ν(r1,r2) =
∫

d3r3 ν̃(r1,r3)ν̃(r3,r2) (5.13)

or, symbolically, ν= ν̃ν̃. Consequently the symmetric dielectric function is related to
the conventional dielectric function according to ǫ̃= ν̃−1ǫν̃. The screened Coulomb
interaction W is then obtained via W = ν̃ǫ̃−1ν̃. Inserting eq. 5.11 into this equation
and making use of resolution of identity, we can write ǫ̃µ̃ν̃ in the basis of orthogo-
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nalized auxiliary basis functions.

ǫ̃µ′ν′ (ω) = δµ′ν′ −2
∑

m,l

I ml
µ′ I ml

ν′

[
1

ω− (εKS
m −εKS

l
)+ iη

− 1

ω+ (εKS
m −εKS

l
)− iη

]
, (5.14)

where l runs over occupied and m over unoccupied levels, I mn
ν′ is:

I ml
ν′ =

∑
µ

V ′−1/2
ν′µ M ml

µ , (5.15)

with V′−1/2 = (S−1/2VS−1/2)−1/2S−1/2, Vνµ = (ν|µ) as in eq. 5.7, and M nm
µ are:

M ml
µ =

Ï
d3r1 d3r2φ

K S
m (r1)φK S

l (r1)
1

|r1 − r2|
ξµ(r2). (5.16)

ξµ(r2) is an auxiliary basis function and the 3-center integral can be decomposed
into integrals over basis functions using eq. 3.60 and eq. 5.8:

M ml
µ =

∑

i , j

Xi m X j l (i j |µ). (5.17)

Using the matrix inverse of ǫ̃µ′ν′ and using eq. 3.91, we arrive at the following
expression for the self-energy Σ(E):

〈φKS
n |Σ(E)|φKS

m 〉 =
∑

µ′,ν′

∑

l

I ml
µ′ I nl

ν′
i

2π

∫
dω exp(iωθ)

ǫ̃−1
µ′ν′ (ω)

E +ω−εKS
l

± iη
, (5.18)

where the plus sign in the denominator is used if φl is occupied and the minus sign
otherwise. Using the symmetrized version of the Coulomb interaction in combi-
nation with the RI-V approximation thus allows us to collect all terms containing
integrals over basis functions into the three center terms M ml

µ , which can be stored
in memory.

A number of ways to perform the frequency integration in eq. 5.18 exist. First the
integral can be solved analytically by diagonalizing the Hamiltonian of the RPA
equation (eq. 5.14) and then transforming it to its spectral representation [150,
151]. Although this is the most accurate version, it requires the most computa-
tional resources due to the diagonalization, which scales as N 6 for N the number
of basis functions.

Otherwise the frequency dependence can be analytically integrated [152], which
requires some care due to poles of the denominator on the real axis. Instead the



100 Numerical implementation of DFT/GW -BSE/MM in VOTCA

DFT φKS
i

, ǫKS
i

Setup M mn
µ

RPA ǫ̃(ω)

Calculate
Σi i (εGW

i
) → εGW

i

G0W0

max
i

|∆GW,(s)
i

| < δs

GW0

max
i

|∆GW,(t )
i

| < δt

evGW

Calculate
Σi j (E), i 6= j

Diagonalize
H

QP
i j

→ ε
QP
i

, φQP
i

Setup K x , K d

Diagonalize
Heh → AS

vc , B S
vc , ΩS

yes

yes

no

no

Figure 5.5: GW -BSE workflow as implemented in VOTCA-XTP. The inner self-consistency
loop corresponds to the GW0 algorithm, the outer convergence loop, which re-
quires the recalculation of the RPA is the evGW .
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frequency can be analytically continued to the complex domain and integrated
along the imaginary axis, where the integrand is smoother [153]. VOTCA-XTP em-
ploys a generalized plasmon pole model (PPM) as outlined in Ref. [154] to perform
the frequency integration. This model allows for a quick evaluation of the integral
in eq. 5.18, but at the same time turns the self-energy into a real operator [155].
The PPM was chosen with the application to complex molecular systems of con-
siderable size, e.g., with relevance to organic electronics such as polymer-fullerene
clusters, in mind. The particular model used in this work has been successfully
applied to determine quasiparticle and optical excitations in bulk semiconductor
and insulator crystals [156, 157], their surfaces [154, 158], defect levels [159], in-
organic clusters [155], polymers [81, 160, 161], as well as inorganic and organic
molecules [73, 75, 80, 162–164]. Explicit integration of the complex integral using
(partially) analytic techniques [150, 152, 153, 165] is planned for future versions.

The steps of the GW -BSE calculation are in more detail depicted in Fig. 5.5. First an
initial DFT calculation is performed to access the Kohn-Sham orbitals and energies
(φKS

i
,εKS

i
). Then the 3-center integrals (i j |µ) are calculated and multiplied with

the Kohn-Sham expansion coefficients and the square root of the inverse of the
2-center repulsion matrix to yield I mn

ν via eq. 5.17 and eq. 5.15.

The dielectric function in the RPA approximation (eq. 5.14) is evaluated at two
points in frequency space, from which via the plasmon pole model a complete
inverse dielectric function is constructed. Then the diagonal elements of the self-
energy are evaluated at the energies εK S

i
(eq. 5.18). This yields GW corrected

Kohn-Sham energies εGW
i

according to (eq. 3.106). These can be directly fed back
into (eq. 5.18) until convergence is reached, which is denoted GW0. After conver-
gence the resulting energies can be used to calculate a new RPA with εGW

i
instead

of εKS
i

. This self-consistency scheme is called evGW . Not using any self-consistency
scheme is typically denoted G0W0. Afterwards the off-diagonal elements of Σ

are calculated and if requested the quasiparticle Hamiltonian can be diagonalized
to yield φ

QP
i

, ε
QP
i

energies. Afterwards the BSE-Hamiltonian is set up according
to eq. 3.139 and eq. 3.136 and W (ω= 0) is used. The resulting BSE-Hamiltonian is
then diagonalized yielding the corresponding electron-hole amplitudes (AS

vc ,B S
vc)

and excitation energies ΣS .

The influence of the self-consistency on the starting point can be seen in Fig. 5.6,
where the ground state for benzene was calculated using a local density func-
tional (LDA), a GGA (PBE) and a hybrid functional (PBE0). Whereas the resulting
HOMO-LUMO gap in DFT differs strongly from the local functionals LDA/PBE vs
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Figure 5.6: Influence of the self-consistency approach on HOMO-LUMO gaps (a) and
exciton-excitation energies (b) in benzene using the ubecppol/ECP combination.
Three different functionals LDA, PBE(GGA) and PBE0(hybrid) are used.

the non-local hybrid functional, the GW method opens up the HOMO-LUMO gap
and show more similar results for all functionals, which is a result of the inclu-
sion of exchange effects in the self energy operator. In comparison to the G0W0

approach and evGW approach, the GW0 approach still shows the largest devia-
tions in HOMO-LUMO gap and singlet excitation energies. This is a result of the
unequal treatment of the G and W . The partial self-consistency in evGW results
reduces the influence of the starting functional even further, but comes at a much
higher computational cost. As a final note, both graphs together also explain why
density functional theory is often wrongly used to explain excitation spectra. The
DFT HOMO-LUMO gap is for PBE and LDA roughly 5.2 eV, which is very close to
the excitation energy Ω1 of the first singlet in the evGW and G0W0 results. This
agreement is completely coincidental, as KS-DFT does not capture any of the ex-
cited state effects.

As discussed before, GW -BSE is a non-standard quantum-chemical approach (com-
pared to TDDFT, or wave function based theories such as Configuration Interaction
or Coupled Cluster) to determine electronically excited states of molecules. In re-
cent years, a few groups have started systematically evaluating the suitability of
this beyond-DFT methodology with respect to (i) different technical implementa-
tions (e.g., numerical orbitals vs GTO, use of RI etc.) [76, 80, 166–170] and (ii)
different application scenarios [73, 75, 77, 80, 82, 155, 171, 172].
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With this work’s application target of studying the static and dynamic properties of
electronically excited states in complex molecular environments relevant in mind, it
is important to demonstrate the viability of the methodology itself but also the im-
plementation as described in the previous chapters. In particular, several essential
questions need to be addressed:

1. How accurate is the combination of methodology/implementation in appli-
cation to single molecules?

2. What is the convergence behavior of the methodology/implementation with
respect to computational parameters, such as basis sets dependence, size of
the active space (i.e., the size of the single-particle product function space
used to expand the electron-hole wave functions), or the level used in the
Bethe-Salpeter Equation (i.e., full BSE compared to TDA)?

3. What are the computational costs of the computations? What are the re-
sulting limitations and can computational parameters be optimized to make
application to relevant molecular systems (composition, sizes) tractable?

4. Can one efficiently use GW -BSE in hybrid quantum-classical setups?

In order to answer questions 1-3, the following section deals with the application
of the VOTCA-XTP’s GW -BSE implementation to a small molecule test set, also
known as the Thiel set, used as a standard benchmark for method development in
excited state electronic structure theory. After that, we consider as a prototypical
complex molecular system double-stranded DNA in sec. 5.4 with specific focus on
the effects of local-electric fields and environment polarization on charge transfer
excitations.

5.3.1 Single molecule data: Thiel set

The Thiel set for the benchmarking of our implementation of the GW -BSE formal-
ism contains 28 small molecules of different types shown in app. A: unsaturated
aliphatic hydrocarbons, aldehydes, ketones, amides, aromatic hydrocarbons and
heterocycles, as well as four nucleobases. While the size of these molecules is
much smaller than that of the typical molecules relevant for organic electronics
(the largest ones, naphthalene and octatetraene, contain 18 atoms), the set offers
reference data from both experiment and high-order wave function techniques for
a representative variety of types of excitations. The benchmark set covers π→ π∗



104 Numerical implementation of DFT/GW -BSE/MM in VOTCA

(e.g., ethene), n →π∗ (e.g., pyrazine), and σ→π∗ (e.g., cyclopropene) excitations.
These different excitations also cover a wide range of energies from 2 eV to 8 eV.

For the benchmarking the following procedure has been used. First, the ground
state geometries of the molecules have been optimized using DFT at three differ-
ent levels of theory, including all-electron (AE) calculations with the aug-cc-pVTZ
and cc-pVTZ basis sets [72], respectively, as well as calculations making use of ef-
fective core potentials and an associated basis set, [148] that has been augmented
by a single shell of polarization functions taken from the 6-311G** basis [173].
Due to the significantly reduced computational requirements, the latter case can be
considered a minimal setup and is further referred to as ubecppol. All DFT calcula-
tions have been performed using the hybrid PBE0 functional [62], and optimized
auxiliary basis sets [140].

Optimized auxiliary basis sets for (aug-)cc-pVTZ [140, 174] taken from the Basis
Set Exchange [175] have been used in the resolution-of-identity steps. For the
ubecppol basis, we constructed an auxiliary basis using the technique employed in
the SAPT code [176–178]. For all cases, we have compared the obtained results
to those from calculations using large auxiliary bases created with the AutoAux
functionality [179] available in Orca [143], and found agreement within a few
10 meV.

For the optimized geometries, excited state energies are determined within the
GW -BSE formalism making use of the full BSE (eq. 3.128) on top of evGW self-
consistent quasi-particle energies using the procedure outlined in sec. 3.3, in which
all GW energies are converged to 10−5 Hartree. Transitions between all occupied
and empty states, with their total number determined by the respective basis set
sizes as in Tab. B.1, are taken into account in the calculation of the dielectric screen-
ing in the RPA. This choice is conservatively large, since including about 10 times
as many empty as occupied states has typically shown to be sufficient to yield con-
verged low energy excitations, as shown in Fig. 5.7. Similarly, quasi-particle cor-
rections are determined for all available states, which are then used to construct
the basis of product states for the expansion of the electron-hole wave functions
in the BSE. For example in the smallest system, ethene, our calculations with the
aug-cc-pVTZ basis include 8 occupied and 130 empty states, leading to 1040 tran-
sitions in the RPA and for the BSE product basis. For naphthalene, inclusion of
34 occupied and 610 empty states amount to 20740 RPA transitions/BSE product
functions.
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Figure 5.7: Convergence of the quasi-particle HOMO-LUMO gap and the three lowest-
energy singlet excitations of pyridine with respect to the number of empty states
in the evaluation of the microscopic dielectric function in the RPA. Quasiparticle
corrections are determined for the lowest 42 (21 occupied, 21 empty) states,
and 441 product basis functions are used for the BSE.

5.3.2 Comparison to experiment

From the resulting set of excitations for the respective molecules, the excitations
with optical activity are identified and their energies are compared to the ones ob-
tained from experiment, as summarized in Fig. 5.8. The four different categories
of small molecules are represented by differently colored symbols (see caption for
details). For the aug-cc-pVTZ basis set that contains additional diffuse functions
the results depicted in Fig. 5.8(a) indicate a very good agreement with the refer-
ence data with a RMSD of 0.24 eV. The largest deviation is found for cyclopropene,
whose excitation is reported to be at 7.19 eV in experiment compared to 6.38 eV
in our GW -BSE calculation. Such a deviation is, however, not unique to our im-
plementation. In Ref. [167], a GW -BSE excitation energy of 6.14 eV was reported,
which is very close to the value of 6.18 eV obtained by TDDFT with the PBE0 func-
tional. Even the Theoretical Best Estimate based on high-order wave function meth-
ods of 6.65 eV shows a similar deviation. We note that the difference of some
of our GW -BSE results from those in Ref. [167] is likely an effect of the differ-
ent treatment of the frequency dependence of the dielectric functions (PPM vs.
complex contour integration). Overall we find a mean absolute error of 0.14 eV
between our PPM approach and the literature results. For the moderately-sized
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Figure 5.8: Comparison of calculated lowest singlet excitation energies with experimental
data (in eV) for the 28 small molecules in Thiel’s set. Ground state DFT calcu-
lations including geometry optimizations have been performed on all-electron
(AE) level with the (a) aug-cc-pVTZ and (b) cc-pVTZ basis sets, as well as (c)
employing effective core potentials and the ubecppol basis set, respectively. The
same fitting auxiliary basis functions have been used for both DFT and GW -BSE
stages. Data for nucleobases is given by green squares, for unsaturated aliphatic
hydrocarbons by red up-triangles, formaldehydes, ketones, and amides by ocher
diamonds, and for aromatic hydrocarbons by blue down-triangles. Panel (d)
shows the relative error between the smaller AE/cc-pVTZ (green filled circles)
and ECP/ubecppol (open blue circles) calculations as compared to the more
complete AE/aug-cc-pVTZ as a function of energy. The green dashed (blue dot-
ted) lines indicate the mean error of (3.2±1.0)% and (6.7±2.0)%, respectively.
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nucleobases, for which one would expect the PPM to be a better approximation,
this error is as small as 0.03 eV. Such an error is negligible compared to the effects
of the molecular environment on the excitation energies, which can be on the order
of 1 eV (see sec. 5.4). Smaller deviations could also be attributed to more subtle
variations in the computational protocol, such as in the stabilization of near linear
dependencies in the basis sets and auxiliary basis sets. In general, a more direct
comparison between the various theoretical approaches is made somewhat diffi-
cult by the fact that molecular geometries have been optimized at different levels
of theory and therefore can distort the picture slightly. Using diffuse basis functions
in quantum-chemical calculations is typically associated with significant computa-
tional costs due to increased number of functions not only in the basis set itself
but also the auxiliary basis sets for RI. Concomitantly, one occasionally encounters
problems with linear dependencies in the basis sets that require careful treatment.
In this situation, it is desirable to avoid such diffuse functions, especially in ap-
plications to larger molecules. In Fig. 5.8(b), the GW -BSE results obtained with
the cc-pVTZ basis set show overall an excellent agreement with the experimental
reference. On average, the RMSD of 0.28 eV is as expected larger than that for the
aug-cc-pVTZ basis. This is illustrated in Fig. 5.8(d), in which the relative deviation
of the excitation energies (in %, indicated by green filled circles) obtained with
cc-pVTZ from those obtained with the more complete aug-cc-pVTZ basis sets are
shown depending on the absolute aug-cc-pVTZ energies. It can clearly be seen that
on the energy range covered by the test set, the relative deviation varies between
1 % and 9 %, yielding a mean relative error of 3.2 % with standard deviation of
1.0 %. More importantly, however, the average run time is reduced to (25.2±6.5)%.

To scrutinize whether our results are affected by the choice of functional in the un-
derlying ground state DFT calculation, we have computed the respective excitation
energies also with the gradient-corrected PBE [59] functional instead of its hybrid
variant PBE0. The full data for both G0W0 and evGW variants are given in Tab. 5.2.
Inclusion of quasi-particle energy self-consistency reduces the mean-absolute error
between the PBE0 and PBE functionals from 0.087±0.053eV to 0.052±0.028eV. The
largest difference on G0W0 level is 0.18 eV for formaldehyde, compared to only
0.02 eV with evGW . Overall, we note only a very weak starting point dependence,
in particular for evGW .

While neglecting diffuse functions already massively reduces computational costs
with only minimal loss of overall accuracy and reliability, all-electron calculations
explicitly include the typically inert core electrons, such as the two electrons in the
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Table 5.2: Comparison between singlet excitation energies (in eV) for self-consistent evGW

and one-shot G0W0 using the PBE0 and PBE functionals, respectively, with aug-
cc-pVTZ basis set. ∆(G0W0) and ∆(evGW ) are the differences between PBE0 and
PBE based energies for the two approaches.

PBE0 PBE
evGW G0W0 evGW G0W0 ∆(G0W0) ∆(evGW )

NUCLEOBASES

cytosine 4.56 4.62 4.51 4.64 -0.02 +0.05
thymine 4.73 4.73 4.72 4.75 -0.02 +0.01
uracil 4.70 4.70 4.69 4.71 -0.01 +0.01
adenine 5.02 5.03 4.95 5.00 +0.03 +0.07

UNSATURATED ALIPHATIC HYDROCARBONS

ethene 7.51 7.69 7.48 7.83 -0.14 +0.03
butadiene 5.77 5.96 5.72 6.06 -0.10 +0.05
hexatriene 4.81 5.01 4.76 5.11 -0.10 +0.05
cyclopropene 6.38 6.56 6.34 6.66 -0.10 +0.04
cyclopentadiene 5.00 5.22 4.93 5.34 -0.12 +0.07
norbornadiene 5.06 5.25 4.98 5.32 -0.07 +0.08

ALDEHYDES, KETONES, and AMIDES

formaldehyde 3.82 3.94 3.84 4.12 -0.18 -0.02
acetone 4.20 4.27 4.19 4.44 -0.17 +0.01
benzoquinone 2.58 2.71 2.48 2.76 -0.05 +0.10
formamide 5.42 5.48 5.45 5.63 -0.15 -0.03
acetamide 5.45 5.41 5.45 5.57 -0.16 +0.00
propanamide 5.47 5.43 5.47 5.58 -0.15 +0.00

AROMATIC HYDROCARBONS and HETEROCYCLES

benzene 5.17 5.35 5.11 5.43 -0.08 +0.06
naphthalene 4.27 4.45 4.19 4.51 -0.06 +0.08
furan 6.02 6.24 5.94 6.39 -0.15 +0.08
pyrrole 6.00 6.14 5.95 6.17 -0.03 +0.05
imidazole 6.26 6.40 6.19 6.44 -0.04 +0.07
pyridine 4.72 4.79 4.65 4.83 -0.04 +0.07
pyrazine 3.85 3.97 3.77 4.06 -0.09 +0.08
pyrimidine 4.20 4.25 4.13 4.31 -0.06 +0.07
pyridazine 3.44 3.57 3.35 3.63 -0.06 +0.09
triazine 4.46 4.46 4.41 4.48 -0.02 +0.05
tetrazine 2.07 2.29 2.00 2.45 -0.16 +0.07

MAE 0.087 0.052
σ(MAE) 0.053 0.028



5.3 GW-BSE in a Gaussian basis 109

1s shell of carbon. It is therefore possible to simply exclude them from the active
space of product functions. However, the presence of such explicit core electrons
requires the use of normal and auxiliary basis sets with strongly localized functions
in the DFT ground state calculation underlying the GW -BSE formalism.

To avoid the expensive calculation of these core states altogether, effective core po-
tentials can be used in combination with the ubecppol basis set. In Fig. 5.8(c), the
obtained excitation energies are shown compared to the experimental reference.
The overall RMSD of 0.42 eV, while slightly larger than that recorded for aug-cc-
pVTZ and cc-pVTZ, respectively, is still very good. One can observe a general
tendency for the ECP/ubecppol combination to overestimate the measured data.
This is also apparent considering the relative deviations from aug-cc-pVTZ shown
as open circles in Fig. 5.8(d). Interestingly, the relative deviation varies between
1 % and 10 %, only slightly larger than for cc-pVTZ. However the mean error is
larger and amounts to (6.7±2.0)%, which can be considered acceptable, in particu-
lar when one takes into account that the computational cost is reduced to as much
as (6.3±3.1)% as compared to aug-cc-pVTZ. These numbers highlight that the use
of the minimal ECP/ubecppol variant offers a great compromise between accuracy
and computational cost, which make it particularly attractive for the application to
large, relevant molecular systems.

For completeness, a comparison of the electronic excitation energies obtained with
GW -BSE to the Theoretical Best Estimate (TBE), Fig. 5.9 clearly reveals that all
three basis set variants considered in this work exhibit a very satisfying agreement
with the high-order reference. A table with all relevant values is also available in
table Tab. B.2 in the appendix.

5.3.3 Optimal strategies for large-scale applications

Molecules typically used in organic electronic devices, such as fullerenes or oligo-
hiophenes, are significantly larger than the molecules included in the Thiel set.
While it could be convincingly demonstrated in the previous discussion that GW -
BSE is a powerful and accurate approach for the investigation of electronically
excited states in molecular systems, one of the biggest challenges one faces lies in
guaranteeing the practicality of application to larger systems.

To this end, the identification of a minimal reliable basis set in the form of the
ECP/ubecppol combination is an important step. Besides this, there are more
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Figure 5.10: (a) Convergence of three lowest singlet excitation energies in adenine as a
function of the number of unoccupied levels taken into account in the BSE on
top of an AE/aug-cc-pVTZ DFT calculation. At this level, about 350 unoccupied
levels are required to obtain results that are converged to within 0.01 eV. (b)
Memory consumption and run time using four OpenMP threads on a i7-4770
CPU @3.40 GHz.
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calculational parameters that can be varied. To illustrate this point, we show in
Fig. 5.10(a) the convergence of the the three lowest excitation energies in ade-
nine with respect to the number of unoccupied states taken into account when
constructing the product functions for the expansion of the electron-hole wave
functions, cf. Eq. eq. 3.129. The calculations have been performed at all-electron
level with the aug-cc-pVTZ basis set. Since the dimension (size) of the matrix form
of the BSE is 2Nocc ·Nunocc (4(Nocc ·Nunocc)2), the choice of Nunocc has an extreme
impact on the required numerical effort. In the example of adenine at AE/aug-cc-
pVTZ level, Nocc = 35 is fixed but Nunocc can range up to 540 (defined by the size
of the DFT basis set), in which case the full BSE matrix is 37800×37800.

From the convergence behavior in Fig. 5.10(a) it becomes evident that taking all
unoccupied levels into account is not necessary to find converged solutions to the
low-lying excitations. Instead, for this particular system, the choice of Nunocc = 350

is sufficient. The graphs in Fig. 5.10(b) show that with this choice, significant
reductions in runtime from about 20 min to about 6 min can be achieved, as well
as a remarkable reduction in memory consumption. It should be noted at this point,
however, that the extreme memory consumption of up to 25 GB as seen here is a
direct consequence of building the full BSE Hamiltonian explicitly. Eigenproblem
solvers, which do not require the full matrix but only a the product of the matrix
with a given test vector, can reduce this bottleneck [180].

It is also worth emphasizing that the combination of the ECP/ubecppol variant with
optimized Nocc brings down execution times of the GW -BSE step to just about one
minute using four OpenMP threads on a i7-4770 CPU @3.40 GHz.

Additional savings can in principle be achieved by resorting to the Tamm-Dancoff
Approximation (TDA), in which as explained in sec. 3.3.2 the resonant-antiresonant
coupling terms K (eq. 3.130) are neglected in the Bethe Salpeter Equation. Thereby
the dimension of the matrix system is reduced by a factor of two which directly
translates into significant numerical gains. It is know from previous studies [87]
that resonant–antiresonant coupling influences the energies of singlet π→π∗ exci-
tations. This omission of the corresponding coupling terms in the BSE can reduce
the associated energies by several 0.1 eV, depending on the size of the π-conjugated
system. The smaller the π-system, the stronger the effect. For the relatively small
molecules in the Thiel test set, it is therefore expected that the TDA deviations will
be noticeable.

In Fig. 5.11, the excitation energies obtained with the three basis sets discussed
above as resulting from full BSE calculations and TDA are compared, respectively.
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Figure 5.11: Comparison of calculated lowest singlet excitation energies (in eV) within the
Tamm-Dancoff Approximation (TDA) versus the full BSE formalism for the 28
small molecules in Thiel’s set. Symbols and labels identical to the ones used in
Fig. 5.8.

As expected, the TDA energies are typically larger than those from the full BSE. Also
the size dependence is clearly visible. The strongest effects can be seen for ethene
(C2H4), the molecule with the smallest π system. For the aug-cc-pVTZ basis, TDA
yields an excitation energy of 8.04 eV as compared to 7.51 eV obtained by the full
BSE formalism. Resonant-antiresonant coupling accounts for as much as 0.53 eV. In
contrast, for a larger molecule such as adenine, the effect is reduced to just 0.02 eV.
These results illustrate that the TDA can be a useful approximation depending on
the specific system of interest and should therefore be carefully evaluated.

In summary, after the careful analysis of the performance of VOTCA-XTP’s GW -BSE
implementation with respect to accuracy and computational cost, we can conclude
that

1. The combination of methodology/implementation in application to small sin-
gle molecules from a benchmark test set shows a high accuracy, comparable
to that of state of the art high order wave function methods.

2. The GW -BSE results show a non-negligible dependence on the choice of the
basis set, the size of the product function space, and the variant of the Bethe
Salpeter equation employed. The exact size of the effects depends on the
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particular system and need to be checked diligently, as in any other com-
putational approach. Analysis and understanding of the different contribut-
ing factors allows one to extrapolate rough guidelines for the application to
larger systems.

3. It is found that the inclusion of diffuse functions in augmented basis sets
cause a considerable computational cost compared to not-augmented vari-
ants. At the same time, the effect on calculated excitation energies is smaller
so that in most cases, diffuse functions can be neglected. For (very) large
systems, the use of effective core potentials and minimal basis sets can be a
viable strategy showing a good compromise between accuracy and computa-
tional cost, as can be the use of the TDA.

With these promising conclusions regarding the application to single small molecule
systems at hand, the following section will focus on the integration of GW -BSE in
coupled quantum-classical QM/MM setups for complex molecular environments.

5.4 Quantum-classical QM/MM simulations

Electronic excitations in complex molecular systems are typically not solely defined
by the properties of isolated substructures, e.g., single monomers. Instead, the na-
ture of excited states is in general a result of an intricate interplay between the
intrinsic quantum-mechanical properties of the constituent units and the local and
global morphology of the large-scale molecular system. Such effects can include,
for instance, static and/or dynamic conformational properties, such as backbone
torsions in conjugated polymers, or the global ordering in bulk or thin-film struc-
tures on the order of nm.

In order to accurately predict the static and dynamic properties of electronic exci-
tations in these cases, it is paramount to take the available information of the full,
in extreme cases mesoscopic system into account. It is evident that a full quantum-
mechanical treatment of such a complex system and its typical length (and time)
scales is practically impossible. This problem is further exacerbated for high-level
methods such as GW -BSE, even when using the optimized strategies introduced in
the previous section.

In such situations, the use of hybrid methods, which combine multiple different
techniques adequate for the different scales involved, is indispensable. Such multi
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scale and multi method setups that marry a quantum-mechanical treatment of
a part of the full system with a classical model for its environment are known
as QM/MM methods. Here, we will first describe the implementation of such a
QM/MM approach for the evaluation of electronic excitation energies in VOTCA-
XTP. Its unique features are the use of GW -BSE as the quantum technique, and
its coupling to a multilayer atomistic environment that can include polarization
effects. After that, the capabilities of this setup will be demonstrated in application
to optical absorption and charge transfer excitations in a prototypical DNA system.

5.4.1 Workflow and implementation

The assumption that underlies the QM/MM setup used in this work is that it must
be possible to adequately partition the full system into two distinct regions which
are only weakly coupled as described in Chapter 4. Often, the assignment of quan-
tum and classical (MM) regions is determined by the nature of the full supramolec-
ular assembly and the type of excitation of interest. For instance, if one aims to
study the optically active Frenkel excitons in small-molecule organic semiconduc-
tors, the QM part typically contains a single unit while the remaining molecules
are part of the classical region. In macromolecules, such as conjugated polymers
or biomolecules, the situation is more complex as one needs a priori information
– or at least an informed guess – about the regions in which electronic states are
localized and partition the macrosystem accordingly. This step then typically in-
volves the truncation of a covalent bond (typically single bonds), saturation of
the dangling bonds by hydrogen or methyl, and careful adjustment of the pre-
viously connecting atoms in the now classical region to avoid double-counting,
prevent too close contacts, and maintain charge-conservation. As an alternative,
it has been suggested in the literature to construct special pseudo-potentials (see
sec. 3.2.3) with valence configurations for bridging atoms that do not require sat-
uration [181].

Fig. 5.12 illustrates this idea for the case of a DNA double strand solvated in water.
A single nucleobase is chosen as the QM region, while the rest of the system that is
within a certain distance to this region is assigned to the MM region. To be more
precise, we differentiate between two distinct MM regions, here referred to MM0
and MM1, according to the way these interact with each other and the QM region.

In case of weak coupling, it is assumed that the classical region affects the quantum
one (and vice versa) via electrostatic interactions only. Static local-fields are associ-
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Figure 5.12: Schematic representation of the DNA solvated in water and separation into
MM0 and MM1 for an adenine nucleobase. The QM region is magnified in the
small inset.

ated with the distribution of static partial point charges (or, more generally, static
point multipoles) in the MM region. These multipoles remain unchanged during
the QM/MM calculation and can either be taken from classical force fields used in
the molecular dynamics simulations or fitted to ab-initio vacuum calculations.

In addition to these static local-field effects, the electron density of the QM region
redistributes upon excitation and accordingly its electrostatic potential affecting
the MM region is modified. Such modifications are typically strongest for charged
excitations, or excitations involving large changes of molecular dipole moments.
Depending on the specific case these modifications of the electrostatic potential
cause a significant response of the atoms in the vicinity of the QM region. Then
these polarization effects are not negligible. We model them in our QM/MM ap-
proach with the distributed polarizable dipole model introduced in Chapter 4. This
polarization model is used in the MM0 region indicated in Fig. 5.12, while the
MM1 region has no polarization response and uses only static multipole moments.

Figure 5.13 shows the practical workflow of our QM/MM setup. After partitioning
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the system as described above, first a QM calculation on DFT and, depending on
the state of interest, GW -BSE level is performed. The QM electron density is de-
termined and then reduced to a set of classical atomic point charges {qS

n} via the
CHELPG algorithm (see sec. 4.2.3).

In a first step using the {qS
n} of the QM region and all classical charges in the MM

region the electric field E inside the MM region is calculated. As a response to these
fields, polarization induced dipoles dMM1 are formed in the MM0 region. Those in-
duced dipoles cause, in turn, a change in the electric field E. As described in Chap-
ter 4, the sequence of steps of this classical polarization model within the MM0
region needs to be iterated until the electrostatic energy and the dMM0 converge.
We use the implementation of the Thole model from the VOTCA-CTP library [92].
After this classical polarization model in MM0 is converged to a self-consistent so-
lution, the total electric field acting on the QM region, determined from the static
moments in both MM0 and MM1 and the induced dipoles in MM0, is updated.
Within this new external potential the next DFT and GW -BSE calculation are per-
formed. This sequence is also iterated until self-consistency, until the charges and
energies in both the QM and MM region change less than a specified amount.

Note that as was discussed in Chapter 4, the inclusion of explicit polarization effects
makes the QM/MM Hamiltonian depend on the electronic state of interest. Excita-
tion energies hence must be determined as total energy differences as in eq. 4.42.

The explicit state dependence of the coupled QM/MM system introduces another
difficulty, in particular when excited states via GW -BSE are calculated. The solu-
tion of the BSE yields a spectrum of excitations, which are ordered according to
their energy. These states can be energetically separated or very close, depend-
ing on the specific system. As a consequence, the index of a specific excitation
of interest can vary for different external potentials at the individual steps of the
QM/MM self-consistency procedure. It is therefore important to be able to iden-
tify the electronically excited state of interest during the calculation. In practice, a
filtering of the total spectrum is employed which selects states according to some
predefined property. Currently, the selectable properties are the oscillator strength
f for optically active excitations and the amount of charge transferred (∆q) from
one fragment to another for charge transfer states. For such filtering criteria to
be applicable, it is implicitly assumed that the overall characteristics of the excited
states do not change significantly during the QM/MM calculation.

If only static interactions are taken into account, no difficulties arise, as theQM/MM
Hamiltonian is no longer state-dependent.
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5.4.2 Charge transfer excitations in aqueous DNA

To demonstrate the application of the above-mentioned QM/MM techniques, we
will in the following focus on a water-solvated DNA double-strand, as a prototypical
system. Since the basic DNA nucleobases are part of the Thiel set used in section
sec. 5.3.1, this constitutes an ideal scenario which connects the single molecule
study to an investigation of a more complex molecular environment.

Besides these practical considerations, there is also a relevant scientific motiva-
tion for this choice of system. Photophysical processes triggered by the absorp-
tion of ultraviolet solar radiation can cause damage and subsequent mutations in
DNA [182]. Due to the complexity of such biological systems, gaining an under-
standing of the processes involving excited states is extremely challenging. Bi-
molecular charge transfer (CT) excitations between base pairs are considered to
play an important role in the excited-state dynamics of DNA, which as part of more
complicated processes lead to structural or chemical decay and, eventually, gene
mutations [183, 184]. One of the proposed processes is the rapid decay of an ini-
tially photoexcited π→π∗ state to a longer-lived CT state, which can induce struc-
tural modifications or chemical oxidation/reduction reactions [185, 186]. Such an
initial decay process is very close in concept to the conversion of localized Frenkel
excitons to CT excitons at the donor-acceptor interface of an organic solar cell, as
discussed in Chapter 2, though the structural/morphological details are fundamen-
tally different.

As a first step to gain further insight into the exact conditions under which dy-
namical excited state processes of this kind can occur in DNA, a detailed under-
standing of the CT state energies is vital. While it is suggested from experiment on
water-solvated single-strands of 20 adenine bases (A20) that CT states cause a faint
UV absorption at energies below the energy of the UV active π→ π∗ transition at
approximately 5 eV [187], a high-level second-order approximate coupled-cluster
method yields CT excitations far above that for an isolated A2 dimer in the gas
phase [188, 189]. Due to the long-range electron-hole interaction, CT energies
are typically very sensitive of the arrangement of the constituent monomers of the
base pair. Optimized gas-phase structures are likely to exhibit different stacking
distances and even motifs compared to a real single-strand, and lack the effect of
the aqueous environment not only on the structure but also on the electrostatic
environment entirely.

Based on the experimental evidence, one should expect a redshift on the order of
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1 eV for CT energies in aqueous DNA as compared to a vacuum situation. Inclu-
sion of a polarizable environment using a Polarizable Continuum Model (PCM) on
top of TDDFT [188, 189] fail to reproduce this observation, with the redshift be-
ing reported to be as small as 0.1 eV. The use of model structures and notorious
difficulties of TDDFT to accurately describe CT excitons are likely origins of this
discrepancy. To reliably distinguish the different effects of the aqueous environ-
ment and to quantify how they affect the character of CT excitations and how they
contribute to the observed redshift, it is important to consider a realistic morphol-
ogy of aqueous DNA and treat it with an accurate set of techniques. The GW -BSE
formalism has been reported to yield very accurate predictions of CT excitation en-
ergies in prototypical small-molecule dimers. Subsequently, Yin et al. [164] studied
small complexes of adenine dimers and water (A2-(H20)m). Geometries of the com-
plex were obtained from Classical Molecular Dynamics, while GW -BSE was used
to evaluate the excitation energies. It was found that CT energies are strongly af-
fected by the dipole electric fields in the first hydration shell around the A2, giving
rise to an overall energetic shift to below that of the π → π∗ transition in single
adenine, much more in line with the experimental observation.

Inspired by these results, we will using GW -BSE within the QM/MM framework
discussed above on aqueous DNA. We go beyond the model used by Yin et al and
instead of a single hydrated adenine dimer, we consider a full double-strand of
DNA solvated in explicit water. This will allow us to study, among other things,
the effects of a realistic stacking, the differences between intra- and inter-strand
charge transfer excitations, and the explicit effect of the DNA backbone. Given the
sensitivity of the CT excitations to water hydration, inclusion of these structural
parameters can have a substantial influence since the electrostatic environment will
be vastly different from the idealized situation of a hydrated dimer. We will also be
able to study dimers formed by different types of nucleobases on an equal footing.
Considering different embedding variants (vacuum (or gas phase), QM/MM with
static interactions only, and QM/MM with polarizable interactions), allows us to
disentangle the effects of the geometric structure of the dimer, of local electric
fields, of the structure of the environment, and of electronic polarization.

To obtain the atomistic structural information, an exemplary DNA double strand
with 23 base pairs in the sequence shown in Fig. 5.14 was prepared. This dou-
ble strand was solvated by 42216 water molecules and 44 sodium counter ions.
For this system, in the following referred to as aqDNA, classical molecular dynam-
ics simulations were performed using the AMBER99 forcefield [190] for DNA and
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GGCGGCGGCGCGGCGTTTTTTGG

CCGCCGCCGCGCCGCAAAAAACC

Figure 5.14: DNA double strand sequence used in QM/MM simulation. G:guanine,
C:cytosine, A:adenine and T:thymine. Compare with Fig. 5.12. The respec-
tive chemical structures are given in app. A.

sodium, and the SPC/E water model [191]. Geometric mixing rules [σi j =
p
σi iσ j j

and ǫi j =
p
ǫi i ǫ j j ] for Lennard-Jones (LJ) diameters (σ) and LJ energies (ǫ) were

used for atoms of different species [192–194]. Non-bonded interactions between
atom pairs within a molecule separated by one or two bonds were excluded. In-
teraction was reduced by a factor of 1/2 for atoms separated by three bonds and
more. Simulations were run using GROMACS version 5 [195]. A 0.9 nm cutoff
was employed for the real space part of electrostatics and Lennard-Jones inter-
actions. The long-range electrostatics was calculated using particle-mesh Ewald
(PME) [196, 197] with the reciprocal-space interactions evaluated on a 0.16 grid
with cubic interpolation of order 4. First, the system was energy minimized us-
ing the steepest descents algorithm. Then, 10 ns simulations in constant particle
number, volume and temperature (NVT) ensemble at 300 K were performed using
the stochastic velocity rescaling thermostat [96] with time constant 0.1 ps. The
velocity-Verlet algorithm [93] was employed to integrate the equations of motions
with 2 fs time step. The simulation box size was (12× 12× 8)nm3. Simulations
were then continued in constant particle number, pressure and temperature (NpT)
ensemble at 300 K and 1 bar controlled by Parrinello-Rahman [100] barostat with
a coupling time constant of 2.0 ps. Molecular visualizations were rendered using
Visual Molecular Dynamics (VMD) software [198].

For the parametrization of the polarizable model used in the coupled QM/MM cal-
culations, atomic partial charges and molecular polarizability tensors were deter-
mined for the nucleobases and for water based on DFT calculations using the PBE0
functional and the cc-pVTZ basis set. Classical atomic polarizabilities were then
optimized to reproduce the molecular polarizable volume of the DFT reference cal-
culation. For the DNA backbone, partial charges were taken from the force field
used in the MD simulation and default atomic polarizabilities from the AMOEBA
forcefield [119]. Either a single nucleobase or a pair of nucleobases is chosen as
QM region in the QM/MM setup. As this region is covalently bonded to the MM re-
gion, the bond to the frontier atom was truncated saturated with a hydrogen atom
as described above. All residues inside a 4.3 nm closest contact to the molecules
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defining the QM region were assigned to the MM region. When polarized QM/MM
calculations were performed, polarization effects were included for all residues
within a closest contact distance of 2.0 nm from the QM region.

From the simulated DNA structure, neighboring nucleobases with separation less
than 1 nm were defined as pairs (yielding 59 pairs in total) between which CT
excitations are calculated. These include both intra- and interstrand excitations.
Due to the presence of the four nucleobases adenine (A), guanine (G), cytosine
(C) and thymine (T) (see chemical structures in app. A) in the present system of
aqDNA, 10 different types of dimers can be formed.

First, we compare the results obtained using QM calculation of gas-phase dimers
with those obtained using QM/MM with only static classical interactions. Fig-
ure 5.15 shows the distribution of CT exciton energies for both cases. We refer to
these distributions and their Gaussian broadened guide-to-the-eye as CT Density
of States (DOS). CT DOS for dimers in vacuum is represented by blue bars, while
the DOS of QM/MM dimers embedded in a static background of point charges is
indicated by red bars. The inset labels state both the type of combination and in
brackets the total number of CT states found in vacuum and static QM/MM. In all
cases, an excitation was labeled as a CT state if the charge transfer between the
two nucleobases in the pair exceeded 0.5 e.

A general observation is that the total number of CT states found in the covered
energy region of 5 eV to 9 eV is always larger in the QM/MM case. This observation
can be attributed to two effects. First, some of CT states that fall outside of the
energy interval in the gas-phase calculation get pushed down in energy to values
below 9 eV in static QM/MM. Second, some of the CT states change their character
by embedding in the static background.

A more detailed analysis of the changes in distributions, in particular in the low
energy regions, show no universal behavior. In some cases such as for the adenine
dimers (A-A) some individual excitations lie at lower energies in static QM/MM
than in the gas-phase. While not resolved in Fig. 5.15, the lowest energy CT ex-
citation, at about 5.35 eV, is an intra-stand adenine dimer of the kind previously
discussed by Yin et al. in a more idealized structure. We will scrutinize the proper-
ties of this particular excitation in more detail below.

Very much in contrast to this behavior, dimers formed from two cytosine bases
exhibit CT excitons at higher energy than in the respective gas-phase calculation,
irrespective of whether it is a intra- or interstrand excitation, see Fig. 5.15.
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Figure 5.15: Density of states (DOS) for charge transfer (CT) excitations in aqDNA as ob-
tained from dimers in vacuum (blue bars) and QM/MM embedded in a static
background of point charges (red bars), respectively. The individual pan-
els show different base pair combinations, in which neighboring nucleobases
within a closest contact distance of less than 1 nm are considered as pairs. Due
to the specific sequence of the model strand used in this work, different num-
bers of pairs are found for each combination. The inset labels indicate both
the type of combination and in brackets the total number of CT states found
in vacuum and static QM/MM. A cutoff of 4.3 nm was used for the atomistic
electrostatic embedding.
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Figure 5.16: Comparison of CT excitation energies (in eV) calculated in static (open sym-
bols) and polarizable (filled symbols) QM/MM setups with vacuum QM re-
sults. Interstrand (intrastrand) excitations are represented by green squares
(red circles). The gray shaded areas indicate the range of single nucleobase UV
absorption energies of adenine.

Given the non-universal behavior observed upon the inclusion of a static atom-
istic environment, we limit the following discussion to only the lowest energy CT
excitation in each of the 59 pairs. The aim is to understand the influence of en-
vironment polarization in the QM/MM calculations. In Fig. 5.16 CT excitation
energies resulting from both static (open symbols) and polarized (closed symbols)
QM/MM calculations are shown against the respective vacuum energy. Here, also
the differences between intrastrand (circles) and interstrand (squares) excitations
are resolved. First, the data obtained for the static case reflects what has already
been discussed above. No general trend can be discerned. CT excitation energies
are both lowered and increased due to the presence of the environment. There
appears to be a tendency that the lower-energy interstrand CTs up to an energy of
7 eV are all resulting at about 0.5 eV higher energies in the static case.

Taking polarization effects into account within the QM/MM approach universally
lowers the energy, not only with respect to the static QM/MM results, but most
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Figure 5.17: Isosurfaces (±2× 10−3 e/Å
3
) of excitation electron densities of the lowest en-

ergy adenine dimer resulting from (a) a gas-phase (vacuum) calculation, (b)
a QM/MM calculation with static environment, and (c) a QM/MM calculation
with polarizable environment. Red color corresponds to negative values (hole
density) and blue color corresponds to positive values (electron density).

importantly also with respect to the vacuum calculation. On average, we observe
a redshift of the interstrand CT energies by (−0.83±0.5)eV, while intrastrand CTs
are red shifted by (−1.15±0.6)eV, compared to respective vacuum results. Notably,
these redshifts are on the order of the redshift observed in experiment. Also, the
CT excitation with the lowest energy of 4.81 eV is found for a A2 dimer in the chain.

In addition to the individual CT energies, the gray shaded areas in Fig. 5.16 indi-
cate the energy range in which single adenine nucleobases absorb UV light, accord-
ing to gas-phase and QM/MM calculations. While not shown here explicitly, the
inclusion of a polarizable environment does not affect the energetic properties of
these localized Frenkel excitons perceptively, with absorption predicted to be in the
range (5.12±0.02)eV. The lowest energies of CT excitations found in our dataset
are approximately 0.3 eV below this absorption energy, indicating that the decay of
the UV excitation to a CT excited state is energetically possible, as speculated.

Due to this energetic situation, it is worthwhile to analyze the A2 CT exciton in
further detail and to illustrate how the atomistic environment not only affect its
energy but also its electron-hole wave function. To this end, we show in Figure
5.17 the distributions of electron and hole densities on the A2 dimer for (a) vacuum
QM, (b) static QM/MM, and (c) polarized QM/MM, respectively. The associated
excitation energy and the effective charge transfer are shown below. As discussed
before, for the vacuum case the CT energy is of 5.78 eV is several 0.1 eV above the



5.4 Quantum-classical QM/MM simulations 125

−6

−4

−2

0

2

4

6

vacuum static polar

H-1 → L
(30%)

H → L
(40%)

H → L
(60%)

H → L
(100%)

Q
u
a
s
i-
p
a
rt

ic
le

E
n
e
rg

y
(e

V
)

Figure 5.18: Quasi-particle energy levels (eV) for HOMO-1, HOMO, LUMO, and LUMO+1
resulting from (a) a gas-phase (vacuum) calculation, (b) a QM/MM calcula-
tion with static environment, and (c) a QM/MM calculation with polarizable
environment. The color of horizontal lines indicates the localization of the
quasi-particle states on the either of the two nucleobases. Brown (dark green)
represents localization on AL (AU). For HOMO-1 and HOMO in the vacuum
case, the quasi-particle states are distributed over the whole base pair, which is
noted as a dashed line. Vertical arrows show the dominant transitions forming
the CT excitation.

energy of the UV active excitation. The amount of charge transferred in the CT state
is not integer but only 0.6 e, with the hole contribution on the lower nucleobase
(AL) and the electron contribution on the upper one (AU). Upon inclusion of the
static environment, the energy of this excitation is lowered by 0.44 eV to 5.34 eV.
While the amount of charge transferred between the two adenines remains at 0.6 e.
Despite this similarity, the characteristic of the excitation is changed significantly,
as can be seen in Fig. 5.17(b). The localization of electron and hole contribution
in the excitation is inverted. The electronic part is now localized on the lower
adenine molecule, while the hole part can be found on the upper one. Including
polarization effects, the general character of the CT excitation remains unaffected,
i.e., the hole is localized on AU and the electron on AL. Most notably, however, the
excitation exhibits integer charge transfer character in this situation.

The observation that the nature of the CT excitation can be affected dramatically by
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the complex molecular environment can be attributed to a combination of a shift of
energy levels and changed composition of transitions, as we discuss in detail below.
To this end, we analyze in particular the quasi-particle energy levels obtained at
the GW step of the respective calculations. Fig. 5.18 shows the energies of two
highest occupied and two lowest empty quasi-particle levels for vacuum, static, and
polarized calculations. Note that for an easier comparison, the zero of the energy
scale has been set to the center of the HOMO-LUMO gap in all individual cases.
The spatial distribution of all quasi-particle wave functions has been inspected and
is indicated by the horizontal lines’ color. Brown (dark green) lines indicate states
that are localized on AL (AU). In addition, the vertical lines show the contributions
of the quasi-particle transitions to the respective CT excitations in Fig. 5.19, with
the weights given as inset.

In the case of the vacuum calculation on the adenine dimer taken from the MD
snapshot, it turns out that the two occupied levels cannot be uniquely assigned
to either of the two nucleobases. Instead, the quasi-particle states delocalize over
the dimer, however not at equal distribution. Note, though, that they are only
separated by 0.13 eV in energy. To make this also visually clear, the two levels
are shown as dashed lines in Fig. 5.18. As can be seen from the two arrows, the
CT excitation in this environment-free QM calculation is composed of HOMO-1 →
LUMO and HOMO →LUMO transitions with nearly equal weight. The fact that the
combined weight is only 70 % emphasizes that even more quasi-particle transitions
play a significant role here. It is likely that this is directly linked to the delocalized
nature of the occupied states. Taken as a whole, the hole contribution of the CT,
arising in large parts from the HOMO and HOMO-1 states, is consequently localized
on AL. For the two unoccupied levels shown here, no strong delocalization over
the dimer can be identified. Since the LUMO is localized on AU, also the electron
density in the CT state is found on this nucleobase.

Turning now towards the results obtained from calculation performed in the static
QM/MM setup, one can spot significant changes as compare to the vacuum only
calculation. First, all quasi-particle states around the HOMO-LUMO gap are local-
ized on either of the two nucleobases of the excimer. In the occupied manifold,
one can now assign the HOMO to be uniquely localized on AU and HOMO-1 on
AL. As a consequence the energetic separation is more pronounced, amounting to
0.62 eV. At the same time also the two unoccupied states change character. While
also localized on either of the two nucleobases in the vacuum calculation, one
finds that the specific localization site is switched. The LUMO is now localized on
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AL, and LUMO+1 on AU. Combined with the fact that the dominant transition in
the CT excitation is a HOMO to LUMO transition from AU to AL with a weight of
approximately 60 %, see Fig. 5.18, the localization behavior of hole and electron
densities is inverted as compared to the vacuum case. The total transferred charge
is however still at 0.6 eV only, which can be attributed to the additional transitions
that collectively contribute to 40 % of the excited state.

We note in passing that the HOMO-LUMO gap is also slightly reduced by the em-
bedding in a static molecular environment, namely from 9.07 eV to 8.64 eV. A word
of caution: The fact that the reduction by 0.43 eV of this gap is numerically similar
to the lowering of the CT excitation energy by 0.44 eV is likely coincidental. Typ-
ically, a change in localization of the contribution quasi-particle states leads to a
very different composition of the effective electron-hole interaction that determines
the exciton binding energy and, concomitantly, the excitation energy.

From the quasi-particle levels in the polarized QM/MM calculation as shown on
the right-hand side of Fig. 5.18, one can see that the environment polarization
response modifies this picture even more. First of all, the shown two occupied
states are localized on the upper adenine nucleobase, and the two unoccupied
ones are localized on the lower one. The HOMO-LUMO gap is further reduced
to 7.52 eV, and the energetic separation of the occupied and unoccupied levels
is increased. Most remarkably, the CT excitation is in this case given as a pure
HOMO to LUMO transition, with the hole contribution being exclusively localized
on AU and the electron contribution exclusively localized on AL, yielding an integer
charge transfer.

The above detailed analysis of the characteristics of the quasi-particle and CT ex-
cited states for the minimum energy CT found in our data set clearly reveals that
the resulting excitation energies in complex molecular environments obtained from
QM/MM calculations are a result of an intricate interplay of several effects. In par-
ticular modifications on the nature of the quasi-particle states are highly significant
since their localization/delocaliztion characteristic have a profound and direct ef-
fect on the two-particle excitations. This interplay goes beyond a simple pertur-
bative energy correction due to the environment that can simply be applied to a
vacuum QM calculation.

To scrutinize whether the change of effective charge transfer in the CT excitation
observed for the intra-strand adenine dimer observed above is a more general effect
of embedding into a static and/or polarizable molecular environment, we show in
Fig. 5.19 the calculated amount of transferred charge as a function of center-of-
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Figure 5.19: Effective charge transfer character (in e) in the CT excitations as a function of
center-of-mass distance of the involved monomers (in nm). Results for intra-
and interstrand excitations are compared for the three different calculation
setups: vacuum, static QM/MM, and polarized QM/MM.

mass distance for the various calculation setups. We differentiate also between
intra- and inter-strand excitations.

It can be seen that for the excimers with the closest intermolecular separation
between 3 Å and 4 Å, which are exclusively intra-strand excitations, vacuum calcu-
lations yield only partial charge transfer upon excitation between 0.5 e and 0.9 e.
The same holds for inter-strand dimers with distances of 5 Å and 6 Å. All these
short distance dimers are essentially neighboring molecules whose electron density
can spatially overlap and the associated interaction yielding (partially) delocalized
quasi-particle states. For all dimers with separation larger than 0.7 nm center-of-
mass distance, i.e., second-nearest neighbors, such a direct interaction is not possi-
ble. In case of intra-strand excitations, it means that in a stack of three bases (base
trimer), only the outer two nucleobases are treated quantum-mechanically, while
the center one is part of the polarizable MM region. This is strictly speaking a fairly
strong approximation. When base stacking interactions are strong, the purely clas-
sical treatment cannot cover possible effects of forming delocalized states and the
associated partial charge transfer. Also, such explicit base pair interactions might
affect the CT excitation energies directly. A possible pathway to cover such effects
is to treat the full base trimer quantum-mechanically and embed this in a classical
environment. However, this case goes beyond the scope of this thesis and is left for
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future studies.

We focus in the following on the short-distance excimers. When the molecular en-
vironment is taken account, the static-only interactions (open symbols in Fig. 5.19)
affect the amount of effectively transferred charge roughly in the same fashion as
observed for the A2 system with minimal CT excitation energy discussed above. In
some cases, one can note a change of this effective charge by up to 0.3 eV. However,
at least for the first shell of intra- and inter-strand dimers, there is no observable
integer charge transfer state.

Only upon adding environment polarization effects (filled symbols in Fig. 5.19),
most of the CT states are approaching such an integer CT character. It stands to
reason that remnant delocalization for quasi-particle states is responsible for that.

In summary, the study of electronic excitations in prototypical aqDNA using the
QM/MM approach based on GW -BSE developed in this thesis has revealed that
charge transfer excitations are extremely sensitive to the specific atomistically re-
solved environment. For the lowest energy CT excitations in an intrastrand adenine
dimer, the approach predicts energies below that of the UV active single nucleobase
excitation. This has a large impact on the possibility of an initial (fast) decay of
such an UV excited state into a bi-nucleobase CT exciton, which is considered one
of the pathways for UV-induced DNA damage. The calculated redshift of the CT
excitation energy compared to a nucleobase dimer treated only in vacuum is of
the order of 1 eV, which matches expectations from experimental data. As shown
above, the QM/MM methodology used here allows to gain very detailed insight
into the mechanisms leading to the observed energies. It is possible to disentangle
the effects of the different levels of the explicit molecular environment on single-
particle and two-particle excitations. Incorporating GW -BSE into the presented
QM/MM setup is therefore an extremely powerful tool to study a wide range of
types of electronic excitations in complex molecular environments.





Chapter 6

Transfer integrals for exciton

transport

This chapter deals with the electronic couplings J AB , which we introduced in Chap-
ter 4, eq. 4.211. Here, we focus solely on exciton electronic coupling, as electronic
coupling for electrons and holes is already a quite well-established topic [129, 199,
200].

Although eq. 4.21 formally defines the electronic coupling, due to the intrinsic
two-particle nature of excitons more than one pathway for transfer between two
monomers A and B is possible, as depicted in Fig. 6.1. The electronic coupling is
also sensitive to the molecular arrangement, i.e, the distance and relative orienta-
tion between monomers, which will be explored in this chapter.

In this chapter a dimer projection (DIPRO) method for exciton coupling based
on many-body Green’s functions theory (see Chapter 3 and Chapter 5) is pre-
sented. Monomer electron-hole wave functions serve as pseudo diabatic states
and a projection method is employed to express these functions in the basis of
products of single-particle functions used to determine the GW -BSE Hamiltonian
in a supramolecular calculation. This dimer projection procedure allows for an ef-
ficient evaluation of the direct excitonic transfer integral J AB using linear algebra

1The content of this chapter is based on: Jens Wehner and Björn Baumeier. „Intermolecular Singlet
and Triplet Exciton Transfer Integrals from Many-Body Green’s Functions Theory“. In: J. Chem. Theory.

Comput. 13.4 (2017), pp. 1584–1594.
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Figure 6.1: Illustration of the different pathways for exciton transfer between chromophores
A and B . (i) Förster type energy transfer via exchange of a virtual photon. (ii)
Dexter (charge) transfer via simultaneous hop of the electron-hole pair. (iii) CT
mediated Dexter transfer via sequential hop of electron and hole.

methods.

GW -BSE, providing an accurate representation of long-range Coulomb and short-
range exchange interactions, is of particular relevance for describing the wide
range of possible excitonic coupling mechanisms, depending on the type of ex-
citation and the involved length scales. Singlets can exhibit significant coupling
even for distances exceeding 1nm, typically estimated in the Förster picture from
the interaction of the transition dipoles of the two chromophores involved in the
transfer [201], see Fig. 6.1(i). On shorter length scales, higher order multipole
terms in the Coulomb coupling [202] and short-range exchange effects can sig-
nificantly influence the distance and orientation dependence of singlet couplings.
Triplets couple exclusively via exchange interaction, which decays exponentially
with chromophore distance, and are therefore restricted to next-neighbor trans-
fers [36, 203]. For the exchange based contributions to singlet and triplet coupling,
two distinctly different pathways need to be considered. The electron-hole pair can
transfer either as an entity (Fig. 6.1(ii)) or via intermediate CT states [204] (see
Fig. 6.1(iii)). Inclusion of the CT mediated processes into an effective coupling is
particularly important since they can, at short chromophore distances, contribute
equally or even more than the direct process, depending on the details of the CT
wave function and its energy relative to those of the localized excitons. Approxi-
mate CT wave functions have previously been constructed using, e.g., constrained
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DFT to study their coupling to localized excitations derived from TDDFT [205].
GW -BSE allows to derive both from the same Hamiltonian, and to this end, in-
termolecular CT excitations of types A−B+ and A+B− are constructed within GW -
BSE-DIPRO as product states from the respective monomer single-particle orbitals.
All the couplings between the CT excitations , as well as, to the localized monomer
excitons are calculated. From these, an effective coupling Jeff

AB
is determined via a

reduction technique, which maps the complete multi-state system onto two effec-
tive states. Unlike previous approaches based on first-order perturbation theory,
this reduction technique method is also applicable to cases with energetic reso-
nances of CT and localized excitons.

In the following, GW -BSE-DIPRO is first applied to model configurations of pyrene
dimers at various distances and orientations. As small-molecule prototype systems,
these allow for a detailed analysis of the quality of the approach in application to
bright and dark singlet, as well as triplet excitons. Particular emphasis is placed on
the convergence of the results with respect to the number of included CT excita-
tions as well as the differences between the perturbation and reduction techniques.
After assessing the choice of the exchange-correlation functional in the density-
functional theory (DFT) calculations that underlie GW -BSE, optimizations of com-
putational parameters are evaluated. Later we use DCV5T-Me3, a dicyanovinyl
end-capped oligothiophene used as donor material in state-of-the-art organic solar
cells, for defining a benchmark for the application of GW -BSE-DIPRO to large-scale
morphologies of technologically relevant materials. For the molecular structure see
app. A.

6.1 Excitonic coupling elements via GW -BSE-DIPRO

In the following, diabatic states |A〉 and |B〉 are approximated by TDA monomer
electron-hole wave functions, |ΦA〉 and |ΦB 〉, as defined in eq. 3.131, because an
exact diabatization is for most systems difficult or even impossible as mentioned in
Chapter 4. With the BSE Hamiltonian of the dimer formed by the chromophores,
ĤD, one can setup an effective (2×2) generalized eigenvalue problem

HD ci = Sci ǫi (6.1)

with

HD =
(
〈ΦA |Ĥ D |ΦA〉 〈ΦA |Ĥ D |ΦB 〉
〈ΦB |Ĥ D |ΦA〉 〈ΦB |Ĥ D |ΦB 〉

)
(6.2)
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and

S =
(

1 〈ΦA |ΦB 〉
〈ΦB |ΦA〉 1

)
. (6.3)

ci is the i -th eigenvector and ǫi the corresponding eigenvalue. Because the nor-
malized monomer states are only approximations to the diabatic states, they are
not necessarily orthogonal, S 6= 1, and J AB cannot be directly identified with the off-
diagonal elements of HD . Instead, following the idea successfully established by
Valeev et al. for electronic coupling [199, 200], the generalized eigenvalue prob-
lem in eq. 6.1 first needs to be transformed into a standard eigenvalue problem

H̃
D

c̃i = c̃i ǫ̃i , (6.4)

via a Löwdin orthogonalization [206]. The choice for this technique is motivated by
the fact that unlike, e.g., the Schmidt orthogonalization, it treats both wave func-
tions on an equal footing and the resulting symmetrically orthogonalized functions
are the least distant in the Hilbert space from the original functions. With the or-
thonormalized states |Φ̃A(B)〉, the diagonal and off-diagonal elements of H̃

D can be
identified with the excitation energies ǫA(B) and exciton coupling elements J AB , re-
spectively. It should be noted that this construction of approximate diabatic dimer
states starting from monomer functions as above can be considered complementary
to the approximate diabatization of adiabatic dimer states via the Boys or Mulliken-
Hush scheme [207–209]. While such an approach is also feasible, it comes at a
higher computational cost in particular due to the fact that solutions to the BSE
equation eq. 3.130 for the dimer system are required. This time-consuming step
for dimers of larger molecules can be avoided using the approximation adopted
here, as will be outlined in the following.

With the orthonormalized states |Φ̃A(B)〉, the diagonal and off-diagonal elements
of H̃

D can be identified with the excitation energies ǫA(B) and exciton coupling
elements J AB , respectively.

What remains is to calculate the elements of HD and S. They can be written as
〈Φi |Ô|Φ j 〉 with i ∈ A,B and Ô = {Ĥ D ,1}. In the following, |v〉, |α〉, |β〉 (|c〉, |α′〉, |β′〉)
are occupied (empty) single-particle orbitals of the dimer, monomer A, and mono-
mer B , respectively. With this, the electron-hole wave functions for the localized
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monomer excitations (eq. 3.131) can be written as

|ΦA〉 =
∑

αα′
Aαα′ |αα′〉 (6.5)

|ΦB 〉 =
∑

ββ′
Bββ′ |ββ′〉. (6.6)

Inserting the identity I =∑
vc |vc〉〈cv | twice into the expression for the off-diagonal

matrix elements of eq. 6.2, and using the above definitions of |ΦA〉 and |ΦB 〉 from
eq. 6.6 yields:

〈ΦA |Ô|ΦB 〉 =
∑
vc

∑

v ′c ′

∑

αα′
Aαα′〈αα′|vc〉〈vc|Ô|v ′c ′〉

∑

ββ′
Bββ′〈v ′c ′|ββ′〉

=
∑
vc

∑

v ′c ′
κA

vc〈vc|Ô|v ′c ′〉κB
v ′c ′

(6.7)

In practical calculations, Ô = ĤD is setup directly in terms of |vc〉, so 〈vc|ĤD|v ′c ′〉 =
HBSE

vc,v ′c ′ is readily available. For Ô = 1 it holds that 〈vc|v ′c ′〉 = δv v ′δcc ′ yielding

〈ΦA |Ĥ D |ΦB 〉 =
∑
vc

∑

v ′c ′
κA

vc HBSE
vc,v ′c ′κ

B
v ′c ′ =κ

AHBSE
κ

B

〈ΦA |ΦB 〉 =
∑
vc

κA
vcκ

B
vc =κ

A
κ

B .
(6.8)

The quantities κA(B) are projections of the monomer electron-hole wave functions,
expressed in monomer single-particles functions, onto dimer single-particle or-
bitals, e.g.:

κA
vc =

∑

αα′
Aαα′〈αα′|vc〉. (6.9)

These projections are evaluated by inserting the expansion of the respective single-
particle orbitals in terms of the atomic orbital basis. When dimer and monomer
calculations share the same basis set of atomic functions {|χµ〉}, it holds that

|v〉 =
∑
µ

dv,µ|χµ〉 |c〉 =
∑
µ

dc,µ|χµ〉 (6.10)

|α〉 =
∑
µ

dα,µ|χµ〉 |β〉 =
∑
µ

dβ,µ|χµ〉. (6.11)

Thus the terms of type 〈αα′|vc〉 occurring in eq. 6.9 can be rewritten as:

〈αα′|vc〉 = 〈α|v〉〈α′|c〉 =
∑

µµ′
dα,µdv,µ′〈χµ|χµ′〉

∑

νν′
dα′,νdc,ν′〈χν|χν′〉

=
(
dT
αS dv

)(
dT
α′S dc

)
,

(6.12)

where S is the overlap matrix of the atomic orbitals.



136 Transfer integrals for exciton transport

6.2 Influence of intermolecular CT states

While the projection technique as presented above captures the coupling mecha-
nisms depicted in Fig. 6.1(i) and (ii), the charge transfer state mediated mechanism
(iii) is not accounted for. The aim is to include these effects, which are CT inherent
and whose interactions are contained in the BSE Hamiltonian, but which are not
represented by the subspace spanned by |Φ̃A(B)〉.

Intermolecular CT excitons are approximated as product states of two single-particle
orbitals localized on different monomers, i.e.

|C T 〉−+(i , j ) = |A−
i B+

j 〉 = |α′
L+i 〉|βH− j 〉

|C T 〉+−(i , j ) = |A+
i B−

j 〉 = |αH−i 〉|β′
L+ j 〉,

(6.13)

where αH (βH) is the highest occupied molecular orbital (HOMO) and αL (βL) is
the lowest unoccupied molecular orbital (LUMO) of chromophore A(B), respec-
tively, and i , j = 0, . . . , M . M is the number of additional orbitals belove (above)
the HOMO (LUMO) taken into account2. In total, a set {|C Ti 〉} comprising NCT =
2(M +1)2 CT excitations is generated according to eq. 6.13.

As these approximate CT states are not orthogonal to the orthonormalized localized
states after eq. 6.4, each |C Ti 〉 is first individually orthogonalized with respect to
|Φ̃A(B)〉

|C T ′
i 〉 = |C Ti 〉−〈C Ti |Φ̃A〉|Φ̃A〉−〈C Ti |Φ̃B 〉|Φ̃B 〉 (6.14)

and then normalized via |C T i 〉 = |C T ′
i
〉/

√
〈C T ′

i
|C T ′

i
〉.

Equation 6.4 then turns into a ([2+NCT]× [2+NCT]) eigenvalue problem with block
structure of the augmented Hamiltonian:

(
HFE HFE-CT

HCT-FE HCT

)
Ci = ǫi

(
1FE 0

0 SCT

)
Ci , (6.15)

where HFE = H̃
D . In a final step, the subspace of CT states in eq. 6.15 is diagonal-

ized, i.e., solving
HCTCCT

i =Ω
CT
i SCTCCT

i . (6.16)

2For the sake of a compact presentation, M is chosen to be the same for both occupied and unoccu-
pied levels of both molecules forming the dimer. In the actual implementation, these numbers can be
chosen independently to account for potentially different densities of state.
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The eigenfunctions |C̃ T i 〉 =
∑

j C (i )
j
|C T j 〉 and energies Ω

CT
i

are used to transform
eq. 6.15 into an ordinary eigenvalue problem:

(
H̃

FE
H̃

FE-CT

H̃
CT-FE

H̃
CT

)
C̃i = ǫ̃i C̃i , (6.17)

with H̃
CT = diag(ΩCT

i
). For the special case of M = 0, i.e., construction of two CT

like excitations from the respective HOMO and LUMO single-particle orbitals, these
corresponds to the (2+2)× (2+2) system




ǫA J AB J A,1 J A,2

JB A ǫB JB ,1 JB ,2

J1,A J1,B Ω1 0

J2,A J2,B 0 Ω2


 C̃i = ǫ̃i C̃i (6.18)

6.2.1 Perturbation theory

To obtain an effective excitonic coupling element Jeff
AB

between |Φ̃A〉 and |Φ̃B 〉, that
includes effects from coupling via intermediate CT excitations, the influence of the
latter on the localized states has to be evaluated. Within first order perturbation
theory, the corrections |δΦ̃A(B)〉 to |Φ̃A(B)〉 due to the |C̃ T i 〉 can be expressed as [107,
204]:

|δΦ̃A(B)〉 = 1

2

∑

i

〈C̃ T i |Ĥ |Φ̃A(B)〉
ECT

i
−E A(B)

|C̃ T i 〉. (6.19)

The modified coupling is then obtained to first order in |δΦ̃A(B)〉 as:

Jeff
AB =〈Φ̃A +δΦ̃A |Ĥ |Φ̃B +δΦ̃B 〉

≈〈Φ̃A |Ĥ |Φ̃B 〉+〈δΦ̃A |Ĥ |Φ̃B 〉+〈Φ̃A |Ĥ |δΦ̃B 〉
=〈Φ̃A |Ĥ |Φ̃B 〉+

1

2

∑

i

〈Φ̃A |Ĥ |C̃ T i 〉〈C̃ T i |Ĥ |Φ̃B 〉
[

1

ECT
i

−E A
+ 1

ECT
i

−E B

]
.

(6.20)

All terms required to evaluate eq. 6.20 can be identified with elements of the
Hamiltonian in eq. 6.17: 〈Φ̃A |Ĥ |Φ̃B 〉 is the off-diagonal element of H̃

FE (i.e., the
unperturbed excitonic coupling), 〈Φ̃A |Ĥ |C̃ T i 〉 are elements of H̃

FE-CT, and the en-
ergies occurring in the denominator are the diagonal elements of H̃

FE and H̃
CT,
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respectively. For the example of the M = 0 case as in eq. 6.18, the expression for
the effective excitonic coupling element explicitly reads:

Jeff
AB = J AB + 1

2

∑

i=1,2

J A,i Ji ,B

[
1

Ωi −ǫA
+ 1

Ωi −ǫB

]
. (6.21)

6.2.2 Reduction method

From the structure of eq. 6.20, it is apparent that the perturbative approach to
account for the influence of CT excitations on excitonic coupling is not readily
applicable to situations in which a CT excitation is energetically in, or close to,
resonance with the localized excitations. Instead of going to even higher orders
of perturbation theory, an alternative technique that starts from the augmented
Hamiltonian of eq. 6.17 is proposed.

The main idea is to reduce the augmented (2+ NCT)× (2+ NCT) system to an ef-
fective (2× 2) system. In spirit similar to perturbation theory, the states forming
this reduced system are expected to be close to the original states |Φ̃A(B)〉, and
consequently the effects of the intermediate CT states is mapped onto a coupling
between those states. To achieve this, first eq. 6.17 is diagonalized, yielding the
eigenenergies ǫ̃i and the set of corresponding eigenvectors C̃i .

From this, two elements C̃a(b) are chosen according to having the maxmium overlap
with the states Φ̃A and Φ̃B , respectively. Projecting C̃a(b) onto the subspace spanned
by Φ̃A and Φ̃B , followed by a Löwdin transformation, yields new orthonormalized
vectors C∗

a(b).

The diagonal (2×2) matrix ǫ
∗ formed with the energies ǫ̃a/b can be transformed to

its non-diagonal form using the transformation matrix U =
(
C

∗
aC

∗
b

)
. Resulting in a

reduced, effective system

Heff = U ·ǫ∗ ·UT , (6.22)

which allows to read-off the effective excitonic coupling Jeff
AB

as its offdiagonal ele-
ments.

To illustrate the differences and similarities between obtaining the effective cou-
pling according to this reduction method (RM) and the perturbation theory (PT),
it is convenient to consider a simplified model of the minimal system introduced in
eq. 6.18. Specifically, a symmetric system is assumed with ǫA = ǫB = ǫ, Ω1 =Ω1 =Ω,
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and J A(B),1(2) = JCT. Using perturbation theory, the effective coupling reads with
∆ǫ=Ω−ǫ

J
eff,PT
AB

= J AB +
2J 2

CT

∆ǫ
, (6.23)

with the obvious resonance for ∆ǫ= 0. Using the reduction method yields an ana-
lytical solution

J
eff,RM
AB

= 1

4

[
3J AB −∆ǫ+

√
(J AB +∆ǫ)2 +16J 2

CT

]
. (6.24)

In the limit of ∆ǫ→ 0, J
eff,RM
AB

remains finite. Away from the energetic resonance,
i.e. ∆ǫ≫ J AB , JC T , it holds that

J
eff,RM
AB

= 1

4


3J AB −∆ǫ+ (J AB +∆ǫ)

√

1+
16J 2

CT

(J AB +∆ǫ)2




≈ 1

4

[
3J AB −∆ǫ+ (J AB +∆ǫ)

(
1+

16J 2
CT

2(J AB +∆ǫ)2

)]

= J AB +
2J 2

CT

J AB +∆ǫ
≈ J AB +

2J 2
CT

∆ǫ
= J

eff,PT
AB

(6.25)

For more complex systems with less symmetry or M > 0, no closed form analytical
expressions for J

eff,RM
AB

can be obtained. Therefore, the method is in the following
employed and assessed in practical application to realistic molecular systems.

6.3 Results

To assess the quality of the procedures outlined in the previous section, model con-
figurations of pyrene dimers at various distances and orientations are considered.
Within the TDA of GW -BSE, pyrene exhibits energetically well separated optically
inactive (S1) and active (S2) singlet as well as triplet (T1) excitations. Analysis of
the excitonic couplings for these different types of excitations allows scrutiny of
how well the different pathways, see Fig. 6.1, are accounted for. The convergence
of the results with respect to the number of included CT excitations, the differ-
ences between the perturbation and reduction techniques, basis set dependence,
as well as the influence of the choice of the exchange-correlation functional in
the density-functional theory (DFT) calculations that underlie the GW -BSE steps
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are evaluated. Later, optimizations of computational parameters are devised using
DCV5T, defining a benchmark for the application of GW -BSE-DIPRO to large-scale
morphologies of technologically relevant materials.

For the practical calculations in this chapter the starting Kohn-Sham calculations
were performed using the Gaussian03 package [149], Stuttgart/Dresden effective
core potentials [148] and the associated basis sets that are augmented by addi-
tional polarization functions [173] of d symmetry. The auxiliary basis sets used to
represent the polarization include orbitals of s, p, and d symmetry with the decay
constants α (in a.u.) 0.20, 0.67, and 3.0 for N and S, 0.25, 0.90, 3.0 for C, and 0.4
and 1.5 for H atoms, yielding converged excitation energies.

6.3.1 Model pyrene dimers

The geometry of a single pyrene molecule was optimized on DFT level using the
PBE functional [59] with the 6-311G(d,p) basis set. From the this geometry, ideal
π-stacked dimers with intermolecular distances ranging from 2.7 Å to 7 Å are con-
structed. GW -BSE calculations are performed for the monomers, as well as the
dimer configuration (only setup of HBSE), and coupling elements determined ac-
cording to the projection method.

In this configuration the molecules forming the dimer are related by a symmetry
transformation and the energetic states of the monomers are well separated, it
is also possible to obtain the effective excitonic coupling via 2Jeff = ∆Ω

D , where
∆Ω

D is the Davydov splitting of the respective monomer excitation in the dimer. To
facilitate this comparison, full GW -BSE-TDA calculation for the dimer configuration
were performed and the splitting from the resulting spectrum extracted.

Figure 6.2 shows the distance dependence of |J | for (a) S1, (b) S2, and (c) T1 excita-
tions obtained via GW -BSE-DIPRO with the reduction method. For all excitations
large deviations from the Davydov splitting are found when no intermediate CT
states (NCT = 0) are included. At the typical π-π stacking distance of 3.5 Å, these
deviations can be on the order of 1-2 orders of magnitude. For the two singlet
states, the observed underestimation decreases exponentially with distance, typ-
ical for an exchange based coupling mechanism as the one mediated by charge
transfer. Inclusion of CT excitations ameliorates this situation. For S2 and T1,
taking only two CT excitations between the respective HOMO and LUMO states
(M = 0, NCT = 2) into account practically recovers the split results. In contrast, no



6.3 Results 141

10−5

10−4

10−3

10−2

10−1

100

101

3 3.5 4 4.5 5 5.5 6 6.5 7

pyrene S1

s
in

g
le

t
c
o
u
p
lin

g
|J
| S

1
(e

V
)

dimer separation d (Å)
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Figure 6.2: Distance dependence of excitonic couplings for (a) S1, (b) S2, and (c) T1 excita-
tions in an ideally π-stacked pyrene dimer. Results obtained via GW -BSE-DIPRO
with the reduction method for increasing numbers of included CT excitations
are compared to the reference determined from the Davydov splitting in a full
supermolecular calculation.
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effect can be registered for S1. Here, an agreement with the Davydov split estimate
can only be achieved for M = 1, i.e., by construction of additional CT excitations
based on HOMO-1 and LUMO+1, respectively. This is due to the fact that, unlike
S2 and T1, which have the main contribution from a HOMO→LUMO transition,
the first singlet excitation in single pyrene is formed by a linear combination of
HOMO-1→LUMO and HOMO→LUMO+1, and the choice of M in the reduction
method needs to reflect the composition of the various localized excited states. In
all cases, converged exciton couplings are achieved including NCT = 50 CT excita-
tions (M = 4). Note that for distances ≥ 6Å, the coupling in S1 and T1 becomes so
small that the split estimate becomes numerically inaccurate.

From the converged results and the Davydov splittings it can be seen that the
excitonic couplings based on GW -BSE simultaneously exhibit characteristics of
short-range exchange and long-range Coulomb coupling, depending on the type
of excitation. For S1 (with a negligibly small transition dipole) and T1, |J | decays
proportional to exp(−αd) with α(S1) ≈ 3.2Å−1 and α(T1) ≈ 3.4Å−1, respectively. In
contrast, the optically active S2 shows an exponential decay for distances in the
range of 3-4.5 Å (α(S2) ≈ 1.7Å−1), before the effective coupling is dominated by
slowly-decaying Coulomb contributions.

To ascertain the quality of excitonic coupling elements obtained from GW -BSE,
they are in the following compared to ones obtained from standard methods of sim-
ilar complexity: time-dependent Hartree-Fock (TDHF), TDDFT/B3LYP, and confi-
guration-interaction singles (CIS). Since the projection technique as used in GW -
BSE-DIPRO is not available for those, the comparison is performed for the Davy-
dov splittings in the ideally π-stacked dimer configurations, using the same ECP
and basis set. The respective results are listed in Tab. 6.1 for dimer separations of
d = 3.0−6.0Å. At all separations, GW -BSE, TDHF, and CIS agree well for the dark
S1 state. Same holds for the optically active S2. Here, the data from all four meth-
ods practically agree at short and long distances, while in the intermediate region
TDDFT appears to decay slightly faster. All in all, a good agreement between all
four methods can be noted for singlets. For the T1 state all methods show approxi-
mately the same decay of the coupling with separation. Note however, that TDHF
calculations suffered from triplet instabilities yielding negative excitation energies,
which led to the results being discarded [210, 211].

In many realistic molecular aggregates, chromophores do not arrange in an ideal
π-stack as assumed in the previous section. Instead, they assume relative positions
and orientations characterized by shifts and rotations which are not compatible
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Figure 6.3: Rotational dependence of excitonic couplings for (a) S1, (b) S2, and (c) T1 ex-
citations in a pyrene dimer. The configuration at φ= 0◦ corresponds to an ideal
π-stacking at a distance of 6.5 Å. Results obtained via GW -BSE-DIPRO with the
reduction method for increasing numbers of included CT excitations.
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Table 6.1: Excitonic coupling elements |J | from Davydov splitting (in eV) for S1, S2, and T1

excitations in an ideally π-stacked pyrene dimer with varying distance d , as ob-
tained by GW -BSE, TDHF, TDDFT/B3LYP, and CIS, respectively. For d = 6.0Å the
coupling in S1 and T1 becomes so small that the split estimate becomes numeri-
cally inaccurate and is therefore omitted.

type d = 3.0Å d = 4.0Å d = 5.0Å d = 6.0Å

Davydov split S1

GW -BSE 6.13 ·10−1 3.70 ·10−2 1.53 ·10−3

TDHF 6.24 ·10−1 4.94 ·10−2 2.50 ·10−3

TDDFT 6.81 ·10−1 1.08 ·10−1 8.35 ·10−3

CIS 6.41 ·10−1 4.77 ·10−2 2.50 ·10−3

Davydov split S2

GW -BSE 9.57 ·10−1 1.71 ·10−1 4.80 ·10−2 2.18 ·10−2

TDHF 8.38 ·10−1 1.40 ·10−1 5.11 ·10−2 3.22 ·10−2

TDDFT 6.74 ·10−1 7.36 ·10−2 3.45 ·10−2 2.87 ·10−2

CIS 8.87 ·10−1 1.55 ·10−1 5.60 ·10−2 3.56 ·10−2

Davydov split T1

GW -BSE 5.12 ·10−1 2.54 ·10−2 8.51 ·10−4

TDDFT 5.26 ·10−1 3.83 ·10−2 1.55 ·10−3

CIS 3.97 ·10−1 2.33 ·10−2 1.70 ·10−3

with the basic symmetry operations. Due to the asymmetry in the geometry an
estimation of coupling elements from Davydov splits is inaccurate and the use of
techniques such as GW -BSE-DIPRO is indispensable. To assess the procedure for
such a case, starting from the ideal π-stacking configuration with an intermolec-
ular distance of 6.5 Å one molecule is rotated along its long axis from 0◦ to 90◦

(see, cf. inset in Fig. 6.3(b)). As for the distance dependence, the convergence of
the excitonic coupling elements with respect to the number of included CT states
is investigated for S1, S2, and T1. The results shown in Fig. 6.3 generally exhibit
more structure compared to the distance dependence in Fig. 6.2 as a consequence
of intricate interactions between the two π systems upon rotation. It is also evident
that for rotation angles of up to approximately 50◦, converged results are obtained
for NCT = 50 for all excitations. At larger rotations, strong couplings are found for
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S1 and T1 in particular. In this region, the convergence is much slower and up to
2450 (M = 34) intermediate CT states are required. This is probably a result of the
stronger and asymmetric polarization of the dimer states with respect to the mono-
mer calculations. It should be emphasized, however, that the two chromophores
approach each other very closely for those angles. At the perpendicular configura-
tion, the minimal distance is reduced to only 3.1 Å and concomitantly strong effects
and mixing of single-particle functions can be expected.

To highlight the differences and similarities, distance and rotational dependence of
singlet and triplet excitonic transfer integrals as obtained by the reduction method
presented in this work and the perturbation theory are compared for the model
pyrene configurations. In all cases, 50 CT states are included in the distance de-
pendence, and 2450 in the rotational dependence. As is apparent from Fig. 6.4(a),
the distance dependence of the coupling constants for S1 and T1 shows good agree-
ment between the approaches. Only at distances smaller than 3.5 Å perturbation
theory slightly overestimates the RM results, which agree with the Davydov split
estimates, cf. Fig. 6.2. For the optically active S2 state, however, significant devi-
ations can be observed. For an intermolecular separation of 3.5 Å, a characteristic
resonance structure is found, representing a massive overestimation of the trans-
fer integral by nearly two orders of magnitude. Deviations are noticeable around
this typical π-stacking distance in many molecular semiconductors up to a distance
of 4.5 Å. For the rotated systems, see Fig. 6.4(b), both approaches yield qualita-
tively similar behavior with some quantitative deviations up to a factor of 2 for the
close contact structures at large rotation angles. All in all, the reduction method
compares favorably with the perturbation theory approach.

The basis set used in this work is optimized for the use with the effective core
potentials [148], which will be referred to as ubecp in the following. All results
presented to this point have been obtained from calculations, in which (d,p) polar-
ization functions of the 6-311G basis set [173], have been added to form the basis
ubecppol. To further gauge the convergence of the reported values for the singlet
and triplet exciton coupling elements with respect to the basis set choice, two ba-
sis sets with diffuse functions (ubecppol+, s shells, decay constant 0.0438a.u. for
C, and 0.102741a.u. for H) and (ubecppol++, additional p shell, decay constant
0.0691a.u. for C) have been prepared as well. Three representative configurations
of the pyrene dimers have been chosen: ideal π-stack geometries with distances
3.5Å and 7.0 AA, respectively, and one at d = 5.5Å with an additional rotation by
45◦. For the latter no results could be obtained using the ubecppol++because of
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behavior.
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Table 6.2: Basis set dependence of the calculated transfer integrals |J | (in eV) for S1, S2, and
T1 states in representative configurations of pyrene dimers. The average timings
for the different calculations relative to the one with the smallest ubecp set are
given at the bottom.

type ubecp ubecppol ubecppol+ ubecppol++

ideal π-stack, d = 3.5Å

S1 1.90 ·10−1 1.85 ·10−1 1.87 ·10−1 1.95 ·10−1

S2 4.59 ·10−1 4.20 ·10−1 4.31 ·10−1 4.53 ·10−1

T1 1.42 ·10−1 1.37 ·10−1 1.39 ·10−1 1.46 ·10−1

ideal π-stack, d = 7.0Å

S1 1.86 ·10−5 1.35 ·10−5 1.33 ·10−5 1.32 ·10−5

S2 2.52 ·10−2 2.16 ·10−2 2.19 ·10−2 2.29 ·10−2

T1 4.18 ·10−7 3.08 ·10−7 2.47 ·10−7 1.62 ·10−7

rotation φ= 45◦, d = 5.5Å

S1 3.44 ·10−4 4.18 ·10−4 4.31 ·10−4

S2 5.91 ·10−2 4.88 ·10−2 5.06 ·10−2

T1 3.97 ·10−5 5.04 ·10−5 6.63 ·10−5

Timings 1.00 1.26 1.50 2.20

convergence issues in the underlying DFT calculation. The obtained couplings for
S1, S2, and T1 excitons for these configurations are listed in Tab. 6.2. It is clear
that the results are fairly independent of the choice of the basis set. Even the use
of the standard ubecp without additional polarization or diffuse functions yields
excitonic transfer integrals in reasonable agreement with the ones obtained by ex-
tended basis sets. This is of great significance for the computational costs listed at
the bottom of Tab. 6.2. It is obvious that the addition of diffuse functions in par-
ticular increases the calculation time dramatically. The control of the computation
time with the choice of basis set gains more importance for molecules bigger than
pyrene and will be further discussed below.

Until this point, the discussion of the GW -BSE-DIPRO approach has been limited
to results obtained via GW -BSE based on DFT calculations using the semi-local
PBE functional. It is known from literature that this technique can be marred
by a starting point dependence, i.e., that the computed excited states depend on



148 Transfer integrals for exciton transport

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

3 3.5 4 4.5 5 5.5 6 6.5 7

(a)

S2

S1

T1
pyrene

c
o
u
p
lin

g
|J
|
(e

V
)

dimer separation d (Å)
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Figure 6.5: Comparison of the distance dependence of exciton transfer integrals in ideally
π-stacked dimers of (a) pyrene and (b) DCV5T, obtained starting from DFT cal-
culations using PBE and B3LYP functionals, respectively. 50 CT states have been
taken into account using the reduction method.
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the quality of the underlying ground-state calculation [212]. In particular, one-
shot G0W0 techniques are affected by this. As a result of the iterative procedures
regarding the refinement of quasi-particle energies as described in Chapter 5 for
the GW -BSE implementation used here, this problem is alleviated. To confirm this,
the distance dependence of the exciton transfer integrals has been recalculated
using DFT with the B3LYP hybrid functional for the pyrene dimer. The comparison
to the results based on PBE as shown in Fig. 6.5(a) reveals practical independence
on the DFT starting point for all three types of excitations considered.

6.3.2 Optimizations for application to large scale morphologies

In the following, the focus shifts to the evaluation of GW -BSE-DIPRO to chromo-
phores of sizes typical and relevant for application in organic devices. To this end,
exciton transfer integrals in an ideal stack of DCV5T molecules are investigated for
the lowest energy singlet (S1, optically active) and triplet excitons (T1), respec-
tively.

The obtained distance dependence is shown in Fig. 6.5(b), with the GW -BSE calcu-
lations being based on PBE and B3LYP DFT ground states. As for the pyrene dimer,
different behavior is observed for the two excitations. The coupling of the optically
active singlet states is dominated by long-range Coulomb interactions, representing
Förster type coupling. In contrast, T1 shows an exponential distance dependence,
as expected for a Dexter type exchange coupling. Results for the two functionals
are practically identical, with a shift to slightly larger S1 couplings noticeable for
PBE compared to B3LYP. This is a consequence of an approximately 9 % bigger
transition dipole moment from the PBE calculation.

The above confirms that the GW -BSE-DIPRO method used in this work is well
applicable to complex molecular systems of relevant size. However, the investi-
gation of, e.g., exciton diffusion in realistic large-scale morphologies requires the
calculation of tens of thousands excitonic transfer integrals. It is therefore highly
desirable to devise optimizations of the involved computational procedures. To
this end, approximations on DFT, GW -BSE, and GW -BSE-DIPRO levels to decrease
computation times are evaluated.

On the DFT level, it has been shown for the calculation of charge transfer integrals
that it is computationally advantageous to use an initial guess for the dimer calcu-
lation formed by merging the involved densities of the monomer fragments [200].
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Table 6.3: Effect of different computational parameters for DFT and GW -BSE calculations
on run times and exciton transfer integrals for S1 and T1 in a DCV5T dimer sep-
arated by 3.5 Å. Calculations were performed using 4 threads on a i5-4690 CPU
@3.50 GHz. The value of 0.22 Ryd for the fixed shift runs was taken from the
result of the iterative procedure at 3 Å.

DFT@PBE GW -BSE Time [min:s] |J |S1 [eV] |J |T 1 [eV]

SCF iterate 44:50 0.5354 0.1709

SCF fixed 40:28 0.5355 0.1710

noSCF iterate 37:51 0.5277 0.1721

noSCF fixed 33:40 0.5278 0.1721

This also allows to perform only a single SCF step on the dimer, instead of obtaining
a fully self-consistent solution.

A possible simplification of the GW -BSE run concerns the iterative procedure used
to scissor shift the Kohn-Sham spectrum before calculating W . Instead of iterating
this shift for each dimer configuration a fixed value can be predetermined, e.g.,
from a single representative configuration or averaging over a couple.

In Tab. 6.3 the run times and exciton transfer integrals for S1 and T1 in a DCV5T
dimer separated by 3.5 Å are compared for different combinations of computational
procedures. Using a fixed shift in GW -BSE saves on average 3-4 iterations, which
for this system translates to reducing the runtime by approximately 4 min. The
effect on the exciton couplings is negligible. Similarly, using the noSCF procedure
in the DFT part has a slightly bigger effect decreasing the singlet coupling by about
1.5 %. Combining both approximations cuts computation time by about 25 %.

Additionally, the distance dependence of triplet and singlet couplings in DCV5T has
been calculated for all four options given in Tab. 6.3. The results shown in Fig. 6.6
underline that the choice of noSCF and fixed shift does not lead to larger deviations
even at greater intermolecular separations. Even though this choice reduces the
computational time by 25 % compared to using fully self-consistent procedures on
all levels, the remaining absolute time is still substantial. In particular, the slow
distance decay of couplings for optically active singlets implies the necessity to
determine transfer integrals for a number of chromophore dimers that is intractable
for any first-principles based technique such as GW -BSE-DIPRO.

The setup of the dimer GW -BSE Hamiltonian matrix takes up a significant amount
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Figure 6.6: Comparison of the effect of different approximations on th distance dependence
of triplet (a) and singlet (b) couplings in DCV5T. Inset in (b) shows additionally
estimates from transition partial charges and transition dipole interactions for
very long distances.
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Figure 6.7: Relative reduction of computation time of the GW -BSE calculation (excluding
the DFT part) for the DCV5T singlet coupling. Couplings were calculated for 5
distances and the relative errors with respect to the high dimension BSE result
averaged.

of the total computer time when applied to larger molecules. All calculations in
this chapter used all nocc occupied and as many virtual single-particle levels in
the construction of the product basis for the dimer. With nocc = 186 for DCV5T,
this corresponds to a matrix of dimension 34569. Naturally, calculations can be
accelerated by reducing the number of single particle states taken into account in
this step. Using several values of the factor f to set the range single particle states
considered to [nocc(1− f ) : nocc(1+ f )], the relative reduction in computational time
and relative deviation of singlet couplings is evaluated. As depicted in Fig. 6.7,
reducing f to 0.5 approximately halves the computational cost, while only a 8%

decrease in accuracy is observed.

Furthermore, it can be assumed, that beyond some distance, the long-ranged cou-
plings are given as classical Coulomb interactions of transitions densities of the
constituent chromophores. It is convenient to map the full transition density to a
set of atomic partial charges that reproduce its electrostatic potential [213, 214]
via e.g. the CHELPG method described in sec. 4.2.3. Such a classical model allows
the computation of many thousands excitonic transfer integrals per minute using:

J
TrEsp
AB

=
∑

a∈A

∑

b∈B

qa qb

|ra − rb |
, (6.26)
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where J
TrEsp
AB

is the coupling between molecule A and B and {qa} and {qb} are the
respective sets of atomic partial charges for the transition densities. As can be
seen in Fig. 6.6(b) the results from this TrESP approach agree well with the GW -
BSE-DIPRO couplings beyond a separation of 5 Å, a typical distance at which inter-
molecular exchange effects can be expected to be negligible relative to the Coulomb
interactions of large transition densities. The inset shows a comparison between
classical interactions of transition charges with those of transition dipoles (TrDip),
a coarser and often employed representation of transition densities. At a distance
of 5 Å, the dipole coupling overestimates the TrESP and GW -BSE-DIPRO results
by one order of magnitude. Practical agreement can only be observed for separa-
tions larger than 60 Å, casting doubts about the use of the TrDip approximation for
intermediate distances.

6.4 Summary

In this chapter we derived a general approach to determine orientation and distance-
dependent effective intermolecular exciton transfer integrals from quantum many-
body Green’s functions theory within the GW approximation and the Bethe-Salpeter
Equation (BSE). A projection technique is employed to obtain the excitonic cou-
pling by forming the expectation value of a supramolecular BSE Hamiltonian with
electron-hole wave functions for excitations localized on two separated chromo-
phores. Within this approach effects of coupling mediated by intermolecular charge
transfer (CT) excitations are accounted for via a reduction technique that proves
to be applicable to situation in which conventional perturbative approaches break
down.

Application to model dimers reveals an accurate description of short-range ex-
change and long-range Coulomb interactions for the coupling of singlet and triplet
excitons by this GW -BSE-DIPRO technique. An optimal strategy for simulations of
full large-scale morphologies includes a combination of loosening of self-consistency
parameters, reduction of the active space in GW -BSE, and, for optically active sin-
glets, a change to classical transition density-based interaction models at larger
distances. The strategies to evaluate the electronic couplings will be used to calcu-
late couplings in a large scale morphology.





Chapter 7

Exciton dynamics in DCV5T

In this chapter we will investigate the singlet and triplet exciton dynamics in an
organic crystal as a prototypical example of exciton transport. The material in-
vestigated is DCV5T-Me(3,3), a dicyanovinyl end-capped oligothiophene used as
donor material in state-of-the-art organic solar cells [147]. To simulate exciton
trajectories we will use the rate approach outlined in Chapter 4 with parameters
calculated from GW -BSE calculations. As explained in Chapter 2, the diffusion of
excitons towards the donor-acceptor heterojunction is the first step in the gener-
ation of free charge carriers in an organic solar cell. A better understanding of
exciton diffusion and decay is paramount for the design of more efficient organic
solar cells. The efficiency of triplet vs singlet transport is still debated, as singlets
due to the long-ranged coupling move much faster but also decay quickly to the
ground state via radiative recombination, limiting their diffusion length [13, 215].

Rate based models for exciton transport have already been studied by various
groups [33, 34, 107, 215]. Most studies have focused on singlet transport, as elec-
tronic couplings can be approximated by transition dipole coupling [201]. In Chap-
ter 6 we showed, however, that Dexter transfer, which is not captured by transi-
tion dipole coupling, increases the coupling by more than a factor of two at short
separations. Such a strong singlet coupling can also lead to a breakdown of the
assumptions underlying the Marcus rate. In our multiscale framework we explore
if the strong coupling and the breakdown of the Marcus rate have a meaningful
impact on the obtained diffusion lengths.
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Furthermore, rate models had so far only been used for excitons on relatively small
(400 molecule) [34, 107] systems, which limits the distance over which singlet
excitons can be transferred. In contrast, the system studied in this chapter is four
times as large and allows us to evaluate the importance of long-ranged singlet
couplings compared to next-neighbor interaction for singlet diffusion lengths.

Next to the increase in computing power, the increase in system size was possible
due to the usage of an efficient GW -BSE implementation, which allows us to treat
singlet and triplet couplings on an identical footing and compare their diffusion
lengths, to use larger basis sets than formerly used1, and use only one method for
the calculation of all relevant values.

Finally, we explore the influence of energetic disorder due to internal vibrations
and chemical environment on the exciton diffusion length and discuss the proper
protocol for its inclusion in the rate equations.

Before we answer these questions, we detail the multiscale workflow, that was
already sketched in Chapter 4, and present the intermediate results, which enter
the rate equations.

7.1 Multiscale workflow

The workflow of the calculation is outlined in Fig. 7.1. Using crystal structure data,
initial morphologies are generated from classical molecular dynamics (MD) simu-
lations. The ensemble of molecules is then partitioned into segments. To establish
which segments are within a certain distance from to each other, a neighbor search
for each segment is performed and the resulting pairs are stored.

For triplets this is analogous to the procedure for charge transport [92], as the
electronic coupling decays exponentially with distance, as described in the pre-
vious chapter. Singlets due to their long-ranged coupling can hop to more distant
molecules, requiring larger cutoffs and consequently a lot more excitonic couplings
have to be evaluated (see Fig. 7.2). As the coupling beyond the first neighbor
shell is dominated by Förster like transition density coupling, we use a split ap-
proach, calculating the short ranged couplings explicitly using the GW -BSE-DIPRO
method explained in Chapter 6 and the long ranged singlet couplings using the

1now: ubecppol+pseudo potentials,962 functions for DCV5T for 186 valence electrons vs before:
def2-SVP,646 basis function for 304 electrons
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MD simulations crystal structure

morphology

partitioning into segments

neighborlist segment GW -BSE: Sn , Tn ,µTr , α, λ

CHELPG: {qi }pair GW -BSE: Ĥ BSE

electronic couplings: J AB

rates: ωA→B

site energies: ∆Ea

lifetimes: τa

kinetic Monte Carlo

transport properties: D, l

Figure 7.1: Exciton diffusion workflow as implemented in the VOTCA-XTP package.

TrEsp method [216, 217] with CHELPG [218] derived partial charges {qi } from
GW -BSE transition densities.

For each segment a GW -BSE calculation is performed, from which the excitation
energies ΩS1 ,ΩT1 , the partial charges {qi } for TrEsp and the monomer orbitals for
GW -BSE-DIPRO are used. For each pair within the first shell in Fig. 7.2 then an-
other GW -BSE calculation has to be performed to obtain the dimer Hamiltonian
Ĥ D . As each dimer calculation has roughly 2N basis functions with N the num-
ber of basis functions of a monomer, the dimer calculations take (2N )4 = 16 times
longer2, making the calculation of J AB the bottleneck of these computations. The

2It scales only (2N )4 and not as (2N )5, as ĤD only has to be constructed and not diagonalized, so
the N 4 scaling of the RPA in GW is the most expensive part.
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Figure 7.2: Exciton coupling for (a) singlets and (b) triplets. In both cases couplings with
|J AB | > 10−4 eV are represented as tubes. (c) Schematic representation of the
double cutoff used in VOTCA-XTP. For short ranged couplings the quantum me-
chanical GW -BSE-DIPRO method is used. Long distance couplings are approxi-
mated using the TrEsp method.

evaluation of one dimer coupling takes roughly 40 min on a 4 core CPU as has been
shown in Tab. 6.3 of Chapter 6. The same computation time is more than enough
to evaluate all 370000 long-ranged couplings on one core.

The polarizability tensor α and the reorganization energy λ are only calculated
once for an optimized geometry and assumed to be valid for all molecules. From
the polarizabilities and partial charges the site energies ∆Ea are calculated using
classical cutoff or aperiodic embedding techniques [121].

From the electronic couplings J AB , the site energies and the reorganization ener-
gies, the Marcus rates ωA→B are calculated via eq. 4.26. Finally kinetic Monte Carlo
(KMC) simulations are performed from which the macroscopic diffusion tensor can
be extracted. For the case of singlet dynamics this poses two challenges. Firstly,
due to the long range nature of the coupling, the connected graph is very dense. It
will need a large amount of KMC runs to adequately sample all possible transition
pathways to obtain converged results. Secondly, singlets can undergo fluorescent
decay into the ground state and may decay quickly, even before the diffusive regime
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of transport has been reached. The radiative decay time τrad for a singlet state S,
is given by Einstein’s formula for spontaneous emission [219]:

τ−1
rad =

p
ε

4αΩ3
S

3c2ħ3
µ2

Tr , (7.1)

where ε is the dielectric constant of the material, α the fine structure constant,
ΩS the excitation energy, and µTr the transition dipole moment of the transition.
Therefore we can also define a decay rate ωdecay ≈ τ−1

rad and explicitly include ex-
citon decay in the KMC simulations, allowing us to extract the distance excitons
travel before decaying. Although we neglect non-radiative decay, due to the diffi-
culties of calculating electron-phonon interaction, the radiative decay serves as a
lower bound for the full decay rate:

τ−1
decay = τ−1

rad +τ−1
nonrad > τ−1

rad. (7.2)

7.2 Morphology

For a demonstration of multiscale exciton transport simulations, a crystalline struc-
ture of DCV5T-Me3 was chosen, which is a donor material in highly efficient (at
some point record-holding) organic solar cells [146, 147]. From experimentally
available X-ray data [146] a super cell containing 1568 DCV5T-Me(3,3) molecules
was created as an initial structure. Different views on an orthogonal unit cell,
containing 4 molecules can be seen in Fig. 7.3. To introduce thermal disorder to
the morphology, MD simulations were performed with the force field taken from
Schrader et al [145] at 300 K and 1 bar using a stochastic velocity rescaling ther-
mostat [96] and a Berendsen barostat and run for 1.5 ns. For the electronic struc-
ture simulations six snapshots in 20 ps intervals were taken beginning at 1.320 ns,
which we will refer to as snapshots 1 to 6.

For the rate-based model, each DCV5T molecule was mapped onto a single seg-
ment, resulting in 1568 segments. In order to generate pairs for the electronic
coupling calculations, a neighbor search was performed, in which all molecules
with a minimal separation of 0.6 nm or less are included as quantum mechani-
cally interacting pairs. This resulted in about 6000 couplings per snapshot and
roughly 6000 ·2/1568 ≈ 8 neighbors per molecule. For the singlet couplings, as de-
picted in Fig. 7.2, a second neighbor search with a cutoff of 3.5 nm was performed,
yielding approximately 366000 long ranged couplings. On average each singlet has



160 Exciton dynamics in DCV5T

Figure 7.3: Crystal structure of DCV5T-Me(3,3), taken from [146].

about 372000·2/1568 ≈ 470 other segments to hop to. Although even at a separation
of 3.5 nm the couplings for an optimal molecular alignment are at J AB = 5 ·10−2 eV,
see inset in Fig. 6.6(b) of Chapter 6, but any larger cutoff would have exceeded the
super cell dimensions.

7.3 Reorganization energies and polarization

The reorganization energies for the T1 and S1 were obtained from structural op-
timizations using evGW -BSE on PBE/ubecppol DFT ground state calculations. As
currently analytic gradients are not available in VOTCA-XTP, numerical gradients
in conjunction with a BFGS trust-region optimizer in cartesian coordinates was
used [220]. To keep the number of numerical gradient evaluations tractable, ge-
ometries were pre-optimized on TDDFT level using the same basis set and func-
tional with the Gaussian package [221]. The reorganization energies were eval-
uated using equation eq. 4.48 yielding λS = 0.37eV for singlets and λT = 0.77eV

for triplets. Noticeable is the large reorganization energy for the triplet, in com-
parison to the hole reorganization energy λe = 0.22eV [222]. Stehr and Lunken-
heimer reported similar high reorganization energies for other organic compounds,
e.g., λS = 0.351eV for the S1 state of napthalene (SCS-CC2@cc-pVDZ) [91] and
λT = 0.748eV for the T1 state of Alq3 (ADC(2)@SVP) [107].

Electronic polarizabilities, needed for the inclusion of environment polarization ef-
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Table 7.1: Polarizability tensors α for the ground state N , first singlet state S1 and first
triplet state T1 for the DCV5T-Me(3,3) molecule (see app. A. The y coordinate
runs along the backbone of segments and the z-direction is normal to the plane
of the molecule.

[Å3] xx y y zz x y xz y z

N 76 293 34 0 0 -1

S1 74 1022 27 -5 -3 1

T1 70 646 33 -2 -2 -7

fects in the site energy evaluations, were computed using the same evGW -BSE on
PBE/ubecppol combination on the respective optimized geometries. The results are
given in Tab. 7.1 for the ground state N , and the excited states S1 and T1, respec-
tively. As in the case of the geometry optimization, numerical gradients were used
to calculate polarizabilities for excited and ground state3. Compared to the ground
state, both excited states have approximately the same polarizability perpendicu-
lar to the backbone of the molecule and much elevated polarizabilities along the
conjugated backbone. Partial charges for the classical treatment of the electrostatic
interaction were calculated from the optimized geometries using CHELPG [218].

7.4 Site energies and lifetimes

Electrostatic site energy contributions, ∆ES , were obtained from a cut-off based
scheme [92] using 3 nm and 6 nm for MM0 and MM1 respectively (see Fig. 5.12
in Chapter 5). For the electrostatics, cutoffs in excess of half the box dimension
are allowed because the outer non polarizable sphere mostly exists to balance the
polarizable volume and the influence of individual distant molecules is diluted by
the large amount of molecules.

A second contribution to the site energies can arise from internal, quantum me-
chanical details of the molecules, i.e., the adiabatic excitation energy which reads
∆Eint,a = U 1

a (ξ1)−U 0
a (ξ0) (compare eq. 4.33). This quantity is in charge transport

simulations typically assumed to be much smaller than the electrostatic disor-

3The numerical ground state polarizabilities were checked against analytically obtained results to
check for convergence
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Table 7.2: Standard deviation σ for electrostatic site energies ∆Eel and internal site energy
∆Eint for singlets and triplets in eV for all snapshots

σ(∆E S
el) σ(∆E S

int) σ(∆E S
el +∆E S

int) σ(∆E T
el) σ(∆E T

int) σ(∆E T
el +∆E T

int)

1 0.077 0.109 0.133 0.045 0.114 0.122

2 0.076 0.106 0.133 0.044 0.116 0.127

3 0.074 0.109 0.131 0.043 0.116 0.124

4 0.076 0.108 0.131 0.044 0.117 0.127

5 0.079 0.108 0.131 0.046 0.116 0.125

6 0.076 0.112 0.139 0.044 0.118 0.129

der [92]. An exact treatment is computationally extremely demanding, as it re-
quires an excited state geometry optimization to obtain U 1

a (ξ1) for each molecule a

in its respective, unique molecular environment.

Instead, in the following we make a few simplifying assumptions: First, since the
system under study only contains a single molecular species, we are not interested
in evaluating the adiabatic energies on an absolute scale, but only the differences
between two molecules a and b, i.e., ∆(∆Eint)ab . Furthermore, the adiabatic ex-
citation energy of molecule a is related to the vertical excitation energy by the
reorganization energy, i.e., U 1

a (ξa
1 )−U 0

a (ξa
0 ) = U 1

a (ξa
0 )−λa −U 0

a (ξa
0 ). We adopt the

same approximation as in the previous section, and set the reorganization energy
to be identical for all molecules. With this, we obtain:

∆(∆Eint)ab =U 1
a (ξa

1 )−U 0
a (ξa

0 )− (U 1
b (ξb

1 )−U 0
b (ξb

0 )) (7.3)

≈U 1
a (ξa

0 )−U 0
a (ξa

0 )−λ− (U 1
b (ξb

0 )−U 0
b (ξb

0 )−λ)

=U 1
a (ξa

0 )−U 0
a (ξa

0 )− (U 0
b (ξb

1 )−U 0
b (ξb

0 )) =Ω
1
a −Ω

1
b .

The standard deviations of the site energy distributions and their individual con-
tributions for all six evaluated snapshots are given in Tab. 7.2. The electrostatic
site energy distributions show a considerably smaller disorder for singlets, 〈∆E S

el〉 =
0.076eV and triplets 〈∆E T

el〉 = 0.044eV, compared to 0.1 eV for electrons and holes
[120]. This is not surprising, as the excitons are uncharged excitations. The dif-
ference between the electrostatic disorder can be partially rationalized by looking
at the dipole moments: d S1 = 0.27e ·nm vs d T 1 = 0.25e ·nm. Additionally, the S1

state has a 20% larger quadrupole moment (Θy y

S1 = 1.45e ·nm2 vs Θ
y y

T 1 = 1.20e ·nm2.
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Figure 7.4: Distribution of decay times for singlet excitons in DCV5T

These effects cannot be fully compensated by the larger polarizability of the S1

state (see Tab. 7.1). In comparison to the electrostatic contribution, the internal
site energy distribution is substantially wider for both singlets 〈∆E S

int〉 = 0.109eV

and triplets 〈∆E S
int〉 = 0.116eV. Furthermore, the two individual contributions are

mostly uncorrelated, as σ(∆Eel+∆Eint) ≈
√

σ(∆Eel)2 +σ(∆Eint)2. The corresponding
histograms can be found in appendix A.

As mentioned before, in electron or hole transport simulations, the internal site
energy contribution can typically be neglected [222], as electrostatic disorder is
larger for charged excitations. The breakdown of this assumption is problematic
for exciton transfer, as the concept of the rate based models assumes that a dis-
tinction between slow degrees, responsible for the static disorder, and fast degrees
of freedom, responsible for exciton transfer, can be made. Although the earlier
mentioned mapping procedure should eliminate the fast degrees of freedom, parts
of residual fast degrees could be responsible for the large internal site energies. A
more in-depth study of these problems is outside the scope of this thesis. We so
choose to run KMC simulation once with and without internal site energy contri-
butions, as a lower and upper bound on the expected result.

For the calculation of singlet decay rates via eq. 7.1, µS and ΩS were obtained from
individual monomer GW -BSE calculations, which were required for the GW -BSE-
DIPRO couplings (compare Chapter 6) to be discussed in the following section.
Apart from the excitation energy and transition dipole, the lifetimes also depend
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Figure 7.5: (a) Correlation between DFT and GW corrected HOMO-LUMO gaps for all 1568
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(b) Corresponding spectrum for singlets. Each frequency was weighted by the
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corrected by the respective electrostatic and polarization interaction, analogous
to Fig. 4.4(d)

on the relative dielectric constant of the material. As the exact dielectric constant
of DCV5T has not been measured to our knowledge, we assume ǫ ≈ 3, which is a
typical value for organic materials [23]. Note that we have included electrostatic
corrections to the excitation energies. The obtained singlet lifetimes are shown in
Fig. 7.4. Its average is nearly constant for all snapshots with τrad = 0.5ns. To our
knowledge there are no singlet lifetime measurement on DCV5T, but our value is
comparable to other reported singlet exciton lifetimes4 [13, 28].

The results of these monomer GW -BSE-DIPRO calculations can additionally be an-
alyzed in different contexts. In figure 7.5(a), we show the analysis of the influence
of the GW approximation on the HOMO-LUMO gap. As stated in previous chap-
ters, the GW approximation opens the gap in a non-trivial manner. Larger DFT
HOMO-LUMO gaps are opened further due to the smaller RPA screening response
(eq. 5.14), leading to a larger self-energy operator Σ(eq. 5.18). Figure 7.5(b) shows
in more detail the distribution of absorption energies as superposition of individual
vacuum monomer spectra (green curve) and only the main peak after inclusion of
environment effects (red curve) as defined by eq. 4.40. The resulting redshift of

42,5-dihexyl-3,6-bis[4-(5-hexylthiophene-2-yl)phenyl]-pyrrolo[3,4-c]-pyrrole-1,4-dione: 0.4 ns 2,5-
dihexyl-3,6-bis[4-(5-hexyl-2,2’-bithiophene-5-yl)-phenyl]pyrrolo[3,4-c]-pyrrole-1,4-dione: 2.0 ns
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the S1 peak amounts to 0.15eV.

7.5 Electronic couplings

Electronic couplings were calculated using the perturbation method outlined in the
previous chapter. Short ranged couplings were computed with the GW -BSE-DIPRO
method, whereas the long ranged couplings were evaluated via TrEsp, with partial
charges obtained from GW -BSE calculations on individual segments.

Figure 7.6(a) shows the distribution of singlet couplings. The distributions for
different snapshots show nearly perfect agreement with each other.In Fig. 7.6(b)
the distribution of couplings for the first snapshot is displayed separately for GW -
BSE-DIPRO and TrEsp couplings. The GW -BSE-DIPRO couplings show a median
of 〈J〉 = 0.044eV, which is significantly smaller than the reorganization energy
λS = 0.37eV. Thus, in general, a hopping-like transport mechanism seems valid
a posteriori. However, there are also a number of couplings, which exceed this
value significantly. Their effect on the exciton dynamics will be discussed later.

It is noteworthy that, on average, the singlet coupling elements are 2-3 orders of
magnitude higher than electron or hole ones [145], which is a result of the long
ranged exchange interaction. This can also be seen from Fig. 7.6(d), which spa-
tially resolves the distribution of couplings. The red “islands”, marking high con-
centrations of couplings corresponding to different crystal directions and distances,
clearly show a non-exponential decay as would be characteristic for exchange in-
teraction. The influence of thermal fluctuations can also be clearly seen from the
size of the islands, as in a perfect crystal all couplings would collapse towards the
centers of the islands.

Triplet couplings, depicted in Fig. 7.6(e) exhibit larger fluctuations, which is a
result of the geometrically more sensitive short ranged transfer, which relies on
molecular overlap. Consequently, the median coupling 〈J〉 = 7.4·10−5 eV is lower and
much smaller than the reorganization energy λT = 0.77eV. Figure 7.6(f) shows the
distance resolved distribution of triplet couplings. The quick decay of the couplings
with distance is in good agreement with the results from Fig. 6.6(a) in Chapter 6.

As discussed in the previous chapter, electronic coupling elements can be signif-
icantly influenced by the nature of intermediate CT states, which can in certain
molecular configurations lie energetically very close to the localized FE states.
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Closer inspection of the results discussed above reveals that the a situation like
this is present for a small number of states.

The projection method corrects for this situation by splitting the CT-contribution
symmetrically among both FE states via the Löwdin orthogonalization. The same
problem arises in perturbation theory, if the effective FE state is expanded to higher
orders than the first (eq. 6.19), which creates non-orthogonal pseudo diabatic
states. It then requires an orthogonalization equivalent to the projection method.

Additionally, the perturbative approach faces a problem with low lying CT-states
close to the FE states, as the denominator in eq. 6.20 approaches zero. Resulting
’resonant’ couplings larger than 0.2 eV were found for about 1−2% of the singlet
transfers calculated via GW -BSE-DIPRO (see Fig. 7.6(b)). Lower lying triplet states
were not affected, as only singlet states with their higher excitation energies come
close to the respective CT-state energies.

The resulting high couplings indicate that the assumption of single molecule local-
ized excitons might not always be strictly valid. Instead in these configurations, an
exciton is likely to delocalize over the dimer and, consequently, rather the whole
dimer should be regarded as one segment. At the moment this is however beyond
the capabilities of our model. The resulting large coupling constants where taken
at face value and their effect on singlet transport properties are later shown to be
within the errors of the method.

If only singlet properties are of interest, a further possible approximation com-
prises replacing GW -BSE-DIPRO by TrEsp couplings even for next-neighbor cou-
plings. Figure 7.7(a) shows the coupling distributions of both approaches. The
GW -BSE-DIPRO approach yields significantly more couplings above 0.1 eV, while
the major peak position is in good agreement for both variants. The correlation plot
in Fig. 7.7(b) shows that the majority of couplings agree well. The systematic slight
underestimate along the diagonal is probably a result the multipole expansion of
the transition density in the TrEsp method and the neglect of overlap effects. The
outliers result from the short ranged overlap effects, which can, depending on the
value of the FE-CT coupling, give a positive or negative contribution (see eq. 6.20).
To assess the influence of replacing GW -BSE-DIPRO singlet couplings with TrEsp
couplings kinetic Monte-Carlo simulations were performed, which are discussed in
the next section.
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Figure 7.7: (a) Distribution of singlet couplings for the GW -BSE-DIPRO and TrEsp meth-
ods for one snapshot. (b) Correlation plot of both methods. The dashed line
indicates a 1:1 agreement.

7.6 Kinetic Monte-Carlo simulations

In order to solve the Master equation eq. 4.50 for singlets and triplets, we use
kinetic Monte-Carlo simulations. In the case of triplets, 20 Monte Carlo simulations
were run for each snapshot, with on average 9 · 1011 steps, equating to around
700 s of simulation time. The diffusion tensor is calculated via eq. 4.51 and the
corresponding results are displayed in Tab. 7.3 and Tab. 7.4 for the simulations
without internal site energies and with internal site energies, respectively.

For the case without internal site energies, the diffusion tensor exhibits strong
anisotropy with diffusion along the y-axis (molecule axis) one order of magnitude
larger than along the z (stacking direction) and two orders of magnitude larger
than diffusion along the x axis. As here the energetic disorder is comparatively
small (see Tab. 7.2) and reorganization energies are assumed to be all identical for
all molecules, the transport properties are governed by the electronic couplings.
Comparing with Fig. 7.2(b) and Fig. 7.3 illustrates that the strongest coupling be-
tween molecules is present in the y − z plane with z being the stacking direction.
Due to shift of neighboring molecules along the y-axis, the displacement for each
jump is about three times larger along the y−axis than the z-axis (〈∆y〉 = 1.18nm

vs 〈∆z〉 = 0.37nm. To arrive at a rough estimate for the diffusion length we assume
that the triplet lifetime is roughly τT ≈ 1 · 10−3 s, as triplet lifetimes typically six
magnitudes larger than the respective singlet lifetimes[13]. The diffusion length is
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Table 7.3: Elements of the triplet diffusion tensors for all snapshots, obtained from kinetic
Monte-Carlo simulations. Units are 10−9 cm2/s. The last row gives the averages
over all snapshots and runs.

# Dxx Dx y Dxz D y y D y z Dzz

1 0.23±0.04 −0.17±0.83 0.04±0.23 79.52±29.67 −1.54±5.10 6.36±1.60

2 0.23±0.01 −0.39±0.51 0.04±0.15 35.88±7.65 0.63±1.43 3.02±0.40

3 1.33±0.14 −2.50±1.52 0.62±0.41 67.19±20.18 −1.13±2.66 4.38±0.75

4 0.54±0.06 1.07±0.92 0.24±0.37 48.57±12.37 −1.36±4.19 6.66±1.11

5 1.43±0.10 −0.56±1.49 0.20±0.51 41.98±6.88 −2.54±2.47 4.50±0.93

6 1.26±0.11 −0.04±1.51 0.09±0.58 52.39±16.01 4.81±4.08 6.72±1.15

〈.〉 0.84±0.01 −0.43±0.05 0.21±0.02 54.26±0.66 −0.19±0.13 5.27±0.04

Table 7.4: Elements of the triplet diffusion coefficients for all snapshots, obtained from ki-
netic Monte-Carlo simulations. Units are 10−12 cm2/s. The last row gives the
averages over all snapshots and runs. This results use external and internal site
energies.

# Dxx Dx y Dxz D y y D y z Dzz

1 0.76±0.09 7.26±1.27 5.97±0.46 101.6±22.8 57.96±9.19 55.35±4.49

2 7.94±0.18 −7.44±2.56 −1.35±0.38 26.98±6.95 2.80±0.91 0.76±0.14

3 0.62±0.10 −1.51±0.70 −0.51±0.24 27.14±5.31 1.27±1.87 2.88±0.53

4 6.81±0.18 18.63±1.80 16.36±0.33 59.92±10.72 44.03±3.70 40.40±1.87

5 7.75±0.33 −7.56±2.14 12.59±0.69 21.62±5.09 −12.77±3.64 21.13±1.61

6 0.05±0.00 −0.02±0.03 0.05±0.01 0.60±0.15 0.01±0.05 0.09±0.02

〈.〉 3.99±0.03 1.56±0.10 5.52±0.06 39.64±0.49 15.55±0.27 20.10±0.19

then for a system without (with) internal site energies:

lT =
√

1

3
Tr D ·τT ≈ 45nm(1.46nm), (7.4)

with lT,x ≈ 9nm(0.63nm), lT,y ≈ 74nm(1.99nm) and lT,z ≈ 23nm(1.42nm). The large
energetic disorder due to the inclusion of internal disorder leads to more than a
tenfold decrease in diffusion length, while the anisotropy is preserved. This is
not surprising, as the anisotropy is mostly governed by the couplings, which are
independent of the energetic disorder.
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Table 7.5: Singlet diffusion lengths, obtained from kinetic Monte-Carlo simulations using
only the short-ranged couplings from GW -BSE-DIPRO and TrEsp method. For
each configuration 104 singlet insertions are performed. Diffusion lengths are
given in nm.

lx ly lz

GW -BSE-DIPRO 5.95±0.06 37.14±0.38 2.82±0.03

TrEsp 6.18±0.06 38.84±0.39 2.20±0.02

For singlet excitons the diffusion length was calculated without reference to the
diffusion tensor by explicitly taking exciton decay into account. At each kinetic
Monte-Carlo step the exciton can either hop or decay. Whenever an exciton decays,
its traveled distance, as well as the site on which it decayed are recorded. Then a
new exciton is randomly inserted onto a site.

First, the influence of the small number of nonphysically high couplings has to be
addressed, which results from resonances between CT and Frenkel states in eq. 6.21.
In order to assess the influence of these states, KMC simulations for singlets are per-
formed using only the short ranged couplings. One set of simulations is run using
couplings from eq. 6.21 and one set using TrEsp couplings. The resulting diffusion
lengths are given in Tab. 7.5. All simulations for the evaluation of the couplings
were performed using only the electrostatic site energies, as the lower disorder
improves the convergence rate of the kinetic Monte-Carlo simulations.

The differences between both methods are below 5%, without taking the influence
of the majority of long distance couplings into account. To study the influence of
the long ranged coupling and the influence of the large short ranged elements, we
calculated singlet diffusion lengths for four different configurations:

1. GW -BSE-DIPRO for the short-ranged couplings and TrEsp for the long-ranged
coupling

2. TrEsp couplings for short and long ranged couplings

3. GW -BSE-DIPRO for short range with large coupling elements |J | > λ set to
zero and TrEsp long ranged couplings.

4. Short ranged GW -BSE-DIPRO with long ranged TrEsp couplings screened by
the dielectric constant Jscr. = J/ǫ. ǫ = 3 is assumed to be consistent with the
calculation of the exciton lifetimes (sec. 7.4).
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Table 7.6: Singlet diffusion lengths, obtained from kinetic Monte-Carlo simulations using
different versions of couplings from GW -BSE-DIPRO and TrEsp method. For each
configuration 104 singlet insertions are performed. Diffusion lengths are given in
nm. (sr and lr denote short range and long range, respectively)

lx ly lz

DIPRO(sr)+TrEsp(lr) 46.55±0.48 89.65±0.91 39.84±0.40

TrEsp(sr+lr) 46.69±0.47 91.62±0.92 40.21±0.40

DIPRO|J |>λ=0(sr)+TrEsp(lr) 46.87±0.46 87.56±0.88 40.48±0.40

DIPRO(sr)+TrEspǫ(lr) 17.10±0.17 51.67±0.51 13.97±0.14

The results displayed in Tab. 7.6 clearly show that the effect of the large couplings
is irrelevant for the singlet diffusion. The long ranged couplings are critical to an
accurate description of singlet diffusion, as the longer jumps contribute about 60%
to the exciton diffusion length. Furthermore the long ranged couplings are respon-
sible for a more isotropic transport, as they allow jumps into more directions (see
Fig. 7.2(a)). Even the crude approximate screening of this long ranged couplings
analogous to Stehr et al. [35] by division with the macroscopic dielectric constant
leads to large reduction of the diffusion length. More sophisticated screening mod-
els exist, but so far rely on an energetic gap between the active material and screen-
ing environment as in the case of chromophores solvated in water [217]. This is
not the case for a chemically homogeneous organic semiconductor such as DCV5T.

Finally to understand the influence of molecular motion on the exciton diffusion
length, we ran KMC simulations on each snapshot. As variations now only arise due
to the slightly different displacements of molecules and the changed distribution of
site energies and couplings, we ran 2 ·106 insertions for every snapshot. The results
are displayed in Tab. 7.7 and Tab. 7.8 for the simulations without and with internal
site energies, respectively.

The difference between diffusion lengths between the two approaches is roughly
a factor of 4. The singlet diffusion is less affected by the energetic disorder than
triplet diffusion, as each singlet has a much larger number of other sites it can
jump to. Nonetheless, the deviations between individual snapshots are much more
pronounced in the system with internal site energies taken into account. Only the
third snapshot without internal site energies yielded starkly different results, which
will be discussed in the following.
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Table 7.7: Singlet diffusion lengths without internal site energies, obtained from kinetic
Monte-Carlo simulations using short ranged GW -BSE-DIPRO and long ranged
TrEsp method for all snapshots. For each snapshot a minimum of 2·106 singlet in-
sertions are performed. Diffusion lengths are given in nm. The last row contains
the average value of the exciton diffusion length averaged over all snapshots.

# lx ly lz

1 46.84±0.01 89.03±0.02 40.09±0.01

2 46.07±0.03 74.18±0.05 41.83±0.03

3 36.62±0.00 70.07±0.01 32.00±0.00

4 48.65±0.00 91.07±0.01 43.01±0.00

5 44.09±0.01 84.76±0.02 38.40±0.01

6 44.42±0.00 83.39±0.01 40.15±0.00

〈.〉 44.45±3.82 82.08±7.58 39.25±3.55

Table 7.8: Singlet diffusion lengths with internal site energies, obtained from kinetic Monte-
Carlo simulations using short ranged GW -BSE-DIPRO and long ranged TrEsp
method for all snapshots. For each snapshot 2 · 106 singlet insertions are per-
formed. Diffusion lengths are given in nm. The last row contains the average
value of the exciton diffusion length averaged over all snapshots.

# lx ly lz

1 9.853±0.002 16.348±0.003 7.924±0.001

2 22.854±0.004 39.650±0.007 20.769±0.004

3 14.034±0.002 28.513±0.005 13.710±0.002

4 8.464±0.001 14.719±0.002 7.035±0.001

5 16.989±0.003 28.929±0.005 14.327±0.002

6 8.030±0.001 14.185±0.002 7.771±0.001

〈.〉 13.37±5.30 23.72±9.40 11.92±4.90

In all snapshots, the histograms for decay times (Fig. 7.4), site energies (Fig. C.1),
and electronic couplings (Fig. 7.6) show no relevant differences, which could ex-
plain this deviation.

Considering the simulated lifetimes of each individual singlet as in Fig. 7.8, we



7.6 Kinetic Monte-Carlo simulations 173

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

0 1 2 3 4 5 6 7 8 9

re
la

ti
ve

fr
e
q
u
e
n
c
y

(a
.U

.)

τ (ns)

#1

#2

#3

#4

#5

#6

Figure 7.8: Distribution of lifetimes for singlet exciton in DCV5T for the system without
internal site energies. The scale is logarithmic.

notice that they are nearly perfectly exponentially distributed for all snapshots, as
they form straight lines in the logarithmic plot. This observation is quite surprising
given the distribution of decay times in Fig. 7.4. A possible explanation is that
the decay does not happen homogeneously on all sites but occurs on only a few
of them. To gain a better understanding of this process, we recorded, for all sim-
ulations, the site on which the exciton decayed. The resulting normalized decay
probability, as well as the decay times and site energies are given per site in Fig. 7.9.
Note that the sites are indexed in increasing order of decay probability.

It is apparent that the decay probability (blue line) exhibits a nearly exponential
increase. Most excitons decay on only a very small subset of sites which, as indi-
cated by the green line, are sites with very low energies. The yellow line, indicating
the intrinsic decay time τi on each site, shows actually a modest increase in decay
time, i.e., excitons live longer on these sites. Exciton diffusion length in this case
thus does not appear to be limited by sites with short decay times, where excitons
nearly instantaneously decay. A better measure is the relative decay probability
τ̃−1

i
, defined as:

τ̃−1
i =

τ−1
i∑

j ωi j +τ−1
i

, (7.5)

where ωi j is the rate of jumping from site i to site j . The relative decay probability
is the likelihood of an exciton decaying in the next KMC step instead of hopping
to another site. For most snapshots τ̃−1 increases clearly, indicating that excitons
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Table 7.9: Computational cost of Marcus rate input parameters for a system with N sites
and each site having Nnn nearest neighbors. The computation time is measured
for DCV5T molecule using the ubecppol basis set, the aux-ubecppol_0.2 auxiliary
basis set and the PBE exchange correlation functional for the GW -BSE calculation.
The evaluation of the TrEsp coupling from atomic partial charges according to
eq. 6.26 is negligible.

paramter comp. time # of calculations

reorganization energy 7 days 1

DFT+GW -BSE-DIPRO monomer 52 min N

DFT+GW -BSE-DIPRO dimer 300 min N ·Nnn/2

site energy 4 min N

TrEsp CHELPG 1 min N

get trapped in certain states with low site energies, from which they cannot escape.
From Fig. 7.9(c) it becomes clear why the exciton diffusion length in the third snap-
shot is lowest of all. In this snapshot the majority of excitons decay on one single
site, which has the lowest site energies of all sites in all snapshots with -0.43 eV.
Not all important sites have a high relative decay probability. Consequently, these
sites must be visited extremely often to account for the high number of decays.

A similar relation can be seen for the system with internal site energies taken into
account. Snapshots 1, 4, and 6 show exactly the same pattern when compared to
Tab. 7.8 with Fig. 7.10. Singlet exciton diffusion is thus largely governed by the
lowest lying energy levels, as singlets due to their long ranged coupling can jump
into the trap from far away. Thus for an accurate simulation of singlet diffusion,
large enough systems are required to adequately sample the real energy landscape.

Finally, compared to the expectation of an exciton diffusion length of around 10 nm
from experimental observations for nearly all organic materials [13, 28], the results
obtained from our simulations are larger. This can be rationalized by the fact that
we simulated a nearly defect free crystalline material with only thermal disorder.
Even in this near perfect system, the large influence of a single trap site on the
exciton diffusion length became evident.

Before we close this chapter, we briefly have to address the topic of computational
cost. In Tab. 7.9 the computation time for each parameter of the Marcus rate is
given for DCV5T, assuming a single threaded execution. Under the assumption,
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that the reorganization energy λ is the same for all chemically identical molecules,
the DIPRO dimer calculation is the bottleneck. If only singlet diffusion is of interest,
using TrEsp couplings instead of GW -BSE-DIPRO couplings reduces the computa-
tional expense to around 60 min per site. For a system of 1600 sites this roughly
equals 4 days on one 16 core cluster node.

In summary we developed a workflow to simulate exciton diffusion in organic ma-
terials. Using DCV5T, an organic semiconductor, we used kinetic Monte-Carlo sim-
ulations parametrized from ab-initio simulations to simulate singlet and triplet ex-
citons. We compared GW -BSE-DIPRO and TrEsp couplings for singlets and showed,
that the difference is negligible even at close ranges. This is certainly not a general
result, as the relative importance of short and long ranged couplings depends on
the morphology and the transition dipole strength of the state and molecule of in-
terest. We included TrEsp long range couplings and showed that long ranged jumps
significantly contribute to the diffusion process. Furthermore, we included radia-
tive singlet exciton decay as a lower bound on lifetime. Additionally, we showed
the impact of low energy sites on the diffusion of singlet excitons, as they get
trapped on these sites. The major open question, that remains is the separation of
internal static and dynamic disorder. Hopefully, better mapping procedures might
help to alleviate this problem.
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Figure 7.9: Frequency of exciton decay plotted over the sites, sorted from lowest to largest
probability (blue line). In each plot only the 100 most likely sites are plotted.
The normalized decay time for each segment is shown (yellow line) for compar-
ison. The green line indicates the site energies of the respective sites (without
internal site energies).
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Figure 7.10: Frequency of exciton decay plotted over the sites, sorted from lowest to largest
probability (blue line). In each plot only the 100 most likely sites are plotted.
The normalized decay time for each segment is shown (yellow line) for com-
parison. The green line indicates the site energies of the respective sites (with
internal site energies)





Chapter 8

Conclusion and outlook

The present thesis aimed at exploring the properties of excitons created by light
absorption inside an organic solar cell. The model paradigm was to relate chem-
ical properties of constituent molecules and molecular packing to experimentally
measurable quantities, for instance, diffusion lengths.

To this end we implemented a multi scale model consisting of five steps: Gener-
ation of a morphology via molecular dynamics simulations, definition of hopping
sites, the calculation of rate parameters, the evaluation of exciton transfer rates,
and the simulation of exciton dynamics. The penultimate two steps were here
linked by excitation transfer rates, which in the limit of high-temperature adiabatic
exciton transfer, are described via the Marcus rate equation. For the evaluation of
these rates site energies, the electronic coupling elements and the reorganization
energies had to be calculated from ab initio methods, supplemented by classical
electrostatics.

To accurately parameterize rate equations for larger, industrially relevant molecules
a quantum mechanical approach is required, which is both accurate and efficient.
To this end we implemented and scrutinized the GW -BSE method in the VOTCA-
XTP package, which explicitly describes single particle excited states (GW ) and
the interaction between them (BSE). To correctly simulate QM/MM environments,
including higher order multipoles and numeric potentials, we also developed our
own DFT implementation to provide accurate starting points for the GW -BSE calcu-
lations. The benchmarks of our DFT implementation against other commercial and
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non-commercial DFT packages showed excellent agreement. For the more involved
GW -BSE approach we compared our results with high level quantum chemistry re-
sults and experimental values for a set of 28 small molecules and achieved good
agreement with the reference results. With the aim of reducing the computational
footprint we explored the application of pseudo potentials in lieu of all-electron
calculations, which allow for smaller basis sets.

As the excitations in individual molecules can drastically vary from excitations in
solution or the bulk material, we used the QM/MM setup of VOTCA to analyze the
energetics of charge transfer states in a double strand of DNA solvated in water.
We found, that the inclusion of a classical, polarizable environment leads to a
stabilization of charge transfer states in comparison to calculations on dimers in
vacuum, accompanied by a pronunciation of the charge transfer character. These
low energy CT states may be intermediaries in the UV-degradation of DNA and are
thus of considerable interest.

CT states also play a vital role in the exciton transfer reaction, where they serve
as intermediate states, through which a localized Frenkel exciton moves from
one molecule to another. In the framework of GW -BSE we developed an algo-
rithm to calculate effective electronic couplings for singlet and triplet excitons. We
benchmarked this approach against quantum chemical methods for the pyrene and
DCV5T-Me(3,3) molecule. It was found that depending on the character of the ex-
citation the inclusion of several CT states was necessary to achieve correct results.
To accelerate the computation of electronic couplings for large-scale morphologies
we explored the influence of self-consistency on the DFT and GW -BSE level and
the reduction of the active space in the BSE-Hamiltonian.

For the calculation of exciton dynamics the three aforementioned methods together
with new kinetic Monte-Carlo implementation for singlets were combined into
a multi-scale model. Singlet and triplet exciton dynamics were simulated for a
DCV5T-Me(3,3) crystal. For singlet dynamics we explicitly incorporated radiative
decay and approximate long-ranged exchange coupling. We explored the influence
of long-ranged couplings on exciton transport and investigated the impact of en-
ergetic disorder on the exciton diffusion length. We found a strong dependency
on the energetic disorder, as especially singlets due to their long-ranged coupling
would preferably jump into these traps, limiting their diffusion length.

While the multi scale model offers the chance to bridge multiple length and time
scales, the distinction between fast degrees of motion, which trigger the transfer
reaction and slow degrees of freedom, which lead to basically static disorder on the
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timescales cannot be automatically made. Better mapping procedures to transfer
quantum mechanically obtained geometries onto molecular dynamics geometries
would be highly welcome. Additionally, the efficient calculation of analytical forces
on the GW -BSE level would allow more insight into the vibrational spectra of ex-
cited states. This would also allow the usage of more advanced rate equations
beyond the Marcus rate approach, e.g., Weiss-Dorsey rates[108, 109], but also
open a pathway to better mapping procedures.

To gain a more complete understanding of the elementary processes inside a solar
cell, additional reactions, like the conversion of FE states into CT states, or singlet-
triplet conversion have to be included in rate models. In the former case this
requires QM/MM approaches, as preliminary results (see Fig. 8.1) indicate that
the polarization response is critical in lowering CT energies. By stabilizing the CT
state with respect to localized Frenkel excitons, conversion of FE into CT by thermal
activation alone might be possible. However, to properly describe the energetics
around the heterojunction long ranged electrostatics and polarization effects have
to be included into quantum mechanical QM/MM calculations. The latter case of
singlet-triplet conversion requires the explicit inclusion of spin degrees of freedom
as well as spin-orbit coupling into the GW -BSE framework.

With a workflow for exciton dynamics in place, it may also be possible to study

Figure 8.1: CT and FE state energies at the DCV5T:C60 interface from GW -BSE calculations
in a polarizable QM/MM environment.
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the influence of defects on exciton dynamics. The identification of structural defect
configurations and its relation to molecular arrangement and chemical structure
could facilitate the design of more efficient solar cells.
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Chemical structures

Thiel set: unsaturated, aliphatic hydrocarbons
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Thiel set: nucleobases

name structure name structure

adenine
N

NH2

N

N

H

N

guanine

H2N

N
H

O

N

N

H

N

cytosine

O

N

NH2

N

H

thymine

O

N
H

O

H3C

N

H

uracil

O

N
H

O

N

H
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Thiel set: aromatic hydrocarbons, heterocycles

name structure name structure
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Organic electronics

name structure
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Thiel set data
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Table B.1: Number of basis functions in the atomic orbital basis for the molecular orbitals
(MO) and the associated auxiliary basis (RI) used for the resolution-of-identity,
respectively, for all molecules in the Thiel set. See Chapter 5 for the definition of
ubecppol basis.

cc-pVTZ aug-cc-pVTZ ubecppol
MO RI MO RI MO RI

NUCLEOBASES

cytosine 310 798 483 1078 211 1013
thymine 354 909 552 1230 243 1152
uracil 296 768 460 1032 206 992
adenine 370 960 575 1290 250 1215

UNSATURATED ALIPHATIC HYDROCARBONS

ethene 116 282 184 396 74 320
butadiene 204 504 322 700 132 578
hexatriene 292 726 460 1004 190 836
cyclopropene 146 363 230 502 95 418
cyclopentadiene 234 585 368 806 153 676
norbornadiene 322 807 506 1110 211 934

ALDEHYDES, KETONES, and AMIDES

formaldehyde 88 222 138 304 61 284
acetone 204 504 322 700 135 604
benzoquinone 296 768 460 1032 206 960
formamide 132 333 207 456 90 429
acetamide 190 474 299 654 127 589
propanamide 248 615 391 852 164 749

AROMATIC HYDROCARBONS and HETEROCYCLES

benzene 264 666 414 912 174 774
naphthalene 412 1050 644 1428 274 1228
furan 206 525 322 714 140 640
pyrrole 220 555 345 760 145 661
imidazole 206 525 322 714 137 646
pyridine 250 636 391 866 166 759
pyrazine 236 606 368 820 158 744
pyrimidine 236 606 368 820 158 744
pyridazine 236 606 368 820 158 744
triazine 222 576 345 774 150 729
tetrazine 208 546 322 728 142 714
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Table B.2: Calculated lowest singlet excitation energies (in eV) performed using PBE0 on
all-electron (AE) level with the aug-cc-pVTZ and cc-pVTZ basis sets as well
as employing effective core potentials and the ubecppol basis set with TD-
PBE0 [167],PBE0 [167], TBE-2 [223] and experimental data (from Ref. [224]
and references therein). Our results are obtained as solutions of both the full
BSE and the Tamm-Dancoff Approximation (TDA), respectively. Mean absolute
errors are given based on the difference of our GW results using a Plasmon-Pole
Model for the frequency dependence of the dielectric function and the ones ob-
tained in Ref. [167] using complex integration.

TD-PBE0 Ref. [167]/ TBE-2 Exp cc-pVTZ aug-cc-pVTZ ubecppol
PBE0 full TDA full TDA full TDA

NUCLEOBASES

cytosine 4.71 4.57 4.66 4.6 4.72 4.93 4.56 4.75 4.88 5.09
thymine 4.76 4.72 4.82 4.9 4.85 4.88 4.73 4.76 5.00 5.02
uracil 4.70 4.70 5.00 4.38 4.81 4.84 4.70 4.73 4.98 5.00
adenine 5.04 4.93 5.25 4.63 5.18 5.17 5.02 5.04 5.31 5.31

UNSATURATED ALIPHATIC HYDROCARBONS

ethene 7.48 7.32 7.80 7.66 7.89 8.35 7.51 8.04 8.22 8.39
butadiene 5.65 5.71 6.18 5.92 6.03 6.65 5.77 6.09 6.25 6.90
hexatriene 4.68 4.79 5.10 4.93 4.98 5.52 4.81 5.29 5.13 5.70
cyclopropene 6.18 6.14 6.65 7.19 6.67 6.70 6.38 6.50 6.94 6.97
cyclopentadiene 5.02 4.88 5.55 5.30 5.13 5.58 5.00 5.42 5.30 5.77
norbornadiene 4.81 4.89 5.37 5.25 5.26 5.51 5.06 5.29 5.46 5.72

ALDEHYDES, KETONES, and AMIDES

formaldehyde 3.85 3.61 3.88 3.79 3.89 3.89 3.82 3.87 4.13 4.17
acetone 4.35 3.97 4.38 4.38 4.28 4.32 4.20 4.25 4.34 4.38
benzoquinone 2.48 2.67 2.74 2.49 2.63 2.68 2.58 2.63 2.76 2.80
formamide 5.64 5.59 5.55 5.5 5.58 5.61 5.42 5.45 5.80 5.83
acetamine 5.65 5.56 5.62 5.44 5.60 5.63 5.45 5.48 5.71 5.74
propanamide 5.67 5.55 5.65 5.44 5.62 5.65 5.47 5.50 5.74 5.77

AROMATIC HYDROCARBONS and HETEROCYCLES

benzene 5.45 5.04 5.08 4.90 5.25 5.30 5.17 5.21 5.40 5.44
naphthalene 4.38 4.20 4.25 3.97 4.33 4.37 4.27 4.31 4.45 4.49
furan 6.02 5.78 6.32 6.06 6.31 6.76 6.02 6.32 6.57 7.01
pyrrole 6.65 6.67 6.57 5.98 6.49 6.89 6.00 6.11 6.78 6.89
imidazole 6.27 5.96 6.25 6.00 6.59 6.92 6.26 6.30 6.89 6.89
pyridine 4.83 4.79 4.59 4.59 4.83 4.91 4.72 4.79 4.99 5.07
pyrazine 3.96 3.90 4.13 3.83 3.96 4.04 3.85 3.93 4.10 4.19
pyrimidine 4.31 4.26 4.43 4.16 4.29 4.34 4.20 4.24 4.41 4.46
pyridazine 3.65 3.57 3.85 3.3 3.52 3.63 3.44 3.54 3.65 3.76
triazine 4.62 4.66 4.71 4.59 4.56 4.57 4.46 4.47 4.67 4.68
tetrazine 2.29 2.19 2.46 2.25 2.13 2.26 2.07 2.19 2.20 2.32

MAE(all) 0.14
MAE(nucleobases) 0.03
MAE(unsat. aliphatic hydrocarbons) 0.13
MAE(aldehydes, ketones, amides) 0.15
MAE(aromatic hydrocarbons and heterocycles) 0.19
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DCV5T site energies
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Figure C.1: Singlet site energy distributions including excitation energies for the first six
snapshots. The mean of each distribution is normalized to zero. Ω is the internal
site energy and ∆E the electrostatic site energy.
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Figure C.2: Triplet site energy distributions including excitation energies for the first six
snapshots. The mean of each distribution is normalized to zero. Ω is the internal
site energy and ∆E the electrostatic site energy.
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