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ABSTRACT

Self-aggregation in numerical simulations of tropical convection is described by an upscale growth and

intensification of dry and moist regions. Previous work has focused on determining the relevant mechanism

that inducesmoist regions to get moister and dry regions to get drier. Though differentmechanisms have been

identified, the spatial evolution of self-aggregation is remarkably universal. The first part of this study shows

that different mechanisms can lead to a similar evolution of self-aggregation, if self-aggregation is described

by a phase separation of moist and dry regions, through a process called coarsening. Though it was previously

introduced based on a convection–humidity feedback, coarsening, importantly, is not tied to a specific

feedback process but only requires an intensification of local humidity perturbations. Based on different

feedback loops, three simple models of the evolution of the humidity field are introduced, all of which lead to

coarsening. In each model, diffusive transport of humidity is assumed, which approximates a humidity in-

crease due to convection, within a finite region around convective cores. In the second part, predictions made

by coarsening are compared with atmospheric model simulations. Analyzing a set of radiative–convective

equilibrium simulations shows that coarsening correctly predicts the upscale growth of the moist and dry

regions in the early stages of self-aggregation. In addition, coarsening can explain why self-aggregation is not

observed for small domains and why the shape of the final moist region changes with the shape of the domain.

1. Introduction

a. Self-aggregation of tropical convection

Organization of tropical convection has received in-

creased attention in recent years. One key question, as

outlined by Bony et al. (2015), is to determine the role

of convective organization for climate. However, one

difficulty when discussing convective organization is

to define what we mean by organization. One possible

definition has been given by Mapes and Neale (2011),

who state that convective organization is the ‘‘nonran-

domness in meteorological fields in convecting regions.’’

This definition includes a large number of different

phenomena, ranging from the organization of shallow cu-

mulus clouds at the boundaries of cold pools (e.g., Seifert

and Heus 2013) over mesoscale convective clusters

(e.g., Houze 2004) to large-scale anomalies in the ver-

tically integrated humidity field that impact the spatial

distribution of deep convection (e.g., Mapes et al. 2018).

The importance of tropospheric humidity on deep

convection has been investigated in a number of studies.

Deep convection, if measured by precipitation rate, has

been shown to increase nonlinearly with column rela-

tive humidity (e.g., Bretherton et al. 2004, 2005). Some

studies have argued that this relationship is a result of

convection to self-organize with respect to humidity

(e.g., Peters and Neelin 2006; Yano et al. 2012). While in

the context of self-organization, convection is expected

to drive the tropospheric humidity content toward a crit-

ical value (Peters andNeelin 2006), numerical simulations

of radiative–convective equilibrium (RCE) have shown

that humidity anomalies can form in atmospheric models,

even in the presence of homogeneous boundary and ini-

tial conditions. This is not a contradiction to the findings of

Peters andNeelin (2006) as convection, which is limited to

themoist regions, might still drive the humidity content of

the moist region toward a critical value but suggests that
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additional processes induce the separation of the domain

into moist and dry regions and thus the separation of the

domain into regions with and without deep convection.

This spontaneous spatial organization of convection

in RCE, despite homogeneous boundary conditions and

forcing, has been defined as self-aggregation (SA; Wing

et al. 2017). The organized state is referred to as being

aggregated as it is marked by positive spatial and tem-

poral correlations between deep convective updrafts.

In particular, the domain is divided into distinct regions:

dry regions without convection and moist regions with

convection. These regions grow upscale in time, often

until a single moist and convecting region is surrounded

by a dry and subsiding region. As this evolution arises in

the absence of heterogeneous boundary conditions or

forcing it is referred to as self-aggregation. Note that the

term aggregation in this context is slightly misleading as

positive correlations between convective updrafts are not

necessarily due to merging of individual convective up-

drafts into a single convective cluster but can also be due

to the growth of dry regions where there is no convection.

Self-aggregation of convection was first observed by

Held et al. (1993), who showed the transition from

randomly distributed to aggregated convection in

a 2D RCE simulation. Since then, self-aggregation

has been observed in a large number of RCE simula-

tions (Tompkins 2001; Posselt et al. 2012; Wing and

Cronin 2016; Yang 2018a,b; Tompkins and Craig 1998;

Bretherton et al. 2005; Muller and Held 2012; Kempf

2013; Jeevanjee and Romps 2013; Wing and Emanuel

2014; Muller and Bony 2015; Holloway and Woolnough

2016; Hohenegger and Stevens 2016; Popke et al. 2013;

Coppin and Bony 2015; Reed et al. 2015; Becker et al.

2017; Arnold and Putman 2018). The setup of the sim-

ulation impacts self-aggregation. In particular, SA does

not occur at all if the domain size is too small (e.g.,

Bretherton et al. 2005; Muller and Held 2012) and does

not start spontaneously for resolutions higher than

about 2 km but persists when started from aggregated

initial conditions (Muller and Held 2012). In addition,

the appearance of self-aggregation depends on the do-

main shape. In channel-like simulations the moist regions

always appear as bands (Tompkins 2001; Posselt et al.

2012; Wing and Cronin 2016) and though some studies

have shown that band-like structures can (at least tran-

siently) also form in square domains (Tompkins and

Craig 1998; Wing and Emanuel 2014; Muller and Bony

2015), moist regions in square domains generally tend

toward a single circular region (e.g., Bretherton et al.

2005; Muller and Held 2012; Kempf 2013; Jeevanjee and

Romps 2013; Hohenegger and Stevens 2016).

The above listed studies specifically refer to self-

aggregation under conditions of nonrotatingRCE.While

we will focus on self-aggregation in the nonrotating setup

in this study, it should be noted that rotation significantly

affects self-aggregation. In fact, as summarized by Yang

(2018b), the self-aggregation clusters in simulations with

the Coriolis effect resemble tropical cyclones [for a re-

view, see Wing et al. (2017)] while a propagating self-

aggregation cluster that has been found in a simulation

that includes the beta effect has been noted to broadly

resemble theMadden–Julian oscillation (Yano et al. 2012).

As reviewed by Wing et al. (2017), different mecha-

nisms have been proposed to drive self-aggregation.1

While wewill discuss three of thesemechanisms in detail

in section 2, a short overview of the relevant processes is

given in the following. Though it is difficult to determine

which mechanism drives self-aggregation in a specific

setup, a number of relevant processes have been iden-

tified. These processes are surface fluxes, radiation

(longwave and shortwave), virtual effect of water vapor,

and convective entrainment and detrainment. Using a

diagnostic introduced byWing and Emanuel (2014), one

can, for a specific simulation, determine for each process

whether it leads to an amplification or a suppression of

humidity anomalies. In the former case, we say that the

process results in a positive feedback, favoring self-

aggregation, while in the latter case, we say it leads to a

negative feedback, opposing self-aggregation. There is

evidence that there is no unique process relevant for SA.

Studies have shown that the amplification of humidity

perturbations is generally due to more than one process

and that the relevant processes change with sea surface

temperature (SST; Wing and Cronin 2016; Coppin and

Bony 2015), with the presence or absence of cold pools

(Muller and Bony 2015; Holloway andWoolnough 2016),

and during different stages of SA (Wing and Emanuel

2014; Wing and Cronin 2016; Coppin and Bony 2015;

Holloway and Woolnough 2016; Yang 2018a). Note that,

because of the strong positive correlation between hu-

midity and convection, SA is often, and will be in this

study, investigated in terms of the smoother humidity field.

A change in the relevant process also indicates that

the mechanism driving SA changes. While one might

assume that the appearance of SA depends on the

mechanism that drives it, the spatial evolution of SA is

surprisingly universal, being generally described by an

upscale growth of moist and dry regions, instead of, for

example, the intensification of a preferred wavelength.

This suggests that the type of pattern formation in SA is

similar in all studies and does not depend sensitively on

the relevant mechanism. In contrast to the mechanism

1Note that a further mechanism involving the virtual effect of

water vapor was proposed by Yang (2018a).
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that drives SA, the spatial evolution of SA has received

little attention though two studies have investigated the

spatial scales in the steady state (Wing and Cronin 2016;

Yang 2018b).

To understand the spatial evolution of the humidity

field during SA, one has to assess not only how pertur-

bations in the (vertically integrated) humidity field

amplify but also how humidity is exchanged between

different regions. Considering the mechanism driving SA

with respect to this exchange in humidity, two categories

are naturally distinguished:

d Advective mechanisms: Humidity perturbations am-

plify as moisture is advected out of dry into moist

regions, for example, because of a circulation driven

by differential radiative cooling.
d Local mechanisms: Humidity perturbations amplify as

the moisture content of moist (dry) columns increases

(decreases), for example, by increased (decreased)

surface fluxes.

Analysis of the budget equation of the variability of the

moist static energy (Wing and Emanuel 2014; Holloway

and Woolnough 2016) suggests that local processes are

most important for SA, at least during the onset of SA.

However, if local processes are relevant, they contain no

information about how humidity is exchangedwithin the

domain, and connected dry and moist regions can only

emerge if such an exchange exists. To describe the spa-

tial evolution during the onset of SA, we therefore need

to introduce an additional term that accounts for mois-

ture exchange with neighboring grid cells in addition to

specifying a local mechanism.

In this study, we propose that the exchange of humid-

ity, at least during the early stages of SA, is diffusive. We

show that diffusion approximates the effect of moisture

increase due to stochastically triggered convection. As

diffusion leads to a downgradient moisture transport, this

choice is in agreement with the initially negative contri-

bution of the convergence term found by Wing and

Emanuel (2014) although not with the neutral or even

positive convergence term observed by Holloway and

Woolnough (2016). We also note that while Coppin and

Bony (2015) find that the overall advective tendency is

negative, they show that there is still export of humidity

out of the dry regions, suggesting a more complicated

humidity exchange than pure diffusion. Although it is not

the main focus of this paper, some evidence for a transi-

tion from a diffusion-dominated regime to an advection-

dominated regime will be noted in section 5 below.

b. Coarsening

Assuming that the humidity content in the atmo-

sphere is governed by local processes that induce moist

regions to get moister and dry regions to get drier,

the atmosphere is an example of a bistable system as

each location tends toward one of two phases (moist or

dry), depending on its initial condition. In particular,

expressing the evolution of the humidity content q in

terms of a potential V(q),

›q

›t
52

dV

dq
, (1)

bistability results from a potential with double-well

structure, with two (local) minima separated from each

other by a local maximum. The state of q corresponding

to the local maximum is unstable as, when slightly

perturbed, q evolves toward one or the other poten-

tial minimum (see Fig. 1). In contrast, the two states

corresponding to the two potential minima are stable

to small perturbations. The explicit form of the po-

tential V(q) is determined by the physical processes

driving the evolution of q, with the gradient of the

potential (and thus the rate of evolution) at a given q

determined by the strength of the acting processes.

Note that the evolution of the state away from

the unstable maximum is sometimes referred to as a

feedback process since the gradient of the potential

increases away from the maximum, accelerating the

rate of change of q.

Considering a spatially extended bistable system that

allows for some mixing between regions of different

phases, the regions will grow in size over time, through a

process called coarsening (e.g., Bray 1994; Krapivsky

et al. 2010). A simple mathematical model of coarsening

is based on the following two assumptions (see, e.g.,

Krapivsky et al. 2010). The first assumption is that the

thermodynamics of the bistable system is given by the

Landau free energy:

FIG. 1. Double-well potential representing bistability of q.

Depending on whether q is smaller or larger than the local maxi-

mum it evolves toward one or the other potential minimum.
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F[q(x)]5

ð�
V[q(x)]1

D

2
[=q(x)]2

�
dx , (2)

where V(q) is again a potential with double-well struc-

ture and D is a diffusion coefficient. The second as-

sumption is that the evolution of q(x) is given by

›q(x)

›t
52

dF

dq
52

dV

dq
1D=2q(x) , (3)

that is, tending toward minimizing F(q) at each loca-

tion x. This equation is usually referred to as the time-

dependent Ginzburg–Landau equation2 (TDGL). Note

that the time evolution described by the TDGL only

leads to coarsening, that is, to an upscale growth of re-

gions of the two phases, when started from a slightly

perturbed field in the unstable state. Or, expressed dif-

ferently, coarsening is the process that results from the

time evolution of the TDGL for these specific initial

conditions.

In Eqs. (2) and (3), the first term on the right-hand

side represents the local bistability of the system in

terms of the double-well potential and the second term

includes the effects of horizontal mixing by diffusion.

Note that the Landau free energy as well as the TDGL

cannot be derived from first principles but are motivated

by the coarsening found for the Ising model, a simple

model for ferromagnets. Details on the theoretical

background of coarsening can be found in the respective

chapter of Krapivsky et al. (2010).

In the following, we will briefly review the evolution

expected for q(x) resulting from the TDGL, that is,

Eq. (3). This discussion is simplified by noting that the

evolution of the TDGL minimizes the Landau free en-

ergy of the system, that is, dF/dt# 0, as can be readily

shown from Eqs. (2) and (3). Starting from a slightly

perturbed field in the unstable state will first lead

to the formation of small, coherent regions of the two

stable states, which minimizes the contribution from

the first term in Eq. (2), as the two stable states corre-

spond to the two potential minima. At the boundaries of

these regions, q smoothly transitions from the q value

corresponding to the one potential minimum to the q

value of the other minimum. The smooth transition

between the two regions, usually referred to as domain

wall, can be understood as a trade-off between the first

term in Eq. (2), which favors a sharp gradient between

the different stable regions, and the second term, which

favors weak gradients. The properties of the domain

walls are entirely determined by the potential and the

diffusion coefficient and thus independent of domain

size, which will become important below. With time, the

stable regions grow upscale, which reduces the total

length of the boundary and thus the contribution of the

domain walls to the Landau free energy.

Note that forminimizing Eq. (2), it is also important to

distinguish whether the potential minima are degener-

ate, that is, the depths of both wells inV(q) are identical,

or nondegenerate, that is, the depths of the two wells are

different. In the latter case, the regions of q corresponding

to the less deep potential well are only metastable as

F[q(x)] is further minimized by the stable regions

(q corresponding to the deeper potential well) expanding

into the metastable regions. In this case, the final state,

that is, the state of minimal F[q(x)], is reached when the

entire domain is in the stable state. In the degenerate

case, the final state is reached when the entire domain is

in one of the two stable states.

While the precise time evolution depends on the

potential function, some properties of the evolution

are independent of the details of the potential. These

properties are referred to as universal. In particular, the

key property of coarsening is that the upscale growth of

the stable regions is dynamically self-similar, with the

typical length scale of the stable regions proportional to

time raised to some power, here, t1/2. In the remainder of

the text, we will refer to this property as t1/2 scaling. Note

that dynamical exponent of 1/2 is universal as long as q is

not a conserved quantity and the dimension of the sys-

tem is larger than one.

As it will become important in the following discus-

sion, we finally note that the TDGL is a specific version

of a reaction–diffusion equation:

›q

›t
5R(q)1D=2q . (4)

As in the TDGL equation, the change in q in a reaction–

diffusion equation depends on local processes (described

by R) and diffusive mixing. The important difference to

the TDGL is that, in a reaction–diffusion equation,R can

take any form and is not necessarily given by the func-

tional derivative of a double-well potential V(q).

Coarsening described by the TDGL was first pro-

posed to describe SA by Craig and Mack (2013).

Introducing a model that quantifies the positive feed-

back between convection and humidity based on con-

vective entrainment and detrainment and assuming a

diffusive exchange of humidity, they showed that the

resulting model led to upscale growth of moist and dry

regions comparable to SA. Their model has, however,

two limitations. First, analysis of simulations show-

ing self-aggregation suggest that the relevant feedback

2Note that the TDGL is sometimes also referred to as Allen–

Cahn equation.
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process might be different from the one proposed in

Craig and Mack (2013), and second, their assumption

of a diffusive interaction term lacks physical motivation.

In this paper, we further investigate the hypothesis

that the upscale growth of moist and dry regions during

SA is described by coarsening. In section 2, we consider

the local bistability of the atmospheric humidity content.

Comparing the time evolution equations for local hu-

midity perturbations introduced by Bretherton et al.

(2005), Craig and Mack (2013), and Emanuel et al.

(2014) in section 2, we find that they are all unstable to

small perturbations, though because of different mech-

anisms. These instabilities are then expressed in terms

of a double-well potential, that is, as the time evolution

due to the local process of the TDGL. In section 3, we

investigate the horizontal mixing term and show that a

diffusive spatial coupling term can result from a sto-

chastic representation of convection. This motivates our

choice of a diffusive transport term for the evolution

equation of SA. Combining each of the three evolution

equations with a diffusion term in section 4 leads to

coarsening described by the TDGL in each case. Com-

paring the spatial evolution of the three models helps us

illustrate the properties of coarsening that are inde-

pendent of feedback details. In section 5, we demon-

strate that the universal t1/2 scaling of coarsening can

explain the upscale growth of moist and dry regions and

that coarsening in general can explain the dependence

of SA on domain size and shape in RCE simulations.

2. Three models based on local mechanisms

In this paper, we suggest that the type of pattern for-

mation observed during self-aggregation of convec-

tion is independent of the processes responsible for the

positive feedback that drives self-aggregation, as long as

the processes act locally. To illustrate this, we start by

comparing the three theoretical models introduced by

Bretherton et al. (2005), Craig and Mack (2013), and

Emanuel et al. (2014), each quantifying processes that

make the initially homogeneous humidity content un-

stable to perturbations. In particular, the models ex-

plain how humidity perturbations amplify with time,

through a single process or a combination of processes,

by introducing evolution equations for these perturba-

tions. As we argue below, each evolution equation can

be regarded as the local source term R in a reaction–

diffusion model.

In the following, each model, the relevant processes

and the derivationmethod are summarized while amore

extensive discussion is given in the online supplemen-

tary material. We note that the different models de-

scribe the time evolution of different humidity variables

but that, for the purpose of this paper, we are principally

interested in the distinction between whether the hu-

midity is larger or smaller than the initial equilibrium

content. We have therefore replaced the different hu-

midity variables used in the different models by a ge-

neric scalar variable q, normalized to one. The original

definition of q for each model is given below with an

overview of these definitions given in the appendix. In

addition to this generalized humidity content q, we de-

note the mean humidity content in the absence of self-

aggregation as qRCE and the deviation from it as q0.

a. Model introduced by Bretherton et al. (2005)

Bretherton et al. (2005) use a RCE simulation to

derive a semiempirical model for the time evolution of

the column relative humidity. Using the weak temper-

ature gradient approximation, they derive an approxi-

mate budget equation for the column relative humidity

from the budget equation of the vertically integrated

frozen moist static energy. The resulting equation shows

that column relative humidity mainly changes through

radiation, surface fluxes, and moisture convergence. To

obtain a closed equation for the time evolution of the

column relative humidity, they proceed in two steps. As

the first step, they determine how the radiation, sur-

face flux, and moisture convergence components of the

budget equation change in response to a change in

precipitation by fitting their dependence on the pertur-

bation precipitation rate (P2 PRCE). The change of the

column relative humidity due to the three processes is

then given by ›tq5 (P2PRCE)�3

i51f
i(q), where f i(q)

refers to the empirically determined relation for process

i. Note that they determine the dependence on precipi-

tation rather than column relative humidity as, on

physical grounds, they anticipate it to be the amount of

convection that alters the forcing terms. As the second

step, they use the dependence of the precipitation rate

on humidity [their Eq. (2)] to express the precipitation

rate P in terms of humidity:

P(q0); ek
b
1
q0 . (5)

As the resulting equation for ›tq
0 accounts for the

local processes that modify a humidity perturbation but

does not represent any humidity exchange between

neighboring regions, we refer to it as a local source term

RB [see Eq. (4)] in the following.3 As shown in the sup-

plementary material, the equation derived by Bretherton

et al. (2005) can be written as

3 The local term actually includes the nonlocal convergence term

but the diagnostic used to derive this term makes it impossible to

include it as a transport term.
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R
B
(q0)5 ›

t
q0 5 (ek

b
1
q0 2 1)(kb

2 2 kb
3q

0) , (6)

where q0 denotes a perturbation of the column relative

humidity with respect to the equilibrium content qRCE

and the parameters kb
1, k

b
2, and kb

3 combine multiple

parameters given in Bretherton et al. (2005) to simplify

the notation. Their values are calculated from the pa-

rameters given in Bretherton et al. (2005) and listed in

Table 1.

b. Model introduced by Craig and Mack (2013)

The model introduced by Craig and Mack (2013) is

based on a positive feedback between convection and the

humidity content of the free troposphere. On the one

hand, convection will increase the humidity in the

free troposphere by transporting humidity out of the

boundary layer. On the other hand, deep convection

is more likely to occur in moist regions than in dry

regions, as the entrainment of dry air reduces the

buoyancy. They formalized this feedback on the humidity

content as

R
C
(q)52kc

1q1 kc
2[exp(k

c
3q)2 1]

�
1

kc
4q

2 1

�
, (7)

where q denotes the free-tropospheric column rela-

tive humidity and kc
1, k

c
2, k

c
3, and kc

4 are model param-

eters. Note that the source term RC again represents

the evolution of the humidity content due to local

processes.

The first term on the right-hand side of Eq. (7) rep-

resents the subsidence drying term, which accounts for

the rate of change of humidity due to subsidence. The

second term is the convective moistening term and

represents the increase in humidity due to convec-

tion. The parameter values used here are summarized

in Table 2, and a more detailed description of the in-

dividual terms together with the estimation of the pa-

rameters from a RCE simulation (Kempf 2014) is given

in the appendix.

Craig and Mack (2013) also included a global con-

straint, which ensured that the domain can neither be-

come completely dry nor completely moist, as is the case

for a RCE simulation. As discussed in Craig and Mack

(2013), the constraint mainly affects the final stage of self-

aggregation, where it enforces the formation of a single

circular moist region surrounded by a dry region. In the

following discussion, we will focus on the early stages of

self-aggregation and therefore neglect the constraint for

better comparability with the other models.

c. Model introduced by Emanuel et al. (2014)

In their study, Emanuel et al. (2014) investigate the sea

surface temperature dependence of self-aggregation. To

this end, they first derive a time evolution equation

for humidity perturbations by linearizing the budget

equation of moist static energy around the radiative–

convective equilibrium state. Analyzing this budget

equation and the results from Wing and Emanuel

(2014), they argue that the SST dependence arises

because of longwave radiation. Longwave radiation

yields a positive feedback only for large SST, and the

proposed feedback loop can be summarized as follows.

In case of a moist lower troposphere, as expected for

high SST, negative (positive) moisture perturbations

lead to stronger (weaker) radiative cooling inducing

mean descent (ascent) as horizontal temperature dif-

ferences are removed by the compensating vertical

motion in an atmosphere where the weak temperature

approximation holds.

Here, we are only interested in conditions that lead to

self-aggregation and therefore constrain our analysis of

the model to the limit of high SST. As we show in the

appendix, the initially two-layer model introduced by

Emanuel et al. (2014) can then be represented by the

following single-layer model:

R
E
(q0)5 keq0 withke 5 5:83 1026 s21 , (8)

where q0 is the deviation from the mean RCE specific

humidity in the upper free troposphere divided by

the corresponding saturation value. The time evo-

lution of q0 is again referred to as a local source term

RE and ke is a model parameter.

d. Model comparison

Each model introduced above describes how a per-

turbation in the humidity content q0 evolves in time.

While they are based on different processes, are derived

in different ways, and even account for the humidity

content of different layers, they have one important

common property: humidity perturbations grow in time.

This can be seen in Fig. 2a, where we show the local

source term R for each model, using the parameters

TABLE 1. Parameters for positive feedback loop based on

Bretherton et al. (2005).

kb
1 kb

2 kb
3

Value 16.6 7.8 3 1028 s21 1.3 3 1026 s21

TABLE 2. Parameters for positive feedback loop based on Craig

and Mack (2013).

kc
1 kc

2 kc
3 kc

4

Value 2.0 3 1026 s21 5.7 3 1029 s21 11.4 1.1
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given above.4 While R(q0 5 0)5 0 shows that q0 5 0 is a

time-independent solution in each model, ›qR(q
0 5 0). 0

shows that, in all three models, any small perturbation

will grow in time; that is, moist perturbations will be-

come increasingly moist while dry perturbations become

increasingly dry.

To characterize the behavior of the different feedback

loops and relate them to coarsening, we compute the

corresponding potential V(q) for each model [see

Eq. (3)]. The numerically integrated potentials are

shown in Fig. 2b. The physical limits on humidity, given

by complete dryness (q 5 0) and saturation (q 5 1),

show up in the potentials as infinite walls at these hu-

midity values. The potentials all take the double-well

form that is a necessary precondition for coarsening. We

can now visualize the time evolution of any humidity

perturbation by ‘‘rolling down’’ into one of the poten-

tial minima. In particular, any initial humidity content

smaller (larger) than qRCE, the local maximum of the

potential, will tend to the stable dry (moist) minimum

with the drying/moistening rates given by the steepness

of the potential.

Comparing the three models suggests that dry per-

turbations always tend to an entirely dry state, while

Bretherton et al. (2005) and Craig and Mack (2013)

suggest that themoist equilibrium is below saturation. In

fact, the moist minimum in Bretherton et al. (2005) is so

close to q0 5 0 that it is hardly visible in Fig. 2. In addition

to the humidity value of the stable moist and dry state,

the differences in the potentials suggest that the time

evolution will be different as moistening and drying

rates for a given humidity content q are governed by the

gradient of the potential at q: the steeper the gradient,

the larger the drying or moistening rate. Since themodel

introduced by Emanuel et al. (2014) has been linearized

with respect to qRCE, the corresponding potential is

symmetric with respect to qRCE and thus moistening and

drying progress at the same speed. For the model based

on Craig and Mack (2013), moistening is faster than

drying, in contrast to the model based on Bretherton

et al. (2005), where drying is much faster than moist-

ening. It is interesting to note that these differences

between the theoretical models resemble the differences

found in atmospheric models. WhileWing and Emanuel

(2014) and Hohenegger and Stevens (2016) find drying

to be significantly faster than moistening, Holloway and

Woolnough (2016) find comparable drying and moist-

ening rates.

Representing the time evolution equations given by

Eqs. (6)–(8) as double well potentials relates well to

results obtained by weak temperature gradient studies

that examine multiple-equilibria solutions (Sobel et al.

2007; Sessions et al. 2010, 2015, 2016; Emanuel et al.

2014). These studies suggest that, under certain con-

ditions, the final state of a model based on the weak

temperature gradient approximation depends on the

initial humidity content, with dry initial conditions

evolving toward a unique dry equilibrium state while

moist initial conditions develop toward a unique moist

equilibrium state. Comparison with the potentials in-

troduced above suggests that the two equilibria corre-

spond to the moist and dry potential minima.

3. Exchange of humidity between different regions

The positive feedback loops introduced in the previ-

ous section describe processes that locally amplify an

existing humidity perturbation and do not consider

any exchange of humidity between neighboring grid

FIG. 2. (a) Tendency of humidity as a function of humidity and

(b) the corresponding potential for the three models introduced by

Bretherton et al. (2005) (blue), Craig and Mack (2013) (orange),

and Emanuel et al. (2014) (green).

4 Note that while q for all models represents a relativemeasure of

humidity, that is, q in [0, 1], the value of qRCE depends on the

model. This means that also the values of the upper and lower

boundary of q0, given by q0 5 12qRCE and q0 52qRCE, respec-

tively, differ between the different models.
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columns. Such an exchange, however, must exist to ex-

plain the formation of coherent moist and dry regions

during self-aggregation. In this section, we propose that

an exchange of humidity can result from convectively

induced moistening.

While the relevant mechanisms in the three models

introduced above differ, the cause of the local increase

in humidity is convection. Bretherton et al. (2005), for

example, formulate the forcing terms of their humidity

equation in terms of precipitation because they argue

that, on physical grounds, the forcing terms should de-

pend on the amount of convection. The increase of hu-

midity by convection is a central component of the

model introduced byCraig andMack (2013), and though,

in the model introduced by Emanuel et al. (2014), con-

vection is not central for the feedback loop, it is again a

source of increased humidity.

This increase in humidity is not strictly local, but

convection will moisten the atmosphere within a fi-

nite region around the convective updraft. Thus, even

though convective updrafts preferentially occur in moist

regions, convection can increase the humidity content of

neighboring columns independently of whether they are

dry or moist. To investigate the consequences of this, we

first introduce a simple model that represents the in-

crease in humidity within a finite region around con-

vective updrafts as well as the increased likelihood of

deep convection to occur in moist regions. We show that

the result of this model is a smoothing of sharp gradients

between moist and dry regions. In the second part of

this section, we show that the spatial coupling resulting

from the simple model of convective moistening can be

represented as a reaction–diffusion equation, intro-

duced in Eq. (4), with a strictly local increase in humidity

combined with a diffusion term.

a. Simple model of convective moistening

In the following, we introduce a simple model to de-

scribe the effect of convective moistening in a spatially

extended system. Our assumptions are that

1) deep convection moistens the atmosphere within a

finite distance around the convective updraft (e.g.,

Parsons et al. 2000; Redelsperger et al. 2002) and

2) deep convection is more likely in an already moist

environment (e.g., Derbyshire et al. 2004).

As we neglect any other processes that lead to an in-

crease or loss in humidity, the humidity content at a

given location depends only on the location of cloud

formation and the increase in humidity around the cloud

centers.

We describe the increase in humidity due to a cloud

centered at xc in terms of the total increase in humidity

q0 and its spatial distribution according to a normal-

ized function f to which we will in the following refer

as humidity distribution. In particular, the increase

in humidity at a given distance from the cloud center

jxc 2 xj5D is described by f(D) multiplied by q0. As

multiple clouds can form during one time step, the total

increase in humidity at a given location x can result from

multiple clouds at, or in the vicinity of, x. This is illus-

trated for two clouds in Fig. 3, where the humidity in-

crease due to cloud 1 and cloud 2 is given by f(jx1c 2 xj)
and f(jx2c 2 xj), respectively.
As we expect more clouds in an already moist region,

the locations at which the convective updrafts form in

the model should depend on humidity in such a way

that the expected number of clouds within one time step

and column, given by hN(q)i, increases with humidity.

Naturally, hNi also increases with the spatial extent of

the column dx and the length of the considered time-

step dt. To separate the dependence of convective

updrafts on q from the dependence on dt and dx, we

introduce an average rate of occurrence of convective

updrafts n5 hNidx21dt21.

Based on n[q(x)], which depends on x through the

humidity content q(x), and the spatial distribution of

convective moistening q0f, the expected increase in

humidity at a given location x can be expressed by the

following integral:

›
t
q(x)5

ð‘
2‘

n[q(x1D)]q
0
f(D) dD , (9)

where the increase in humidity at a given location x not

only depends on the clouds forming at x, that is, n[q(x)],

but also on the number and location of clouds that form

in the surrounding of x, that is, n[q(x1D)]. This is also
shown schematically in Fig. 3.

FIG. 3. Schematic showing the increase in humidity Dq in the

simple model due to two convective updrafts with centers at x1c and

x2c . As indicated by the blue and the orange areas, the increase in

humidity at x due to the two clouds is given by q0F(jxc 2 xj) and
thus the total increase is given by q0F(jx1c 2 xj)1 q0F(jx2c 2 xj),
(solid black line). The increase in humidity at xi, Dq(xi), thus de-
pends on the number of cloud centers within the surrounding of xi

as well as their respective distance to xi, indicated by D1 and D2.
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While Eq. (9) describes the expected rate of increase

in humidity, we will in the following simulate the sto-

chastic process directly. To this end, we first introduce

an explicit dependence of n(q) and f(D). For simplicity,

we consider a linear increase of cloud number with hu-

midity, that is, n(q)5 n0 1n1(q2 qRCE) and note that

this also represents a first-order Taylor expansion of a

more complicated n(q) around qRCE. For the spatial

distribution function f(D), we assume that the strongest

increase in humidity is close to the updraft center, which

we represent using a normalized Gaussian

f(D)5
1

2pr2fp
e
2r2/(2r2

fp
) , (10)

where the radius rfp determines the width of the humidity

distribution.

Before we can simulate the above described model,

we need to estimate the following parameters:

d rfp: Width of the humidity distribution
d q0: The total increase in humidity associated with

one cloud
d qRCE: The mean humidity content in RCE in the

absence of self-aggregation
d n0: The average number of clouds per time and area at

qRCE

d n1: The additional number of clouds per time, area,

and Dq at qRCE 1Dq

To estimate the radius rfp, we assume that the width of

the humidity distribution is related to the typical extent

of deep convective updrafts. In particular, we choose rfp
such that the region r# rfp, where humidity increases

strongly, corresponds to the typical extent of a deep

convective updraft in the free troposphere. As Doswell

(1985), studying the life cycle of a common convective

shower, find updrafts on the order of 5 km during the

early and mature stage of the life cycle, we set the radius

rfp 5 2.5 km. Note that in setting rfp equal to 2.5 km,

99.5% of the increase in humidity given by Eq. (10)

happens within a region with a horizontal extent of

15 km, a typical spatial extent of a deep convec-

tive cloud in its dissipating stage (Doswell 1985). For

the total increase in humidity associated with one

cloud q0, we assume that the cloud initially increases

the humidity from qRCE to saturation (i.e., q 5 1)

within rfp throughout the free troposphere, which

gives q0 5 (12 qRCE)pr
2
fp 5 5:53 106 m2. To estimate

the average number of clouds n0 per area and time, we

assume that at any given time the cloud fraction cf is

about 10% (e.g., Stein et al. 2017), which, together with

rfp 5 2.5 km and an average cloud lifetime ct of 1 h,

gives n0 5 cf /(pr
2
fpct)5 1:43 10212 m 22 s21. Finally, to

estimate the increase in cloud number with humidity n1,

we use the dependency of precipitation on humidity given

in Eq. (5) and Table 1. Assuming that precipitation

is a proxy for the amount of convection, we estimate

n(q)5 n0 exp[k
b
1(q2 qRCE)]’ n0 1 n0k

b
1(q2 qRCE); that

is, n1 5 n0k
b
1 5 2:33 10211 s21 m 22. Note that this ap-

proximation should be considered as an order of magni-

tude estimate because the expansion of the exponential

pickup curve gives good agreement only close to qRCE.

Starting from a humidity field with a step function

profile in the x direction, as can be seen in the top panel

of Fig. 4, a cloud is assigned with probability n[q(i, j)] at

every site (i, j). Here, we choose that, during each

time step, a maximum of one cloud can form per grid

cell as the chosen horizontal resolution of 1km and the

corresponding time step of 60min allow for only one

deep convective cloud at a time. Note that we enforce

a lower and an upper limit on the humidity content of

qRCE21/kb
1 # q# 1. While the upper limit is a physical

limit, the lower limit ensures that the rate of clouds cannot

become negative. If a cloud is assigned to site (i, j), its

humidity together with the humidity of the surrounding

cells is increased byq0f(jr2 r(i,j)j). The profile of a sample

model output after 10h is shown in addition to the initial

profile in the top panel of Fig. 4 and the corresponding

snapshot in themiddle panel. The front between themoist

and the dry regions after 10h has propagated into the dry

regions and the gradient has been smoothed.

b. Deterministic approximation

In the following, we will show that the model de-

scribed by Eq. (9) can be approximated by a reaction–

diffusion equation. Using, as above, a first-order Taylor

expansion of n(q) and in addition a second-order Taylor

expansion of q(x1D), Eq. (9) can be written as

FIG. 4. (top) Initial humidity profile (blue) and humidity profiles

after 10 h for the simple convectivemoisteningmodel (orange) and

the corresponding deterministic model (green). (middle),(bottom)

Snapshots of the simple convective moistening model and the de-

terministic model after 10 h, respectively.
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›
t
q(x)’ [n

0
1 n

1
q(x)]q

0

ð‘
2‘

f(D) dD|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
51

1 n
1
q
0
›
x
q

ð‘
2‘

Df(D) dD|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
50

1
1

2
n
1
q
0
›2xq

ð‘
2‘

D2f(D) dD|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Depends only on f

. (11)

5 [n
0
1 n

1
q(x)]q

0
1D›2xq with D[

1

2
n
1
q
0

ð‘
2‘

D2f(D) dD , (12)

where the integral in the first term evaluates to one

because of the normalization constraint on f(D), the
integral in the second term vanishes as we integrate an

antisymmetric function over a symmetric interval, while

the integral in the last term is determined by the choice

of f(D).
Equation (12) has the same functional dependence as a

reaction–diffusion equation. The source term R is given

by [n0 1n1q(x)]q0 and the diffusive part by D›2xq(x, t).

This derivation is similar to Einstein’s famous ‘‘proof’’ of

the existence of Brownianmotion (Einstein 1905). It runs

analogously in the two-dimensional case.

To obtain a simple estimate for D, we assume f(D) is
given by Eq. (10). The 2D diffusion coefficient is then

given by

D5
n
1
q
0

2
r2fp . (13)

Using Eq. (13) and the parameters estimated above

results in D5 4:03 102 m 2 s21.

Starting from the same initial humidity profile previ-

ously used for the simple model of convective moisten-

ing, a snapshot of the time evolution after 10 h of this

deterministic model is shown in the bottom row of Fig. 4

with the corresponding humidity profile shown in the

top row. It resembles the evolution of the previously

introduced model but is completely symmetric in the y

direction, without any fluctuations in propagation speed

and boundary width as found in the simple convective

moistening model.

To summarize, Eq. (12) shows that the coupling of the

humidity content induced by convective moistening can

be approximated by a strictly local increase of humidity

due to the number of clouds at that location and a dif-

fusion term that spreads humidity in space. While the

model of convective moistening presented here thus

motivates the use of a diffusion term in the following, we

note that the derivation above should not be considered

as a proof for a diffusive exchange of humidity in RCE

simulations as our model neglects any other processes

that can contribution to the horizontal exchange of hu-

midity. One potentially relevant process is the upgra-

dient transport of humidity due to a radiatively driven

shallow circulation (e.g., Muller and Held 2012). As we

will discuss in section 5 below, this process becomes in-

creasingly important with time and thus suggests that

diffusion might be a good approximation of the hori-

zontal exchange mainly during the early stages of self-

aggregation.

4. Spatial evolution

Section 3 shows that themoistening of the atmosphere

within finite regions around convective updrafts can

be approximated by a reaction–diffusion equation. The

model described by Eq. (12) so far only includes the

tendency of the atmosphere to moisten regions of in-

creased convection, but we know from section 2 that

there exists a positive feedback where not only moist

regions get moister but also dry regions drier. As we

have seen that the three local source terms RB [Eq. (6)],

RC [Eq. (7)], and RE [Eq. (8)] can be described as de-

rivatives of a double-well potential, combining them

with a diffusion term leads to three TDGL equations

[Eq. (3)].

Starting from a homogeneous state of q5 qRCE, per-

turbed with spatially uncorrelated noise drawn from a

uniform distribution with amplitude of 60.05, we now

examine the time evolution of two-dimensional humid-

ity fields resulting from the three models. The time

evolution is calculated numerically for a doubly periodic

domain, using second-order finite differences in space

and a fourth-order Runge–Kutta method in time. If not

stated otherwise, results will be shown for a domain of

size of 600km 3 600 km with a horizontal resolution

of 5 km.

a. Snapshots

Snapshots from all three models are shown in Fig. 5,

where we distinguish only between locations that are drier

or moister than the initial state qRCE:

q(x, y)5

�
0 if q# q

RCE

1 if q. q
RCE

. (14)

We focus on these two states as coarsening describes

the spatial evolution of the moist/convecting and the

dry/nonconvecting phases rather than details of moisture

variability.While themoisture variability in the theoretical
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models results from the moistening and drying rates

given by the respective potentials, moisture variability in

atmospheric models can also be produced by processes

not represented in the theoretical models, for example,

propagating gravity waves or individual deep convective

updrafts.

In Fig. 5, the moist and dry regions of each model

show an upscale growth of the typical length scale with

time, as characteristic for coarsening. In particular,

the upscale growth can be described as a successive

disappearance of small-scale features and thus a smooth-

ing of the boundaries between the two regions. While the

snapshots in Fig. 5 show a roughly equal partitioning

into moist and dry regions, we note that for all models

one phase eventually becomes dominant and covers

the entire domain. In fact, the dry regions already start

to dominate over the moist regions in the snapshot

corresponding to the model based on Craig and Mack

(2013), see middle row of Fig. 5. A uniform moist or dry

state is possible here because, in contrast to Craig and

FIG. 5. Time evolution of regions of dry (white) and moist (black) perturbations. Results for a sample output from the model based

on (top) Bretherton et al. (2005), (middle) Craig and Mack (2013), and (bottom) Emanuel et al. (2014).
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Mack (2013), we have not included a global constraint

on the amount of convection.

Note that even though the spatial evolution of regions

either moister or drier than the equilibrium humidity

content in Fig. 5 is very similar for the three models, the

actual humidity content within these regions (not shown)

reflects the differences in the potentials.

b. Scaling

One of the central properties of coarsening is dy-

namical self-similarity, where the increase in typical

feature size is proportional to t1/2. To compare the up-

scale growth in feature size shown in Fig. 5 with the

expected scaling, Figs. 6a–c show the average scaling of

the autocorrelation length lcor, a measure for the typical

feature size, with time for all three models. The auto-

correlation length is calculated on the binary fields

[see Eq. (14)] with details on the calculation given in the

supplementary material. For each model, the average

and standard deviation of 512 runs is calculated. The

only difference between the model runs is different

random noise in the initial field. Each panel of Fig. 6

has a double-logarithmic scale, so that a power-law de-

pendence will appear as a straight line. Dotted lines

show the expected t1/2 scaling for coarsening. We find

that, after an initial transition phase, the time evolution

of the autocorrelation length in all three models is well

described by the expected scaling, during the formation

and the upscale growth of moist and dry regions. But for

all models, the scaling eventually diverges from the t1/2

scaling. This departure from the expected scaling ap-

pears to start when either the moist or dry regions begin

to cover significantly more than half of the domain, that

is, when the moist (dry) regions start to expand at the

expense of the dry (moist) regions.

The scaling of the upscale growth of moist and dry

regions is the most important prediction from coarsen-

ing. In the following, we will show how the scaling in

FIG. 6. Scaling of the average autocorrelation length with time for the three differentmodels: (a) Bretherton et al.

(2005), (b) Craig and Mack (2013), (c) Emanuel et al. (2014), and (d) for a set of RCE simulations with varying

slab-ocean depth performed by Hohenegger and Stevens (2016), see text for details. In (a)–(c) the different colors

mark different feedback strengths and the shaded area indicates the standard deviation. In (d), the autocorrelation

length of just the 500-m slab-ocean run is included in addition to the average scaling, and the time axis has been

shifted by t05 1day to exclude the time before self-aggregation has started (see text for further details). Each panel

also shows the theoretically expected dependence (dashed line) with the star in (d) marking the position where the

500-m slab-ocean run starts to strongly deviate from this scaling.
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Figs. 6a–c depends on the strength of the feedback and

the diffusion coefficient and compare the different

models to note the impact of different potential shapes.

1) SENSITIVITY TO FEEDBACK STRENGTH

In addition to the model parameters estimated in sec-

tion 2, Figs. 6a–c show the scaling resulting from models

with changed feedback strength. In particular, we multi-

ply the reaction termR for eachmodel [Eqs. (6)–(8)] by a

constant value to make the moistening/drying tendencies

half (indicated in the legend as 0.5R) or twice as fast

(2.0R). Figure 6 shows that the main impact on the

scaling is that weaker (stronger) feedbacks lead to lon-

ger (shorter) t1/2 scaling, while there is little impact on

the initial evolution and the spatial extent of the features

at a given time.

2) SENSITIVITY TO DIFFUSION COEFFICIENT

A change in the diffusion coefficient changes the

typical length scale by a constant factor. This can

immediately be shown as the 2D version of Eq. (3)

can, without loss of generality, be rewritten as

›tq(~x, ~y)5R[q(~x, ~y)]1 (›2~x 1 ›2~y)q(~x, ~y) with ~x5
ffiffiffiffiffi
D

p
x

and ~y5
ffiffiffiffiffi
D

p
y. This shows that an increase in the diffu-

sion constant D leads to an increase in all spatial scales

by a constant factor, including the autocorrelation

length. As the dependence of the autocorrelation length

on time is shown in a double-logarithmic plot in Fig. 6, a

change in diffusion constant thus results in a shift along

the y axis but leaves the functional dependence un-

changed. In addition to the rescaling of the general

length scale, we note that the initial rapid growth is

determined by the diffusion term acting on the randomly

perturbed initial field. As we have used the same diffu-

sion coefficient for the three models, the evolution up to

the departure from the scaling is essentially identical

for all models. This can be seen in Figs. 6a–c, where

the autocorrelation length is similar for the different

models, and also when comparing the size of the spatial

structures in Fig. 5.

Changing the feedback strength and/or the diffusion

coefficient affects the nonuniversal aspects of the scal-

ing: the initial transition phase, the typical feature size,

and the time at which the scaling starts to deviate from

the expected scaling. In contrast, the universal property

of t1/2 scaling is not affected by a change in feed-

back strength or diffusion coefficient. The distinction

between universal and nonuniversal properties will be

important for the following discussion, where we com-

pare the theoretical models with atmospheric model

simulations. On the one hand, we expect that if self-

aggregation is described by coarsening, the upscale growth

of moist and dry regions should follow the universal t1/2

scaling even if none of the theoretical models exactly

captures the feedback acting in the atmospheric model.

On the other hand, the nonuniversal properties of coars-

ening depend on themechanisms driving self-aggregation.

As stated in the introduction, themechanisms driving self-

aggregation differ between atmospheric simulations, and

we therefore expect that the nonuniversal properties of

coarsening will depend on the details of how the simula-

tions are configured.

5. Comparison of coarsening and self-aggregation
in RCE simulations

The results from the previous section suggests that the

spatial evolution of self-aggregation of convection in

RCE simulations might be explained by coarsening,

independent of the processes that lead to the positive

feedback. In this section, we will compare properties of

coarsening with properties observed in RCE simulations.

a. Upscale growth

Figure 7 shows snapshots of the dry and moist regions

in the RCE simulation described in Hohenegger and

Stevens (2016). The atmospheric model simulation

was performed with the University of California, Los

Angeles, Large-Eddy Simulation model coupled to a

slab ocean with a depth of 500m, a horizontal domain

size of 576 km3 576 km, and a spatial resolution of 3 km;

see Hohenegger and Stevens (2016) for more details on

the simulation. Dry (moist) regions in Fig. 7 corresponds

to regions where the water vapor path (WVP) is smaller

(larger) than the equilibriumWVP (41.6mm), which we

define as themean humidity content of the domain before

the effect of domainwide drying (due to self-aggregation)

sets in. As expected for coarsening and as seen for the

theoretical models in Fig. 5, coherent moist and dry

regions form and grow upscale in time.

It is interesting to note that the upscale growth of

moist and dry regions in Fig. 7 happens, as in the theo-

retical models, simultaneously with a comparable area

covered by moist and dry regions. As the final state of

self-aggregation, however, is marked by a mainly dry

region, we note that the dry regions have eventually to

start growing at the expense of the moist regions. Such

an expansion of dry regions at the expense of moist

regions has been previously explained by Coppin and

Bony (2015) through a process other than coarsening.

Investigating self-aggregation in a general circulation

model, Coppin and Bony (2015) showed that, at low

SSTs, strong radiative cooling at the low-level cloud tops

in dry regions leads to the formation of density currents.

These density currents increase the size of the dry re-

gions by exporting humidity out of these regions. As
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noted in the introduction, advection of humidity out of

dry regions differs from the diffusive transport of hu-

midity in the models proposed here. In the next section,

we will present some indications for a transition from

a diffusion- to an advection-dominated stage of self-

aggregation.

An equal partitioning into moist and dry regions

during the onset of self-aggregation as in Fig. 7 is not as

clear in other RCE studies (e.g., Bretherton et al. 2005;

Wing and Cronin 2016). A possible explanation for this

could be a strong asymmetry between the moistening

and drying rates. On the one hand, this could make the

upscale growth of one phase more apparent than the

other phase; in this case, viewing the regions that contain

deep convection should give a more equally distrib-

uted appearance [which seems to be the case in, e.g.,

Bretherton et al. (2005)].On the other hand, the asymmetry

could be so strong as to lead to a discernible imbalance

between the two regions early in the self-aggregation pro-

cess (e.g., Wing and Cronin 2016).

b. Scaling in RCE simulations

We now determine whether the observed upscale

growth in moist and dry regions agrees with the t1/2

scaling expected for coarsening. Figure 6d shows the

autocorrelation length as a function of time in a double-

logarithmic plot for the simulation shown in Fig. 7. In

addition, we also include the average autocorrelation

length and the corresponding standard deviation, cal-

culated from a set of seven simulations performed by

Hohenegger and Stevens (2016). The simulations differ

in the slab-ocean depth and therefore in the ocean heat

capacity, instead of only differing in the initial condi-

tions as in the theoretical models. As we however want

the simulations to be as comparable as possible to each

other, we do not average over all simulations pre-

sented in Hohenegger and Stevens (2016) but restrict

our analysis to slab-ocean depths of at least 25m as the

onset of SA gets delayed for shallower ocean depths [see

Hohenegger and Stevens (2016) for more details]. Note

that self-aggregation does not start immediately but

needs some time to trigger. This results in a time period

during which we do not expect coarsening to apply. We

therefore shift the time of the simulation with respect to

this offset time. The offset time t0 for the shown snap-

shots and scaling was determined from the frequency

plot in Hohenegger and Stevens (2016), which suggests

that self-aggregation is present after the first day (see

their Fig. 1), that is, t0 5 1 day. Note that we do not at-

tempt to explain this delay in the start of self-aggregation

in this study but discuss a possible explanation in the

conclusions.

For the first day, the single and the average autocor-

relation length grow more rapidly than is compatible

with the t1/2 scaling we expect for coarsening. It is in-

teresting to note that a rapid initial growth is also ap-

parent for the simplemodels. After this initial phase, the

average autocorrelation length follows the expected

scaling until the end of the simulation period of the set

of the simulations (15 days) though with a slowly in-

creasing deviation apparent after approximately day

8. This is also seen in the 500-m simulation (which is

integrated longer than the others), but there is also a

dramatic deviation from the expected scaling after

about 23 days (marked by a star in Fig. 6d). These

results suggest that coarsening is important during the

early stages of self-aggregation but may become less

important at later times.

In the following, we present some indications that this

departure in the scaling results from a transition from

FIG. 7. Snapshots of the moist (dry) regions in an RCE simulation performed byHohenegger and Stevens (2016), with moist (dry) defined

by WVP . 41.6mm (WVP #41.6mm). See text for details.
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self-aggregation driven by local mechanisms to self-

aggregation driven by advective mechanisms. As discussed

in the introduction, coarsening requires local mecha-

nisms, that is, mechanisms leading to an amplification

of local humidity perturbations, and a diffusive and

thus downgradient transport of humidity. While studies

quantifying the importance of different processes [using

the diagnostic introduced by Wing and Emanuel (2014)

and described in the introduction] have shown that local

mechanisms are most important during the early stages

of self-aggregation, advectivemechanismsmarked by an

upgradient transport of humidity become important

during the intermediate stage of self-aggregation (Wing

and Emanuel 2014; Holloway andWoolnough 2016). As

the upgradient transport of humidity is caused by a

shallow circulation, with low-level inflow from the dry to

the moist regions, we use the low-level velocity as an

indication for the importance of advection. Figure 8

therefore shows the near-surface velocity averaged

over a narrow stripe along the border of the moist and

the dry regions as a function of time. We find that the

average wind speed systematically increases with time,

where a slow increase until about day 20 is followed by a

more rapid increase thereafter. In agreement with our

hypothesis, we find that a rapid pickup of the horizontal

wind speed appears at a similar time as the above-noted

deviations from the expected scaling for the correlation

length (day 23).

The evolution of self-aggregation after day 23 is no

longer described by coarsening but might be described

by radiatively driven pools, introduced by Coppin and

Bony (2015) and reviewed above. An increase in low-

level wind speed at the border of the dry region with

time is indeed apparent in Fig. 4 of Coppin and Bony

(2015), suggesting that the expansion of dry regions

through radiatively driven cold pools becomes stronger

with time. A transition to an advection-dominated stage

of self-aggregation cannot be represented by the theo-

retical models introduced here, which suggests that the

upscale growth in the RCE studies and the theoretical

models deviate from the expected scaling for different

reasons. This might explain why the upscale growth in

Fig. 6 changes in different ways; while it slows down in

the theoretical models (Figs. 6a–c), it accelerates in case

of the RCE study (Fig. 6d).

In another RCE simulation, performed by Wing and

Cronin (2016), they find scaling of the autocorrelation

length with time but with an exponent of approximately

one. We note, however, that they used a very elongated,

channel-like domain, which led to the formation of

persistent moist and dry stripes, and thus a quasi-one-

dimensional humidity field, while power-law scaling

with an exponent of 1/2 is only expected for dimensions

d$ 2. This distinction between one dimension and

all higher dimensions arises because of the absence of

curvature in one dimension, which can be briefly ex-

plained as follows. The time evolution of the interface

between the moist and dry regions for dimensions d$ 2

can be thought of as driven by surface tension (see, e.g.,

Sethna 2006). As surface tension increases with cur-

vature, the smallest features disappear quickest for

d$ 2. The absence of curvature in the one-dimensional

case makes the resulting interface velocity, and there-

fore the upscale growth of features, very slow [it can in

fact be shown analytically that, in one dimension,

the scaling is given by L(t); ln(t)]. After the formation

of moist and dry bands, the contribution to the spa-

tial evolution from coarsening is therefore probably

small and the scaling exponent found by Wing and

Cronin (2016) a consequence of an advection-dominated

regime.

c. Domain-shape dependence

The appearance of SA is strongly influenced by the

shape of the domain, with the final shape of the moist

region found to be either band-like or circular. Which of

these two is realized seems to depend on whether the

domain is channel-like or square. While channel-like

domains always result in moist bands (e.g., Tompkins

2001; Posselt et al. 2012; Wing and Cronin 2016), square

domains generally lead to the formation of circular

moist regions (e.g., Bretherton et al. 2005; Muller and

Held 2012; Kempf 2013; Jeevanjee and Romps 2013;

Holloway and Woolnough 2016; Hohenegger and

Stevens 2016), though band-like structures have (at least

transiently) also been found in some studies with square

domains (Tompkins and Craig 1998; Wing and Emanuel

2014; Muller and Bony 2015).

FIG. 8. Average horizontal wind speed at the boundary of the

moist and dry regions at a height of 150m for the 500-m slab-ocean

run described in Hohenegger and Stevens (2016). The vertical line

denotes the time where the corresponding scaling, shown in Fig. 6,

starts to strongly deviate from the scaling expected from coarsening.
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Holloway and Woolnough (2016) first pointed out

that this dependence on the shape of the domain is ex-

plained if SA tends to minimize the length of the

boundary. Assuming a moist region of area Amoist, they

showed that for a domain with the shortest domain

side of length L, there exists a critical domain length

Lc 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAmoist

p
below which the minimal boundary

length is given by amoist band rather than amoist circle.

A minimization of the boundary length is exactly

what we expect from coarsening, where the stable so-

lution must minimize the Landau free energy given in

Eq. (2). This can be seen by noting that the free energy is

larger for values of q that lie between the two minima

than it is for q at the minima themselves. Reducing the

length of the boundary corresponds to replacing in-

termediate values of q with dry or moist values where

the potential is at a minimum, thus reducing the area

integral of the potential and the free energy.

As explained above, our models are intended to

represent a small subdomain of a larger domain, and we

therefore have no constraint on the total amount of

convection (as is the case in RCE), so our domains are

allowed to become completely moist or completely

dry. Nevertheless, the tendency of coarsening to favor

banded rather than circular regions in a channel-like

domain can already be seen during the evolution.

Figure 9 shows a snapshot of the model based on Craig

and Mack (2013) in a channel-like domain after 6 days.

Apart from the domain size, the simulation is identical

to the simulation shown in Fig. 5 but leads to the for-

mation of multiple moist and dry bands, while for a

square domain with constraint on the total amount of

convection, Craig and Mack (2013) show that the final

state corresponds to a single, circular moist region sur-

rounded by a dry region (their Fig. 1f).

As an alternative to the minimization of the boundary

length discussed here, the existence of a typical hori-

zontal scale of self-aggregation (e.g., Yang 2018b) could

also explain the occurrence of banded structures in

channel-like simulations. In that case, the banded

structure could result from L being smaller than the

typical scale of self-aggregation. These two explanations

could be tested by performing a series of RCE simula-

tions with different domain shapes. In particular, starting

from a channel-like simulation with a single moist band,

Lc could be determined by systematically increasing the

short dimension of the domain until the steady state

corresponds to a circular rather than a banded moist

region. If the transition is due to the boundary length

minimization, Lc should be comparable with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAmoist

p
,

while, if it is due to a typical horizontal scale, the tran-

sition should occur when L becomes comparable to

this scale.

As noted above, some RCE studies found (at least

transiently) the formation of banded rather than circular

moist regions (Tompkins and Craig 1998; Wing and

Emanuel 2014; Muller and Bony 2015). While in

Tompkins and Craig (1998), this is likely caused by the

comparatively small domain size, the formation of

banded structures in Wing and Emanuel (2014) and

Muller and Bony (2015) indicates again that the final

stage of self-aggregation can only partly be explained by

coarsening.

d. Domain-size dependence in RCE simulations

As mentioned in section 1, the barrier width separat-

ing moist and dry regions in coarsening is completely

determined by the potential and the diffusion coefficient

and should thus be independent of the domain size. As

we show in the following, this might explain the sensi-

tivity of self-aggregation to domain size that was found

by Bretherton et al. (2005), Muller and Held (2012),

and Jeevanjee and Romps (2013), who show that self-

aggregation only occurs for domains greater than

200–300km, though in case of Jeevanjee and Romps

(2013), this domain-size dependence disappears if the

formation of cold pools is suppressed.

If, in a domain with periodic boundary conditions,

the domain size is on the order of the barrier width or

smaller, diffusion is too strong, and the two stable re-

gions can no longer occur within the same, periodic,

region. As in RCE, the domain can become neither

completely dry nor completely moist, and diffusion will

tend to a homogeneous humidity content within the

domain. This can be interpreted as diffusive mixing

acting over a scale comparable to the domain size and

thus preventing upscale growth.

An example for this is shown in Fig. 10, where we

initialize two simulations by the humidity distribu-

tions shown in the top row. While the final state of the

models introduced here is not constrained to have a

moist and a dry region, we can ensure the presence of

both regions by on the one hand setting qRCE to 0.5

in themodel based onEq. (8), whichmakes the potential

symmetric and the minima degenerate and thus avoids

the stable region propagating into the metastable re-

gion (see introduction). On the other hand, we choose a

channel-like setup for which the upscale growth becomes

FIG. 9. Snapshot of simulation based on Craig and Mack (2013)

after 6 days in channel-like domain.
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very slow once moist bands have formed (see section 5b).

The only difference between the two simulations is the

domain size, which is 10 km3 20km in the left panel and

100km 3 200km in the right panel. After 100 days, the

larger domain is separated into a single moist and a

single dry region, now separated by a smooth domain

wall, while the smaller domain has evolved to a com-

pletely homogeneous state of q 5 qRCE. Note that in-

creasing the diffusion coefficient, rather than reducing

the domain size, eventually also leads to a homogeneous

state (not shown). Considering this, the disappearance

of the domain-size dependence in the absence of cold

pools (Jeevanjee and Romps 2013) might suggest that

cold pools increase the effective diffusion coefficient, for

example, by causing the formation of convection farther

away from favorable regions. Cold pools have, however,

been shown to impact not only the domain-size depen-

dence of self-aggregation but also, for example, its de-

pendence on radiation (Muller and Bony 2015; Yang

2018a), which suggests that cold pools or, more precisely,

the evaporation of raindrops in the boundary layer

impact more than just the diffusivity.

Though beyond the scope of this study, we note that

the above-given explanation could be tested by con-

ducting a series of experiments with increasing domain

size. In particular, one could use these experiments to

first determine whether the barrier width is really in-

dependent of the domain size and second to determine

whether self-aggregation disappears if the domain size

becomes comparable to 2 times the barrier width.

In addition to the domain-size dependence discussed

here, Muller and Held (2012) found also a dependence

on the resolution (see introduction). In particular, they

found no self-aggregation for runs with horizontal res-

olutions higher than 2km and homogeneous initial

conditions. We cannot explain this dependence here but

suggest a possible explanation in the conclusions below.

6. Conclusions

Self-aggregation of convection can be described as a

phase separation process of dry and moist air if the hu-

midity perturbations amplify because of local processes

and the spatial coupling is diffusive. As the details of the

feedback loop do not affect the pattern formation, this

could explain why the appearance of self-aggregation is

similar even though the relevant processes have been

found to vary. Instead of entering into the question of

which mechanism drives self-aggregation, we compare

three different time evolution equations for local hu-

midity perturbations introduced by Bretherton et al.

(2005), Craig andMack (2013), and Emanuel et al. (2014)

in order to derive a model that explains the spatial evo-

lution of self-aggregation. While differing in details, the

homogeneous state in each model is unstable to small

perturbations; that is, moist perturbations get moister

while dry perturbations get drier.

To determine how humidity perturbations evolve not

only in time but also in space, we need to account for the

horizontal exchange of humidity. During self-aggregation,

convective activity becomes increasingly localized in the

moist regions while at the same time humidity increases in

regions of increased convective activity. Introducing a

stochastic model where convection is more likely to occur

FIG. 10. (top) Initial humidity distribution for two numerical simulations, identical apart from domain size.

(bottom) Corresponding humidity fields after 100 days.
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in moist regions and where convection increases humidity

within a finite region around the cloud center, we show that

this is approximated by a reaction–diffusion equation: a

strictly local increase of humidity due to the number of

clouds at that location and a diffusion term.

Including the complete positive feedback loops in-

troduced by Bretherton et al. (2005), Craig and Mack

(2013), and Emanuel et al. (2014) in the reaction–

diffusion equation, instead of only accounting for the

moistening of the atmosphere due to increased con-

vection, shows that these three models are described by

time-dependent Ginzburg–Landau equations, a specific

type of reaction–diffusion equation that describes phase

separation by a process called coarsening, first applied to

self-aggregation by Craig and Mack (2013). During

coarsening an initially well-mixed state separates into

small regions of the two stable phases that then grow in

time. The two phases here correspond to the moist and

dry regions. This generic evolution is observed in the

spatial evolution of all three models and accords well

with the appearance of self-aggregation observed in

numerical simulations. It is interesting to note that the

drying and moistening rates of the three models differ, a

property that also differs in numerical studies. Apart

from this qualitative description, coarsening has some

universal properties that are independent of the mech-

anisms driving self-aggregation. Most importantly, the

upscale growth minimizes the length of the boundary

between moist and dry regions and follows a power law

with an exponent of 1/2.

Comparison of these universal properties with prop-

erties of RCE simulations observed in other studies

suggests that coarsening might well describe the early

stages of self-aggregation. In particular, we find that

the upscale growth in RCE simulations performed by

Hohenegger and Stevens (2016) approximately follows

the expected scaling relation from about day 1 up to at

least day 15 of the simulations if we exclude the first day

as a triggering phase. The presence of a triggering

phase, also apparent in other RCE simulations showing

self-aggregation, cannot be explained by the theoretical

models introduced here. A plausible explanation, how-

ever, is that a large enough fluctuation in the humidity

content has to be present for self-aggregation to start.

This could also explain why self-aggregation, in case of

homogeneous initial conditions, starts more readily

for coarse resolutions, as a coarse resolution makes the

formation of large perturbationsmore likely. In addition

to the upscale growth, we show that the tendency of

channel-like domains to form banded moist structures

while square domains result in circular moist regions as

well as the domain-size dependence of self-aggregation

can be explained by coarsening.

The findings in this paper emphasize three important

points. First, the similarity in the appearance of self-

aggregation in different numerical simulations does not

mean that there is a unique mechanism but rather that

they have the same underlying pattern formation pro-

cess. Second, to understand which pattern formation

process is relevant, we have to understand how humid-

ity is exchanged horizontally. We suggest here that

the observed pattern formation is, at least in the early

stages, due to coarsening. Coarsening applies if the

spatial exchange of humidity is diffusive but differs in

the case of strong advection, which has been found to

become important at later times, at least in the study by

Wing and Emanuel (2014). Third, if, at least initially, the

respective pattern formation process is described by

coarsening, the spatial evolution of self-aggregation

(even when driven by different mechanisms) initially

resembles the spatial evolution of other systems ex-

hibiting coarsening (e.g., the Ising model) and shares the

same universal properties.

Even though RCE simulations represent the base

state of the tropical atmosphere, their setup is highly

idealized, and so the question arises of how impor-

tant self-aggregation, and thus also coarsening, is under

more-realistic conditions. One key motivation to study

self-aggregation is that it suggests a link between con-

vective organization and climate sensitivity (e.g., Bony

et al. 2015). In particular, it has been argued that self-

aggregation can enhance or oppose changes in sea

surface temperature driven by other processes (e.g.,

Khairoutdinov and Emanuel 2010). To assess whether

self-aggregation leads to a robust response in different

models is one of the main questions addressed in the

ongoing Radiative–Convective Equilibrium Model In-

tercomparison Project (Wing et al. 2018). The reason

why self-aggregation impacts climate sensitivity is be-

cause it impacts the atmosphericmean state; for example,

the domain mean humidity decreases with increasing

degree of organization (e.g., Bretherton et al. 2005).

These results have triggered observational studies that

have confirmed that the atmospheric mean state changes

systematically with the degree of organization. In par-

ticular, Tobin et al. (2012) used observations to show that

the mean atmospheric humidity is lower in regions in

which convection is more organized. A comprehensive

review of convective organization in observations and the

relation to self-aggregation is given in Holloway et al.

(2017). While the models introduced here do not make

any predictions about how the climate sensitivity changes

with changing SST, it is worthwhile to note that coars-

ening only occurs if the humidity content is locally

bistable (Craig andMack 2013).As the atmospheremight

be bistable only for a range of SSTs (Emanuel et al. 2014),
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coarsening can readily explain the transition from an

unaggregated to an aggregated state with changing SST.

Finally, understanding self-aggregation has been sug-

gested to be important for understanding well known

forms of convective organization. As has been stated

in the introduction, self-aggregation clusters resemble

observed types of convective organization (tropical cy-

clones, Madden–Julian oscillation) if the simulation

setup includes the effect of rotation. While rotation thus

modifies the properties of the resulting convective or-

ganization, the processes leading to self-aggregation

are still expected to contribute to the organization. For

this reason, understanding SA has been suggested to be

important for tropical cyclones (e.g., Nolan et al. 2007)

and the Madden–Julian oscillation (e.g., Bretherton

et al. 2005). Given that the mechanisms driving self-

aggregation are important in more realistic conditions,

self-aggregation mechanisms might even impact the

tropical rain belts (e.g., Bony et al. 2015). While we note

that the models presented here represent SA only in

the very idealized nonrotating RCE setup, additional

complexity can easily be included; for example, a non-

homogeneous probability of triggering convection could

be used to study the implications of the model presented

here for the tropical rain belts.
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