
Engineering and harnessing giant atoms in high-dimensional baths: a cold atoms’ implementation
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Emitters coupled simultaneously to distant positions of a photonic bath, the so-called giant atoms, represent
a new paradigm in quantum optics. When coupled to one-dimensional baths, as recently implemented with
transmission lines or SAW waveguides, they lead to striking effects such as chiral emission or decoherence-free
atomic interactions. Here, we show how to create giant atoms in dynamical state-dependent optical lattices,
which offers the possibility of coupling them to structured baths in arbitrary dimensions. This opens up new
avenues to a variety of phenomena and opportunities for quantum simulation. In particular, we show how to en-
gineer unconventional radiation patterns, like multi-directional chiral emission, as well as collective interactions
that can be used to simulate non-equilibrium many-body dynamics with no analogue in other setups. Besides,
the recipes we provide to harness giant atoms in high dimensions can be exported to other platforms where such
non-local couplings can be engineered.

The design and exploration of novel forms of light-matter
interaction have been a driving force in quantum optics trig-
gering both fundamental and technological advances. A
paradigmatic example of this was the observation that atomic
lifetimes renormalize within cavities [1], which opened the
field of cavity QED [2, 3]. This seemingly simple light-
matter coupling leaded to many other fundamental discover-
ies, such as the creation of mixed light-matter particles (po-
laritons), and applications, e.g., in quantum information [4].
Another timely example is the interaction of (natural or ar-
tificial) emitters with the structured propagating photons (or
matter-waves) which appear in nanophotonics structures [5–
14], circuits [15–17], or state-dependent optical lattices [18–
22]. In these systems, the bath displays structured energy
dispersions, leading to a plethora of effects absent in other
environments. On the fundamental level, they generate non-
exponential relaxations [23–29], whereas in the more applied
perspective they lead to the emergence of bound states out-
side [30–35] or in the continuum [36–45], which can be har-
nessed for (out-of) equilibrium quantum simulation [46–49].

In all these setups the emitters are typically much smaller
than their associated wavelength, leading to inherently lo-
cal light-matter couplings. This picture, however, has been
recently challenged with the design of the so-called ”giant-
atoms”, which are emitters coupled to several points of SAW
waveguides [50–54] or transmission lines [55] separated be-
yond their characteristic wavelength. These giant atoms rep-
resent another paradigm change in quantum optics since the
coupling to different bath positions induces strong interfer-
ence effects which can be exploited for applications [20, 21,
56–58]. For instance, when coupled to one-dimensional baths
they lead to decoherence-free atomic interactions [58], or
to chiral emission [20, 21] without exploiting polarization,
something impossible to realize with ”small” emitters. Ex-
porting this paradigm to higher dimensional baths, where, for
example, quantum simulation will show its full power, is a de-
sirable, but challenging, goal. On the one hand, to our knowl-
edge there is still no implementation to do so, since wiring up
high-dimensional circuits becomes complicated. On the other
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Effective giant atom

Figure 1. (a) State-dependent optical lattice scheme to simulate quan-
tum optical phenomena: one deep lattice Vb(Rb) (blue) traps the
atomic state that mimics the QE behaviour, whereas a shallower one,
Va(Ra), lets matter-wave propagation at rate J. The two atomic state
can be connected through a local laser(s) or microwave field (green)
with strength Ωn j . The relative position between the lattices, and of
the local laser can be dynamically tuned Rb(t). (b) Pictorial repre-
sentation on how the effective giant atom couplings emerge from the
stroboscopic movement between the lattices.

hand, even if achieved, it is not obvious how to harness giant
atoms when coupled to high dimensional baths. The reason is
that the resonant photons mediating the interactions, defined
by the isofrequencies of ω(k) at the emitters frequency, are
contours (or surfaces) in the k-space, instead of points, mak-
ing perfect interference more difficult.

In this manuscript, we address both issues showing: i) A
proposal to engineer effective giant atoms coupling to baths
with high dimensions. We use ultra-cold atoms in dynami-
cal state-dependent optical lattices [18, 19, 22] (see Fig. 1),
such that by moving the relative position between the poten-
tials [59–61] fast enough, the giant emitter couples effectively
to several bath positions. ii) A way to harness them to observe
phenomena with no analogue in other setups by coupling them
to structured photonic reservoirs with a Van-Hove singular-
ity [37–39, 49]. In particular, we show how giant quantum
emitters (QEs) can modify the non-Markovian nature of the
dynamics, and lead to unconventional emission patterns, e.g.,
chiral emission in one or several directions, which translate
into unconventional collective QE interactions when several
of them couple to the bath. Even though we make the discus-

ar
X

iv
:1

90
1.

00
28

9v
2 

 [
qu

an
t-

ph
] 

 2
5 

M
ar

 2
01

9



2

(a) (b)

(c) (d)

Figure 2. Bath population at a time tJ = N/4 after the desexcitation
of a single QE that moves between two lattice sites at positions (0,0),
(1,1), such that gn1[n2] = gcos2(ωt/2)[sin2(ωt/2)], with g = 0.1J
and ω as depicted in the legend. Bath linear size is N = 512.

sion of (i-ii) together along the manuscript, the recipes that
we provide for (ii) can be exported to other implementations
where such couplings can be engineered.

Let us first recall how to obtain the standard quantum
optical Hamiltonian with ultra-cold atoms [18, 19, 22], see
Fig. 1(a): one needs an atom with two states a/b subject to
different potentials Va/b(R), whose dimensionality can be op-
tically controlled [62]. The b-atoms are trapped in a deep
potential such that they mostly localize within a lattice site,
and in the strongly interacting regime, which means that there
will be at most one b-excitation per lattice site such that their
excitations can be represented by spin operators σ

n j
ge , with

σn
αβ

= |α〉n 〈β |. On the contrary, when the atoms are in the
a-state, they can hop to their nearest neighbours at a rate J
without interactions, mimicking photon propagation. Besides,
one needs an extra field that transfers the b excitations into a
ones (and viceversa), which can be obtained via a Raman or
microwave transition [22, 63] (or a direct one in the case of
Alkaline-Earth atoms [64–66]). Let us denote as Ωn j the a-b
coupling at site n j, which can be controlled in both magnitude
and phase though the lasers. As derived in Refs. [18, 19], the
Hamiltonian describing the dynamics of the excitations of the
a and b atoms mimics the one standard light-matter interac-
tions, that is, H = HS +HB +Hint, where:

HS = ωeσee , HB = ∑
k

ω(k)a†
kak , (1)

Hint =
(
Ωnea†

ne σge +H.c.
)
, (2)

where for illustration we restrict to a single QE, dropping
the superindex in σge. The ak(a

†
k) are the annihilation (cre-

ation) operator of a matter-wave excitation with momentum
k, whose energy dispersion ω(k) is controlled by the geome-
try of Va(R). The QE is in the strong confinement limit such

that its coupling will be local like with optical photons [67].
To effectively transform this local coupling into a non-local

one among {nα}
Np
α=1 positions, one can dynamically move the

relative position between the Va/b(R) potentials in a periodic
fashion, e.g., changing the relative phase between the lasers
creating the potentials [62]. If the movement is adiabatic, that
is |Ṙ(t)| � dωt for all t, where d ground state size, and ωt the
trap frequency [59–61], the atoms remain in their motional
ground state and can still be described by a Hamiltonian as
in Eqs. 1-2 but with time-dependent parameters. For example,
assuming that the simulated QE probes the {nα}

Np
α=1 positions

and that the laser parameter change as needed in each position,
the Hamiltonian will now read:

Hint→ Hint,mov(t) =
Np

∑
α=1

(
Ωnα

(t)a†
nα

σge +H.c.
)
. (3)

Now, to formally derive how the desired non-local cou-
plings emerge using Floquet analysis, we consider that QE
moves periodically along Np positions with period T (and fre-
quency ω = 2π/T ), probing each position during a constant
time interval T/Np with coupling strength gnα

[68]. With
that assumption, we can apply Floquet theory [69] to obtain
an effective Hamiltonian description in the high-frequency
limit. To the lowest order, it corresponds to the non-local
light-matter couplings that we want to obtain (see Sup. Ma-
terial [70]):

Hint,eff ≈
Np

∑
α=1

(
gnα

Np
a†

nα
σge +H.c.

)
, (4)

where gnα
/Np is the time average of Ωnα

(t). We can also
calculate the next-order term contribution which is of order
∼ 4|gmax|2N2

pζ [3]/(π2ω)�max|gnα
| for our situations of in-

terest. Summing up, to obtain the desired behaviour the peri-
odic movement has to be slow enough to stay within the low-
est band of the tight-binding Hamiltonians of Eqs. 1-2, but
fast compared to the induced QE timescales, such that it ef-
fectively couples to several positions, i.e., ωt � ω(L/d)�
max|gnα

| (assuming a constant speed over the distance L that
we displace the potentials). Since the couplings are tune-
able and they can always be made small, the lower bound of
these inequalities will be ultimately provided by the decoher-
ence rate Γ∗ of the setup, which should be smaller than the
simulated parameters. To provide some estimation, we can
first take the recent realization of our proposed setup [22],
where two hyperfine 87Rb levels were used to engineer the
optical potentials, |a/b〉 = |F = 1/2,mF =−1/0〉, with trap-
depths of the order ωt ∼ 2π × 10 kHz, and typical decoher-
ence rates ∼ 10− 100 Hz. Another possibility is to use the
ground/excited metastable state in Alkaline-Earth atoms (see
Ref. [64] for a concrete proposal with Strontium). This plat-
form shows similar ωt , but decoherence can be substantially
decreased since it will be mostly determined by the excited
state lifetime which can be Γ∗/(2π) . 0.01 Hz, thus leaving
several orders of magnitude to adiabaticaly move the lattice.
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Figure 3. (a) Bath probability amplitude at a time tJ = N/4 for a
single giant QE coupled with Gpur(k), g = 0.1J and bath linear size
is N = 512. (b) Comparison of the density of states of the structured
bath (black), with the effective spectral density which includes the k
dependence of Gpur(k), i.e., Deff(E) = ∑k |Gpur(k)|2δ (E−ω(k)).

Let us now show how to exploit giant QEs coupled to
higher dimensional baths to obtain phenomena with no ana-
logue in other setups. In particular, we illustrate it by studying
the spontaneous decay of an excited QE coupled to a two-
dimensional bath with ω(k) = ωa − 2J [cos(kx)+ cos(ky)].
When the QE interacts locally in space with frequency ωe =
ωa, it couples equally to all the resonant k’s defined by:
kx± ky = ±(∓)π . This contour, which includes points with
zero group velocity (vg(0,±π) = vg(±π,0) = (0,0)) respon-
sible of a Van-Hove singularity in the density of states [71],
leads to two remarkable effects in the QE spontaneous de-
cay [37–39]: i) its emission pattern is highly anisotropic,
as shown in Fig. 2(a), emitting mostly in four directions
with some diffraction due to the inhomogeneous group ve-
locity of the wavepacket; ii) its dynamics is intrinsically non-
Markovian due to divergence of the density of states at this
frequency [38, 39]. Now, we will show how building up on
this behaviour, giant QEs can lead to very flexible and unusual
emission patterns and interactions.

Quasi-1D emission. First, we show how to cancel the
emission in one of the diagonals of Fig. 2(a) by coupling to
two lattice sites n1/2 = (0,0)/(1,1). To numerically show
how the Floquet averaged Hamiltonian Hint,eff emerges, we
assume that the movement between the lattices is such that
Ωn1(t) = gcos2(ωt/2), Ωn2(t) = gsin2(ωt/2), and solve the
dynamics using Hint,mov(t). In Fig. 2(b-d) we plot the bath
population in real space after a time tJ = N/4 using g = 0.1J,
and for several ω’s. As expected, for ω� g, the emission oc-
curs in four directions as if the QE was locally coupled. How-
ever, as ω increases, the interference between the bath emis-
sion in two different points occurs, until it cancels the emis-
sion in one of the diagonals. This behaviour can be understood
from the asymptotic bath state in the perturbative limit [39]:

Ck(t→ ∞) ∝
G(k)e−iω(k)t

ω(k)−ωe + iΓM/2
, (5)

where ΓM is the Markovian decay rate, and G(k) is the ef-

fective light-matter coupling between the emitter and the k-
modes, Hint,eff = ∑k

(
G(k)a†

kσgs +H.c.
)

, which reads:

G(k) =
1

Np

Np

∑
α=1

gnα
e−ik·nα . (6)

In this case G1D(k) ∝ 1 + e−i(kx+ky), which satisfies
G1D(kx,±π − kx) ≡ 0. Thus, the giant QE is effec-
tively uncoupled from the k-modes responsible of the for-
ward/backward direction in the diagonal where the giant QE
is coupled to, and does not decay into them. After having
numerically seen how Hint,eff emerges from Hint,mov(t) for this
example, from now on we use Hint,eff to analyze the dynamics.

Trapped emission. Let us now consider that the QE moves
around four positions, i.e., (±1,0),(0,±1). The effective k-
coupling will be: Gtrap(k) = g

(
eikx + e−ikx + eiky + e−iky

)
/4,

which cancels the coupling among the four resonant k-lines.
Thus, the giant QE will not decay, while keeping some the
photon population trapped between the four positions (not
shown). As in the 1D counterpart [58], these confined
photons will mediate coherent interactions between these
decoherence-free QEs.

Filtering non-Markovian emission. Another feature that
can be achieved by coupling to few lattice sites is the effec-
tive decoupling from zero-group velocity terms occurring at
k = (0,±π) and (±π,0). For that, we can couple the QE
to the positions (±1,±1),(±1,∓1), with an alternating ±1
phase, such that Gpur(k) = gsin(k1)sin(k2). This has two con-
sequences: first, the QE shows a more homogeneous direc-
tional emission, as observed in Fig. 3(a). Second, it smoothens
the effective spectral density probed by the QE, as plotted in
Fig. 3(b), making its dynamics more Markovian. Thus, giant
QEs provide a way of decoupling directional emission from
non-Markovian dynamics in Van-Hove singularities.

Reverse design: chiral and V-type emission. In the previ-
ous examples it was possible to guess the spatial couplings
required to obtain the desired behaviour. An alternative ap-
proach consists of first guessing the G(k) required to obtain
a given behaviour, and then Fourier transforming it to get the
spatial dependent couplings, that is

G(n) =
1

N2 ∑
k

G(k)e−ik·n . (7)

For example, let us imagine we want to obtain perfect chiral
emission in one or two orthogonal directions out of the four
appearing with local couplings. It is easy to see that:

Gchi(k) ∝ cos
(

k1− k2

2

)[
1+ sin

(
k1 + k2

2

)]
, (8)

GV (k) ∝

[
1− sin

(
k1− k2

2

)][
1− sin

(
k1 + k2

2

)]
. (9)

cancels the coupling to the light emitted in three (or two) of
the four directions, respectively. Then, using Eq. 7 we ob-
tain the spatial profile of the couplings whose absolute value
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Figure 4. (a-b) Bath probability amplitude at a time tJ = N/4 for
a single giant QE coupled with Gtrunc(n;ntr), respectively, g = 0.1J
and bath linear size is N = 512. Inset: Corresponding spatial cou-
pling profile G(n) using Eq. 7. In red the truncation we use to plot
the figure. (c-d) 1−F , where F is the fraction of the emission into
the desired directions for the parameters of panel (a-b), as a function
of the number of terms in the sum Gtrunc(n;ntr).

|G(n)| is plotted in the inset of Figs. 4(a-b). The coupling
spatial pattern is more intricate than in the previous situations
because it requires adding complex phases (not shown), and
involve the coupling to many lattice sites. Since this will be
experimentally challenging, one needs to adopt a truncation
strategy in which one approximates the sum by a finite num-
ber ntr of terms, G(n) ≈ Gtrunc(n;ntr). This is what we do in
Figs. 4(a-b), where we observe that even for a small ntr, the
QE emits approximately with the desired behaviour. Finally,
in Fig. 4(c-d) we show how increasing ntr, the light collimated
in the desired directions can go close to 100 %.

Interactions. Let us finally point how these unconven-
tional emission patterns will translate into exotic QE inter-
actions when Ne QEs are coupled to the bath. For sim-
plicity, let us assume that each QE has a k-dependent cou-
pling G j(k) = G(k)e−ik·n j , where e−ik·n j is a global phase
factor which indicates the giant QE central position (n j),
and G(k) is a common k dependent coupling defined by
the non-local couplings around the position n j. Then, if we
trace out the bath degrees of freedom under the Born-Markov
approximation, the QE reduced density matrix (ρ) dynam-
ics is governed by [72]: ∂tρ = i[ρ,HS + ∑i, j Ji jσ

i
egσ

j
ge] +

∑i, j γi j/2(2σ i
geρσ

j
eg−σ

j
egσ i

geρ−ρσ
j

egσ i
ge). The collective in-

teractions Ji, j,γi j are:

γi j

2
+ iJi j =

1
N ∑

k

|G(k)|2

ωe−ω(k)+ i0+
eik·(ni−n j) , (10)

whose integrand is directly connected with the asymptotic
emission pattern described in Eq. 5. This tells us, for example,
that using the couplings G1D(k) or Gchi(k) we will be able to
simulate standard or chiral [73] waveguide QED couplings in

two-dimensional baths, as well as other QE interactions with
no counterpart in other setups, i.e., V-type collective decays.

Conclusions. Summing up, we propose a method to en-
gineer effective non-local light-matter couplings using ultra-
cold atoms in dynamical state-dependent optical lattices. Con-
trolling the confinement and relative position of two optical
potentials, one can simulate giant atoms coupled to structured
photonic baths in one, two and three dimensions. Irrespec-
tive of the implementation, we also numerically illustrate the
potential of giant emitters to yield unconventional quantum
optical behaviour when coupled to a two-dimensional struc-
tured bath. In particular, we exploit the interplay between the
structured energy dispersion and non-local couplings to ob-
tain exotic emission patterns and collective dissipative inter-
actions. These recipes can be immediately adapted to other
platforms where such non-local couplings can be engineered,
or to higher dimensions [70, 74].

Beyond the fundamental interest of the phenomena ex-
plored along the manuscript, there are many possible follow-
up applications. From the quantum simulation perspective,
giant atoms provide a very flexible playground to probe equi-
libirum [46, 47] and non-equilibrium many-body physics [75,
76] with no analogue in other setups. Besides one can in-
crease their tunability exploiting the interplay with the polar-
ization degree of freedom [77–79], or through additional bath
engineering [80]. Other possibilities, if one is able to engi-
neer it with optical photons, is to exploit the multi-directional
chiral emission to transfer simultaneously quantum informa-
tion into several nodes, or for generating high-dimensional
photonic entangled states [81], which can be used for fault-
tolerant measurement based quantum computation [82].
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[12] H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S.
Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, Phys. Rev.
Lett. 117, 133604 (2016).

[13] P. Solano, P. Barberis-Blostein, F. K. Fatemi, L. A. Orozco, and
S. L. Rolston, Nat. Comm. 8, 1857 (2017).

[14] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung,
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Supplemental Material: Tailoring quantum optical phenomena shaking state-dependent optical
lattices

In this Supplementary Material, we provide more details
on: i) the derivation of the time-averaged Hamiltonian in the
high-frequency limit; ii) how to calculate the radiation pat-
terns from spontaneous emission; iii) experimental setup and
feasibility analysis; iv) how to extend some of the phenomena
predicted in the manuscript to three-dimensional systems.

DERIVING THE FLOQUET HAMILTONIAN

The starting point of the derivation is the time-dependent
interaction Hamiltonian of Eq. 4 of the main text:

Hint,mov(t) =
Np

∑
α=1

(
Ωn,α(t)a†

nα
σge +H.c.

)
. (SM1)

To do the Floquet derivation, we assume that we move the
lattices such that the QE excitation probes Np positions, each
of them during a time T/Np, such that the global period of the
movement is ω = 2π/T . Thus, Ωn,α(t) = gn,α fα(t), where:

fα(t) = 1, (α−1)T/Np < t < αT/Np , (SM2)

or 0 otherwise. We are aware that in a practical situation the
transition from one lattice site to the other will be smooth and,
in fact, must satisfy the adiabaticity condition at any time [59–
61]. However, the step function fα(t) will allow us to capture
analytically the most relevant features of the effective dynam-
ics without worrying about the particular details of Ωn,α(t).

The key point is that step functions can be easily expanded

in their Fourier components as follows [69]:

fα(t) =
1

Np
+∑

j
C j,α ei jωt , (SM3)

C j,α =
1

2πi j
e−i2πα j/Np

(
ei2π j/Np −1

)
(SM4)

Using this expansion, the Hamiltonian Hint,mov(t) can be
separated into a time-independent part, V (0), which contains a
the time-averaged interaction of Hint,mov(t),

V (0) =
1

Np
∑
α

(
gnα

a†
nα

σge +H.c.
)
, (SM5)

that is the part we want to obtain, plus all the periodic modu-
lation introduced by the harmonics:

Hint,mov(t)−V (0) = ∑
j 6=0

V ( j)ei jωt , (SM6)

V ( j) = ∑
α

(
C j,α gnα

a†
nα

σge +H.c.
)
, (SM7)

In the high-frequency limit, an effective time-independent
Hamiltonian can be derived [69], which to first order in 1/ω

reads:

Hint,eff ≈V (0)+
1
ω

∑
j>0

[V ( j),V (− j)]

j
(SM8)

With it, we can calculate explicitly the first order correction
to the time averaged Hamiltonian V (0):

http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRev.89.1189
http://dx.doi.org/10.1038/nature21037
http://dx.doi.org/10.1038/nature21037
http://dx.doi.org/10.22331/q-2018-10-01-97
http://dx.doi.org/10.1103/PhysRevLett.113.237203
http://dx.doi.org/10.1103/PhysRevLett.113.237203
http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1021/acsphotonics.8b01455
http://dx.doi.org/10.1021/acsphotonics.8b01455
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H(1)
eff =

1
ω

∑
j>0

[V ( j),V (− j)]

j
=

Np

∑
α,β

∞

∑
j=1

[
4ignα

g∗nβ

π2 j3ω
sin2

(
jπ
Np

)
sin
(

2π(β −α) j
Np

)
a†

nα
anβ

σz

]

with σz = (σee−σgg)/2. Since we typically restrict to situ-
ations where the number of excitations, N̂ = ∑n a†

nan +σee,
is conserved, and in the single-excitation regime, the norm of
this operator can be upper-bounded by:

||H(1)
eff ||<

4g2N2
p

π2ω

∞

∑
j=1

1
j3 =

4g2N2
p

π2ω
ζ [3] (SM9)

where g = max{|gn|}. It must be noted that when consid-
ering the full dynamics with HS +HB, the density of states
will also enter into play in the discussion, i.e., suppressing (or
enhancing) the contributions of the different sidebands at fre-
quencies jω . In the examples considered along the text, since
the density of states is peaked around ωa, the sideband contri-
butions are suppressed compared to the time-averaged com-
ponent. The opposite behaviour (enhancement of sidebands)
can also be used an extra degree of freedom to design more
exotic quantum optical phenomena beyond the time averaged
terms of Hint,mov(t).

CALCULATING THE EMISSION PATTERNS

The global Hamiltonian of the system: H = HS +HB +Hint
conserves the number of excitations: N̂ = ∑ j σ

j
ee +∑k a†

kak,
no matter whether Hint is time-dependent or not. Thus, if
we consider a single QE initially excited as the initial state:
|Ψ(0)〉= |e〉⊗ |vac〉, the global state at any time can be writ-
ten as:

|Ψ(t)〉=
[
Ce(t)σeg +∑

n
Cn(t)a†

n

]
|g〉⊗ |vac〉 , (SM10)

where the coefficients can be always obtained by numerically
solving i |Ψ(t)〉

dt = H(t) |Ψ(t)〉. This is how we obtain the Cn(t)
plotted in the Figs. 2-4 of the main text. Moreover, by Fourier
transforming Cn(t) we can obtain the wavefunction in mo-
mentum space:

Ck(t) =
1

N2 ∑
n

Cn(t)e−ik·n . (SM11)

With Ck(t) it is easy to define the fraction of light emitted

in each of the four directions of Fig. 2(a) at any time:

F1(t) =
∑kx>0,ky>0 |Ck(t)|2

Ck(t)
, (SM12)

F2(t) =
∑kx<0,ky>0 |Ck(t)|2

Ck(t)
, (SM13)

F3(t) =
∑kx<0,ky<0 |Ck(t)|2

Ck(t)
, (SM14)

F4(t) =
∑kx>0,ky<0 |Ck(t)|2

Ck(t)
. (SM15)

This is what we use to characterize the fraction of light
emitted in one or two-directions in Fig. 4(c-d). For the chiral
emission we plot 1− F3(t), and for the V -shape emission
1−F1(t)−F4(t) at time tJ = N/4 for the parameters written
in the caption.

EXPERIMENTAL CONSIDERATIONS

In this Section we give a more detailed explanation on the
experimental setup that could be used to observe the phenom-
ena predicted in the manuscript, and analyze the feasibility of
our proposal using realistic experimental parameters.

Atomic level configuration

One possibility consists in using Rubidium atoms as in the
recent experiment by Krinner et al [22], where quantum op-
tical phenomena was simulated for the first time using Ru-
bidium matter-waves in state-dependent optical potentials. As
schematically explained in Fig. SM1, in that experiment two
states in the ground state manifold of 87Rb atoms are used to
simulate the quantum emitter and bath. Let us review some of
the parameters of that experiment:

• They use the |F = 1,mF =−1〉 = |b〉 and
|F = 2,mF = 0〉 = |a〉, as the emitter/bath state,
respectively, which are separated in energies by
6.8 GHz.

• They transfer the excitations directly from a to b using
a microwave field with strength of the order of Ω/2π ∼
1 kHZ.

• They are interested in observing one-dimensional band-
edge physics, such that they enforce the two atomic
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states to live within one-dimensional tubes through a
common radial confinement. The state-dependent opti-
cal potential along the other direction is generated with
a σ−-polarized laser beam with λ = 790 nm. They
choose that combination of polarization/wavelength
such that the a atom does not feel any potential along
that direction, while the emitter-like state is strongly
confined with a trap frequency ωt/(2π) ∼ 40 KHz.
However, as they mention in their Sup. Material by
either rotating the polarization and/or changing wave-
length, they can also induce different trapping condi-
tions for a.

• The advantage of using Rb hyperfine states is that they
have very long coherence times. Possible sources of
decoherence such as thermal fluctuations or the scatter-
ing rates introduced by the trapping potentials are very
well understood and under control in these setups. For
example, the main source of these spin-dependent lat-
tices will be the scattering rates introduced by the op-
tical potential, which for that particular experiment, we
estimate to be Γ∗/(2π) ∼ 10− 100 Hz (even though it
was not explicitly mentioned in the paper). By using
different atomic states, and/or wavelengths one could
optimize these decoherence rates for the particular ex-
periments we are considering.

A variation of this setup can be used to implement our
ideas. One would require: i) extra laser fields to create the
optical confinement in other directions depending on whether
we want to simulate two or three dimensional baths; ii) a way
of dynamically change the phase of the laser to displace the
emitter-state optical potential. Besides, if want the bath state
to create a fully independent tuneable optical potential for the
bath state, one should add independent laser fields with other
polarization/frequencies.

Another interesting possibility consists of using Alkali-
Earth atoms [64], such as Ytterbium [66] or Strontium [65],
to create such state-dependent optical lattices. These atoms
are characterized by having optically excited mestable states,
3P0/2 with very narrow linewidths which can be as small as
Γe/(2π)∼ 0.01 Hz. This allows one to use these excited states
to store excitations with very long coherence times. The ad-
vantage is that since the ground and excited states are sep-
arated by optical frequencies, one can engineer completely
independent potentials for both states. For a particular real-
ization of such independent state-dependent optical lattices
with Strontium one can check Ref. [64], where it was also
explained how to dynamically move the relative position be-
tween the two potentials, and how to transfer the excitations
between the states.

Feasibility conditions

As discussed in the main text, the approximate set of
inequalities to obtain the desired phenomena is lower and

Ground state level structure

Figure SM1. Ground state level structure of 87 Rb with two hyperfine
ground state manifolds (F = 1 and F = 2) with three and five states
labeled by its mF quantum number, respectively. The two ground
states manifolds are separated in energies by 6.8 GHz. In Refer-
ence [22], they use the states |F = 1,mF =−1〉 and |F = 2,mF = 0〉,
as the quantum emitter/bath states, respectively, and a microwave
field, Ω, to couple them.

upper bounded by the decoherence rate and trap frequencies,
respectively. Thus, the difference between these two mag-
nitudes determine how much room we have to implement
our proposal, for example, limiting how many bath positions
the emitter can probe without breaking the adiabaticity con-
dition. In the previous Section, we have shown that typical
experimental parameters for, e.g., Alkali-Earth atoms, can
be ωt/2π ∼ 104 Hz, and Γ∗/(2π) ∼ 0.01 Hz, such that one
in principle has many orders of magnitude available to play
with. In any case, we want to note that when implementing
our ideas in a particular setup, a full analysis of all possible
error sources and limitations should be performed to fully
understand the limits of the experiment.

GIANT ATOMS IN THREE-DIMENSIONAL BATHS

As we argue in the concluding paragraph of the main text,
many of the phenomena and recipes that we illustrate for
two-dimensional photonic baths can be exported to three-
dimensional ones with an adequate choice of the bath and
emitter-bath couplings. For example, as shown in Ref. [74], if
the three-dimensional bath has a body-centered-cubic geome-
try, the energy dispersion is given by:

ω(k) =−2J [cos(kx)+ cos(ky)+ cos(kz)+ cos(kx + ky + kz)] .
(SM16)

This energy dispersion leads to a Van-Hove singularity in
the middle of the band, ω(k) = 0, which occurs for the planes
ka± kb = ±π , where a,b is any combination of x,y,z. This
leads to a highly directional emission pattern in eight lines, as
compared to four lines in 2D, which we can exploit in combi-
nation with giant atoms in a similar fashion. For example,

• Coupling an emitter to two positions, e.g., (0,0,0),
(1,1,0), the k-dependent coupling will read G(k) ∝

1+ei(k1+k2) that will vanish when k1+k2 =±π , cancel-
ing the emission into the direction defined these planes.
Using these tricks, or directly applying the reverse engi-
neering that we explain in the main text, one can obtain
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the connectivity that one desires along these eight emit-
ting lines defined by energy dispersion of the bath.

• The latter also includes the design of decoherence-free
atoms in three-dimensions coupling the emitter to eight
positions instead of four.

Apart from extending the control in Van-Hove singularity
points, three-dimensional reservoirs also display other types
of radiation patterns, such as emission in directional planes
in cubic simple geometries [80]. These could as well lead to
interesting effects when combined with giant atoms. To avoid
overloading the manuscript, we leave the detailed study of the
three-dimensional scenario for a separate work.


	Engineering and harnessing giant atoms in high-dimensional baths: a cold atoms' implementation
	Abstract
	 Acknowledgements
	 References
	 Deriving the Floquet Hamiltonian
	 Calculating the emission patterns 
	 Experimental considerations 
	 Atomic level configuration
	 Feasibility conditions

	 Giant atoms in three-dimensional baths 


