
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

Updates-Leak: Data Set Inference and
Reconstruction Attacks in Online Learning

Ahmed Salem, CISPA Helmholtz Center for Information Security; Apratim
Bhattacharya, Max Planck Institute for Informatics; Michael Backes, Mario

Fritz, and Yang Zhang, CISPA Helmholtz Center for Information Security

https://www.usenix.org/conference/usenixsecurity20/presentation/salem

Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning

Ahmed Salem
CISPA Helmholtz Center
for Information Security

Apratim Bhattacharya
Max Planck Institute

for Informatics

Michael Backes
CISPA Helmholtz Center
for Information Security

Mario Fritz
CISPA Helmholtz Center
for Information Security

Yang Zhang
CISPA Helmholtz Center
for Information Security

Abstract
Machine learning (ML) has progressed rapidly during the past
decade and the major factor that drives such development is
the unprecedented large-scale data. As data generation is a
continuous process, this leads to ML model owners updating
their models frequently with newly-collected data in an online
learning scenario. In consequence, if an ML model is queried
with the same set of data samples at two different points in
time, it will provide different results.

In this paper, we investigate whether the change in the out-
put of a black-box ML model before and after being updated
can leak information of the dataset used to perform the update,
namely the updating set. This constitutes a new attack surface
against black-box ML models and such information leakage
may compromise the intellectual property and data privacy
of the ML model owner. We propose four attacks following
an encoder-decoder formulation, which allows inferring di-
verse information of the updating set. Our new attacks are
facilitated by state-of-the-art deep learning techniques. In par-
ticular, we propose a hybrid generative model (CBM-GAN)
that is based on generative adversarial networks (GANs) but
includes a reconstructive loss that allows reconstructing accu-
rate samples. Our experiments show that the proposed attacks
achieve strong performance.

1 Introduction

Machine learning (ML) has progressed rapidly during the
past decade. A key factor that drives the current ML develop-
ment is the unprecedented large-scale data. In consequence,
collecting high-quality data becomes essential for building
advanced ML models. Data collection is a continuous process,
which in turn transforms the ML model training into a con-
tinuous process as well: Instead of training an ML model for
once and keeping on using it afterwards, the model’s owner
needs to keep on updating the model with newly-collected
data. As training from scratch is often prohibitive, this is often
achieved by online learning. We refer to the dataset used to
perform model update as the updating set.

In this paper, our main research question is: Can different
outputs of an ML model’s two versions queried with the same
set of data samples leak information of the corresponding
updating set?. This constitutes a new attack surface against
machine learning models. Information leakage of the updating
set may compromise the intellectual property and data privacy
of the model owner.

We concentrate on the most common ML application –
classification. More importantly, we target black-box ML
models – the most difficult attack setting where an adversary
does not have access to her target model’s parameters but can
only query the model with her data samples and obtain the
corresponding prediction results, i.e., posteriors in the case
of classification. Moreover, we assume the adversary has a
local dataset from the same distribution as the target model’s
training set, and the ability to establish the same model as the
target model with respect to model architecture. Finally, we
only consider updating sets which contain up to 100 newly
collected data samples. Note that this is a simplified setting
and a step towards real-world setting.

In total, we propose four different attacks in this surface
which can be categorized into two classes, namely, single-
sample attack class and multi-sample attack class. The two
attacks in the single-sample attack class concentrate on a
simplified case when the target ML model is updated with
one single data sample. We investigate this case to show
whether an ML model’s two versions’ different outputs indeed
constitute a valid attack surface. The two attacks in the multi-
sample attack class tackle a more general and complex case
when the updating set contains multiple data samples.

Among our four attacks, two (one for each attack class)
aim at reconstructing the updating set which are the first
attempts in this direction. Compared to many previous attacks
inferring certain properties of a target model’s training set [11,
13, 20], a dataset reconstruction attack leads to more severe
consequences.

Our experiments show that indeed, the output difference of
the same ML model’s two different versions can be exploited
to infer information about the updating set. We detail our

USENIX Association 29th USENIX Security Symposium 1291

contributions as the following.

General Attack Construction. Our four attacks follow a
general structure, which can be formulated into an encoder-
decoder style. The encoder realized by a multilayer perceptron
(MLP) takes the difference of the target ML model’s outputs,
namely posterior difference, as its input while the decoder
produces different types of information about the updating
set with respect to different attacks.

To obtain the posterior difference, we randomly select a
fixed set of data samples, namely probing set, and probe the
target model’s two different versions (the second-version
model is obtained by updating the first-version model with an
updating set). Then, we calculate the difference between the
two sets of posteriors as the input for our attack’s encoder.

Single-Sample Attack Class. The single-sample attack class
contains two attacks: Single-sample label inference attack and
single-sample reconstruction attack. The first attack predicts
the label of the single sample used to update the target model.
We realize the corresponding decoder for the attack by a
two-layer MLP. Our evaluation shows that our attack is able
to achieve a strong performance, e.g., 0.96 accuracy on the
CIFAR-10 dataset [1].

The single-sample reconstruction attack aims at recon-
structing the updating sample. We rely on autoencoder (AE).
In detail, we first train an AE on a different set of data samples.
Then, we transfer the AE’s decoder into our attack model as
its sample reconstructor. Experimental results show that we
can reconstruct the single sample with a performance gain
(with respect to mean squared error) of 22% for the MNIST
dataset [2], 107.1% for the CIFAR-10 dataset, and 114.7%
for the Insta-NY dataset [6], over randomly picking a sample
affiliated with the same label of the updating sample.

Multi-Sample Attack Class. The multi-sample attack class
includes multi-sample label distribution estimation attack
and multi-sample reconstruction attack. Multi-sample label
distribution estimation attack estimates the label distribution
of the updating set’s data samples. It is a generalization of the
label inference attack in the single-sample attack class. We
realize this attack by setting up the attack model’s decoder
as a multilayer perceptron with a fully connected layer and a
softmax layer. Kullback-Leibler divergence (KL-divergence)
is adopted as the model’s loss function. Our experiments
demonstrate the effectiveness of this attack. For the CIFAR-10
dataset, when the updating set’s cardinality is 100, our attack
model achieves a 0.00384 KL-divergence which outperforms
random guessing by a factor of 2.5. Moreover, the accuracy
of predicting the most frequent label is 0.29 which is almost
3 times higher than random guessing.

Our last attack, namely multi-sample reconstruction attack,
aims at generating all samples in the updating set. This is
a much more complex attack than the previous ones. The
decoder for this attack is assembled with two components.
The first one learns the data distribution of the updating set

samples. In order to achieve coverage and accuracy of the
reconstructed samples, we propose a novel hybrid generative
model, namely CBM-GAN. Different from the standard gen-
erative adversarial networks (GANs), our Conditional Best
of Many GAN (CBM-GAN) introduces a “Best Match” loss
which ensures that each sample in the updating set is recon-
structed accurately. The second component of our decoder
relies on machine learning clustering to group the generated
data samples by CBM-GAN into clusters and take the central
sample of each cluster as one final reconstructed sample. Our
evaluation shows that our approach outperforms all baselines
when reconstructing the updating set on all MNIST, CIFAR-
10, and Insta-NY datasets.

2 Preliminaries

In this section, we start by introducing online learning, then
present our threat model, and finally introduce the datasets
used in our experiments.

2.1 Online Learning
In this paper, we focus on the most common ML task – clas-
sification. An ML classifier M is essentially a function that
maps a data sample x ∈ X to posterior probabilities y ∈ Y ,
i.e., M : X → Y . Here, y ∈ Y is a vector with each entry
indicating the probability of x being classified to a certain
class or affiliated with a certain label. The sum of all values
in y is 1. To train an ML model, we need a set of data sam-
ples, i.e., training set. The training process is performed by a
certain optimization algorithm, such as ADAM, following a
predefined loss function.

A trained ML model M can be updated with an updating
set denoted by Dupdate. The model update is performed by
further training the model with the updating set using the same
optimization algorithm on the basis of the current model’s
parameters. More formally, given an updating set Dupdate and
a trained ML model M , the updating process Fupdate can
be defined as Fupdate : Dupdate,M → M ′ where M ′ is the
updated version of M .

2.2 Threat Model
For all of our four attacks, we consider an adversary with
black-box access to the target model. This means that the ad-
versary can only query the model with a set of data samples,
i.e., her probing set, and obtain the corresponding posteriors.
This is the most difficult attack setting for the adversary [40].
We also assume that the adversary has a local dataset which
comes from the same distribution as the target model’s train-
ing set following previous works [13, 38, 40]. Moreover, we
consider the adversary to be able to establish the same ML
model as the target ML model with respect to model architec-
ture. This can be achieved by performing model hyperparam-

1292 29th USENIX Security Symposium USENIX Association

eter stealing attacks [33, 47]. The adversary needs these two
information to establish a shadow model which mimics the
behavior of the target model to derive data for training her at-
tack model (see Section 3). Also, part of the adversary’s local
dataset will be used as her probing set. Finally, we assume
that the target ML model is updated only with new data, i.e.,
the updating set and the training set are disjoint.

We later show in Section 6 that the two assumptions, i.e.,
the adversary’s knowledge of the target model’s architecture
and her possession of a dataset from the same distribution as
the target model’s training set, can be further relaxed.

2.3 Datasets Description
For our experimental evaluation, we use three datasets:
MNIST, CIFAR-10, and Insta-NY. Both MNIST and CIFAR-
10 are benchmark datasets for various ML security and privacy
tasks. MNIST is a 10-class image dataset, it consists of 70,000
28×28 grey-scale images. Each image contains in its center a
handwritten digit. Images in MNIST are equally distributed
over 10 classes. CIFAR-10 contains 60,000 32×32 color im-
ages. Similar to MNIST, CIFAR-10 is also a 10-class balanced
dataset. Insta-NY [6] contains a sample of Instagram users’
location check-in data in New York. Each check-in represents
a user visiting a certain location at a certain time. Each lo-
cation is affiliated with a category. In total, there are eight
different categories. Our ML task for Insta-NY is to predict
each location’s category. We use the number of check-ins hap-
pened at each location in each hour on a weekly base as the
location’s feature vector. We further filter out locations with
less than 50 check-ins, in total, we have 19,215 locations for
the dataset. In Section 6, we further use Insta-LA [6] which
contains the check-in data from Los Angeles for our threat
model relaxation experiments.

3 General Attack Pipeline

Our general attack pipeline contains three phases. In the first
phase, the adversary generates her attack input, i.e., posterior
difference. In the second phase, our encoder transforms the
posterior difference into a latent vector. In the last phase, the
decoder decodes the latent vector to produce different infor-
mation of the updating set with respect to different attacks.
Figure 1 provides a schematic view of our attack pipeline.

In this section, we provide a general introduction for each
phase of our attack pipeline. In the end, we present our strat-
egy of deriving data to train our attack models.

3.1 Attack Input
Recall that we aim at investigating the information leaked
from posterior difference of a model’s two versions when
queried with the same set of data samples. To create this pos-
terior difference, the adversary first needs to pick a set of data

samples as her probing set, denoted by Dprobe. In this work,
the adversary picks a random sample of data samples (from
her local dataset) to form Dprobe. Choosing or crafting [33]
a specific set of data samples as the probing set may further
improve attack efficiency, we leave this as a future work. Next,
the adversary queries the target ML model M with all sam-
ples in Dprobe and concatenates the received outputs to form
a vector yprobe. Then, she probes the updated model M ′ with
samples in Dprobe and creates a vector y′probe accordingly. In
the end, she sets the posterior difference, denoted by δ, to the
difference of both outputs:

δ = yprobe− y′probe

Note that the dimension of δ is the product of Dprobe’s car-
dinality and the number of classes of the target dataset. For
this paper, both CIFAR-10 and MNIST are 10-class datasets,
while Insta-NY is an 8-class dataset. As our probing set al-
ways contains 100 data samples, this indicates the dimension
of δ is 1,000 for CIFAR-10 and MNIST, and 800 for Insta-NY.

3.2 Encoder Design
All our attacks share the same encoder structure, we model it
with a multilayer perceptron. The number of layers inside the
encoder depends on the dimension of δ: Longer δ requires
more layers in the encoder. As our δ is a 1,000-dimension vec-
tor for the MNIST and CIFAR-10 datasets, and 800-dimension
vector for the Insta-NY dataset, we use two fully connected
layers in the encoder. The first layer transforms δ to a 128-
dimension vector and the second layer further reduces the
dimension to 64. The concrete architecture of our encoder is
presented in Appendix B.

3.3 Decoder Structure
Our four attacks aim at inferring different information of
Dupdate, ranging from sample labels to the updating set itself.
Thus, we construct different decoders for different attacks
with different techniques. The details of these decoders will
be presented in the following sections.

3.4 Shadow Model
Our encoder and decoder need to be trained jointly in a su-
pervised manner. This indicates that we need ground truth
data for model training. Due to our minimal assumptions, the
adversary cannot get the ground truth from the target model.
To solve this problem, we rely on shadow models following
previous works [13, 38, 40]. A shadow model is designed to
mimic the target model. By controlling the training process of
the shadow model, the adversary can derive the ground truth
data needed to train her attack models.

As presented in Section 2, our adversary knows (1) the
architecture of the target model and (2) a dataset coming from

USENIX Association 29th USENIX Security Symposium 1293

Encoder Decoder

Posterior
difference

Latent
vector

Information of

Figure 1: A schematic view of the general attack pipeline.

the same distribution as the target dataset. To build a shadow
model Mshadow, the adversary first establishes an ML model
with the same structure as the target model. Then, she gets
a shadow dataset Dshadow from her local dataset (the rest is
used as Dprobe) and splits it into two parts: Shadow training
set D train

shadow and shadow updating set Dupdate
shadow. D train

shadow is used
to train the shadow model while Dupdate

shadow is further split to

m datasets: Dupdate1

shadow · · ·D
updatem

shadow . The number of samples in
each of the m datasets depends on the attack. For instance, our
single-sample class attacks require each dataset containing
a single sample. The adversary then generates m shadow up-
dated models M ′1

shadow · · ·M ′m
shadow by updating the shadow

model Mshadow with m shadow updating sets in parallel.
The adversary, in the end, probes the shadow and updated

shadow models with her probing set Dprobe, and calculates
the shadow posterior difference δ1

shadow · · ·δm
shadow. Together

with the corresponding shadow updating set’s ground truth
information (depending on the attack), the training data for
her attack model is derived.

More generally, the training set for each of our attack mod-
els contains m samples corresponding to Dupdate1

shadow · · ·D
updatem

shadow .
In all our experiments, we set m to 10,000. In addition, we
create 1,000 updated models for the target model, this means
the testing set for each attack model contains 1,000 samples,
corresponding to Dupdate1

target · · ·Dupdate1,000

target .

4 Single-sample Attacks

In this section, we concentrate on the case when an ML model
is updated with a single sample. This is a simplified attack
scenario and we aim to examine the possibility of using poste-
rior difference to infer information about the updating set. We
start by introducing the single-sample label inference attack,
then, present the single-sample reconstruction attack.

4.1 Single-sample Label Inference Attack

Attack Definition. Our single-sample label inference attack
takes the posterior difference as the input and outputs the
label of the single updating sample. More formally, given

a posterior difference δ, our single-sample label inference
attack is defined as follows:

ALI : δ 7→ `

where ` is a vector with each entry representing the probability
of the updating sample affiliated with a certain label.
Methodology. To recap, the general construction of the at-
tack model consists of an MLP-based encoder which takes
the posterior difference as its input and outputs a latent vector
µ. For this attack, the adversary constructs her decoder also
with an MLP which is assembled with a fully connected layer
and a softmax layer to transform the latent vector to the corre-
sponding updating sample’s label. The concrete architecture
of our ALI’s decoder is presented in Appendix C.

To obtain the data for training ALI , the adversary generates
ground truth data by creating a shadow model as introduced in
Section 3 while setting the shadow updating set’s cardinality
to 1. Then, the adversary trains her attack model ALI with a
cross-entropy loss. Our loss function is,

LCE = ∑
i
`i log(ˆ̀i)

where `i is the true probability of label i and ˆ̀i is our predicted
probability of label i. The optimization is performed by the
ADAM optimizer.

To perform the label inference attack, the adversary con-
structs the posterior difference as introduced in Section 3,
then feeds it to the attack model ALI to obtain the label.
Experimental Setup. We evaluate the performance of
our single-sample label inference attack using the MNIST,
CIFAR-10, and Insta-NY datasets. First, we split each dataset
into three disjoint datasets: The target dataset Dtarget, the
shadow dataset Dshadow, and the probing dataset Dprobe. As
mentioned before, Dprobe contains 100 data samples. We
then split Dshadow to D train

shadow and Dupdate
shadow to train the shadow

model as well as updating it (see Section 3). The same process
is applied to train and update the target model with Dtarget.
As mentioned in Section 3, we build 10,000 and 1,000 up-
dated models for shadow and target models, respectively. This
means the training and testing sets for our attack model con-
tain 10,000 and 1,000 samples, respectively.

1294 29th USENIX Security Symposium USENIX Association

MNIST CIFAR-10 Insta-NY0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

ALI

Random

Figure 2: [Higher is better] Performance of the single-sample
label inference attack (ALI) on MNIST, CIFAR-10, and Insta-
NY datasets together with the baseline model. Accuracy is
adopted as the evaluation metric.

We use convolutional neural network (CNN) to build
shadow and target models for both CIFAR-10 and MNIST
datasets, and a multilayer perceptron (MLP) for the Insta-NY
dataset. The CIFAR-10 model consists of two convolutional
layers, one max pooling layer, three fully connected layers,
and a softmax layer. The MNIST model consists of two con-
volutional layers, two fully connected layers, and a softmax
layer. Finally, the Insta-NY model consists of three fully con-
nected layers and a softmax layer. The concrete architectures
of the models are presented in Appendix A.

All shadow and target models’ training sets contain 10,000
images for CIFAR-10 and MNIST, and 5,000 samples for
Insta-NY. We train the CIFAR-10, MNIST and Insta-NY mod-
els for 50, 25, and 25 epochs, respectively, with a batch size
of 64. To create an updated ML model, we perform a single-
epoch training. Finally, we adopt accuracy to measure the
performance of the attack. All of our experiments are imple-
mented using Pytorch [3]. For reproducibility purposes, our
code will be made available.

Results. Figure 2 depicts the experimental results. As we can
see, ALI achieves a strong performance with an accuracy of
0.97 on the Insta-NY dataset, 0.96 on the CIFAR-10 dataset,
and 0.68 on the MNIST dataset. Moreover, our attack sig-
nificantly outperforms the baseline model, namely Random,
which simply guesses a label over all possible labels. As both
CIFAR-10 and MNIST contain 10 balanced classes, the base-
line model’s result is approximately 10%. For the Insta-NY
dataset, since it is not balanced, we randomly sample a label
for each sample to calculate the baseline which results in
approximately 29% accuracy. Our evaluation shows that the
different outputs of an ML model’s two versions indeed leak
information of the corresponding updating set.

4.2 Single-sample Reconstruction Attack

Attack Definition. Our single-sample reconstruction attack
takes one step further to construct the data sample used to
update the model. Formally, given a posterior difference δ,
our single-sample reconstruction attack, denoted by ASSR, is

Encoder Decoder

Encoder Decoder

Autoencoder

Transfer

Figure 3: Methodology of the single-sample reconstruction
attack (ASSR).

defined as follows:

ASSR : δ 7→ xupdate

where xupdate denotes the sample used to update the model
(Dupdate = {xupdate}).
Methodology. Reconstructing a data sample is a much more
complex task than predicting the sample’s label. To tackle
this problem, we need an ML model which is able to generate
a data sample in the complex space. To this end, we rely on
autoencoder (AE).

Autoencoder is assembled with an encoder and a decoder.
Different from our attacks, AE’s goal is to learn an efficient
encoding for a data sample: Its encoder encodes a sample into
a latent vector and its decoder tries to decode the latent vector
to reconstruct the same sample. This indicates AE’s decoder
itself is a data sample reconstructor. For our attack, we first
train an AE, then transfer the AE’s decoder to our attack
model as the initialization of the attack’s decoder. Figure 3
provides an overview of the attack methodology. The concrete
architectures of our AEs’ encoders and decoders are presented
in Appendix D.

After the autoencoder is trained, the adversary takes its
decoder and appends it to her attack model’s encoder. To
establish the link, the adversary adds an additional fully con-
nected layer to its encoder which transforms the dimensions
of the latent vector µ to the same dimension as µAE.

We divide the attack model training process into two phases.
In the first phase, the adversary uses her shadow dataset to
train an AE with the previously mentioned model architecture.
In the second phase, she follows the same procedure for single-
sample label inference attack to train her attack model. Note
that the decoder from AE here serves as the initialization of
the decoder, this means it will be further trained together with
the attack model’s encoder. To train both autoencoder and our
attack model, we use mean squared error (MSE) as the loss
function. Our objective is,

LMSE = ‖x̂update− xupdate‖2
2

USENIX Association 29th USENIX Security Symposium 1295

0.00

0.02

0.04

0.06

0.08

0.10
M

ea
n

sq
ua

re
d

er
ro

r
(M

S
E

) AE (Oracle)

ASSR

Label-random

Random

(a) MNIST

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
) AE (Oracle)

ASSR

Label-random

Random

(b) CIFAR-10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
) AE (Oracle)

ASSR

Label-random

Random

(c) Insta-NY

Figure 4: [Lower is better] Performance of the single-sample reconstruction attack (ASSR) together with autoencoder and two
baseline models. Mean squared error is adopted as the evaluation metric. Autoencoder (AE) serves as an oracle as the adversary
cannot use it for her attack.

Figure 5: Visualization of some generated samples from the
single-sample reconstruction attack (ASSR) on the MNIST
dataset. Samples are fair random draws, not cherry-picked.
The first row shows the original samples. The second row
shows the reconstructed samples by ASSR. The third shows
row the reconstructed samples by autoencoder, i.e., the upper
bound of our reconstruction attack.

where x̂update is our predicted data sample. We again adopt
ADAM as the optimizer.

Experimental Setup. We use the same experimental setup
as the previous attack (see Section 4.1) except for the evalua-
tion metric. In detail, we adopt MSE to measure our attack’s
performance instead of accuracy.

We construct two baseline models, namely Label-random
and Random. Both of these baseline models take a random
data sample from the adversary’s shadow dataset. The differ-
ence is that the Label-random baseline picks a sample within
the same class as the target updating sample, while the Ran-
dom baseline takes a random data sample from the whole
shadow dataset of the adversary. The Label-random baseline
can be implemented by first performing our single-sample
label inference attack to learn the label of the data sample and
then picking a random sample affiliated with the same label.

Results. First, our single-sample reconstruction attack
achieves a promising performance. As shown in Figure 4,
our attack on the MNIST dataset outperforms the Random
baseline by 36% and more importantly, outperforms the Label-
random baseline by 22%. Similarly, for the CIFAR-10 and
Insta-NY datasets, our attack achieves an MSE of 0.014 and
0.68 which is significantly better than the two baseline mod-
els, i.e., it outperforms the Label-random (Random) baselines

by a factor of 2.1 (2.2) and 2.1 (2.3), respectively. The differ-
ence between our attack’s performance gain over the baseline
models on the MNIST and on the other datasets is expected
as the MNIST dataset is more homogeneous compared to the
other two. In other words, the chance of picking a random
data sample similar to the updating sample is much higher in
the MNIST dataset than in the other datasets.

Secondly, we compare our attack’s performance against
the results of the autoencoder for sample reconstruction. Note
that AE takes the original data sample as input and outputs
the reconstructed one, thus it is considered as an oracle, since
the adversary does not have access to the original updating
sample. Here, we just use AE’s result to show the best pos-
sible result for our attack. From Figure 4, we observe that
AE achieves 0.042, 0.0043, and 0.51 MSE for the MNIST,
CIFAR-10, and Insta-NY datasets, respectively, which indeed
outperforms our attack. However, our attack still has a com-
parable performance.

Finally, Figure 5 visualizes some randomly sampled re-
constructed images by our attack on MNIST. The first row
depicts the original images used to update the models and the
second row shows the result of our attack. As we can see, our
attack is able to reconstruct images that are visually similar
to the original sample with respect to rotation and shape. We
also show the result of AE in the third row in Figure 5 which
as mentioned before, is the upper bound for our attack. The
results from Figure 4 and Figure 5 demonstrate the strong
performance of our attack.

5 Multi-sample Attacks

After demonstrating the effectiveness of our attacks against
the updating set with a single sample, we now focus on a
more general attack scenario where the updating set contains
multiple data samples that are never seen during the training.
We introduce two attacks in the multi-sample attack class:
Multi-sample label distribution estimation attack and multi-
sample reconstruction attack.

1296 29th USENIX Security Symposium USENIX Association

MNIST CIFAR-10 Insta-NY0.00

0.02

0.04

0.06

0.08

0.10

0.12

K
L

-d
iv

er
ge

nc
e ALDE

Random

Transfer 100-10

(a) KL-divergence (10 samples)

MNIST CIFAR-10 Insta-NY0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

K
L

-d
iv

er
ge

nc
e

ALDE

Random

Transfer 10-100

(b) KL-divergence (100 samples)

MNIST CIFAR-10 Insta-NY0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

ALDE

Random

Transfer 100-10

(c) Accuracy (10 samples)

MNIST CIFAR-10 Insta-NY0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

ALDE

Random

Transfer 10-100

(d) Accuracy (100 samples)

Figure 6: [Lower is better for (a) and (b), higher is better for (c) and (d)] Performance of the multi-sample label distribution
estimation attack (ALDE) together with the baseline model and transfer attack. KL-divergence and accuracy are adopted as the
evaluation metric. Accuracy here is used to measure the prediction of the most frequent label over samples in the updating
set. Transfer 10-100 means each of the training sample for the attack model corresponds to an updating set containing 10 data
samples and each of the testing sample for the attack model corresponds to an updating set containing 100 data samples.

5.1 Multi-sample Label Distribution Estima-
tion Attack

Attack Definition. Our first attack in the multi-label attack
class aims at estimating the label distribution of the updating
set’s samples. It can be considered as a generalization of
the label inference attack in the single-sample attack class.
Formally, the attack is defined as:

ALDE : δ 7→ q

where q as a vector denotes the distribution of labels over all
classes for samples in the updating set.
Methodology. The adversary uses the same encoder structure
as presented in Section 3 and the same decoder structure of the
label inference attack (Section 4.1). Since the label distribu-
tion estimation attack estimates a probability vector q instead
of performing classification, we use Kullback-–Leibler diver-
gence (KL-divergence) as our objective function:

LKL = ∑
i
(q̂`)i log

(q̂`)i

(q`)i

where q̂` and q` represent our attack’s estimated label distri-
bution and the target label distribution, respectively, and (q`)i
corresponds to the ith label.

To train the attack model ALDE, the adversary first gener-
ates her training data as mentioned in Section 3. She then
trains ALDE with the posterior difference δ1

shadow · · ·δm
shadow

as the input and the normalized label distribution of their
corresponding updating sets as the output. We assume the
adversary knows the cardinality of the updating set. We try to
relax this assumption later in our evaluation.
Experimental Setup. We evaluate our label distribution esti-
mation attack using updating set of cardinalities 10 and 100.
For the two different cardinalities, we build attack models
as mentioned in the methodology. All data samples in each
updating set for the shadow and target models are sampled
uniformly, thus each sample (in both training and testing set)
for the attack model, which corresponds to an updating set,

has the same label distribution of the original dataset. We use
a batch size of 64 when updating the models.

For evaluation metrics, we calculate KL-divergence for
each testing sample (corresponding to an updating set on the
target model) and report the average result over all testing
samples (1,000 in total). Besides, we also measure the accu-
racy of predicting the most frequent label over samples in the
updating set. We randomly sample a dataset with the same
size as the updating set and use its samples’ label distribution
as the baseline, namely Random.

Results. We report the result for our label distribution esti-
mation attack in Figure 6. As shown, ALDE achieves a signif-
icantly better performance than the Random baseline on all
datasets. For the updating set with 100 data samples on the
CIFAR-10 dataset, our attack achieves 3 and 2.5 times better
accuracy and KL-divergence, respectively, than the Random
baseline. Similarly, for the MNIST and Insta-NY datasets,
our attack achieves 1.5 and 4.8 times better accuracy, and
2 and 7.9 times better KL-divergence. Furthermore, ALDE
achieves a similar improvement over the Random baseline for
the updating set of size 10.

Recall that the adversary is assumed to know the cardinal-
ity of the updating set in order to train her attack model, we
further test whether we can relax this assumption. To this end,
we first update the shadow model with 100 samples while
updating the target model with 10 samples. As shown in Fig-
ure 6a and Figure 6c Transfer 100-10, our attack still has a
similar performance as the original attack. However, when
the adversary updates her shadow model with 10 data sam-
ples while the target model is updated with 100 data samples
(Figure 6b and Figure 6d Transfer 10-100), our attack perfor-
mance drops significantly, in particular for KL-divergence on
the CIFAR-10 dataset. We believe this is due to the 10 sam-
ples not providing enough information for the attack model
to generalize to a larger updating set.

USENIX Association 29th USENIX Security Symposium 1297

Encoder Generator

Standard Gaussian Noise

Decoder

Clustering

Figure 7: Methodology of the multi-sample reconstruction
attack (AMSR).

5.2 Multi-sample Reconstruction Attack
Attack Definition. Our last attack, namely multi-sample re-
construction attack, aims at reconstructing the updating set.
This attack can be considered as a generalization of the single-
sample reconstruction attack, and a step towards the goal
of reconstructing the training set of a black-box ML model.
Formally, the attack is defined as follows:

AMSR : δ 7→Dupdate

where Dupdate = {x1
update, . . . ,x

|Dupdate|
update } contains the samples

used to update the model.
Methodology. The complexity of the task for reconstructing
an updating set increases significantly when the updating set
size grows from one to multiple. Our single-sample recon-
struction attack (Section 4.2) uses AE to reconstruct a single
sample. However, AE cannot generate a set of samples. In
fact, directly predicting a set of examples is a very challenging
task. Therefore, we rely on generative models which are able
to generate multiple samples rather than a single one.

We first introduce the classical Generative Adversarial Net-
works (GANs) and point out why classical GANs cannot be
used for our multi-sample reconstruction attack. Next, we
propose our Conditional Best of Many GAN (CBM-GAN), a
novel hybrid generative model and demonstrate how to use it
to execute the multi-sample reconstruction attack.
Generative Adversarial Networks. Samples from a dataset are
essentially samples drawn from a complex data distribution.
Thus, one way to reconstruct the dataset Dupdate is to learn
this complex data distribution and sample from it. This is the
approach we adopt for our multi-sample reconstruction attack.
Mainly, the adversary starts the attack by learning the data dis-
tribution of Dupdate, then she generates multiple samples from
the learned distribution, which is equivalent to reconstructing
the dataset Dupdate. In this work, we leverage the state-of-the-
art generative model GANs, which has been demonstrated
effective on learning a complex data distribution.

A GAN consists of a pair of ML models: a generator (G)
and a discriminator (D). The generator G learns to transform

a Gaussian noise vector z∼N (0,1) to a data sample x̂,

G : z 7→ x̂

such that the generated sample x̂ is indistinguishable from
a true data sample. This is enabled by the discriminator D
which is jointly trained. The generator G tries to fool the
discriminator, which is trained to distinguish between samples
from the Generator (G) and true data samples. The objective
function maximized by GAN’s discriminator D is,

LD = Ex∈Dupdate log(D(x))+Ex̂ log(1−D(x̂)) (1)

The GAN discriminator D is trained to output 1 (“true”) for
real data and 0 (“false”) for fake data. On the other hand, the
generator G maximizes:

LG = Ex̂ log(D(x̂))

Thus, G is trained to produce samples x̂ = G(z) that are clas-
sified as “true” (real) by D.

However, our attack aims to reconstruct Dupdate for any
given δ, which the standard GAN does not support. There-
fore, first, we change the GAN into a conditional model to
condition its generated samples x̂ on the posterior difference
δ. Second, we construct our novel hybrid generative model
CBM-GAN, by adding a new “Best Match” loss to reconstruct
all samples inside the updating set accurately.
CBM-GAN. The decoder of our attack model is casted as our
CBM-GAN’s generator (G). To enable this, we concatenate
the noise vector z and the latent vector µ produced by our
attack model’s encoder (with posterior different as input), and
use it as CBM-GAN’s generator’s input, as in Conditional
GANs [30]. This allows our decoder to map the posterior
difference δ to samples in Dupdate.

However, Conditional GANs are severely prone to mode
collapse, where the generator’s output is restricted to a limited
subset of the distribution [7, 51]. To deal with this, we intro-
duce a reconstruction loss. This reconstruction loss forces
our GAN to cover all the modes of the distribution (set) of
data samples used to update the model. However, it is unclear,
given a posterior difference δ and a noise vector z pair, which
sample in the data distribution we should force CBM-GAN to
reconstruct. Therefore, we allow our GAN full flexibility in
learning a mapping from posterior difference and noise vector
z pairs to data samples – this means we allow it to choose
the data sample to reconstruct. We realize this using a novel
“Best Match” based objective in the CBM-GAN formulation,

LBM = ∑
x∈Dupdate

min
x̂∼G
‖x̂− x‖2

2+∑
x̂

log(D(x̂)) (2)

where x̂∼G represents samples produced by our CBM-GAN
given a latent vector µ and noise sample z. The first part of the
LBM objective is based on the standard MSE reconstruction
loss and forces our CBM-GAN to reconstruct all samples in

1298 29th USENIX Security Symposium USENIX Association

(a) (b) (c) (d)

Figure 8: Visualization of some generated samples from the multi-sample reconstruction attack (AMSR) before clustering on the
CIFAR-10 dataset. Samples are fair random draws, not cherry-picked. The left column shows the original samples and the next 5
columns show the 5 nearest reconstructed samples with respect to mean squared error.

Dupdate as the error is summed across x ∈Dupdate. However,
unlike the standard MSE loss, given a data sample x∈Dupdate,
the loss is based only on the generated sample x̂ which is
closest to the data sample x ∈ Dupdate. This allows CBM-
GAN to reconstruct samples in Dupdate without having an
explicit mapping from posterior difference and noise vector z
pairs to data samples, as only the “Best Match” is penalized.
Finally, the discriminator D ensures that the samples x̂ are
indistinguishable from the “true” samples of Dupdate.
Training of CBM-GAN. The training of the attack model AMSR
is more complicated than previous attacks, hence we provide
more details here. Similar to the previous attacks, the adver-
sary starts the training by generating the training data as men-
tioned in Section 3. She then jointly trains her encoder and
CBM-GAN with the posterior difference δ1

shadow · · ·δm
shadow as

the inputs and samples inside their corresponding updating
sets, i.e., Dupdate1

shadow · · ·D
updatem

shadow as the output. More concretely,
for each posterior difference δi

shadow, she updates her attack
model AMSR as follows:

1. The adversary sends the posterior difference δi
shadow to

her encoder to get the latent vector µi.

2. She then generates |Dupdatei

shadow | noise vectors.

3. To create generator’s input, she concatenates each of the
noise vectors with the latent vector µi.

4. On the input of the concatenated vectors, the CBM-
GAN generates |Dupdatei

shadow | samples, i.e., each vector cor-
responds to each sample.

5. The adversary then calculates the generator loss as intro-
duced by Equation 2, and uses it to update the generator
and the encoder.

6. Finally, she calculates and updates the CBM-GAN’s dis-
criminator according to Equation 1.

Clustering. CBM-GAN only provides a generator which
learns the distribution of the samples in the updating set. How-
ever, to reconstruct the exact data samples in Dupdate, we need

a final step assisted by machine learning clustering. In detail,
we assume the adversary knows the cardinality of Dupdate as in
Section 5.1. After CBM-GAN is trained, the adversary utilizes
CBM-GAN’s generator to generate a large number of samples.
She then clusters the generated samples into |Dupdate| clusters.
Here, the K-means algorithm is adopted to perform clustering
where we set K to |Dupdate|. In the end, for each cluster, the
adversary calculates its centroid, and takes the nearest sample
to the centroid as one reconstructed sample.

Figure 7 presents a schematic view of our multi-sample
reconstruction attack’s methodology. The concrete architec-
ture of CBM-GAN’s generator and discriminator for the three
datasets used in this paper are listed in Appendix E.

Experimental Setup. We evaluate the multi-sample recon-
struction attack on the updating set of size 100 and generate
20,000 samples for each updating set reconstruction with
CBM-GAN. For the rest of the experimental settings, we fol-
low the one mentioned in Section 5.1 except for evaluation
metrics and baseline.

We use MSE between the updating and reconstructed data
samples to measure the multi-sample reconstruction attack’s
performance. We construct two baselines, namely Shadow-
clustering and Label-average. For Shadow-clustering, we per-
form K-means clustering on the adversary’s shadow dataset.
More concretely, we cluster the adversary’s shadow dataset
into 100 clusters and take the nearest sample to the centroid of
each cluster as one reconstructed sample. For Label-average,
we calculate the MSE between each sample in the updating
set and the average of the images with the same label in the
adversary’s shadow dataset.

Results. In Figure 8, we first present some visualization of
the intermediate result of our attack, i.e., the CBM-GAN’s
output before clustering, on the CIFAR-10 dataset. For each
randomly sampled image in the updating set, we show the
5 nearest reconstructed images with respect to MSE gener-
ated by CBM-GAN. As we can see, our attack model tries to
generate images with similar characteristics to the original
images. For instance, the 5 reconstructed images for the air-
plane image in Figure 8b all show a blue background and a

USENIX Association 29th USENIX Security Symposium 1299

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
M

ea
n

sq
ua

re
d

er
ro

r
(M

S
E

) One-to-one match
AMSR

Shadow-clustering

Label-average

(a) MNIST

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
) One-to-one match

AMSR

Shadow-clustering

Label-average

(b) CIFAR-10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
) One-to-one match

AMSR

Shadow-clustering

Label-average

(c) Insta-NY

Figure 9: [Lower is better] Performance of the multi-sample reconstruction attack (AMSR) together with one-to-one match and
the two baseline models. Mean squared error (MSE) is adopted as the evaluation metric. The match between the original and
reconstructed samples is performed by the Hungarian algorithm for both AMSR and Shadow-clustering. For Label-average, each
sample is matched within the average of samples with the same class in the shadow dataset. One-to-one match serves as an oracle
as the adversary cannot use it for her attack.

Figure 10: Visualization of a full MNIST updating set together with the output of the multi-sample reconstruction attack (AMSR)
after clustering. Samples are fair random draws, not cherry-picked. The left column shows the original samples and the right
column shows the reconstructed samples. The match between the original and reconstructed samples is performed by the
Hungarian algorithm.

blurry version of the airplane itself. The similar result can be
observed from the boat image in Figure 8a, the car image in
Figure 8c, and the boat image in Figure 8d. It is also interest-
ing to see that CBM-GAN provides different samples for the
two different horse images in Figure 8b. The blurriness in the
results is expected, due to the complex nature of the CIFAR-
10 dataset and the weak assumptions for our adversary, i.e.,
access to black-box ML model.

We also quantitatively measure the performance of our
intermediate results, by calculating the MSE between each
image in the updating set and its nearest reconstructed sample.
We refer to this as one-to-one match. Figure 9 shows for
the CIFAR-10, MNIST, and Insta-NY datasets, we achieve
0.0283, 0.043 and 0.60 MSE, respectively. It is important
to note that the adversary cannot perform one-to-one match
as she does not have access to ground truth samples in the

updating set, i.e., one-to-one match is an oracle.

Figure 9 shows the mean squared error of our full attack
with clustering for all datasets. To match each of our recon-
structed samples to a sample in Dupdate, we rely on the Hun-
garian algorithm [24]. This guarantees that each reconstructed
sample is only matched with one ground truth sample in
Dupdate and vice versa. As we can see, our attack outper-
forms both baseline models on the CIFAR-10, MNIST and
Insta-NY datasets (20%, 22%, and 25% performance gain for
Shadow-clustering and 60.1%, 5.5% and 14% performance
gain for Label-average, respectively). The different perfor-
mance gain of our attack over the label-average baseline for
different datasets is due to the different complexity of these
datasets. For instance, all images inside MNIST have black
background and lower variance within each class compared
to the CIFAR-10 dataset. The different complexity results

1300 29th USENIX Security Symposium USENIX Association

in some datasets having a more representative label-average,
which leads to a lower performance gain of our attack over
them.

These results show that our multi-sample reconstruction
attack provides a more useful output than calculating the
average from the adversary’s dataset. In detail, our attack
achieves an MSE of 0.036 on the CIFAR-10 dataset, 0.051
on the MNIST dataset, and 0.64 on the Insta-NY dataset. As
expected, the MSE of our final attack is higher than one-to-one
match, i.e., the above mentioned intermediate results.

We further visualize our full attack’s result on the MNIST
dataset. Figure 10 shows a sample of a full MNIST updat-
ing set reconstruction, i.e., the CBM-GAN’s reconstructed
images for the 100 original images in an updating set. We ob-
serve that our attack model reconstructs diverse digits of each
class that for most of the cases match the actual ground truth
data very well. This suggests CBM-GAN is able to capture
most modes in a data distribution well. Moreover, comparing
the results of this attack (Figure 10) with the results of the
single-sample reconstruction attack (Figure 5), we can see
that this attack produces sharper images. This result is due to
the discriminator of our CBM-GAN, as it is responsible for
making the CBM-GAN’s output to look real, i.e., sharper in
this case.

One limitation of our attack is that CBM-GAN’s sample
generation and clustering are performed separately. In the
future, we plan to combine them to perform an end-to-end
training which may further boost our attack’s performance.

From all these results, we show that our attack does not gen-
erate a general representation of data samples affiliated with
the same label, but tries to reconstruct images with similar
characteristics as the images inside the updating set (as shown
by the different shapes of the same numbers in Figure 10).

Relaxing The Knowledge of Updating Set Cardinality.
One of the above attack’s main assumptions is the adver-
sary’s knowledge of the updating set cardinality, i.e., |Dupdate|.
Next, we show how to relax this assumption. To recap, the
adversary needs the updating set cardinality when updating
her shadow model and clustering CBM-GAN’s output. We
address the former by using updating sets of different car-
dinalities. For the latter, we use the silhouette score to find
the optimal k for K-means, i.e., the most likely value of the
target updating set’s cardinality. The silhouette score lies in
the range between -1 and 1, it reflects the consistency of the
clustering. Higher silhouette score leads to more suitable k.

Specifically, the adversary follows the previously presented
methodology in Section 5.2 with the following modifications.
First, instead of using updating sets with the same cardinality,
the adversary uses updating sets with different cardinalities to
update the shadow model. Second, after the adversary gener-
ates multiple samples from CBM-GAN, she uses the silhou-
ette score to find the optimal k. The silhouette score is used
here to identify the target model’s updating set cardinality
from the different updating sets cardinalities used to update

Attack Original Transfer

ALI 0.97 0.89
ASSR 0.68 1.1

ALDE(10) 0.59(0.0317) 0.55(0.0377)
ALDE(100) 0.89(0.0041) 0.89 (0.0067)

AMSR 0.64 0.73

Table 1: Evaluation of the data transferability attacks. The first
column shows all different attacks, the second and third shows
the performance of the attacks using similar and different dis-
tributions, respectively. Where ALI performance is measured
in accuracy, AMSR and ASSR measured in MSE, and ALDE(10)
and ALDE(100) measured in accuracy (KL-divergence).

the shadow model.
We evaluate the effectiveness of this attack on all datasets.

We use a target model updated with 100 samples and create
our shadow updated models using updating sets with cardi-
nality 10 and 100. Concretely, we update the shadow model
half of the time with updating sets of cardinality 10 and the
other half with cardinality 100.

Our evaluation shows that our attack consistently produces
higher silhouette score -by at least 20%- for the correct car-
dinality in all cases. In another way, our method can always
detect the right cardinality of the updating set in this setting.
Moreover, the MSE for the final output of the attack only
drops by 1.6%, 0.8%, and 5.6% for the Insta-NY, MNIST, and
CIFAR-10 datasets, respectively.

6 Discussion

In this section, we analyze the effect of different hyperparam-
eters of both the target and shadow models on our attacks’
performance. Furthermore, we investigate relaxing the threat
model assumptions and discuss the limitations of our attacks.

Relaxing The Attacker Model Assumption. Our threat
model has two main assumptions: Same data distribution for
both target and shadow datasets and same structure for both
target and shadow models. We relax the former by proposing
data transferability attack and latter by model transferability
attack.

Data Transferability. In this setting, we locally train and up-
date the shadow model with a dataset which comes from a
different distribution from the target dataset. For our experi-
ments, we use Insta-NY as the target dataset and Insta-LA as
the shadow dataset.

Table 1 depicts the evaluation results. As expected, the
performance of our data transferability attacks drops; however,
they are still significantly better than corresponding baseline
models. For instance, the performance of the multi-sample
reconstruction attack drops by 14% but is still 10% better than
the baseline (see Figure 9). Moreover, the multi-sample label

USENIX Association 29th USENIX Security Symposium 1301

distribution attack’s accuracy (KL-divergence) only drops by
6.8% (18.9%) and 0% (63%), which is still significantly better
than the baseline (see Figure 6) by 6.5x (2x) and 4.6x (4.8x)
for updating set sizes of 10 and 100, respectively.

Model Transferablity. Now we relax the attacker’s knowledge
on the target model’s architecture, i.e., we use different archi-
tectures for shadow and target models. In our experiments on
Insta-NY, we use the same architecture mentioned previously
in Section 4.1 for the target model, and remove one hidden
layer and use half of the number of neurons in other hidden
layers for the shadow model.

The performance drop of our model transferability attack
is only less than 2% for all of our attacks, which shows that
our attacks are robust against such changes in the model ar-
chitectures. We observe similar results when repeating the
experiment using different architectures and omit them for
space restrictions.

Effect of The Probing Set Cardinality. We evaluate the per-
formance of our attacks on CIFAR-10 when the probing set
cardinality is 10, 100, 1,000, or 10,000. As our encoder’s in-
put size relies on the probing set cardinality (see Section 3),
we adjust its input layer size accordingly.

As expected, using a probing set of size 10 reduces the
performance of the attacks. For instance, the single-sample
label inference and reconstruction attacks’ performance drops
by 9% and 71%, respectively. However, increasing the probing
set cardinality from 100 to 1,000 or 10,000 has a limited effect
(up to 3.5% performance gain). It is also important to mention
that the computational requirement for our attacks increases
with an increasing probing set cardinality, as the cardinality
decides the size of the input layer for our attack models. In
conclusion, using 100 samples for probing the target model is
a suitable choice.

Effect of Target Model Hyperparameters. We now evalu-
ate our attacks’ performance with respect to two hyperparam-
eters of the target model.

Target Model’s Training Epochs Before Updating. We use the
MNIST dataset to evaluate the multi-sample label distribution
estimation attack’s performance on target models trained for
10, 20, and 50 epochs. For each setting, we update the model
and execute our attack as mentioned in Section 5.1.

The experiments show that the difference in the attack’s
performance for the different models is less than 2%. That
is expected as gradients are not monotonically decreasing
during the training procedure. In other words, information is
not necessarily vanishing [15].

Target Model’s Updating Epochs. We train target and shadow
models as introduced in Section 5.1 with the Insta-NY dataset,
but we update the models using different number of epochs.
More concretely, we update the models using from 2 to 10
epochs and evaluate the multi-sample label distribution esti-
mation attack’s performance on the updated models.

2 4 6 8 10
Number of epochs

0.0026

0.0028

0.0030

0.0032

0.0034

0.0036

0.0038

K
L

-d
iv

er
ge

nc
e

Figure 11: [Lower is better] The performance of the multi-
sample label distribution estimation attack (ALDE) with dif-
ferent number of epochs used to update the target model.

We report the results of our experiments in Figure 11. As
expected, the multi-sample label distribution estimation at-
tack’s performance improves with the increase of the number
of epochs used to update the model. For instance, the attack
performance improves by 25.4 % when increasing the number
of epochs used to update the model from 2 to 10.

Limitations of Our Attacks. For all of our attacks, we as-
sume a simplified setting, in which, the target model is solely
updated on new data. Moreover, we perform our attacks on
updating sets of maximum cardinality of 100. In future work,
we plan to further investigate a more complex setting, where
the target model is updated using larger updating sets of both
new and old data.

7 Possible Defenses

Adding Noise to Posteriors. All our attacks leverage poste-
rior difference as the input. Therefore, to reduce our attacks’
performance, one could sanitize posterior difference. How-
ever, the model owner cannot directly manipulate the posterior
difference, as she does not know with what or when the ad-
versary probes her model. Therefore, she has to add noise
to the posterior for each queried sample independently. We
have tried adding noise sampled from a uniform distribution
to the posteriors. Experimental results show that the perfor-
mance for some of our attacks indeed drops to a certain degree.
For instance, the single-sample label inference attack on the
CIFAR-10 dataset drops by 17% in accuracy. However, the
performance of our multi-sample reconstruction attack stays
stable. One reason might be the noise vector z is part of CBM-
GAN’s input which makes the attack model more robust to
the noisy input.

Differential Privacy. Another possible defense mechanism
against our attacks is differentially private learning. Differ-
ential privacy [10] can help an ML model learn its main
tasks while reducing its memory on the training data. If dif-
ferentially private learning schemes [4, 9, 39] are used when
updating the target ML model, this by design will reduce the
performance of our attacks. However, it is also important to

1302 29th USENIX Security Symposium USENIX Association

mention that depending on the privacy budget for differential
privacy, the utility of the model can drop significantly.

We leave an in-depth exploration of effective defense mech-
anisms against our attacks as a future work.

8 Related Works

Membership Inference. Membership inference aims at de-
termining whether a data sample is inside a dataset. It has been
successfully performed in various settings, such as biomedical
data [18, 21] and location data [36, 37]. Shokri et al. [40] pro-
pose the first membership inference attack against machine
learning models. In this attack, an adversary’s goal is to deter-
mine whether a data sample is in the training set of a black-
box ML model. To mount this attack, the adversary relies
on a binary machine learning classifier which is trained with
the data derived from shadow models (similar to our attacks).
More recently, multiple membership inference attacks have
been proposed with new attacking techniques or targeting on
different types of ML models [19, 27, 28, 31, 32, 38, 42, 53].

In theory, membership inference attack can be used to re-
construct the dataset, similar to our reconstruction attacks.
However, it is not scalable in the real-world setting as the
adversary needs to obtain a large-scale dataset which includes
all samples in the target model’s training set. Though our two
reconstruction attacks are designed specifically for the online
learning setting, we believe the underlying techniques we pro-
pose, i.e., pretrained decoder from a standard autoencoder and
CBM-GAN, can be further extended to reconstruct datasets
from black-box ML models in other settings.

Model Inversion. Fredrikson et al. [12] propose model in-
version attack first on biomedical data. The goal of model
inversion is to infer some missing attributes of an input feature
vector based on the interaction with a trained ML model. Later,
other works generalize the model inversion attack to other set-
tings, e.g.„ reconstructing recognizable human faces [11, 20].
As pointed out by other works [29,40], model inversion attack
reconstructs a general representation of data samples affiliated
with certain labels, while our reconstruction attacks target on
specific data samples used in the updating set.

Model Stealing. Another related line of work is model steal-
ing. Tramèr et al. [45] are among the first to introduce the
model stealing attack against black-box ML models. In this
attack, an adversary tries to learn the target ML model’s pa-
rameters. Tramèr et al. propose various attacking techniques
including equation-solving and decision tree path-finding.
The former has been demonstrated to be effective on simple
ML models, such as logistic regression, while the latter is
designed specifically for decision trees, a class of machine
learning classifiers. Moreover, relying on an active learning
based retraining strategy, the authors show that it is possible to
steal an ML model even if the model only provides the label
instead of posteriors as the output. More recently, Orekondy

et al. [34] propose a more advanced attack on stealing the
target model’s functionality and show that their attack is able
to replicate a mature commercial machine learning API. In
addition to model parameters, several works concentrate on
stealing ML models’ hyperparameters [33, 47].

Besides the above, there exist a wide range of other attacks
and defenses on machine learning models [4,5,8,9,13,14,16,
17, 22, 23, 25, 26, 35, 41, 43, 44, 46, 48–50, 52, 54–56].

9 Conclusion

Large-scale data being generated at every second turns ML
model training into a continuous process. In consequence, a
machine learning model queried with the same set of data
samples at two different time points will provide different
results. In this paper, we investigate whether these different
model outputs can constitute a new attack surface for an ad-
versary to infer information of the dataset used to perform
model update. We propose four different attacks in this sur-
face all of which follow a general encoder-decoder structure.
The encoder encodes the difference in the target model’s out-
put before and after being updated, and the decoder generates
different types of information regarding the updating set.

We start by exploring a simplified case when an ML model
is only updated with one single data sample. We propose
two different attacks for this setting. The first attack shows
that the label of the single updating sample can be effectively
inferred. The second attack utilizes an autoencoder’s decoder
as the attack model’s pretrained decoder for single-sample
reconstruction.

We then generalize our attacks to the case when the updat-
ing set contains multiple samples. Our multi-sample label dis-
tribution estimation attack trained following a KL-divergence
loss is able to infer the label distribution of the updating set’s
data samples effectively. For the multi-sample reconstruction
attack, we propose a novel hybrid generative model, namely
CBM-GAN, which uses a “Best Match” loss in its objective
function. The “Best Match” loss directs CBM-GAN’s genera-
tor to reconstruct each sample in the updating set. Quantitative
and qualitative results show that our attacks achieve promising
performance.

Acknowledgments

We thank the anonymous reviewers, and our shepherd, David
Evans, for their helpful feedback and guidance.

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/
ERC grant agreement no. 610150-imPACT.

USENIX Association 29th USENIX Security Symposium 1303

References

[1] https://www.cs.toronto.edu/~kriz/cifar.
html. 2

[2] http://yann.lecun.com/exdb/mnist/. 2

[3] https://pytorch.org/. 5

[4] Martin Abadi, Andy Chu, Ian Goodfellow, Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep Learning with Differential Privacy. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 308–318.
ACM, 2016. 12, 13

[5] Anish Athalye, Nicholas Carlini, and David A. Wag-
ner. Obfuscated Gradients Give a False Sense of Secu-
rity: Circumventing Defenses to Adversarial Examples.
In Proceedings of the 2018 International Conference
on Machine Learning (ICML), pages 274–283. JMLR,
2018. 13

[6] Michael Backes, Mathias Humbert, Jun Pang, and Yang
Zhang. walk2friends: Inferring Social Links from Mo-
bility Profiles. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 1943–1957. ACM, 2017. 2, 3

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan.
Large Scale GAN Training for High Fidelity Natural Im-
age Synthesis. In Proceedings of the 2-19 International
Conference on Learning Representations (ICLR), 2-19.
8

[8] Nicholas Carlini and David Wagner. Towards Evaluating
the Robustness of Neural Networks. In Proceedings of
the 2017 IEEE Symposium on Security and Privacy
(S&P), pages 39–57. IEEE, 2017. 13

[9] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving Logistic Regression. In Proceedings of the
2009 Annual Conference on Neural Information Pro-
cessing Systems (NIPS), pages 289–296. NIPS, 2009.
12, 13

[10] Cynthia Dwork and Aaron Roth. The Algorithmic Foun-
dations of Differential Privacy. Foundations and Trends
in Theoretical Computer Science, 2014. 12

[11] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model Inversion Attacks that Exploit Confidence Infor-
mation and Basic Countermeasures. In Proceedings
of the 2015 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 1322–1333.
ACM, 2015. 1, 13

[12] Matt Fredrikson, Eric Lantz, Somesh Jha, Simon Lin,
David Page, and Thomas Ristenpart. Privacy in Pharma-
cogenetics: An End-to-End Case Study of Personalized
Warfarin Dosing. In Proceedings of the 2014 USENIX
Security Symposium (USENIX Security), pages 17–32.
USENIX, 2014. 13

[13] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and
Nikita Borisov. Property Inference Attacks on Fully
Connected Neural Networks using Permutation Invari-
ant Representations. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 619–633. ACM, 2018. 1, 2, 3, 13

[14] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mar-
iana Raykova, Jack Doerner, Samee Zahur, and David
Evans. Privacy-Preserving Distributed Linear Regres-
sion on High-Dimensional Data. Symposium on Privacy
Enhancing Technologies Symposium, 2017. 13

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. The MIT Press, 2016. 12

[16] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. In
Proceedings of the 2015 International Conference on
Learning Representations (ICLR), 2015. 13

[17] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, and
Gang Wang abd Xinyu Xing. LEMNA: Explaining Deep
Learning based Security Applications. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 364–379. ACM,
2018. 13

[18] Inken Hagestedt, Yang Zhang, Mathias Humbert, Pas-
cal Berrang, Haixu Tang, XiaoFeng Wang, and Michael
Backes. MBeacon: Privacy-Preserving Beacons for
DNA Methylation Data. In Proceedings of the 2019
Network and Distributed System Security Symposium
(NDSS). Internet Society, 2019. 13

[19] Jamie Hayes, Luca Melis, George Danezis, and Emil-
iano De Cristofaro. LOGAN: Evaluating Privacy Leak-
age of Generative Models Using Generative Adversarial
Networks. Symposium on Privacy Enhancing Technolo-
gies Symposium, 2019. 13

[20] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-
Cruz. Deep Models Under the GAN: Information Leak-
age from Collaborative Deep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 603–618. ACM,
2017. 1, 13

[21] Nils Homer, Szabolcs Szelinger, Margot Redman, David
Duggan, Waibhav Tembe, Jill Muehling, John V. Pear-
son, Dietrich A. Stephan, Stanley F. Nelson, and

1304 29th USENIX Security Symposium USENIX Association

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://pytorch.org/

David W. Craig. Resolving Individuals Contribut-
ing Trace Amounts of DNA to Highly Complex Mix-
tures Using High-Density SNP Genotyping Microarrays.
PLOS Genetics, 2008. 13

[22] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang
Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating
Machine Learning: Poisoning Attacks and Countermea-
sures for Regression Learning. In Proceedings of the
2018 IEEE Symposium on Security and Privacy (S&P).
IEEE, 2018. 13

[23] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang
Zhang, and Neil Zhenqiang Gong. MemGuard: Defend-
ing against Black-Box Membership Inference Attacks
via Adversarial Examples. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pages 259–274. ACM, 2019.
13

[24] Harold W Kuhn. The Hungarian Method for the As-
signment Problem. Naval Research Logistics Quarterly,
1955. 10

[25] Bo Li and Yevgeniy Vorobeychik. Scalable Optimiza-
tion of Randomized Operational Decisions in Adversar-
ial Classification Settings. In Proceedings of the 2015
International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 599–607. PMLR, 2015. 13

[26] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing
Guo. How to Prove Your Model Belongs to You: A
Blind-Watermark based Framework to Protect Intellec-
tual Property of DNN. In Proceedings of the 2019 An-
nual Computer Security Applications Conference (AC-
SAC). ACM, 2019. 13

[27] Yunhui Long, Vincent Bindschaedler, and Carl A.
Gunter. Towards Measuring Membership Privacy. CoRR
abs/1712.09136, 2017. 13

[28] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue
Bu, Xiaofeng Wang, Haixu Tang, Carl A. Gunter,
and Kai Chen. Understanding Membership Infer-
ences on Well-Generalized Learning Models. CoRR
abs/1802.04889, 2018. 13

[29] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting Unintended Feature
Leakage in Collaborative Learning. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy
(S&P). IEEE, 2019. 13

[30] Mehdi Mirza and Simon Osindero. Conditional Gen-
erative Adversarial Nets. CoRR abs/1411.1784, 2014.
8

[31] Milad Nasr, Reza Shokri, and Amir Houmansadr. Ma-
chine Learning with Membership Privacy using Adver-
sarial Regularization. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2018. 13

[32] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive Privacy Analysis of Deep Learning: Passive
and Active White-box Inference Attacks against Cen-
tralized and Federated Learning. In Proceedings of the
2019 IEEE Symposium on Security and Privacy (S&P).
IEEE, 2019. 13

[33] Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario
Fritz. Towards Reverse-Engineering Black-Box Neural
Networks. In Proceedings of the 2018 International
Conference on Learning Representations (ICLR), 2018.
3, 13

[34] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff Nets: Stealing Functionality of Black-Box
Models. In Proceedings of the 2019 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2019. 13

[35] Nicolas Papernot, Patrick D. McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical Black-Box Attacks Against Machine Learning.
In Proceedings of the 2017 ACM Asia Conference on
Computer and Communications Security (ASIACCS),
pages 506–519. ACM, 2017. 13

[36] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De
Cristofaro. Knock Knock, Who’s There? Membership
Inference on Aggregate Location Data. In Proceedings
of the 2018 Network and Distributed System Security
Symposium (NDSS). Internet Society, 2018. 13

[37] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De
Cristofaro. Under the Hood of Membership Inference
Attacks on Aggregate Location Time-Series. CoRR
abs/1902.07456, 2019. 13

[38] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. ML-Leaks:
Model and Data Independent Membership Inference
Attacks and Defenses on Machine Learning Models.
In Proceedings of the 2019 Network and Distributed
System Security Symposium (NDSS). Internet Society,
2019. 2, 3, 13

[39] Reza Shokri and Vitaly Shmatikov. Privacy-Preserving
Deep Learning. In Proceedings of the 2015 ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 1310–1321. ACM, 2015. 12

USENIX Association 29th USENIX Security Symposium 1305

[40] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership Inference Attacks Against
Machine Learning Models. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (S&P), pages
3–18. IEEE, 2017. 2, 3, 13

[41] Congzheng Song, Thomas Ristenpart, and Vitaly
Shmatikov. Machine Learning Models that Remember
Too Much. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 587–601. ACM, 2017. 13

[42] Congzheng Song and Vitaly Shmatikov. The Natural
Auditor: How To Tell If Someone Used Your Words To
Train Their Model. CoRR abs/1811.00513, 2018. 13

[43] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing Properties of Neural Networks. CoRR
abs/1312.6199, 2013. 13

[44] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. En-
semble Adversarial Training: Attacks and Defenses. In
Proceedings of the 2017 International Conference on
Learning Representations (ICLR), 2017. 13

[45] Florian Tramér, Fan Zhang, Ari Juels, Michael K. Reiter,
and Thomas Ristenpart. Stealing Machine Learning
Models via Prediction APIs. In Proceedings of the 2016
USENIX Security Symposium (USENIX Security), pages
601–618. USENIX, 2016. 13

[46] Yevgeniy Vorobeychik and Bo Li. Optimal Randomized
Classification in Adversarial Settings. In Proceedings
of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS), pages 485–
492, 2014. 13

[47] Binghui Wang and Neil Zhenqiang Gong. Stealing
Hyperparameters in Machine Learning. In Proceedings
of the 2018 IEEE Symposium on Security and Privacy
(S&P). IEEE, 2018. 3, 13

[48] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. With Great Training Comes
Great Vulnerability: Practical Attacks against Transfer
Learning. In Proceedings of the 2018 USENIX Secu-
rity Symposium (USENIX Security), pages 1281–1297.
USENIX, 2018. 13

[49] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeez-
ing: Detecting Adversarial Examples in Deep Neural
Networks. In Proceedings of the 2018 Network and Dis-
tributed System Security Symposium (NDSS). Internet
Society, 2018. 13

[50] Mohammad Yaghini, Bogdan Kulynych, and Carmela
Troncoso. Disparate Vulnerability: on the Unfairness
of Privacy Attacks Against Machine Learning. CoRR
abs/1906.00389, 2019. 13

[51] Dingdong Yang, Seunghoon Hong, Yunseok Jang,
Tianchen Zhao, and Honglak Lee. Diversity-Sensitive
Conditional Generative Adversarial Networks. In Pro-
ceedings of the 2019 International Conference on Learn-
ing Representations (ICLR), 2019. 8

[52] Yuanshun Yao, Bimal Viswanath, Jenna Cryan, Haitao
Zheng, and Ben Y. Zhao. Automated Crowdturfing
Attacks and Defenses in Online Review Systems. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
1143–1158. ACM, 2017. 13

[53] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy Risk in Machine Learning: Analyz-
ing the Connection to Overfitting. In Proceedings of the
2018 IEEE Computer Security Foundations Symposium
(CSF). IEEE, 2018. 13

[54] Xiao Zhang and David Evans. Cost-Sensitive Robust-
ness against Adversarial Examples. In Proceedings of
the 2019 International Conference on Learning Repre-
sentations (ICLR), 2019. 13

[55] Yang Zhang, Mathias Humbert, Tahleen Rahman,
Cheng-Te Li, Jun Pang, and Michael Backes. Tagvisor:
A Privacy Advisor for Sharing Hashtags. In Proceedings
of the 2018 Web Conference (WWW), pages 287–296.
ACM, 2018. 13

[56] Yang Zhang, Mathias Humbert, Bartlomiej Surma,
Praveen Manoharan, Jilles Vreeken, and Michael
Backes. Towards Plausible Graph Anonymization. In
Proceedings of the 2020 Network and Distributed Sys-
tem Security Symposium (NDSS). Internet Society, 2020.
13

Appendices
A Target Models Architecture

MNIST model:

Sample→ conv2d(5, 10)

max(2)
conv2d(5, 20)

max(2)
FullyConnected(50)

FullyConnected(10)

Softmax→ `

1306 29th USENIX Security Symposium USENIX Association

CIFAR-10 model:

Sample→ conv2d(5, 6)

max(2)
conv2d(5, 16)

max(2)
FullyConnected(120)

FullyConnected(84)

FullyConnected(10)

Softmax→ `

Insta-NY Model:

Sample→ FullyConnected(32)

FullyConnected(16)

FullyConnected(9)

Softmax→ `

Here, max(2) denotes a max-pooling layer with a 2×2 kernel,
FullyConnected(x) denotes a fully connected layer with x
hidden units, Conv2d(k’,s’) denotes a 2-dimension convo-
lution layer with kernel size k′×k′ and s′ filters, and Softmax
denotes the Softmax function. We adopt ReLU as the acti-
vation function for all layers for the MNIST, CIFAR-10 and
Location models.

B Encoder Architecture

Encoder architecture:

δ→ FullyConnected(128)
FullyConnected(64)→ µ

Here, µ denotes the latent vector which serves as the input
for our decoder. Furthermore, we use LeakyReLU as our
encoder’s activation function and apply dropout on both layers
for regularization.

C Single-sample Label Inference Attack’s De-
coder Architecture

ALI’s decoder architecture:

µ→ FullyConnected(n)

Softmax→ `

Here, n is equal to the size of `, i.e., n = |`|.

D Single-sample Reconstruction Attack

D.1 AE’s Encoder Architecture
AE’s encoder architecture for MNIST and CIFAR-10:

Sample→ conv2d(k1, s1)

max(2)
conv2d(k2, s2)

max(2)
FullyConnected(f1)

FullyConnected(f2)→ µAE

AE’s encoder architecture for Insta-NY:

Sample→ FullyConnected(64)

FullyConnected(32)

FullyConnected(16)

FullyConnected(16)→ µAE

Here, µAE is the latent vector output of the encoder. Moreover,
ki, si, and fi represent the kernel size, number of filters, and
number of units in the ith layer. The concrete values of these
hyperparameters depend on the target dataset, we present our
used values in Table 2. We adopt ReLU as the activation func-
tion for all layers for the MNIST and CIFAR-10 encoders. For
the Insta-NY decoder, we use ELU as the activation function
for all layers except for the last one. Finally, we apply dropout
after the first fully connected layer for MNIST and CIFAR-10.
For Insta-NY, we apply dropout and batch normalization for
the first three fully connected layers.

D.2 AE’s Decoder Architecture
Autoencoder’s decoder architecture for MNIST and CIFAR-
10:

µAE→ FullyConnected(f ′1)

FullyConnected(f ′2)

ConvTranspose2d(k′1, s′1)

ConvTranspose2d(k′2, s′2)

ConvTranspose2d(k′3, s′3)→ Sample

Autoencoder’s decoder architecture for Insta-NY:

µAE→ FullyConnected(16)

FullyConnected(32)

FullyConnected(64)

FullyConnected(168)→ Sample

Here, ConvTranspose2d(k’,s’) denotes a 2-dimension
transposed convolution layer with kernel size k′× k′ and s′

USENIX Association 29th USENIX Security Symposium 1307

Table 2: Hyperparameters for AE’s encoder and decoder.

Variable MNIST CIFAR-10

k1 3 3
s1 16 32
k2 3 3
s2 8 16
f1 15 50
f2 10 30
f ′1 15 50
f ′2 32 64
k′1 3 3
s′1 16 32
k′2 5 5
s′2 8 16
k′3 2 4
s′3 1 3

filters, and f ′i specifies the number of units in the ith fully con-
nected layer. The concrete values of these hyperparameters
are presented in Table 2. For MNIST and CIFAR-10 decoders,
we again use ReLU as the activation function for all layers
except for the last one where we adopt tanh. For the Insta-NY
decoder, we adopt ELU for all layers except for the last one.
We also apply dropout after the last fully connected layer for
regularization for MNIST and CIFAR-10, and dropout and
batch normalization on the first three fully connected layers
for Insta-NY.

E Multi-sample Reconstruction Attack’s De-
coder Architecture

CBM-GAN’s generator architecture for MNIST:

µ,z→ FullyConnected(2048)

FullyConnected(2048)

FullyConnected(2048)

FullyConnected(784)→ Sample

CBM-GAN’s discriminator architecture for MNIST:

µ,z→ FullyConnected(1024)

FullyConnected(512)

FullyConnected(256)

FullyConnected(1)

Sigmoid→{1,0}

CBM-GAN’s generator architecture for CIFAR-10:

µ,z→ conv2d(2, 512)

conv2d(4, 256)

conv2d(4, 128)

conv2d(4, 64)

conv2d(4, 3)→ Sample

CBM-GAN’s discriminator architecture for CIFAR-10:

µ,z→ conv2d(2, 64)

conv2d(4, 128)

conv2d(4, 256)

conv2d(4, 512)

conv2d(4, 1)

Sigmoid→{1,0}

CBM-GAN’s generator architecture for Insta-NY:

µ,z→ FullyConnected(512)

FullyConnected(512)

FullyConnected(256)

FullyConnected(168)→ Sample

CBM-GAN’s discriminator architecture for Insta-NY:

µ,z→ FullyConnected(512)

FullyConnected(256)

FullyConnected(128)

FullyConnected(1)

Sigmoid→{1,0}

Here, for both generators and discriminators, Sigmoid is the
Sigmoid function, batch normalization is applied on the output
of each layer except the last layer, and LeakyReLU is used
as the activation function for all layers except the last one,
which uses tanh.

1308 29th USENIX Security Symposium USENIX Association

