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Abstract
The conventional wisdom is that a software-defined network
(SDN) operates under the premise that the logically central-
ized control plane has an accurate representation of the actual
data plane state. Nevertheless, bugs, misconfigurations, faults
or attacks can introduce inconsistencies that undermine cor-
rect operation. Previous work in this area, however, lacks
a holistic methodology to tackle this problem and thus, ad-
dresses only certain parts of the problem. Yet, the consistency
of the overall system is only as good as its least consistent
part.

Motivated by an analogy of network consistency checking
with program testing, we propose to add active probe-based
network state fuzzing to our consistency check repertoire.
Hereby, our system, PAZZ, combines production traffic with
active probes to continuously test if the actual forwarding
path and decision elements (on the data plane) correspond to
the expected ones (on the control plane). Our insight is that
active traffic covers the inconsistency cases beyond the ones
identified by passive traffic. PAZZ prototype was built and
evaluated on topologies of varying scale and complexity. Our
results show that PAZZ requires minimal network resources to
detect persistent data plane faults through fuzzing and localize
them quickly.

1 Introduction

The correctness of a software-defined network (SDN) cru-
cially depends on the consistency between the management,
the control and the data plane. There are, however, many
causes that may trigger inconsistencies at run time, including,
switch hardware failures [1–3], bit flips [4, 5], misconfigura-
tions [6–11], priority bugs [12, 13], control and switch soft-
ware bugs [14–16]. When an inconsistency occurs, the actual
data plane state does not correspond to what the control plane
expects it to be. Even worse, a malicious user may actively
try to trigger inconsistencies as part of an attack vector.

Figure 1 shows a visualization inspired by the one by Heller
et al. [17] highlighting where consistency checks operate.
The figure illustrates the three network planes – management,

Policy (P) 
“Traffic A should 

take Path X”

    Control Plane

Data Plane

Logical
Rules

(Rlogical)

[26-42]
(P == Rlogical)
(P == Plogical)

  [5, 21-25]
 (P == Pphysical)

          [20]
(Plogical == Pphysical)

Logical Paths 
(Plogical)

Forwarding 
Paths (Pphysical)

Logical
Topology (Tlogical)

+

        [2, 18, 19]
(Rlogical == Rphysical)Physical 

Topology (Tphysical)

+
Physical

Rules
(Rphysical)

Management
Plane

Figure 1: Overview of consistency checks described in the literature.

control, and data plane – with their components. The man-
agement plane establishes the network-wide policy P, which
corresponds to the network operator’s intent. To realize this
policy, the control plane governs a set of logical rules (Rlogical)
over a logical topology (T logical), which yield a set of logical
paths (Plogical). The data plane consists of the actual topology
(T physical), the rules (Rphysical), and the resulting forwarding
paths (Pphysical).

Consistency checking is a complex problem. Prior work
has tackled individual subpieces of the problem as highlighted
by Figure 1, which we augmented with related work. Mon-
ocle [5], RuleScope [18], and RuleChecker [19] use active
probing to verify whether the logical rules Rlogical are the
same as the rules Rphysical of the data plane. ATPG [3] cre-
ates test packets based on the control plane rules to verify
whether paths taken by the packets on the data plane Pphysical
are the same as the expected path from the high-level policy
P without giving attention to the matched rules. VeriDP [20]
uses production traffic to only verify whether paths taken by
the packets on the data plane Pphysical are the same as the
expected path from the control plane Plogical. NetSight [21],
PathQuery [22], CherryPick [23], and PathDump [24] use
production traffic whereas SDN Traceroute [25] uses active
probes to verify P≡ Pphysical. Control plane solutions focus
on verifying network-wide invariants such as reachability,
forwarding loops, slicing, and black hole detection against
high-level network policies both for stateless and stateful poli-
cies. This includes tools [26–42] that monitor and verify some
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or all of the network-wide invariants by comparing the high-
level network policy with the logical rule set that translates
to the logical path set at the control plane, i.e., P≡ Rlogical or
P≡ Plogical. These systems only model the network behavior
which is insufficient to capture firmware and hardware bugs as
“modelling” and verifying the control-data plane consistency
are significantly different techniques.

Typically, previous approaches to consistency checking pro-
ceed “top-down,” starting from what is known to the manage-
ment and control planes, and subsequently checking whether
the data plane is consistent. We claim that this is insufficient
and underline this with several examples (§2.3) wherein data
plane inconsistencies would go undetected. This can be a
major problem because, to say using an analogy to security,
the overall system consistency is only as good as the weakest
link in the chain.

We argue that we need to complement existing top-down
approaches with a bottom-up approach. To this end, we rely on
an analogy to program testing. Programs can have a huge state
space, just like networks. There are two basic approaches to
test program correctness: one is static testing and the other is
dynamic testing using fuzz testing or fuzzing [43,44]. Hereby,
the latter is often needed as the former cannot capture the
actual run-time behavior. We realize that the same holds true
for network state.

Fuzz testing involves testing a program with invalid, un-
expected, or random data as inputs. The art of designing an
effective fuzzer lies in generating semi-valid inputs that are
valid enough so that they are not directly rejected by the parser,
but do create unexpected behaviors deeper in the program,
and are invalid enough to expose corner cases that have not
been dealt with properly. For a network, this corresponds to
checking its behavior not only with the expected production
traffic but with unexpected or abnormal packets. However,
in networking, what is expected or unexpected depends not
only on the input (ingress) port but also the topology till the
exit (egress) port and configuration i.e., rules on the switches.
Thus, there is a huge state space to explore. Relying only on
production traffic is not sufficient because production traf-
fic may or may not trigger inconsistencies. However, having
faults that can be triggered at any point in time, due to a
change in production traffic e.g., malicious or accidental, is
undesirable for a stable network. Thus, we need fuzz testing
for checking network consistency. Accordingly, this paper
introduces PAZZ which combines such capabilities with pre-
vious approaches to verify SDNs (such as those deployed in
a campus or datacenter environment) against persistent data
plane faults.

Our Contributions:

• We identify and categorize the causes and symptoms
of data plane faults which are currently unaddressed
to provide some useful insights into the limitations of
existing approaches. Based on our insights, we make a
case for fuzz testing mechanism for campus and private
datacenter SDNs (§2);

• We introduce a novel methodology, PAZZ which detects
and later, localizes faults by comparing control vs.
data plane information for all three components, rules,
topology, and paths. It uses production traffic as well as
active probes (to fuzz test the data plane state) (§3);

• We develop and evaluate PAZZ prototypein multiple ex-
perimental topologies representative of multi-path/grid
campus and private datacenter SDNs. Our evaluations
demonstrate that fuzzing through PAZZ detects and
localizes data plane faults faster than a baseline approach
in all experimental topologies while consuming minimal
network resources (§4);

2 Background & Motivation

This section briefly navigates the landscape of faults and
reviews the symptoms and causes (§2.1) to set the stage for
the program testing analogy in networks (§2.2). Finally, we
highlight the scenarios of data plane faults manifesting as
inconsistency (§2.3).

2.1 Landscape of Faults: Causes and Symp-
toms

As per the survey [2], the top primary causes for abnormal
network behaviour or failures in the order of their frequency
of occurence are the following:

• Software bugs: code errors, bugs etc

• Hardware failures or bugs: bit errors or bitflips, switch
failures etc

• Attacks and external causes: compromised security,
DoS/DDos etc

• Misconfigurations: ACL misconfigs, protocol misconfigs
etc

In SDNs, the above causes still exist and are persis-
tent [3–5,12–16,45–47]. We, however, realized that the symp-
toms [2] of the above causes can manifest either as functional
or performance-based problems on the data plane. To clarify
further, the symptoms are either functional (reachability, secu-
rity policy correctness, forwarding loops, broadcast/multicast
storms) or performance-based (Router CPU high utilization,
congestion, latency/throughput, intermittent connectivity). To
abstract the analysis, if we disregard the performance-based
symptoms, we realize the functional problems can be reduced
to the verification of network correctness. Making the situa-
tion worse, the faults manifest in the form of inconsistency
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Figure 2: Example topology with two example ingress/egress port pairs (source-
destination pairs) and their packet header space coverage.

where the expected network state at control plane is different
to the actual state on the data plane.

A physical network or network data plane comprises of de-
vices and links. In SDNs, such devices are SDN switches con-
nected through links. The data plane of the SDNs is all about
the network behaviour when subjected to input in the form
of traffic. Just like in programs, we need different test cases
as inputs with different coverage to test the code coverage.
Similarly, in order to dynamically test the network behaviour
thoroughly, we need input in the form of traffic with differ-
ent coverage [48]. Historically, the network correctness or
functional verification on the data plane has been either a path-
based verification (network-wide) [20–25, 49] or a rule-based
verification (mostly switch-specific) [3, 5, 18, 19, 25, 50, 51].
A path-based verification can be end-to-end or hop-by-hop
whereas rule-based verification is a switch-by-switch verifica-
tion. The network coverage brings us to the concept of Packet
Header Space Coverage.

2.2 Packet Header Space Coverage: Active vs
Passive

We observe that networks just as programs can have a huge
distributed state space. Packets with their packet headers,
including source IP, destination IP, port numbers, etc., are
the inputs and the state includes all forwarding equivalence
classes defined by the flow rules. Note, that every pair of
ingress-egress ports (source-destination pair) can have dif-
ferent forwarding equivalence classes. Rather than using the
term forwarding equivalence classes (which is tied to MPLS
and QoS) we use the term covered packet header space. Our
motivation is that the forwarding equivalence classes refer to
parts of the packet header space. Indeed, the rules together
with the topology and the available paths define which part of
the header space is covered and which one is uncovered for
each pair of ingress and egress ports. Therefore, for a given
pair of ingress and egress ports, when receiving traffic on the
egress port from the ingress port, we can check if the packet
is covered by the corresponding “packet header space”. If it is
within the space it is “expected”, otherwise it is “unexpected”
and, thus, we have discovered an inconsistency due to the

Type of monitoring/verification
Related work in
the data plane

Traffic Type
(Packet header
space coverage)

Rule-based Path-based

ATPG [3] 1 Active (X) (X)
Monocle [5] Active (X) ×
RuleScope [18] Active (X) ×
RuleChecker [19]2 Active (X) ×
SDNProbe [50] Active (X) (X)
FOCES [49] Passive (X) (X)
VeriDP [20] Passive (X) (X)
NetSight [21] Passive (X) (X)
PathQuery [22] Passive (X) (X)
CherryPick [23]3 Passive (X) (X)
PathDump [24] Active (X) (X)
SDNTraceroute [25] Active (X) (X)
TPP [51] 4 Active (X) (X)

PAZZ Active, Passive X X

Table 1: Classification of related work in the data plane based on the type of the
verification and the packet header space coverage. Xdenotes full capability, (X)
denotes a part of full capability, × denotes missing capability.

presence of a fault on the data plane.
Consider the example topology in Figure 2. It consists

of four switches S0, S1, S2, and S3. Let us focus on two
ingress ports i and i′ and one egress port e. The figure also
includes possible packet header space coverage. For i to e,
it includes matches for the source and destination IPs. For i′

to e, it includes matches for the destination IP and possible
destination port ranges.

When testing a network, if traffic adheres to a specific
packet header space, there are multiple possible cases. If we
observe a packet sent via an ingress port i and received at an
egress port e then we need to check if it is within the covered
area, if it is not we refer to the packet as “unexpected” and
then, we have an inconsistency for that packet header space
caused by a fault. If a packet from an ingress port is within
the expected packet header space of multiple egress ports, we
need to check if the sequence of rules expected to be matched
and path/s expected to be taken by the packet correspond to
the actual output port on data plane. This is yet another way
of finding inconsistency caused by faults.

To take the analogy from testing a “program” even further,
programmers should not only write test cases to test or “cover”
all program functions but should also write negative test cases
to “fuzz test” via invalid, semi-valid, unexpected, and/or ran-
dom input data. Thus, in networking, we should not only test
the network state with “expected” or the production traffic, but
also with specially crafted probe packets to test corner cases
and “fuzz test”. In principle, there are two ways for testing
network forwarding: passive and active. Passive corresponds
to using the existing traffic or production traffic while active
refers to sending specific probe traffic. The advantage of pas-
sive traffic is that it has low overhead and popular forwarding
paths are tested repeatedly. However, production traffic may

1In this tool, if the packet is received at the expected destination from a
source, path is considered to be the same.

2In this tool, authors claim that tool may detect match and action faults
without guarantee.

3In this tool, issues in only symmetrical topologies are addressed.
4In this tool, end-hosts embed tiny packet programs for verification.
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S1 Flow Table:
R1: x.1.1.1 - 15 -> fwd (1)

R3: x.1.1.64 - 79 -> fwd (1)
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Figure 3: Example misconfiguration with a hidden rule.
Expected/actual route⇔ blue/red arrows.

(a) not cover all cases (covers only faults that can be triggered
by production traffic only); (b) change rapidly; and (c) have
delayed fault detection, as the fraction of traffic triggering
the faults is delayed. Indeed, malicious users may be able to
inject malformed traffic that may trigger fault/s. Thus, pro-
duction traffic may not cover the whole packet header space
achievable by active probing.

Furthermore, we should also fuzz test the network state.
This is important as we derive our network state from the
information of the controller. Yet, this is not sufficient since
we cannot presume that the controller state is complete and/or
accurate. Thus, we propose to generate packets that are out-
side of the covered packet header space of an ingress/egress
port pair. We suggest doing this by systematically and con-
tinuously testing the header space just outside of the covered
header space. E.g., if port 80 is within the covered header
space test for port 81 and 79. If x.0/17 is in the covered
header space test for x.1.0.0 which is part of the x.1/17
prefix. In addition, we propose to randomly probe the remain-
ing packet header space continuously by generating appropri-
ate test traffic. The goal of active traffic generation through
fuzzing is to detect the faults identifiable by active traffic only.

Table 1 shows the existing data plane approaches on the
basis of kind of verification or monitoring in addition to the
packet header space coverage. We see that the existing data-
plane verification approaches are insufficient when it comes
to both path and rule-based verification in addition to ensur-
ing sufficient packet header space coverage. In this paper, our
system PAZZ aims to ensure packet header space coverage
in addition to path and rule-based verification to ensure net-
work correctness on the data plane and thus, detecting and
localizing persistent inconsistency.

2.3 Data Plane Faults manifesting as Inconsis-
tency

2.3.1 Faults identified by Passive Traffic: Type-p

To highlight the type of faults, consider a scenario shown in
Figure 3. It has three OpenFlow switches (S1, S2, and S3) and
one firewall (FW). Initially, S1 has three rules R1, R3, and
R4. R4 is the least specific rule and has the lowest priority.
R1 has the highest priority. Note the rules are written in the

order of their priority.

Incorrect packet trajectory: We start by considering a
known fault [20, 21, 24]–hidden rule/misconfiguration. For
this, the rule R2 is added to S1 via the switch command line
utility. The controller will remain unaware of R2 since R2
is a non-overlapping flow rule. Thus, it is installed without
notification to the controller [52]. [5, 12] have hinted at this
problem. As a result, traffic to IP x.1.1.31 bypasses the
firewall as it uses a different path.

Priority faults [19] are another reason for such incorrect
forwarding where either rule priorities get swapped or are not
taken into account. The Pronto-Pica8 3290 switch with PicOS
2.1.3 caches rules without accounting for rule priorities [13].
The HP ProCurve switch lacks rule priority support [12].
Furthermore, priority faults may manifest in many forms e.g.,
they may cause the trajectory changes or incorrect matches
even when the trajectory remains the same. Action faults [3]
can be another reason where bitflip in the action part of the
flowrule may result in a different trajectory.

Insight 1: Typically, the packet trajectory tools only moni-
tor the path.

Correct packet trajectory, incorrect rule matching: If we
add a higher priority rule in a similar fashion where the path
does not change, i.e., the match and action remains the same
as in the shadowed rule, then previous work will be unable
to detect it and, thus, it is unaddressed 5. Even if the packet
trajectory is correct but wrong rule is matched, it can inflict
serious damages. Misconfigs, hidden rules, priority faults,
match faults (described next) may be the reason for incorrect
matches. Next, we focus on match faults where anomaly in
the match part of a forwarding flow rule on a switch causes
the packets to be matched incorrectly. We again highlight
known as well as unaddressed cases starting with a known
scenario. In Figure 3, if a bitflip6, e.g., due to hardware prob-
lems, changes R1 from x.1.1.0/28 to match from x.1.1.0
upto x.1.1.79. Traffic to x.1.1.17 is now forwarded based
on R1 rather than R4 and thus, bypasses the firewall. This
may still be detectable, e.g., by observing the path of a test
packet [20]. However, the bitflip in R1 also causes an overlap
in the match of R1 and R3 in switch S1 and both rules have the
same action, i.e., forward to port 1. Thus, traffic to x.1.1.66
supposed to be matched by R3 will be matched by R1. If
later, the network administrator removes R3, the traffic still
pertaining to R3 still runs. This violates the network policy.
In this paper, we categorize the dataplane faults detectable by
the production traffic as Type-p faults.

Insight 2: Even if the packet trajectory remains the same,
the matched rules need to be monitored.

5We validated this via experiments. OpenFlow specification [52] states
that if a non-overlapping rule is added via the switch command-line utility,
controller is not notified.

6A previously unknown firmware bug in HP 5406zl switch.
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S1 Flow Table:
R1: x.1.1.1 - 15 -> fwd (1)

R3: x.1.1.64 - 79 -> fwd (1)
R4: x.1.1.1 - 31 -> fwd (2)

S2 Flow Table:
R1: x.1.1.0 - 63 -> fwd (1)

S3 Flow Table:
R1: x.1.1.0 - 63 -> fwd (1)

R2: x.1.1.33 -> fwd (1)

S1 Flow Table:
R1: x.1.1.0 - 79 -> fwd (1)
R2: x.1.1.31 -> fwd (1)
R3: x.1.1.33 -> fwd (1)
R4: x.1.1.65 - 79 -> fwd (1)
R5: x.1.1.0 - 31 -> fwd (2)

Bank Server

Firewall

S1

S2

S3
3

1

2

3 2

1 2

1

Figure 4: Example misconfiguration with a hidden rule detectable by active prob-
ing only. Expected/actual route⇔ blue/red arrows.

2.3.2 Faults identified by Active Traffic only: Type-a

To highlight, we focus on hidden or misconfigured rule R3 (in
green) in Figure 4. This rule matches the traffic corresponding
to x.1.1.33 on switch S1 and reaches the confidential bank
server, however, the expected traffic or the production traffic
does not belong to this packet header space [45–47]. There-
fore, we need to generate probe packets to trigger such rules
and thus, detect their presence. This will require generating
and sending the traffic corresponding to the packet header
space which is not expected by the control plane. We call this
traffic as fuzz traffic in the rest of the paper since it tests the
network behavior with unexpected packet header space. In
this paper, we categorize the dataplane faults detectable by
only the active or fuzz traffic as Type-a faults.

Insight 3: The tools which test the rules check only rules
“known” to the control plane (SDN controller) by generating
active traffic for “known” flows.

Insight 4: Typically, the active traffic for certain flows
checks only if the path remains the same even when rule/s
matched may be different on the data plane.

3 PAZZ Methodology

Motivated by our insights gained in §2.3 about the Type-p and
Type-a faults on the data plane resulting in inconsistency, we
aim to take the consistency checks further. Towards this end,
our novel methodology, PAZZ compares forwarding rules,
topology, and paths of the control and the data plane, using
top-down and bottom-up approaches, to detect and localize
the data plane faults.

PAZZ, derived from PAssive and Active (fuZZ testing),
takes into account both production and probe traffic to
ensure adequate packet header space coverage. PAZZ
checks the matched forwarding flow rules as well as the
links constituting paths of various packet headers (5-tuple
microflow) present in the passive and active traffic. To detect
faults, PAZZ collects state information (in terms of reports)
from the control and the data plane: PAZZ compares the
“expected” state reported by the control to the “actual” state
collected from the data plane. Figure 5 illustrates the PAZZ
methodology. It consists of four components sequentially:

  Control Plane Component
(CPC) 

  Consistency Tester

     Data Plane Component 
(DPC)

OpenFlow 
Channel

3. Send sampled 
Actual Report

4. Send Actual 
Report to 
Control Plane 
Component

5. Send Expected 
Report based on 
Actual Report

 Fuzzer

2. Compute & 
Send Fuzz 
Traffic

1. Send Corpus 
to Fuzzer 

 Production    
     Traffic

Fuzz 
Traffic OpenFlow 

Switch

SDN 
Controller

Figure 5: PAZZ Methodology.

1. Control Plane Component (CPC): Uses the current
controller information to proactively compute the packets
that are reachable between any/every source-destination
pair. It then sends the corpus of seed inputs to Fuzzer. For
any given packet header and source-destination pair, it
reactively generates an expected report which encodes the
paths and sequence of rules. (§3.2)

2. Fuzzer: Uses the information from CPC to compute the
packet header space not covered by the controller and
hence, the production traffic. It generates active traffic for
fuzz testing the network. (§3.3)

3. Data Plane Component (DPC): For any given packet
header and source-destination pair, it encodes the path and
sequence of forwarding rules to generate a sampled actual
report. (§3.1)

4. Consistency Tester: Detects and later, localizes faults by
comparing the expected report/s from the CPC with the
actual report/s from the DPC. (§3.4)

Now, we will go through all components in a non-sequential
manner for the ease of description.

3.1 Data Plane Component (DPC)
To record the actual path of a packet and the rules that are
matched in forwarding, we rely on tagging the packets con-
tained in active and production traffic. In particular, we pro-
pose the use of a shim header that gives us sufficient space
even for larger network diameters or larger flow rule sets.
Indeed, INT [53] can be used for data plane monitoring, how-
ever, it is applicable for P4 switches [54] only. Unlike [20–24],
we use our custom shim header for tagging, therefore tagging
is possible without limiting forwarding capabilities. To avoid
adding extra monitoring rules on the scarce TCAM which
may also affect the forwarding behavior [22,55], we augment
OpenFlow with new actions. Between any source-destination

5



Algorithm 1: Data Plane Tagging
Input :(p, s, i, o, r) for each incoming packet p and switch with ID s

let i be the inport ID and o the outport ID for packet p, r is the
flow rule used for forwarding.

Output :Tagged packet p if necessary with the Verify shim header.
// Is there already a shim header, e.g., (s,i) is not an entry point or source port

1 if (p has no shim header) then
// Add shim header with “Ethertype” 2080, initialize tag values- Verify_Port:

entry point hash, Verify_Rule: 1.

2 p.push_veri f y;
// Determine up ID from switch ID s and port ID i

3 up = s ‖ i;
// Bloom Filter

4 p.Veri f y_Port← bloom(hash(up));
// Determine ur ID from rule ID r of table ID t

5 ur = s ‖ r ‖ t;
// Binary hash chain

6 p.Veri f y_Rule← hash(p.Veri f y_Rule, ur);
// Shim header has to be removed if (s,o) is exit point

7 if ((s,o) is exit point) then
8 if (p has no shim header) then

// For traffic injected between a source-destination pair

9 p.push_veri f y;

10 Generate_report((s,o), p.Veri f y_Port, p.Veri f y_Rule,
p.header); p.pop_veri f y;

pair, the new actions are used by all rules of the switches
to add/update the shim header if necessary for encoding the
sequence of inports (path) and matched rules. To remove the
shim header, we use another custom OpenFlow action. To
trigger the actual report to the Consistency Tester, we use
sFlow [56] sampling. Indeed, we can use any other sampling
tool. Note sFlow is a packet sampling technique so it samples
packets not flows based on sampling rate and polling interval.
For a given source, the report contains the packet header, the
shim header content, and the egress port of the exit switch
(destination).

Even with a shim header: Verify, however, it is impractical
to expect packets to have available and sufficient space to
encode information about each port and rule on the path.
Therefore, we rely on a combination of bloom filter [57] and
binary hash chains. For scalability purposes, sampling is used
before sending a report to the Consistency Tester.

Data Plane Tagging: To limit the overhead, we decided to
insert Verify shim header on layer-2. VerifyTagType is Ether-
Type for Verify header, Veri f y_Port (bloom filter) encodes
the local inport in a switch, and Veri f y_Rule (binary hash
chain) encodes the local rule/s in a switch. Thus, the en-
coding is done with the help of the bloom filter and binary
hash chain respectively. To take actions on the proposed Ver-
ify shim header and to save TCAM space, we propose four
new OpenFlow actions: two for adding (push_verify) and
removing (pop_verify) the Verify shim header and two for
updating the Veri f y_Port (set_Verify_Port) and Veri f y_Rule
(set_Verify_Port) header fields respectively. Since, the header
size of the Veri f y_Port and Veri f y_Rule and tagging actions
are implementation-specific, we have explained them in proto-
type section §4.1.1, §4.1.2 respectively. Algorithm 1 explains

1 2 1 2 1 2

S1 S2 S3

p.push_Verify;
p.Verify_Port ← bloom(hash(up));
p.Verify_Rule ← hash(p.Verify_Rule, ur);

p.Verify_Port ← bloom(hash(up);
p.Verify_Rule ← hash(p.Verify_Rule, ur);
p.pop_Verify;

p.Verify_Port ← bloom(hash(up));
p.Verify_Rule ← hash(p.Verify_Rule, ur);

Figure 6: Data plane tagging using bloom filters and hashing.

the data plane tagging algorithm between a source-destination
pair. For each packet either from the production or active
traffic (§3.3) entering the source inport, Verify shim header
will be added automatically by the switch. For each switch
on the path, the tags in the packet namely, Veri f y_Port and
Veri f y_Rule fields get updated automatically. Figure 6 illus-
trates the per-switch tagging approach. Once the packet leaves
the destination outport, the resulting report known as the ac-
tual report is sent to the Consistency Tester (§3.4). Note if
there is no Verify header, Verify shim header is pushed on the
exit switch to ensure that any traffic injected at any switch
interface between a source-destination pair gets tagged. To re-
duce the overhead on the Consistency Tester as well as on the
switch, we employ sampling at the egress port. Note we con-
tinuously test the network as the data plane is dynamic due to
reconfigurations, link/switch/interface failures, and topology
changes.

3.2 Control Plane Component (CPC)

In principle, we can use the existing control plane mecha-
nisms, including HSA [29], NetPlumber [30] and APVeri-
fier [37]. In addition to experiments in [37], our indepen-
dent experiments show that Binary Decision Diagram (BDD)-
based [58] solutions like [37] perform better for set operations
on headers than HSA [29] and NetPlumber [30]. In particular,
we will propose in the following a novel BDD-based solution
that supports rule verification in addition to path verification
(APVerifier [37] takes into account only paths). Specifically,
our Control Plane Component (CPC) performs two functions:
a) Proactive reachability and corpus computation, and b) Re-
active tag computation.

Proactive Reachability & Corpus Computation: We start
by introducing an abstraction of a single switch configuration
called switch predicate. In a nutshell, a switch predicate spec-
ifies the forwarding behavior of the switch for a given set of
incoming packets, and is defined in turn by the rule predicates.
More formally, the general configuration abstraction of a SDN
switch s with ports 1 to n can be described by switch pred-
icates: Si, j where i ∈ {1,2, ...,n} and j ∈ {1,2, ...,n} where
n denotes the number of switch ports. The packets headers
satisfying predicate Si, j can be forwarded from port i to port j
only. The switch predicate is defined via rule predicates: Ri, j
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which are given by the flowrules belonging to the switch s
and a flowtable t. Each rule has an identifier that consists of a
unique_id and table_id representing the flowtable t in which
the rule resides, in_port array representing a list of inports
for that rule, out_port array representing a list of outports in
the action of that rule and the rule priority p. Based on the
rule priority p, in_port in the match part and out_port in the
action part of a flowrule, each rule has a list of rule predi-
cates (BDD predicates) which represent the set of packets that
can be matched by the rule for the corresponding inport and
forwarded to the corresponding outport.

Similar to the plumbing graph of [30], we generate a de-
pendency graph of rules (henceforth, called rule nodes) called
reachability graph based on the topology and switch config-
uration which computes the set of packet headers between
any source-destination pair. There exists an edge between the
two rules a and b, if (1) out_port of rule a is connected to
in_port of b; and (2) the intersection of rule predicates for a
and b is non-empty. For computational efficiency, each rule
node keeps track of higher priority rules in the same table in
the switch. A rule node computes the match of each higher
priority rule, subtracting it from its own match. We refer to
this as the same-table dependency of rules in a switch. In the
following, by slightly abusing the notation, we will use switch
predicates Si, j and rule predicates Ri, j to denote also the set
of packet headers: {p1, p2, ..., pn} they imply. Disregarding
the ACL predicates for simplicity, the rule predicates in each
switch s representing packet header space forwarded from
inport i to outport j is given by R f wd

i, j . The switch predicates
are then computed as: Si, j = ∪i, jR

f wd
i, j

More specifically, to know the reachable packet header
space (set of packet headers) between any source-destination
pair in the network, we inject a fully-wildcarded packet header
set h from the source port. If the intersection of the switch
predicate Si, j and the current packet header p is non-empty
i.e., Si, j ∩{p} 6= φ, the packet is forwarded to the next switch
until we reach the destination port. Thus, we can compute
reachability between any/every source-destination pair. For
caching and tag computation, we generate the inverse reacha-
bility graph simultaneously to cache the traversed paths and
rules matched by a packet header p between every source-
destination pair. After the reachability/inverse reachability
graph computation, CPC sends the current switch predicates
of the entry and exit switch pertaining to a source-destination
pair to Fuzzer as a corpus for fuzz traffic generation (§3.3).

In case of a FlowMod, the reachability/inverse reachabil-
ity graph and new corpus are re-computed. Recall every rule
node in a reachability graph keeps track of high-priority rules
in a table in a switch. Therefore, only a part of the affected
reachability/inverse reachability graph needs to be updated in
the event of rule addition/deletion. In the case of rule addition,
the same-table dependency of the rule is computed by com-
paring the priorities of new and old rule/s before it is added
as a new node in the reachability graph. If the priority of a
new rule is higher than any rule/s and there is an overlap in

the match part, the new switch predicate: S′i, j as per the new
rule predicate: R′ f wd

i, j is computed as:
S′i, j = R′ f wd

i, j ∪ (R f wd
i, j −R′ f wd

i, j )
Similarly, if any rule is deleted, after checking the same-

table dependency: the node from the reachability graph is
removed and the new switch/rule predicates are re-computed.

Reactive Tag Computation: For any given data plane re-
port corresponding to a packet header p between any source-
destination pair, we traverse the pre-computed inverse reacha-
bility graph to generate a list of sequences of rules that can
match and forward the actual packet header observed at a
destination port from a source port. Note, there can be mul-
tiple possible paths, e.g., due to multiple entry points and
per-packet or per-flow load balancing. For a packet header p,
the appropriate Veri f y_Port and Veri f y_Rule tags are com-
puted similarly as in Algorithm 1. The expected report is
then sent to the Consistency Tester (§3.4) for comparison.
Note we can generate expected reports for any number of
source-destination pairs.

3.3 Fuzzer
Inspired by the code coverage-guided fuzzers like Lib-
Fuzz [59], we design a mutation-based fuzz testing [60] com-
ponent called Fuzzer. Fuzzer receives the corpus of seed in-
puts in the form of the switch predicates of the entry and
exit switch from the CPC for a source-destination pair. In
particular, the switch predicates pertaining to the inport of
the entry switch (source) and the outport of the exit switch
(destination) represent the expected covered packet header
space containing the set of packet headers satisfying those
switch predicates. Fuzzer applies mutations to the corpus as
per Algorithm 2.

Where Can Most Faults Hide: Before explaining Algo-
rithm 2, we present a scenario to explain the packet header
space area where potential faults can be present. Consider the
example topology illustrated in Figure 2. Due to a huge header
space in IPv6 (128-bit), we decide to focus on the destination
IPv4 header space (32-bit) in a case of destination-based rout-
ing. We use Si, S1 and Se to represent covered packet header
space (switch predicates) of switches S0, S1 and S3 between
i-e (source-destination pair). Note there can be multipaths for
the same packet header p. Now, assume there is only a single
path: S0→ S1→ S3, the reachable packet header space or net
covered packet header space area is given by Si∩S1∩Se. Note
this area corresponds to the control plane perspective so there
may be more or less coverage on the data plane. The produc-
tion traffic is generated in the area Si which depends on the
expected rules of S0 at an ingress port i for a packet header p
destined to e. In principle, the production traffic will cover the
packet header space area Si. Now, the active traffic should be
generated for the uncovered area U−Si(entryswitch) where
U represents the universe of all possible packet header space
which is 20 to 232 for a destination IPv4 header space. As
stated in §2.2, we need to start with active traffic generation
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Algorithm 2: Fuzzer
Input :Switch predicates of entry (Si) and exit Se switch for a

source-destination pair i-e
Output : f uzz_sweep_area,random_ f uzz_area
// Generate fuzz traffic in the difference of covered packet header space area between

entry and exit switch

1 f uzz_sweep_area← Se−Si;
2 residual_area←U− f uzz_sweep_area−Si;
3 random_ f uzz_area←Φ;

// Generate fuzz traffic in completely uncovered packet header space area randomly

4 while random_ f uzz_area 6= residual_area do
5 f uzz← random_choose(residual_area);
6 random_ f uzz_area← random_ f uzz_area

⋃
f uzz;

on the boundary of the net covered packet header space area
between a source-destination pair as there is a maximum pos-
sibility of faults in this area. A packet will reach e from i iff
all of the rules on the switches in a path match it; else it will
be dropped either midway or on the first switch. Therefore,
for an end-to-end reachability, the ruleset on S0 and S3 should
match the packet p contained in the production traffic belong-
ing to the covered packet header space: Si∩Se. This implies
that we need to first generate active traffic in the area: Se−Si
and then randomly generate in the leftover area. Traffic can,
however, be also injected at any switch on any path between
a source-destination pair, thus the checking needs to be done
for different source-destination pairs.

We now explain the Algorithm 2 in the context of Fig-
ure 2. For active or fuzz traffic generation, if there is a dif-
ference in the covered packet header space areas of S0 and
S3, we first generate traffic in the area i.e., Se− Si denoted
by f uzz_sweep_area (Line 1). Recall there is a high prob-
ability that there may be hidden rules in this area since
the header space coverage of the exit switch may be big-
ger than the same at the entry switch. Later, we generate
traffic randomly in the residual packet header space area i.e.,
U− f uzz_sweep_area−Si denoted by residual_area (Lines
2-6). We generate traffic randomly in the area as this is mostly,
a huge space and fault/s can lie anywhere. The fuzz traf-
fic generated randomly is given by the completely uncov-
ered packet header space area denoted by random_ f uzz_area.
Thus, the fuzz traffic that the Fuzzer generates belongs to
the packet header space area given by f uzz_sweep_area and
random_ f uzz_area. It is worth noting that not all of the pack-
ets generated by the fuzz traffic are allowed in the network
due to a default drop rule in the switches. Therefore, if some
packets in the fuzz traffic are matched, the reason can be
attributed to either the presence of faulty rule/s, wildcarded
rules or hardware/software faults to match such traffic. This
also highlights that the fuzz traffic may not cause network
congestion. As discussed previously, there is another scenario
where the traffic gets injected at one of the switches on the
path between a source-destination pair and may end up getting
matched in the data plane. Verify header is pushed at the exit
switch if it is not already present (§3.1, §4.1.2) and thus, the
packets still get tagged in the data plane to be sent in the actual

Algorithm 3: Consistency Tester (detection, localization)
Input :Actual and expected report containing the Veri f y_Rulea and

Veri f y_Porta tags for a packet p pertaining to a flow (5-tuple)
Output :Detected and localized faulty switch S f or Faulty Rule R f .
// Different rules were matched on data plane.

1 if (Veri f y_Rulea 6=Veri f y_Rulee) then
// Fault is detected and reported.

2 Report fault
// Different path was taken on data plane.

3 if (Veri f y_Porta 6=Veri f y_Porte) then
// Localize the fault.

4 for i← 0 to n by 1 do
5 if Veri f y_Porta ∩Veri f y_Portei =Veri f y_Portei then
6 No problems for this switch hop

// Previous switch wrongly routed the packet.

7 else
8 S f ← Si−1

// Path is same even rules matched are different.

9 else
// Localize Type-p match fault.

10 if Veri f y_Rulee 6= 0 then
11 Go through the different switches hop-by-hop to find R f

// Localize Type-a fault.

12 else
13 R f lies in S0 else go through the different switches

hop-by-hop

// Different path was taken on data plane.

14 else if (Veri f y_Porta 6=Veri f y_Porte) then
// Type-p action fault is detected and reported.

15 Report fault
// Localize Type-p action fault.

16 for i← 0 to n by 1 do
17 if Veri f y_Porta ∩Veri f y_Portei =Veri f y_Portei then
18 No problems for this switch hop

// Previous switch wrongly routed the packet.

19 else
20 S f ← Si−1

21 else
22 No fault detected

report. However, the CPC may generate empty Veri f y_Rule
and Veri f y_Port tags as the traffic is unexpected. In such
cases, the fault is still detected but may not be localized au-
tomatically (§3.4). Furthermore, Fuzzer can be positioned to
generate traffic at different inports to detect more faults in the
network between any/every source-destination pair. In case
if the production traffic does not cover all of the expected
rules at the ingress or entry switch, Fuzzer design can be eas-
ily tuned to also generate the traffic for critical flows. Our
evaluations confirm that an exhaustive active traffic generator
which randomly generates the traffic in the uncovered area
performs poorly against PAZZ in the real world topologies
(§4.5). Note if the network topology or configuration changes,
the CPC sends the new corpus to the Fuzzer and Algorithm 2
is repeated. We continuously test the network with fuzz traffic
for any changes.
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3.4 Consistency Tester

After receiving an actual report from the data plane, the Con-
sistency Tester queries the CPC for its expected report for
the packet header and the corresponding source-destination
pair in the actual report. Once Consistency Tester has re-
ceived both reports, it compares both reports as per Algo-
rithm 3 for fault detection and the localization. To avoid con-
fusion, we use Veri f y_Porta,Veri f y_Rulea tags for the actual
data plane report and Veri f y_Porte, Veri f y_Rulee tags for the
corresponding expected control plane report respectively. If
Veri f y_Rule tag is different for a packet header and a pair of
ingress and egress ports, then the fault is detected and reported
(Lines 1-2). Note that we avoid the bloom filter false positive
problem by first matching the hash value for the Veri f y_Rule
tag. Therefore, the detection accuracy is high unless a hash
collision occurs in Veri f y_Rule field (§4.1.3). Once a fault
is detected, Consistency Tester uses the Veri f y_Port bloom-
filter for localization of faults where the actual path is differ-
ent from the expected path i.e., the Veri f y_Porta bloom filter
is different from the Veri f y_Porte bloom filter (Lines 3-8).
Therefore, Veri f y_Porta is compared with the per-switch hop
Veri f y_Port in the control plane or Veri f y_Portei for the ith

hop starting from the source inport to the destination outport.
This hop-by-hop walkthrough is done by traversing the reach-
ability graph at the CPC hop-by-hop from the source port of
the entry switch to the destination port of the exit switch. As
per the Algorithm 3, the bitwise logical AND operation be-
tween the Veri f y_Porta and the Veri f y_Portei is executed at
every hop. It is, however, important to note that if actual path
was same as expected path i.e., Veri f y_Porte =Veri f y_Porta
even when actual rules matched were different on the data
plane i.e., Veri f y_Porte 6= Veri f y_Porta (Lines 10-13), the
localization of faulty R f gets tricky as it can be either a case
of Type-p match faults (e.g., bitflip in match part) (Lines 10-
11) or Type-a fault (Lines 12-13). Hereby, it is worth noting
that there will be no expected report from the CPC in the
case of unexpected fuzz traffic. Therefore, Consistency Tester
checks if Veri f y_Rulee 6= 0 (Line 10). If true, localization can
be done through hop-by-hop manual inspection of expected
switches or manual polling of expected switches (Lines 10-
11) else the Type-a fault may be localized to the entry switch
as it has a faulty rule that allows the unexpected fuzz traffic in
the network (Lines 12-13). There is another scenario where
the actual rules matched are same as expected but the path is
different (Lines 14-20). This is a case of Type1-action fault
(e.g., bitflip in the action part of the rule). In this case, the ex-
pected and actual Veri f y_Port bloom filter can be compared
and thus, Type-p action fault is detected and localized. Note
action fault is Type-p as it is caused in production traffic.

Binary hash chain in Veri f y_Rule gives PAZZ better accu-
racy, however, we lose the ability to automatically localize
the Type-p match faults where the path remains the same
and rules matched are different since the Veri f y_Port bloom
filter remains the same. To summarize, detection will happen
always, but localization can happen automatically only in the

case of two conditions holding simultaneously: a) when traffic
is production; and b) when there is a change in path since
Veri f y_Port bloom filter will be different. In most cases, fuzz
traffic is not permitted in the network. Recall active traffic can
be injected from any switch in between a source-destination
pair. In such cases, the R f will still be detected and can be
localized by either manual polling of the switches or hop-by-
hop traversal from source to destination. Blackholes [61] for
critical flows can be detected as Consistency Tester generates
an alarm after a chosen time of some seconds if it does not re-
ceive any packet pertaining to that flow7. For localizing silent
random packet drops, MAX-COVERAGE [62] algorithm can
be implemented on Consistency Tester.

4 PAZZ Prototype and Evaluation

4.1 Prototype

4.1.1 DPC: Verify Shim Header

We decided to use a 64-bit (8 Byte) shim header on layer-2:
Verify. To ensure sufficient space, we limit the link layer MTU
to a maximum of 8,092 Bytes for jumbo frames and 1,518
Bytes for regular frames. Verify has three fields, namely:
•VerifyTagType: 16-bit EtherType to signify Verify header.
•Verify_Port: 32-bit encoding the local inport in a switch.
•Verify_Rule: 16-bit encoding the local rule/s in a switch.

We use a new EtherType value for Veri f yTagType to
ensure that any layer-2 switch on the path without our
OpenFlow modifications will forward the packet based on
its layer-2 information. The Verify shim header is inserted
within the layer 2 header after the source MAC address,
just like a VLAN header. In presence of VLAN (802.1q),
the Verify header is inserted before the VLAN header.
Note Verify header is backward compatible with legacy L2
switches, and transparent to other protocols. .

4.1.2 DPC: New OpenFlow Actions

The new actions ensure that there is no interference in
forwarding as no extra rules are added. To ensure efficient
use of the shim header space, we use the bloom filter to
encode path-related information in the Veri f y_Port field and
binary hash chains [63] to encode rule-level information
in the Veri f y_Rule field. A binary hash chain adds a new
hash-entry to an existing hash-value by computing a hash
of the existing hash-value and the new hash-entry and
then storing it as the new value. The Veri f y_Port field is a
Bloom-filter which will contain all intermediate hash results
including the first and last value. This ensures that we can
test the initial value as well as the final path efficiently.

7Blackholes for non-critical flows can be detected and localized through
polling of the switches.

9



0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Network Diameter

Fa
ls

e 
P

os
iti

ve
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

● ● ● ●HF =  1 HF =  2 HF =  3 HF =  4

Bloom Filter=16 bits

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Network Diameter

Fa
ls

e 
P

os
iti

ve
s

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●HF =  1 HF =  2 HF =  3 HF =  4

Bloom Filter=32 bits

Figure 7: False positives with varying network diameter (switches in a path) and
the number of hash functions (HF) for 16-bit bloom filter and 32-bit Veri f y_Port
bloom filter. Veri f y_Port bloom filter (32 bits) on the right incurs less false posi-
tives and uses less number of hash functions as compared to the right 16-bit bloom
filter.

•set_Verify_Port: Computes hash of the unique identi-
fier (up) of the switch ID and its inport ID and adds the result
to the Bloom-filter in the Veri f y_Port field.
•set_Verify_Rule: Computes hash of the globally unique
identifier (ur) of the flow rule, i.e., switch ID and rule ID
(uniquely identifying a rule within a table), flow table ID
with the previous value of the Veri f y_Rule to form a binary
hash chain.
•push_verify: Inserts a Verify header if needed, initializes
the value in Veri f y_Rule to 1 and the value of Veri f y_Port is
the hash of up. It is immediately followed by set_Verify_Rule
and set_Verify_Port. If there is no Verify header, push_verify
is executed at the entry and the exit switch between a source
and destination pair.
•pop_verify: Removes the Verify header from the tagged
packet.

push_verify should be used, if there is no Verify header
for a) all packets entering a source inport or b) all packets
leaving the destination outport (in case, if any traffic is in-
jected between a source-destination pair) just before a report
is generated to the Consistency Tester. For packets leaving
the destination outport, pop_verify should be used only after a
sampled report to the Consistency Tester has been generated.

To initiate and execute data plane tagging, the actions
set_Verify_Port and set_Verify_Rule are prepended to all flow
rules in the switches as first actions in the OpenFlow “action
list” [52]. On the entry and exit switch, action push_verify
is added as the first action. On the exit switch, pop_verify is
added as an action once the report is generated. Recall, our
actions do not change the forwarding behavior per se as the
match part remains unaffected. However, if one of the actions
gets modified unintentionally or maliciously, it may have a
negative impact but gets detected and localized later. Notably,
set_Verify_Rule encodes the priority of the rule and flow table
number in the Veri f y_Rule field and thus, providing support
for rule priorities/cascaded flow tables.

4.1.3 Bloom Filter & Hash Function

We use Veri f y_Port bloom filter for the localization of de-
tected faults. In an extreme case from the perspective of opera-
tional networks like datacenter networks or campus networks,
for a packet header and a pair of ingress and egress port, if
CPC computes i different paths with n hops in each of the
paths, the probability of a collision in bloom filter and hash
value simultaneously will be given by: (0.6185)m/n× p(i)

In our case, (0.6185)m/n = (0.6185)32/n using the bloom
filter false positive formula [57] as m = 32 (bloom filter size)
of the Veri f y_Port field and n is the network diameter or
the number of switches in a path. p(i) is the probability of
collision of the hash function computed using a simple ap-
proximation of the birthday attack formula [64]:
p(i) = i2/2H = i2/217

i is the number of different paths, H is 216 for 16-bit
Veri f y_Rule field hash. Figure 7 illustrates a comparison
of 16-bit bloom filter size (left) with the 32-bit bloom filter
of Veri f y_Port tag (right). It illustrates that our bloom filter
choice of 32-bit size has less false positives even with two
hash functions as compared to the 16-bit bloom filter and,
thus, is a better choice for operational networks.

For the 16-bit Veri f y_Rule hash operation, we used
Cyclic Redundancy Check (CRC) code [65]. For the 32-bit
Veri f y_Port Bloom filter operations, we use one of the similar
approaches as mentioned in [57]. First, three hashes are com-
puted as: gi(x) = h1(x)+ i ·h2(x) for i = 0,1,2 where h1(x)
and h2(x) are the two halves of a 32-bit Jenkins hash [66] of
x. Then, we use the first 5 bits of gi(x) to set the 32-bit Bloom
filter for i = 0,1,2.

PAZZ Components: We implemented DPC on top of
software switches, in particular, Open vSwitch [67] Ver-
sion 2.6.90. The customized OvS switches and the fuzz/pro-
duction traffic generators run in vagrant VMs [68]. Currently,
the prototype supports both OpenFlow 1.0 and OpenFlow 1.1.
In our prototype, we chose Ryu [69] SDN controller. Python-
based Consistency Tester, Java-based CPC and Python-based
Fuzzer communicate through Apache Thrift [70].

4.2 Experiment Setup
We evaluate PAZZ on 4 topologies: a) 3 grid topologies of 4,
9 and 16 switches respectively with varying complexities to
ensure diversity of paths, and b) 1 datacenter fat-tree (4-ary)
topology of 20 switches with multipaths. Experiments were
conducted on an 8 core 2.4GHz Intel-Xeon CPU machine and
64GB of RAM. For scalability purposes, we modified and
translated the Stanford backbone configuration files [71] to
equivalent OpenFlow rules as per our topologies, and installed
them at the switches to allow multi-path destination-based
routing. We used our custom script to generate configuration
files for the four experimental topologies. The configuration
files ensured the diversity of paths for the same packet header.
Columns 1-4 in Table 2 illustrate the parameters of the four
experimental topologies. We randomly injected faults on ran-
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(c) Results of 9-switch grid topology
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(d) Results of 16-switch grid topology
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(e) Results of 4-ary fat-tree (20-switch) topology

Figure 8: a) For a source-destination pair, CDF of Type-p and Type-a fault detection time by PAZZ in all 4 experimental topologies for sampling rate of 1/100 (left), 1/500
(middle) and 1/1000 (right) respectively against time in seconds. The faults connected by red, green, blue and black lines belong to 4-switch, 9-switch, 16-switch and 4-ary
fat-tree topology (20-switch) respectively and represent an average over 10 runs.
b), c), d), e) For a source-destination pair, comparison of fault detection time (in seconds) by PAZZ and exhaustive packet generation approach in all 4 experimental
topologies (4-switch, 9-switch, 16-switch and 4-ary fat-tree respectively). In each figure, left to right illustrates sampling rate of 1/100 (left), 1/500 (middle) and 1/1000
(right) respectively. The blue and red lines illustrate PAZZ and exhaustive packet generation respectively and represent an average over 10 runs. For fair comparison, the
exhaustive packet generation approach generates the same number of flows randomly at same rate as PAZZ.

Topology #Rules #Paths Path
Length

Reachability
graph computa-
tion time

Fuzzer Exe-
cution Time

4 switches (grid) ~5k ~24k 2 0.64 seconds ~1 millisec-
ond

9 switches (grid) ~27k ~50k 4 0.91 seconds ~1.2 mil-
liseconds

16 switches (grid) ~60k ~75k 6 1.13 seconds ~3.2 mil-
liseconds

4-ary fat-tree (20
switches) ~100k ~75k 6 1.15 seconds ~7.5 mil-

lisecond

Table 2: Columns 1-4 depict the parameters of four experimental topologies.
Column 5 depicts the reachability graph computation time by the CPC for the
experimental topologies proactively by the CPC. Represents an average over 10
runs.
Column 6 depicts the Fuzzer execution time to compute the packet header space
for generating the fuzz traffic for the corresponding experimental topologies. Rep-
resents an average over 10 runs.

domly chosen OvS switches in the data plane where each fault
belonged to different packet header space (in 32-bit destina-
tion IPv4 address space) either in the production or fuzz traffic
header space. In particular, we injected Type-p (match/action
faults) and Type-a faults. ovs-ofctl utility was used to insert
the faults in the form of high-priority flow rules on random
switches. Therefore, we simulated a scenario where the con-
trol plane was unaware of these faults in the data plane. We
made a pcap file of the production traffic generated from our
Python-based script that crafts the packets. In addition, we
made a pcap of the fuzz traffic generated from the Fuzzer. The
production and fuzz traffic pcap files were collected using
Wireshark [72] and replayed at the desired rate in parallel
using Tcpreplay [73] with infinite loops to test the network
continuously. For sampling, we used sFlow [56] with a polling
interval of 1 second and a sampling rate of 1/100, 1/500 and
1/1000. The sampling was done on the egress port of the exit
switch in the data plane so the sampled actual report reaches
the Consistency Tester and thus, avoids overwhelming it. Note
each experiment was conducted for a randomly chosen source-
destination pair. Each experiment was executed ten times.

Workloads: For 1 Gbps links between the switches in the 4

experimental topologies: 3 grid and 1 fat-tree (4-ary), the pro-
duction traffic was generated at 106 pps (packets per second).
In parallel, fuzz traffic was generated at 1000 pps.

4.3 Evaluation Strategy
For a source-destination pair, our experiments are parameter-
ized by: (a) size of network (4-20 switches), (b) path length
(2-6), (c) configs (flow rules from 5k-100k), (d) number of
paths (24k-75k), (e) number (1-30) and kind of faults (Type-p,
Type-a), (f) sampling rate (1/100, 1/500, 1/1000) with polling
interval (1 sec), and (g) workloads i.e., throughput (106 pps
for production and 1000 pps for fuzz traffic). Our primary
metrics of interest are fault detection with localization time,
and comparison of fault detection/localization time in PAZZ
against the baseline of exhaustive traffic generation approach.
In particular, we ask the following questions:
Q1. How does PAZZ perform under different topologies and
configs of varying scale and complexity? (§4.4)
Q2. How does PAZZ compare to the strawman case of
exhaustive random packet generation? (§4.5)
Q3. How much time does PAZZ take to compute reachability
graph at control plane? (§4.6)
Q4. How much time does PAZZ take to generate active traffic
for a source-destination pair and how much overhead does
PAZZ incur on the links? (§4.7)
Q5. How much packet processing overhead does PAZZ incur
on varying packet sizes? (§4.8)

4.4 PAZZ Performance
Figure 8a illustrates the cumulative distribution function
(CDF) of the Type-p and Type-a faults detected in the
four different experimental topologies with the parameters
mentioned in Table 2. As expected, in a grid 16-switch
topology with 60k rules and 75k paths, PAZZ takes only
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25 seconds to detect 50% of the faults and 105 seconds to
detect all of the faults in case of sampling rate 1/100 and
polling interval of 1 second (left in Figure 8a). For the same
sampling rate of 1/100, in the case of 4-ary fat-tree topology
with 20 switches containing 100k rules and 75k paths, PAZZ
detects 50% of the faults in 40 seconds and all faults in 160
seconds. Since the production traffic was replayed at 106

pps in parallel with the fuzz traffic replayed at 1000 pps, the
Type-p faults in the production traffic header space (35% of
total faults) were detected faster in a maximum time of 24
seconds for all four topologies as compared to the Type-a
faults (65% of total faults) in the fuzz traffic header space
which were detected in a maximum time of 420 seconds8. As
the experiment was conducted ten times, the time taken is the
mean of the ten values to detect a fault pertaining to a packet
header space. We omitted confidence intervals as they are
small after 10 runs. In all cases, the detection time difference
was marginal.

Localization Time: As per Algorithm 3, the production
traffic-specific faults after detection were automatically lo-
calized within a span of 50 µsecs for all four experimental
topologies. The localization of faults pertaining to fuzz traffic
was manual as there was no expected report from the CPC.
Hereby, the localization was done for two cases: a) when
the fuzz traffic entered at the ingress port of the entry switch
and b) when the fuzz traffic entered in between a pair of
ingress and egress ports. For the first case, the localization
of each fault happens in a second after the fault was detected
by the Consistency Tester as the first switch possessed a flow
rule to allow such traffic in the network. For the second case
i.e., where fuzz traffic was injected from between the pair
of ingress and egress ports took approx. 2-3 minutes after
detection for manual localization as the path was constructed
after hop-by-hop inspection of the switch rules.

4.5 Comparison to Exhaustive Packet Gener-
ation

We compare the fault detection time of PAZZ which uses
Fuzzer against exhaustive packet generation approach. For a
fair comparison, the exhaustive packet generation approach
generates the same number of flows randomly and at the same
rate like PAZZ. Figures 8b, 8c, 8d and 8e illustrate the fault
detection time CDF in 4-switch, 9-switch, 16-switch and 4-
ary fat-tree (20-switch) experimental topologies respectively.
Three figures for each experimental topology illustrates the
results for three different sampling rates of 1/100, 1/500 and
1/1000 (left-to-right) respectively. The blue line indicates
PAZZ which uses Fuzzer and the red line indicates exhaus-
tive packet generation approach. As expected, we observe

8PAZZ is independent of the topology symmetry and thus, it performs
similarly in asymmetrical topologies. We removed certain links in the four
experimental topologies however, the detection and localization performance
remained unaffected.

that PAZZ performs better than exhaustive packet generation
approach. PAZZ provides an average speedup of 2-3 times.
We observe in all cases, 50% of the faults are detected in
a maximum time of ~50 seconds or less than a minute by
PAZZ. Note we excluded the Fuzzer execution time (§4.7)
in the plots. It is worth mentioning that PAZZ will perform
much better if we compare against a fully exhaustive packet
generation approach which generates 232 flows in all possible
destination IPv4 header space. Hereby, the detected faults
are Type-a as they require active probes in the uncovered
packet header space. Since PAZZ relies on production traffic
to detect the Type-p faults hence, we get rid of the exhaustive
generation of all possible packet header space. Similar results
were observed for localization as localization happens once
the fault has been detected.

4.6 Reachability Graph Computation
Table 2 (Column 5) shows the reachability graph computation
in all experimental topologies by the CPC for an egress port.
To observe the effect of evolving configs, we added additional
rules to various switches randomly. We observe that CPC
computes the reachability graph in all topologies in < 1s.

4.7 Fuzzer Execution Time & Overhead

Execution Time: Table 2 (Column 6) illustrates the time
taken by Fuzzer to compute the packet header space for fuzz
traffic in the four experimental topologies after it receives the
covered packet header space (corpus) from the CPC. Since
we considered destination-based routing hence, the packet
header space computation was limited to 32-bit destination
IPv4 address space in the presence of wildcarded rules. When
some of the rules were added to the data plane, the CPC
recomputed the corpus, the new corpus was sent to the Fuzzer
which recomputed the new fuzz traffic within a maximum
time of 7.5 milliseconds.

Overhead: The fuzz traffic contains 54-byte test packets at
the rate of 1000 pps on a 1 Gbps link that is 0.04% of the link
bandwidth and therefore, minimal overhead on the links at
the data plane. Note that most of the fuzz traffic is dropped at
the first switch unless there is a flow rule to match that traffic
and thus, incurring even less overhead on the links.

4.8 DPC Overhead
We generated different packet sizes from 64 bytes to 1500
bytes at almost Gbps rate on the switches running the DPC
software of PAZZ and the native OvS switches. We added flow
rules on our switches to match the packets and tag them by
the Verify shim header using our push_verify, set_Verify_Rule
and set_Verify_Port actions in the flow rule. Under these
conditions, we measured the average throughput over 10 runs.

We observe that the Verify shim header and the tagging
mechanism incurred 1.1% of throughput drop in PAZZ as
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Figure 9: PAZZ provides coverage on the forwarding flow rules, topology and
paths.

compared to the native OvS. Thus, it is clear that PAZZ intro-
duces minimal packet processing overheads atop OvS. Note
that push_verify actions happen only on the entry switch/exit
switch to insert the Verify shim header. Furthermore, sFlow
sampling is done at the exit switch only.

5 Related Work

In addition to the related work covered in §1 that includes
the existing literature based on [17] and Table 1, we now will
navigate the landscape of related works and compare them to
PAZZ in terms of the Type-p and Type-a faults which cause
inconsistency (§2). The related work in the area of control
plane [26–42] either check the controller-applications or the
control-plane compliance with the high-level network pol-
icy. These approaches are insufficient to check the physical
data plane compliance with the control plane. As illustrated
in Table 1, we navigate the landscape of the data plane ap-
proaches and compare them with PAZZ based on the ability
to detect Type-p and Type-a faults. It is worth noting that the
approaches either test the rules or the paths whereas PAZZ
tests both together. In the case of Type-p match faults (§2.3.1)
when the path is same even if different rule is matched, path
trajectory tools [20–25, 49] fail. The approaches based on
active-probing [3,5,18,19,25,50,51] do not detect the Type-a
faults (§2.3.2) caused by hidden or misconfigured rules on
the data plane which only match the fuzz traffic. These tools,
however, only generate the probes to test the rules known or
synced to the controller. Such Type-a faults are detected by
PAZZ. Latest tools [74, 75] debug only P4-specific networks
using program analysis techniques.

Overall, as illustrated in Figure 9, PAZZ checks consistency
at all levels between control and the data plane i.e., Plogical ≡
Pphysical, T logical ≡ T physical, and Rlogical ≡ Rphysical.

6 Conclusion

This paper presented PAZZ, a novel network verification
methodology that automatically detects and localizes the data
plane faults manifesting as inconsistency in SDNs. PAZZ con-
tinuously fuzz tests the packet header space and compares the

expected control plane state with the actual data plane state.
The tagging mechanism tracks the paths and rules at the data
plane while the reachability graph at the control plane tracks
paths and rules to help PAZZ in verifying consistency. Our
evaluation of PAZZ over real network topologies and configu-
rations showed that PAZZ efficiently detects and localizes the
faults causing inconsistency.

In future, we would like to verify the control-data plane
consistency in a more challenging P4 SDN scenario.
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