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Quantum effect is expected to dictate the behaviour of physical systems at low temperature. For quantum
magnets with geometrical frustration, quantum fluctuation usually lifts the macroscopic classical degeneracy,
and exotic quantum states emerge. However, how different types of quantum processes entangle wave functions
in a constrained Hilbert space is not well understood. Here, we study the topological entanglement entropy
(TEE) and the thermal entropy of a quantum ice model on a geometrically frustrated kagome lattice. We find
that the system does not show a Z» topological order down to extremely low temperature, yet continues to behave
like a classical kagome ice with finite residual entropy. Our theoretical analysis indicates an intricate competition
of off-diagonal and diagonal quantum processes leading to the quasi-degeneracy of states and effectively, the

classical degeneracy is restored.

In systems with macroscopic ground state degeneracy,
quantum correlation introduces non-trivial constraints on the
Hilbert space, leading to the emergence of highly entangled
quantum states of matter. The scenario is the gist in the stud-
ies of quantum Hall effect [1]], flat band physics [2H4]] and
quantum spin liquids [SH11]. Among them, quantum mag-
nets with geometrical frustration have become a fruitful play-
ground to search for exotic quantum phases. In particular, spin
ice systems on the corner-sharing tetrahedron lattices have at-
tracted enormous attention due to their relevance to rare-earth
pyrochlore materials 8, [10-H12]] and the possibility to explore
exotic quantum states of matter with anisotropic quantum ex-
change [[13H21]].

Strong spin-orbit couplings in these materials lead to rel-
atively unexplored anisotropic quantum effects. Dominant
ferromagnetic Ising coupling in pyrochlore spin ice materials
aligns spins along the local (111) directions on the tetrahe-
dron, and the system becomes geometrically frustrated at low
temperatures. The macroscopically degenerate ground states
obey the so-called “ice rules”, with two spins pointing in and
two spins pointing out of the centre of each tetrahedron. By
introducing different quantum tunnelling processes, it is pos-
sible to drive spin ice systems into various exotic quantum
phases [13H16} 21]].

In addition to the intriguing physics in three dimensions,
these pyrochlore spin ice materials also serve as a playground
for studying quantum ice physics on a kagome lattice. The
pyrochlore lattice can be visualized as alternating layers of
triangular and kagome lattice stacking along the [111] direc-
tion (Fig. [Th). When an external field along this axis pins
the spins on the triangular layer, effectively the system be-
comes decoupled layers of two-dimensional (2D) kagome lat-

J

tices, provided the field is not too strong. This dimensional
reduction partially reduces the degeneracy, and the ice rule
is modified to the kagome ice rule with two spins pointing
into each triangle, and one out (2-up-1-down in terms of the
pseudo-spin), or vice versa, as shown in Fig.[Tb.

Recently, numerical simulation on the kagome lattice that
focuses on the pair-flipping process finds a gapped disordered
quantum state, dubbed as quantum kagome ice (QKI) [22],
which is argued to be an exotic Zy QSL. However, direct ev-
idence characterising the non-trivial entanglement pattern in
the ground state, such as the TEE, has not been analysed. Fur-
thermore, how pair flipping processes induce quantum effects
to the ice manifold is not clear. Using large-scale quantum
Monte Carlo (QMC) simulations and degenerate perturbation
theory (DPT), we show that the QKI state does not show a
Z, topological order, but continues to behave like a classi-
cal kagome ice (CKI) due to the competition among differ-
ent quantum tunnelling processes. Such competition originat-
ing from anisotropic exchange coupling could be relevant for
pyrochlore material and recently synthesized tripod Kagome
material [23]].

I. RESULTS

Quantum kagome ice model with pair-flipping interac-
tion— On a kagome lattice, the nearest-neighbour, symmetry-
allowed exchange interactions for the ground state dipolar-
octupolar doublets can be modelled with an effective pseudo-
spin-1/2 XYZh model [22],
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FIG. 1: Geometry of pyrochlore lattice and the kagome layer. a. A pyrochlore spin ice consists of corner sharing tetrahedra
of spins pointing into or out of each tetrahedron. The ferromagnetic coupling between nearest-neighbour spins leads to
geometrical frustration, where spins on each tetrahedron follow a ’2-in-2-out’ ice rule. Pinning the spin on the triangular layers
by applying a strong enough field along the [111] direction reduces the pyrochlore lattice to decoupled kagome layers (green
layers). b. Kagome lattice can be viewed as corner-sharing triangles, or equivalently, corner-sharing hexagons. In a field,
pseudo-spins on each triangle satisfies the kagome ice rule with *2-up-1-down’ or *2-down-1-up’ depending on the sign of the

field ( A > O here).

where J, > 0, r labels kagome lattice sites, and (r,r’) de-
notes the nearest-neighbour pairs. The first two terms corre-
spond to the CKI model in a field, the third term corresponds
to the hopping exchange and the last term is the pair-flipping
interaction. We emphasize that even though the model is de-
rived from the dipolar-octupolar doublets, the anisotropic ex-
change is ubiquitous in related materials, and we focus on the
simplest anisotropic exchange term, S;" Sj,, in the system that
can be simulated with large-scale QMC. In the following, we
set J, = 1 unless explicitly stated otherwise.

For JL+ = 0 and JL > 0, this model is equivalent to
the XXZ model with an external field. Previous studies show
the ground state as a valence-bond solid (VBS) phase with a
three-fold degeneracy [24} 25)]. With J = 0 and J+y < O,
recently the model is proposed to harbour a Zs QSL both nu-
merically [22]] and theoretically [26]. Note that the parameter
space of Jr4+ > 0 and Ji4 < O are physically equivalent,
connected via a unitary transformation ST — 4S*. Without
loss of generality, here, we analyse model (I)) with J.+ < 0.

Topological entanglement entropy— For a quantum sys-
tem with short-range interaction, the Renyi entanglement en-
tropy between subregion A and its complement obeys the so-
called area law,

Sn(A) =kl —ny+O(L™Y), )

where x is a non-universal constant and [ is the boundary
length of the subregion. + is the TEE and 7 is related to
the number of (disconnected) boundaries. As a universal con-
stant, the TEE plays the role of “order parameter” for detect-
ing the hidden topological order in the system [27, [28]]. The
value of the TEE is related to the quantum dimension D with
~ = In D that characterises the quasi-particle fractionalization
of the topological order [27]]. For a system with Z5 topolog-
ical order, the quantum dimension D = 2, and v = In2 is
expected [29}130].

We measure the quantum entanglement using the second
Renyi entropy [31}132],

S2(A) = —InTr(p%), 3)

where p 4 is the reduced density matrix of subregion A. Using
the replica trick [31], we measure So with four different sub-
regions (Fig. [2h) that are strategically designed to eliminate
the area terms [28]], and

2y = _SQ(Rl) - SQ(RQ) + SQ(RB) + 52(R4) 4)

Fig. 2 shows TEE as a function of the inverse temperature
B = 1/T with parameters in the QKI regime (J11 = —0.49,
Ji+ =0, and h = 0.833). We find +y is far below the expected
In 2 value even at a temperature as low as T' ~ 1/48(5 = 48),
indicating the system does not have a Z, topological order.
The small finite v at low temperature is due to sub-leading
corrections that cannot be cancelled. This result suggests two
possibilities: either the QKI state is a short-range entangled
symmetry protected topological order or the quantum fluctua-
tions couple different kagome ice states in such a manner that
the system behaves classically. We clarify this issue through
the study of thermal entropy at low temperature.

Thermal entropy— The ground states of the XYZh model
in the classical limit satisfy the 2-up-1-down kagome ice
rule and are extensively degenerate, leading to a residual en-
tropy per spin S/N = 0.108 [33].

In order to directly measure the thermal entropy in our
QMC simulations, we employ the Wang-Landau method [34].
We observe the thermal entropy remains finite at an extremely
low temperature 7' = 1/200(8 = 200) with the value corre-
sponding to the residual entropy per spin of a CKI. This clas-
sical behaviour in the supposedly quantum region is counter-
intuitive. The system neither enters an ordered phase through
the quantum order-by-disorder scheme [35H37]] nor becomes a



a.
i L=6
L=il2
{ L=18
| L/6 2L/6 | 4L/6 5L/6
40 50

b.
o5 ——- 0.108
Ro ke
v L=
L=28
0.41 =0
Z 0.3 4
%} °
0.2 ..'
. ,..
.e"uuu 8 s
0] dmimmem 08808 8., Y R, S _
0.0

FIG. 2: Topological entanglement entropy and thermal entropy. a. Topological entanglement entropy (TEE) as a function
of the inverse temperature 5 = 1/7T with parameters in the QKI phase (J1+ = —0.49, J; = 0, and h = 0.833). The system
size is N=3x L x L. -y converges to a value far smaller than In 2 (blue horizontal line), indicating the system does not show a
Z5 topological order. Four regions in Eq. (E[) are definedas Ry = AUBUD, R, = AUCUD, R3 =AU D and

Ry = AUBUCUD. b. Thermal entropy per spin S/N as a function of 3 in the QKI phase ( Jr+ = —045,J. =0, h = 1).
The low temperature plateau is consistent with the residual entropy per spin of a CKI (brown horizontal dot-dashed line).

highly entangled disordered quantum state. To solve this puz-
zle, we analyse possible quantum processes out of the CKI
manifold using DPT [38] [39].

Degenerate Perturbation Theory— Starting from the
classical model, we treat all the quantum fluctuations as per-
turbations. It is useful in the following analysis to view the
kagome lattice as corner-sharing hexagons; thus, all the non-
trivial perturbation processes are within a single star of David
(Fig. Bp). Due to the presence of the field that splits the de-
generacy of the kagome ice rule on each triangle, the 2-up-1-
down configurations are favoured. Spin configuration on each
star is therefore uniquely determined by the hexagon configu-
ration (Fig.[3p) that determines the process in the perturbation
theory.

First, we consider the case J14 # 0 and J = 0 where
the proposed QKI is realized. The leading non-trivial pro-
cesses appear at the sixth-order of perturbation, and an effec-
tive Hamiltonian ]56 can be written as,

Po=Hy+ Ky Y, Hon—s (5)
vOn=3
H; = D4,a Z Ho,n,:4,a + D4,b Z HO,n:4,b
vOn=4,a vOn=4,b
+Ds Y Hon—s
vOn=>5
+Dg Y Hon=e 6)
vOn=6

Hp =3 acts on an n=3 hexagon to generate an effective
ring-exchange process, as shown in Fig. Bk, which brings
one CKI configuration to a different one. In addition to the
ring-exchange term, various non-trivial diagonal terms H ; ap-
pear at the same order of perturbation acting on hexagons

n > 4. For the case of n = 4, there exist two different
terms Ho —4,, and Ho ,—4p acting on the a and b types
of hexagons (Fig. [3p) respectively. The coefficients of these
processes can be directly computed in DPT (See Supplemen-
tary Information for details). In the case of h = J,, we have
Kpp = —%F, Dyyp = —%I‘, Dyg = —%F, Ds = —%F,
D¢ = —5T, where ' = J§, /J°.

Consider the other limiting case where Jy # 0 and J14 =
0. The lowest non-trivial process occurs at the third order of
perturbation, with an effective Hamiltonian,

p3 = Knp Z HO,n:3 +c (N
vOn=3

where K,,,, = —12J3% /J2. All diagonal processes at this level
contribute to an overall constant energy shift ¢ which is irrele-
vant. The ring-exchange term H¢ ,,—3 drives the system into
a VBS ground state [24) 25]].

Fig. P shows a schematic picture to illustrate the effects
coming from the diagonal and off-diagonal quantum tun-
nelling processes. For a QKI (J14 # 0 and J1 = 0), the
introduction of the off-diagonal ring-exchange H¢o ,,—3 se-
lects the three-fold degenerate VBS state out of the degen-
erate classical ice manifold, leaving all other states at higher
energies. Adding the diagonal terms, reconfiguration of the
energy levels occurs. These terms tend to maximize the over-
all fraction of n=4, 5, 6 hexagons while minimizing the frac-
tion of n=3 hexagons. The competition between diagonal
and off-diagonal processes reorganizes the states into quasi-
degenerate levels and the classical degeneracy is restored. On
the other hand, for the case J1 # 0 and J4 = 0, the process
terminates at the ring-exchange level, and the VBS ground
state is selected.

We further demonstrate this mechanism by measuring P,
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FIG. 3: Hexagon units and quantum tunnelling processes. a. In a field, spins on each triangle follow the 2-up-1-down rule.
When the spin configuration on the hexagon is determined, the configuration of the remaining spins within the star of David is
uniquely defined. b. The allowed hexagon configurations in a field, classified according to the number of up-spins n. c.
Example of the off-diagonal tunnelling term H¢ ,—3 formed by six nearest-neighbour S +8% operators on the orange bonds
that couples two different n = 3 CKI states . (d) Example of the diagonal tunnelling term H¢ ;,—4 , that couples the same

n = 4, a CKI states.

the fraction of hexagons with n up spins using QMC (Fig.@b).
For the VBS parameters, the weight of n=3 hexagons P dra-
matically increases at low temperature, accompanied with the
decrease of P, . On the other hand, for the QKI parameters,
the fractions for each type of hexagons remain unchanged,
suggesting the system remains within the CKI state down to
temperature much lower than the perturbative energy scale.
Although DPT is expected to work only in the small Jyi/J,
limit, the QMC results indicate the competition between these
quantum tunnelling processes is indeed nonperturbative.

To illustrate the quantum origin of this quasi-degeneracy,
we study the effective model using exact diagonalisation.
Here, we slightly modify the effective Hamiltonian by intro-
ducing a tuning parameter « in order to change the weight of
the diagonal process,

Ps(a) = aHy+ K, Y Hopes. (8)
vOn=3

Since the exact weight ratio between the two types of pro-
cesses in the original XYZh model is unknown, tuning o pro-
vides information for how the energy spectrum is affected by
adding the diagonal term.

For a = 0 where the ring-exchange dominates, the ground
state should be the three-fold degenerate VBS state. Due to
the finite size effect, the three lowest energy states in our ED
results are not exactly degenerate. However, a detailed anal-
ysis of the wave function confirms these states correspond to
the VBS state and becomes degenerate in the thermodynamic
limit (See Supplementary Information). For o — oo, the
model corresponds to keeping only the diagonal terms. There-
fore, all the classical kagome ice configurations are eigen-
states of the Hamiltonian. We find the ground states are also
three-fold degenerate, and corresponds to the three charge-
ordered states in the classical kagome ice [40, 41].

We expect there should be a level crossing at some interme-
diate o, which indeed occurs somewhere around o« = 1.703 ~
1.778 (Fig.[3h). Also, we find that the spectrum is compressed
toward the ground state. To give a quantitative measure of
this compression, we set an energy cutoff ¢/N, = 0.00082
and study how the number of levels below this cutoff, Ny,
changes with ae. We observe that the /V;, increases as « in-
creases, indicating a compression of energy levels toward the
ground states, until after v > 1.703 (Fig.[5p). This suggests
the quasi-degeneracy observed in our QMC simulation is a
consequence of the compressed spectrum due to the competi-
tion between diagonal and off-diagonal term. With this phys-
ical picture in mind, we expect by tuning K, in the effec-
tive Hamiltonian (6)), the VBS phase should emerge with large
enough K,,. This can be realized in the original XYZh model
by including both nonzero J and J4 4 terms. The emergence
of VBS by adding a small J in QKI is then confirmed from
the peaks of the static structure factor at VBS ordering mo-
mentum vector in our QMC simulation (See Supplementary
Information).

Conclusions Although the XYZh model on a kagome lat-
tice has been proposed to be a new playground to search for
2D Z; QSL, our results suggest that the QKI does not show
a Z topological order down to low temperature, and the sys-
tem bahaves classically. The suppression of the quantum en-
ergy scale originated from the competition between the off-
diagonal ring-exchange and diagonal processes indicates that
a much lower temperature than 7" = 1/200 has to be reached
before entering the true quantum regime. Even if the true
quantum ground state is a Zs QSL with an extremely small
gap, it will be very hard to be realized experimentally or con-
firmed numerically since it is extremely fragile.

Our results also indicate that the kagome ice states can-
not be hybridized easily with quantum anisotropic exchange.
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FIG. 4: Effects of quantum tunnelling processes. a. The schematic picture of the energy level reorganization due to the
sixth-order perturbation (6). Starting from the degenerate classical ice manifold, we first introduce the ring-exchange term

Hg n—3. This will select the three-fold degenerate VBS states with an energy gap A. Further adding the diagonal terms

Hg =45 6, the energy levels are reorganized to become quasi-degenerate with a suppressed energy gap. b. QMC results of the
hexagon fraction P, v.s. 8 in the VBS regime with J+ = 0.19 and J1 1 = 0 (left panel); and in the QKI regime J++ = —0.49
and J1 = 0 (right panel). Both are under a field h = J,. The vertical dashed lines indicate the perturbative energy scale
estimated by the leading ring-exchange contribution with 8 ~ 12.1/.J, and § ~ 100.9/.J, for the left and right panel

respectively.

Thus, the kagome ice physics is more likely to be observed
at finite temperature experiments with non-trivial dynamics.
This non-perturbative result of QMC provides crucial infor-
mation for understanding the experiments, such as the recent
experiments on NdsZroO7 [42]. In addition to pyrochlore ma-
terials, such physics could also play a role in the recently syn-
thesized tripod materials 23} 43\ 44].

On the other hand, although the true ground state remains
unknown, it would be interesting to study the effects of tilting
the field away from the [111] axis as this can provide an easy
method to tune the weights of the ring-exchange and diagonal
processes. We finish by pointing out the non-trivial diagonal
terms we found through DPT also exist on the pyrochlore lat-
tice since the CKI states are a subset of the ice manifold. Fur-
ther systematic studies are necessary to see if the phenomena
discussed in this paper can be extended to three-dimensional
cases [45, 146].

II. METHODS

We implement the stochastic series expansion (SSE) [47,
48] in the S* basis with a triangular plaquette break-up of the
XYZh Hamiltonian. The directed loop equations are solved
using numerical linear solver to minimize the bounce proba-
bility. The Renyi entanglement entropy is measured by im-
plementing the replica trick [31]. In our simulations, we fol-
low the scheme proposed in Ref. [49] to measure the second
Renyi entanglement entropy S3 with four subregions indepen-
dently. The simulation runs on average 10° ~ 10° Monte
Carlo steps (MCS) for each subregion. The topological en-
tanglement entropy <y is calculated by combining So of the
four subregions with the standard bootstrap resampling proce-
dure. The thermal entropy is measured with 102 MCS using

SSE with the Wang-Landau algorithm [34] for a long opera-
tor string with a fixed length. For the exact-diagonalisation of
the effective Hamiltonian, we first search for all basis states
that satisfy the 2-up-1-down ice-rule. We then construct the
effective Hamiltonian I:’6(oz), and perform a Lanczos diag-
onalisation to obtain the energy spectrum and eigenstates.
The data presented in this paper requires the computation
resources approximately about 330 CPU core-years on two
different heterogeneous high-performance computers (HPCs)
with 2.50GHz Intel Xeon or equivalent CPUs at the National
Center for High-performance Computing.
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FIG. 5: Spectrum of the effective Hamiltonian and effects of diagonal processes. (a) The energy spectrum of the effective
model P; with tuning parameter «e. Each dot represents a single state. The y-axis is the energy per-hexagon (IV,, = N/3 is the
number of hexagons), and each ground state is shifted to zero for easy comparison. The red line indicates an energy cutoff
€/N, = 0.00082. (b) Number of energy levels, [N;,, that lies below the cutoff. IV, increases as « increases, indicating that the
energy spectrum is compressed toward the ground state, until o > 1.703 where NV}, decreases again.

Appendix A: Degenerate perturbation theory

We start by identifying the classical part in the X'YZh model
as unperturbed system, denoting as Hy, and

H=Hy+V
Hy=J.» SiSI—hY St (A1)
(i.9) i
Next, we treat the quantum term V' as perturbation acting on
the degenerate classical ice manifold 2 = {Qg, 4, ...} with

the ice rule ”2-up-1-down” (h > 0) or ”2-down-1-up” (h <
0),

HoQ = EyR. (A2)

Define an operator P that projects the states ¥ =
{WUy, ¥y, ...} in the Hilbert space to the degenerate ice mani-
fold,

PY = Q (A3)

where P2 = P.
Following the standard Brillouin-Wigner perturbation the-

ory [50I, the perturbation expansion can be written as [38],[39],

oo
(Ho+PV Y G'P)Q=EQ
t=0

_({I-P
G—E_HOV. (Ad)

We now have a non-linear eigenvalue problem to solve for
the energy shifts (¢ = £ — Ey),

PQ =0 (AS)
with

pP= (V Z Gt> . (A6)
t=0

Essentially, perturbations coming from the quantum fluctu-
ations lift the degeneracy of the ice manifold and quantum
phase emerges. In the following calculation, we use hexagon
units as defined in the main text and take 2 > 0, where all the
triangular plaques follows ~2-up-1-down” rule.

For the case that the S*S¥ is the only present quantum
fluctuation, the lowest non-constant term is at the sixth order,

VG® = P, (A7)

which is the sum of off-diagonal H, and diagonal H; contri-
butions.



P =Hy+ H, (A8)

Hy=Dsa Y, Ho+Dsy Y, Ho+Ds Y, Ho+Ds Y 6 Ho (A9)
vOn=4,a vOn=4,b vOn=5 vOn=6

H,=K, > Ho, (A10)
vOn=3

where the off-diagonal term corresponds to the ring-exchange
process that acts on n = 3 hexagons, and the diagonal terms
correspond to processes that V' acts on each bond only once
on n > 4 hexagons (see Fig. [6] [7} [§). Prefactors associated
with each term can be computed by listing all possible ways to
arrange the local two-site (S*S* or S*SF) operators (G) to
form the perturbation operators H¢ that transfer states within
the ice manifold [38, 39]].
The prefactors for the off-diagonal ring-exchange term,

6JS .

Kyp=———=*f
= T 22k + J,)5

[7J2 +14J.h +8h%]  (All)

and diagonal terms

I
Do =y o
: 4hJ2(J, + 2h)?
2.J + h)JS
Dap= — ( )i

4hJ2(J, +2R)2(J — &)
Dy = _J5, 8J(3.J, + 4h)(2J, + h) + h(7.J, + 4h)?
AhJ2(J, + 2h)2(2J, 4+ h)(3J, + 4h)?

12J8 .
(3J. +4h)2(J, + 2h)(J. + h)h'

Dg = —

(A12)

If we further let A = J, provided the system is within the
lobe, we obtain,

58 JS
pp — _gTE
6
D4,a = _316(];;
1J8
6.7
289 J9 .
5T 5292 3
2 JS,
49 J5

Dyp =~

Dg = (A13)

Appendix B: Thermal entropy measurement using
Wang-Landau method

In general, one can estimate thermal entropy by numeri-
cally integrating the specific heat data from QMC. However,
this approach requires a very accurate estimate of the specific

(

heat and suffers from the error due to the discretized tem-
perature intervals. Instead, we use the Wang-Landau sam-
pling scheme [34] to directly access the thermal entropy in
our QMC simulations.

In the SSE formalism, the partition function is written as

Z :Tr[ *’BH]

_Z - Z (¢ Hag -

¢,a,b
) (B1)

where H,, ;, is the local Hamiltonian. In our simulation, we
perform triangle plaquette decomposition of the Hamiltonian
as discussed in Ref. [51] and sampling using the directed loop
algorithm [48]. Here, we rewrite Eq. (BI) into a generalized
representation by introducing a weighting factor g(n),

=> B"Sng(n)
=> W'(n). (B2)

Han b |¢>

In the simulation, we first search for g(n) such that the modi-
fied weight W' (n) are roughly equal, and then sample Z’ with
the modified weight W/ (n).

The partition function for a range of arbitrary temperatures
{3 can be calculated by,

29=%(3)

n

" W'(n)
g(n)

(B3)

In our simulation, we fix 8 = 1 for convenience. To ob-
tain the estimates for physical observables, we first record the
estimates for each observables in each n separately,

W' (n'
On> = Z O(Sn,n’#

W)

<In> = 5n,n/ 7 (B4)

We then reweight the estimates with the set {g(n)} with an



FIG. 7: Relevant diagonal process on hexagon with n = 5

undetermined normalization constant A, The observables with arbitrary 5 can be obtained with the
(B) relation,
(0p) =4 (On) _ (B
’ZL 9(n) @) =90, (B6)
a (2(5))
(Z(B)) = A Z (In)- (BS) To determine A, we use the fact that the n = 0 sector cor-



FIG. 8: Relevant diagonal process on hexagon with n = 6

responds to a system at infinite temperature (8 — 0),

(B7)

where N is the total number of spins in the system. Using
this relation, the physical partition function, free energy and
entropy can be calculated,

3 — N~ gy ln 90) N
2O =260 (B8)
(F(B)) = f% n [(Z(3))] (B9)

(B10)

Appendix C: Topological entanglement entropy and Levin-Wen
construction

As shown in the main text, in order to identify the Z5 QSL,
we have to numerically compute the topological entanglement
entropy (TEE). In our simulation, we use the second Renyi
entropy S as our entanglement measurement. The Renyi en-
tropy with sub-region A follows the area law,

Sa=krl—ny+O0(L™"h) (C1)

where [ is the boundary of the sub-region A and - is the topo-
logical entanglement entropy. Here, we also consider a fi-
nite size correction O(L~1) that goes to zero in the thermo-
dynamic limit.

The Renyi entropy is computed using QMC following the
procedure in Ref. [49]]. Application of this method to identify
the Z5 topological order can be found in Ref. [31]]. To esti-
mate the topological entanglement entropy, we use the Levin-
Wen construction [28] to eliminate the contributions from the
boundaries (area law term). We first construct four different
parts out of the lattice; marked by A, B, C' and D as shown in

Fig.

L/6 2L/6 4L/6 5L/6

FIG. 9: Levin-Wen construction. a. Four small parts A, B,
C and D in the system with size L. b. Four different
sub-regions R; (upper-left), R, (upper-right), R3 (lower-left)
and R, (lower-right) are constructed from the four parts A,
B, C and D in order to eliminate the contribution from the
boundaries.

We then strategically construct four different sub-regions
Ry, Ry, R3 and R4 with different combination of these four
parts as

Ri=AUBUD,
Ryo=AUCUD,
R3=AUD,

Ry=AUBUCUD.

The choice for these subregions allows one to extract the topo-
logical entanglement entropy ~ using the relation

2y = —S3(R1) — S2(R2) + S2(R3) + S2(R4)

to eliminate the contributions coming from the bound-

aries [28]].

Appendix D: Hexagon fraction for J+ # 0 and J+4 # 0

Here we present the hexagon fraction for the case J1+ # 0
and Jii # 0 where a VBS ground state is expected to estab-
lish based on our degenerate perturbation theory analysis. In



Fig. [I0] we show the QMC results of hexagon fractions P, at
h=J,,Jer=0.1219J, and J1+ = —0.25J,. The parame-
ters lie in the VBS region with a dominant ring-exchange term
as the third-order perturbation (as also presented in Fig. [TTb).
Our result clearly shows the rise of P; and the decrease of Py
at temperature lower than the perturbative energy scale esti-

mated by the ring-exchange process 3 ~ % =46/J,, with
the same behaviour as in the XXZ model (J+ # 0, J+ = 0).

This should be contrasted with the behaviour of Fig. 4b in the
main text.

0.5 :
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FIG. 10: Hexagon occupation fraction. The hexagon
fraction in the VBS region with h = J,, J1 = 0.1219J, and
Jr4+ = —0.25J,. The vertical blue line indicates the
perturbative energy scale

Appendix E: Phase diagrams and Structure factors

In Fig.[IT|we show a general phase diagram of XYZh model
in parameter space J+ — J14 — h. In the figure, projections
to the J+ = 0 and JL1 = 0 planes are shown with the sim-
ulation data. To map out the phase boundaries, we take the
advantage of the sudden change of the magnetization M, and
magnetic susceptibility x, across the transition to identify the
phase boundaries. The magnetization M, and magnetic sus-
ceptibility y . are defined as

1 z

() (z) o

Fig. |12 shows the phase diagrams of various cross section
of the parameter space. For plane with J1 = 0, two phases of
QKI and ferromagnetic (FM) are identified, which is consis-
tent with previous study [22]. For plane with J11 = 0, we
have VBS and superfluid (SF) phase as [24]].

At Jy — Jii plane with a horizontal cross section at
h = 1.0, we find a lobe with VBS ordering at a finite J.

Xz
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The emergence of VBS is consistent and expected as a conse-
quences of introducing a third order ring-exchange term that
is shown in our DPT analysis.

The three-fold degenerate VBS state with broken trans-
lational symmetry can be identified from the peaks of the
static structure factor S(q) at ordering momentum vector
q= <%’T, O> and symmetry related momenta [24]]. The static
structure factor defines as :

1 r s
fla) = D™
J

S(a) = (f(a)f(—a)) — (f(a)) (f(—a)) (E2)

with N = 3 x L x L is the total number of spins. Fig.
shows the line cut along q = (g, 0) of the structure factors
shown in Fig.[TT] In both the VBS-a and VBS-b cases, peaks
at q = (2F,0) emerge out of the background.

Appendix F: Ground states of the modified effective model

To understand the ground states of the modified effective
model, we analyse the spectral properties of the energy eigen-
states |¢;) obtained by exact diagonalisation. We write the
state of interest |¢;) in terms of the classical kagome ice basis
{2, } where the energy eigenstate |¢;) can be represented as:

60) =D An ), Cn =A%, (F1)

where C,, corresponds to the probability of the classical state
Q.

We first study the effective model in the classical limit with
only the diagonal term Eq. (A9) present. This amounts to tak-
ing a — oo in the original P; model in the main text.

Fig. shows the energy spectrum and we find the ground
states are three-fold degenerate. These states are linear com-
bination of three possible charge-ordered states in the clas-
sical kagome ice [40, 41]] (Fig. ), marked with I, II and
IIT shown in Fig.[T4f. Note that every hexagons within these
charge-ordered configurations are all n = 4,b. These states
are smoothly connected to the ground states for o 2 1.703.

In the other limit « = 0, where only the ring-exchange
term Eq. is present, we expect a three-fold degenerate
VBS ground state [24} |52] in the thermodynamic limit. In a
finite-size simulation, these states are not exactly degenerate.
However, the spectral property of these states should mani-
fest the VBS signature. Fig.[I5h shows the energy spectrum
of the ring-exchange model. The three lowest energy states
( Fig.[I3p) are the linear superposition of classical configura-
tions with n = 3 hexagons, dominated by three configurations
corresponding configurations to the v/3 x /3 states as shown
in Fig. [I5k. The VBS states are generated by the tunnelling
between these three v/3 x /3 states with the ring-exchange,
and other n = 3 states are intermediate configurations gener-
ated from the tunnelling processes. These states are smoothly
connected to the lowest energy states for o < 1.703.
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FIG. 11: Phase diagram and structure factors. The schematic phase diagram shows possible phases of the XYZh model. The
phase boundaries are guides to the eye. For J. = 0 plane, two phases of QKI and ferromagnetic (FM) ordered phase are
identified as also shown in Fig.[I2b. For J44 = 0 plane, the lobe of VBS phase appears at .JJ.. < 1. The system enters the
super fluid phase (SF) when increasing the hopping term .J5. as also shown in Fig.[TZh. Structure factors for three cases with a.
Jii =0 . Ji =0.19and h = 1.0, b. Jii = —0.25 . Ji =0.1219 . h = 1.0, and c. Jii =—0.45 5 Ji =0and h =1.0.In
cases a and b, peaks are observed at Q = <2§, O> and symmetry related momenta, indicating the emergence of the VBS order;
while in the QKI phase (case ¢), no such peak is observed. The structure factors are measured with system size L = 12 at

T = 0.02. The momentum vectors ¢, and g, are in unit of 27 with ferromagnetic peaks being removed for clarity.
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FIG. 12: Phase diagram in various planes of the parameter space. a. Phase diagram in the J.-h plane. b. Phase diagram in
the J1+ — h plane. c. Phase diagram in the J;. — J1 1 plane with A = 1. Simulations are performed with system size L = 6 at
temperature 7' = 0.015.J, using standard SSE. For a. and .b, the phase diagram are mapped by the magnetic susceptibility .
For (c), the phase diagram is mapped by the magnetization M.

Finally, to show the three lowest states will eventually com-
bined to form the three-fold degenerate states in the thermo-
dynamic limit, we compare the finite-size gap for different
system sizes as shown in Fig.[T6] We see that the gap between
the lowest three states decreases as system size increases, and
the states become degenerate in the thermodynamic limit.
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FIG. 13: Structure factors in various phases. The structure
factors are measured at N = 3 x 12 x 12 at T = 0.02. The
curves of VBS-a, VBS-b and QKI correspond to the line cut
along q = (¢, 0) of Fig.[TTh, Fig.[ITp and Fig.[T1k
respectively. The x component momentum vector g, are in
units of 27. @, = %’T indicates the VBS ordering vector.
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FIG. 14: Energy spectrum of the diagonal-only model. a.
The spectrum of the effective model (A9) with only the
diagonal terms for N =6 x 6 X 3,
Ji+ = —049,h=1.0,J+ =0. N, = N/3 is the number
of hexagons. The ground energy is shifted to zero. b. The
three-fold degenerate ground states represented in the
classical kagome ice states. The blue bar represents the
probability C,, for each configuration and the z-axis is the
classical configuration index.where z-axis is the classical
configuration index. The ground states corresponds to linear
combination of three charge-ordered states in classical
kagome ice c..
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FIG. 15: Energy spectrum of the ring-exchange model. a.
The spectrum of the ring-exchange model Eq. (AT0). The
ground energy is shifted to zero. The system size is

N =6 x 6 x 3and N,, = N/3 is the number of hexagons. b.
The three lowest energy eigenstates represented in the
classical kagome ice states. The blue bar represents the
probability C', for each configuration and the z-axis is the
classical configuration index. ¢. Three ice configurations
with dominant probabilities C,, for the three lowest energy
states. The classical configurations correspond to the

V3 x /3 states. The parameters considered here are

Jiyr =—-049,h =1.0,JL =0.
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N =6 x 3 x 3 (b), and the lowest 300 states for system
N =6 x 6 x 3 (c). The finite-size gap between the ground
states and the first-excited state, indicated by the red line,
decreases as the system size increases. The parameters are
Jiyr =-049,h=1.0,JL =0.



13

[1] Richard E. Prange and Steven M. Girvin, The Quantum Hall
effect, 2nd ed. (Springer-Verlag,, New York, 1990.).

[2] Evelyn Tang, Jia-Wei Mei, and Xiao-Gang Wen, “High-
temperature fractional quantum hall states,” Phys. Rev. Lett.
106, 236802 (2011).

[3] Titus Neupert, Luiz Santos, Claudio Chamon, and Christopher
Mudry, “Fractional quantum hall states at zero magnetic field,”
Phys. Rev. Lett. 106, 236804 (2011).

[4] Kai Sun, Zhengcheng Gu, Hosho Katsura, and S. Das Sarma,
“Nearly flatbands with nontrivial topology,” |Phys. Rev. Lett.
106, 236803 (2011).

[5] Philip W. Anderson, “Resonating valence bonds: A new kind
of insulator?”’ Materials Research Bulletin 8, 153 (1973).

[6] Philip W. Anderson, “The resonating valence bond state in
LazCuOy4 and superconductivity,” Science 235, 1196 (1987).

[7] R. Moessner and S. L. Sondhi, “Resonating valence bond phase
in the triangular lattice quantum dimer model,” Phys. Rev. Lett.
86, 1881-1884 (2001).

[8] Michel J. P. Gingras and P. A. McClarty, “Quantum spin ice: a
search for gapless quantum spin liquids in pyrochlore magnets,”
Reports on Progress in Physics 77, 056501 (2014).

[9] Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng, “Quantum spin
liquid states,” Rev. Mod. Phys. 89, 025003 (2017)\

[10] Lucile Savary and Leon Balents, “Quantum spin liquids: a re-
view,” Reports on Progress in Physics 80, 016502 (2017).

[11] J. Knolle and R. Moessner, “A Field Guide to Spin Liquids,”
(2018), larXiv:1804.02037 [cond-mat.str-el].

[12] Jason S. Gardner, Michel J. P. Gingras, and John E. Greedan,
“Magnetic pyrochlore oxides,” Rev. Mod. Phys. 82, 53-107
(2010).

[13] Michael Hermele, Matthew P. A. Fisher, and Leon Balents,
“Pyrochlore photons: The U(1) spin liquid in a S = 1
three-dimensional frustrated magnet,” Phys. Rev. B 69, 064404
(2004).

[14] Lucile Savary and Leon Balents, “Coulombic quantum liquids
in spin-1/2 pyrochlores,” Phys. Rev. Lett. 108, 037202 (2012).

[15] SungBin Lee, Shigeki Onoda, and Leon Balents, “Generic
quantum spin ice,” Phys. Rev. B 86, 104412 (2012).

[16] Nic Shannon, Olga Sikora, Frank Pollmann, Karlo Penc, and
Peter Fulde, “Quantum ice: A quantum monte carlo study,”
Phys. Rev. Lett. 108, 067204 (2012).

[17] Yi-Ping Huang, Gang Chen, and Michael Hermele, “Quantum
spin ices and topological phases from dipolar-octupolar dou-
blets on the pyrochlore lattice,” Phys. Rev. Lett. 112, 167203
(2014).

[18] Yasuyuki Kato and Shigeki Onoda, “Numerical evidence of
quantum melting of spin ice: Quantum-to-classical crossover,”
Phys. Rev. Lett. 115, 077202 (2015).

[19] Yao-Dong Li, Xiaoqun Wang, and Gang Chen, “Hidden multi-
polar orders of dipole-octupole doublets on a triangular lattice,”
Phys. Rev. B 94, 201114 (2016).

[20] Yao-Dong Li and Gang Chen, “Symmetry enriched U(1) topo-
logical orders for dipole-octupole doublets on a pyrochlore lat-
tice,” Phys. Rev. B 95, 041106 (2017).

[21] Lucile Savary and Leon Balents, “Disorder-induced quantum
spin liquid in spin ice pyrochlores,” Phys. Rev. Lett. 118,
087203 (2017).

[22] Juan Carrasquilla, Zhihao Hao, and R. G. Melko, “A two-
dimensional spin liquid in quantum kagome ice,” Nature com-
munications 6, 7421 (2015).

[23] A. Scheie, M. Sanders, J. Krizan, A. D. Christianson,

V. O. Garlea, R. J. Cava, and C. Broholm, “Crystal field
levels and magnetic anisotropy in the kagome compounds
ngSbgMg2014, ngSngn2014, and PrnggMg2014,”
(2018), [arXiv:1808.05111 [cond-mat.str-el].

[24] S. V. Isakov, S. Wessel, R. G. Melko, K. Sengupta, and
Yong Baek Kim, “Hard-core bosons on the kagome lattice:
Valence-bond solids and their quantum melting,” Phys. Rev.
Lett. 97, 147202 (2006).

[25] Kedar Damle and T. Senthil, “Spin nematics and magnetization
plateau transition in anisotropic kagome magnets,” Phys. Rev.
Lett. 97, 067202 (2006).

[26] Yi-Ping Huang and Michael Hermele, “Theory of quantum
kagome ice and vison zero modes,” Phys. Rev. B 95, 075130
(2017).

[27] Alexei Kitaev and John Preskill, “Topological entanglement en-
tropy,” Phys. Rev. Lett. 96, 110404 (2006).

[28] Michael Levin and Xiao-Gang Wen, “Detecting topological
order in a ground state wave function,” Phys. Rev. Lett. 96,
110405 (2006).

[29] Eric Rowell, Richard Stong, and Zhenghan Wang, “On classifi-
cation of modular tensor categories,”|Communications in Math-
ematical Physics 292, 343-389 (2009).

[30] Hong-Chen Jiang, Zhenghan Wang, and Leon Balents, “Iden-
tifying topological order by entanglement entropy,” Nature
Physics 8, 902 (2012).

[31] Sergei V. Isakov, Matthew B. Hastings, and Roger G. Melko,
“Topological entanglement entropy of a Bose-Hubbard spin lig-
uid,” Nature Physics 7, 772 (2011).

[32] J. Ignacio Cirac, Didier Poilblanc, Norbert Schuch, and Frank
Verstraete, “Entanglement spectrum and boundary theories with
projected entangled-pair states,” Phys. Rev. B 83, 245134
(2011).

[33] R. Moessner and S. L. Sondhi, “Ising models of quantum frus-
tration,” Phys. Rev. B 63, 224401 (2001).

[34] Matthias Troyer, Fabien Alet, and Stefan Wessel, “Histogram
methods for quantum systems: from reweighting to Wang-
Landau sampling,” Brazilian Journal of Physics 34, 377 — 383
(2004).

[35] J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, “Order as an
effect of disorder,” Journal de Physique 41, 1263—-1272 (1980).

[36] Lucile Savary, Kate A. Ross, Bruce D. Gaulin, Jacob P. C. Ruff,
and Leon Balents, “Order by quantum disorder in EryTi>O7,”
Phys. Rev. Lett. 109, 167201 (2012).

[37] M. E. Zhitomirsky, M. V. Gvozdikova, P. C. W. Holdsworth,
and R. Moessner, “Quantum order by disorder and accidental
soft mode in EraTi2O7,” Phys. Rev. Lett. 109, 077204 (2012).

[38] Doron L Bergman, Ryuichi Shindou, Gregory A Fiete, and
Leon Balents, “Effective hamiltonians for some highly frus-
trated magnets,” Journal of Physics: Condensed Matter 19,
145204 (2007).

[39] Doron L. Bergman, Ryuichi Shindou, Gregory A. Fiete, and
Leon Balents, “Degenerate perturbation theory of quantum
fluctuations in a pyrochlore antiferromagnet,” Phys. Rev. B 75,
094403 (2007).

[40] Gia-Wei Chern, Paula Mellado, and O. Tchernyshyov, “Two-
stage ordering of spins in dipolar spin ice on the kagome lat-
tice,” Phys. Rev. Lett. 106, 207202 (2011).

[41] M Wolf and K D Schotte, “Ising model with competing next-
nearest-neighbour interactions on the kagome lattice,” Journal
of Physics A: Mathematical and General 21, 2195 (1988).

[42] E. Lhotel, S. Petit, M. Ciomaga Hatnean, J. Ollivier, H. Mutka,


http://dx.doi.org/10.1103/PhysRevLett.106.236802
http://dx.doi.org/10.1103/PhysRevLett.106.236802
http://dx.doi.org/ 10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1103/PhysRevLett.106.236803
http://dx.doi.org/10.1103/PhysRevLett.106.236803
http://www.sciencedirect.com/science/article/pii/0025540873901670
http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://stacks.iop.org/0034-4885/77/i=5/a=056501
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://stacks.iop.org/0034-4885/80/i=1/a=016502
http://arxiv.org/abs/1804.02037
http://dx.doi.org/10.1103/RevModPhys.82.53
http://dx.doi.org/10.1103/RevModPhys.82.53
http://dx.doi.org/ 10.1103/PhysRevB.69.064404
http://dx.doi.org/ 10.1103/PhysRevB.69.064404
http://dx.doi.org/ 10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevB.86.104412
http://dx.doi.org/10.1103/PhysRevLett.108.067204
http://dx.doi.org/10.1103/PhysRevLett.112.167203
http://dx.doi.org/10.1103/PhysRevLett.112.167203
http://dx.doi.org/10.1103/PhysRevLett.115.077202
http://dx.doi.org/10.1103/PhysRevB.94.201114
http://dx.doi.org/10.1103/PhysRevB.95.041106
http://dx.doi.org/10.1103/PhysRevLett.118.087203
http://dx.doi.org/10.1103/PhysRevLett.118.087203
http://arxiv.org/abs/1808.05111
http://dx.doi.org/ 10.1103/PhysRevLett.97.147202
http://dx.doi.org/ 10.1103/PhysRevLett.97.147202
http://dx.doi.org/10.1103/PhysRevLett.97.067202
http://dx.doi.org/10.1103/PhysRevLett.97.067202
http://dx.doi.org/ 10.1103/PhysRevB.95.075130
http://dx.doi.org/ 10.1103/PhysRevB.95.075130
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/ 10.1103/PhysRevLett.96.110405
http://dx.doi.org/ 10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1007/s00220-009-0908-z
http://dx.doi.org/10.1007/s00220-009-0908-z
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1038/nphys2465
http://dx.doi.org/10.1038/nphys2036
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevB.63.224401
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000300008&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000300008&nrm=iso
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevLett.109.077204
http://stacks.iop.org/0953-8984/19/i=14/a=145204
http://stacks.iop.org/0953-8984/19/i=14/a=145204
http://dx.doi.org/10.1103/PhysRevB.75.094403
http://dx.doi.org/10.1103/PhysRevB.75.094403
http://dx.doi.org/ 10.1103/PhysRevLett.106.207202
http://stacks.iop.org/0305-4470/21/i=9/a=032
http://stacks.iop.org/0305-4470/21/i=9/a=032

E. Ressouche, M. R. Lees, and G. Balakrishnan, “Evidence for
dynamic kagome ice,” Nature Communications 9, 3786 (2018).

[43] Joseph A. M. Paddison, Harapan S. Ong, James O. Hamp,
Paromita Mukherjee, Xiaojian Bai, Matthew G. Tucker,
Nicholas P. Butch, Claudio Castelnovo, Martin Mourigal, and
S. E. Dutton, “Emergent order in the kagome ising mag-
net DysMg2Sb3014,” Nature Communications 7, 13842 EP —
(2016).

[44] Z. Dun, X. Bai, J. A. M. Paddison, N. P. Butch, C. D. Cruz,
M. B. Stone, T. Hong, M. Mourigal, and H. Zhou, “Quantum
spin fragmentation in kagome ice HosMgoSb3O14,” (2018),
arXiv:1806.04081 [cond-mat.str-el].

[45] Jeffrey G. Rau and Michel J. P. Gingras, “Magnitude of quan-
tum effects in classical spin ices,” Phys. Rev. B 92, 144417
(2015).

[46] C.-J. Huang, C. Liu, Z. Meng, Y. Yu, Y. Deng, and G. Chen,
“Extended Coulomb liquid of paired hardcore boson model on
a pyrochlore lattice,” (2018), |arXiv:1806.04014 [cond-mat.str-

14

el].

[47] Anders W. Sandvik and Juhani Kurkijérvi, “Quantum Monte
Carlo simulation method for spin systems,” Phys. Rev. B 43,
5950-5961 (1991).

[48] Olav F. Syljuasen and Anders W. Sandvik, “Quantum Monte
Carlo with directed loops,” Phys. Rev. E 66, 046701 (2002),

[49] Roger G. Melko, Ann B. Kallin, and Matthew B. Hastings,
“Finite-size scaling of mutual information in Monte Carlo sim-
ulations: Application to the spin—% XXZ model,” Phys. Rev. B
82, 100409 (2010).

[50] Peter Fulde, Electron correlations in molecules and solids, 3rd
ed., Springer series in solid-state sciences ; 100 (Springer-
Verlag, Berlin ; New York, 1995).

[51] Roger G Melko, “Simulations of quantum XXZ models on two-
dimensional frustrated lattices,” Journal of Physics: Condensed
Matter 19, 145203 (2007).

[52] R. Moessner, S. L. Sondhi, and P. Chandra, “Phase diagram of
the hexagonal lattice quantum dimer model,” Phys. Rev. B 64,
144416 (2001).


http://dx.doi.org/10.1038/s41467-018-06212-2
http://dx.doi.org/10.1038/ncomms13842
http://dx.doi.org/10.1038/ncomms13842
http://arxiv.org/abs/1806.04081
http://dx.doi.org/ 10.1103/PhysRevB.92.144417
http://dx.doi.org/ 10.1103/PhysRevB.92.144417
http://arxiv.org/abs/1806.04014
http://arxiv.org/abs/1806.04014
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/ 10.1103/PhysRevB.82.100409
http://dx.doi.org/ 10.1103/PhysRevB.82.100409
http://stacks.iop.org/0953-8984/19/i=14/a=145203
http://stacks.iop.org/0953-8984/19/i=14/a=145203
http://dx.doi.org/ 10.1103/PhysRevB.64.144416
http://dx.doi.org/ 10.1103/PhysRevB.64.144416

	Tunnelling-induced restoration of classical degeneracy in quantum kagome ice
	Abstract
	I Results
	II Methods
	 Acknowledgments
	A Degenerate perturbation theory
	B Thermal entropy measurement using Wang-Landau method 
	C Topological entanglement entropy and Levin-Wen construction
	D Hexagon fraction for J=0  and J=0
	E Phase diagrams and Structure factors
	F Ground states of the modified effective model
	 References


