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Rare events in non-linear dynamical systems are difficult to sample because of the sensitivity
to perturbations of initial conditions and of complex landscapes in phase space. Here we discuss
strategies to control these difficulties and succeed in obtainining an efficient sampling within a
Metropolis-Hastings Monte Carlo framework. After reviewing previous successes in the case of
strongly chaotic systems, we discuss the case of weakly chaotic systems. We show how different
types of non-hyperbolicities limit the efficiency of previously designed sampling methods and we
discuss strategies how to account for them. We focus on paradigmatic low-dimensional chaotic
systems such as the logistic map, the Pomeau-Maneville map, and area-preserving maps with mixed
phase space.

Forecast in chaotic dynamical systems requires
the evolution of an ensemble of trajectories,
which can quickly lead to very different outcomes.
If the choice of the ensemble is compatible with
our knowledge of the current state of the system,
we can associate the probability of an event with
the fraction of initial conditions for which it oc-
curs. Computationally, this strategy is efficient
to determine the most likely events but it strug-
gles to compute rare events, e.g., those at the tail
of the distribution of an observable of interest.
The importance of such extreme events is that they
often cause the largest impact and, due to the
chaoticity of the system, they can not be easily
anticipated. The development of efficient sam-
pling methods, as aimed in this paper, is crucial
in these cases because they are able not only to
find trajectories leading to extreme events but
also to estimate their probability (in the original
ensemble).

I. INTRODUCTION

We are interested in sampling rare events in chaotic
dynamical systems, a problem that has been the sub-
ject of different approaches in the recent years [1–5].
Given an initial condition x in a d-dimensional phase
space Ω, x ∈ Ω ⊂ Rd, the dynamical system F evolves
it x(t) = F t(x(0)) until (at time to) an observable
Ex = E(x(to)) ∈ R is measured. A rare event corre-
sponds to an observable E at the tail of the distribution
P (E) obtained from an ensemble of initial conditions se-
lected in Γ ⊂ Ω according to a probability measure µ
such that

∫
Γ
dµ = 1, e.g., µ can be simply the phase

space volume (uniform distribution) or the natural mea-
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sure of the dynamical system. Since the dynamics is de-
terministic, the variability of the events E and the need
for its statistical description are solely due to the sensi-
tive to variations in the initial conditions and not due to
an intrinsic random dynamics.

The importance-sampling method [6] we construct in
this paper samples initial conditions x ∈ Γ with probabil-
ities different from µ in order to obtain more samples at
the tail of P (E). However, our goal is still to be able es-
timate the probability of the event P (E) of our original
problem (original ensemble of initial conditions). The
strict determinism of the (chaotic) dynamics is crucial
for the design of efficient sampling methods. On the one
hand, the lack of intrinsic randomness poses difficulties to
traditional methods, e.g., it is not possible to distinguish
between trajectories based on different noise realizations
and therefore cloning of trajectories requires more refined
procedures [2, 5]. On the other hand, determinism can
be explored in order to efficiently search for trajectories
leading to rare events.

The goal of this manuscript is to show how to construct
efficient Markov Chain Monte Carlo methods to sample
rare trajectories of chaotic dynamical systems. The key
ingredient is to use information about the chaoticity of
the last sampled trajectory to construct a proposal distri-
bution that efficiently finds a new trajectory of interest.
First we review our previously proposed [7] approach (in
Sec. II), which has been successful in different problems
involving strongly chaotic systems [7–10]. We then focus
(in Sec. III) on deviations from strong chaos and how
they pose challenges for the application of the previously
developed methods.

II. CHAOS AND METROPOLIS-HASTINGS
METHODS

Sampling methods typically exploit the fact that if a
given trajectory of interest is found – x with a rare Ex
– this can be used to find other trajectories of interest
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– x′ with Ex′ ≈ Ex. The essential step for the success
of the method is to be able to choose the right proposal
distribution of x′ given x – denoted as g(x′|x) – that
guarantees that x′ will likely lead to a “good” Ex′ . The
most natural choice is to correlate trajectories x and x′ to
obtain Ex′ sufficiently close to Ex. This is an heuristics
often used in Statistical Physics, implicit in the choice of
minimal/local proposals, e.g., in spin systems (single spin
flip) [11], in random networks (single link exchange) [12],
and in proteins [13]. Since our phase space is continuous
it is not clear what a minimal local proposal would be in
our case. In this sense, the challenge we address in this
paper is to formalize what sufficiently close means and
to construct an efficient proposal g(x′|x) that achieves it.

The general ideas sketched above are valid for broad
classes of sampling methods, but here we focus on a
Metropolis-Hastings setting [14, 15], in line with our pre-
vious works revised in [7]. In this setting, starting from
x ∈ Γ a new state x′ ∈ Γ is proposed according to g(x′|x).
This move can be accepted – the new trajectory x′ is sam-
pled and the procedure is repeated from x′ – or rejected –
the trajectory x is sampled again and the procedure is re-
peated from x with an independent sample from g(x′|x).
This procedure is repeated n times, leading to n (corre-
lated) samples. If the proposal is ergodic – all x ∈ Γ have
a non-zero probability to be sampled for n → ∞ – and
the acceptance given by

a(x′|x) = min

(
1,
g(x|x′)
g(x′|x)

π(x′)

π(x)

)
, (1)

the sampled trajectories x′ will approach π(x) for n →
∞ [15]. The sampling distribution π(x) can be chosen at
will. A popular choice is the canonical distribution [14]

π(x) = π(Ex) ∝ e−βEx , (2)

where different regions of the distribution P (E) are
sampled when the parameter β is varied. Another
popular choice is the multi-canonical (flat-histogram)
distribution[16]

π(x) ∝ 1

P (Ex)
for Ex ∈ [Emin, Emax], (3)

which can be computed (in case P (E) is unknown) also
through the Wang-Landau method [17].

The crucial step to implement a Metropolis-Hastings
algorithm to sample chaotic trajectories is the construc-
tion of an efficient proposal g(x′|x) distribution. The
following three steps can be used to achieve this [7]:

1. The goal is to bound the acceptance (1) by making
E′x and Ex sufficiently close to each other. Assum-
ing

g(x|x′) ≈ g(x′|x), (4)

the key remaining term in the acceptance is the ra-
tio π(Ex′)/π(Ex) . We can thus express our heuris-
tic more formally by fixing the expectation of this

ratio over all possible x′

E
[
π(Ex′)

π(Ex)
|x
]

=

∫
Γ

π(Ex′)

π(Ex)
g(x′|x)dx′ = a , (5)

where 0 < a ≤ 1 is a constant (ideally, the con-
stant acceptance rate). Since the proposal achieves
a small variation of E, π(Ex′) can be expanded in
Taylor series around Ex′ = Ex as

π(Ex′)

π(Ex)
= 1 +

d log π(Ex)

dE
(Ex′ − Ex) . (6)

Introducing Eq. (6) in Eq. (5) we obtain an explicit
condition

E [Ex′ − Ex|x] =
a− 1

d log π(Ex)/dE
. (7)

2. The next step is to compute the correlation time t?
needed for the trajectories to be close to each other
in order to achieve condition (7). We assume that
the observables E of interest are built throughout
the to times step of the trajectory so that trajec-
tories that remain close (correlated) in the phase
space lead to similar observables E. The correla-
tion time t?, 0 ≤ t? ≤ to is the time the two tra-
jectories remain “close” to each other, i.e., within
a distance ∆ that is smaller than the expected dis-
tance between two randomly chosen trajectories in
Ω. We assume that, in practice, the two trajec-
tories are identical until t?, i.e. x(t) = x′(t) for
0 ≤ t ≤ t?,and independent for t > t?, i.e. x′(t) is
sampled according to µ for t > t?. Explicit expres-
sions for t? have been derived for the escape time
and finite time Lyapunov exponent (see Ref. [7])
and for the dispersion in spatially extended (diffu-
sive) systems (see Ref. [10]).

3. Once the t? that guarantees condition (7) is known
for a given problem (i.e., for a given observable E
and distribution π) we can generate trajectories x′

from one of the following two procedures: shifting
the trajectory by a time t? backward/forward us-
ing the dynamics x′ = F±t?(x) (shift proposal); or
proposing x′ on a neighborhood of size δx around
x (local proposal). The choice of δx in a chaotic
system is such that the trajectories should remain
close to each other up to a time t? despite the expo-
nential divergence of nearby trajectories, and thus

δx(x) = ∆e−λt? (x)t?(x) , (8)

where λt(x) is the largest finite-time Lyapunov ex-
ponent (FTLE) of the trajectory (initiated in posi-
tion x) and ∆ is a constant of the order of |Γ|. De-
pending on the problem, λt? can be approximated
by λto or (more strongly) by λt→∞ (the largest Lya-
punov exponent of the system).
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The construction proposed above has been successfully
implemented to obtain efficient Monte Carlo methods
in different problems [7], including calculations of finite-
time Lyapunov exponents in N coupled oscillators (with
N up to 1024) [9] and the computation of trajectories with
high dispersion in diffusive systems such as the Lorentz
gas [10]. Here we focus on violations of the simplifying
assumptions and approximations made above. Violations
of strong chaos and uniform hyperbolicity are typical in
chaotic dynamical systems, and our interest is to investi-
gate how they affect our sampling methods and how our
methods can be modified to account for them. We de-
note by weak chaos the chaotic dynamics observed in sys-
tems that violate the simplifying hypothesis of uniform
exponential divergence of initial conditions used above,
including systems with marginal stable points and Hamil-
tonian systems with mixed phase space [23, 26].

III. EFFECT OF WEAK CHAOS ON THE
SAMPLING ALGORITHM

In each of the three subsections below we consider a
simple dynamical systems, with increasingly important
(generic) weakly-chaotic features, that violate some of
the simplifying assumptions used above.

A. Logistic map

A crucial step in our derivation above is that the width
of the local proposal, δx(x) in Eq. (8), guarantees that
the trajectory starting from x′ is within ∆ of the trajec-
tory starting from x up to time t?. This approximation
was based on the assumption of exponential divergence
of nearby trajectories, using the maximum FTLE λt(x).
The example we consider below shows how this assump-
tion can be violated due to the coexistence of regions
with positive and negative FTLE. Consider the logistic
map, defined on Ω = [0, 1] by

xt+1 = F (xt) = 4xt(1− xt) . (9)

Any irrational initial condition x ergodically fills Ω fol-
lowing dµ = 1

π
√
x(1−x)

dx. The FTLE in this simple sys-

tem can fluctuate considerably. The Lyapunov exponent
is positive, but finite time estimations can be negative
because |dF/dx| = |4 − 8x| < 1 for 3/8 < x < 5/8.
Particularly problematic are trajectories that come close
to x = 1/2, where |dF/dx| = 0. As a consequence, the
distribution of FTLE of this map, P (λt), has negative
values for any finite t [20], which implies that there is
a non-zero measured set where λt(x) < 0 for all x. For
any x in this set, and any fixed ∆ in Eq. (8), increasing
t? leads to a proposal with a width larger than 1 (the
phase space size). This implies that, for large t?, x

′ is
approximately drawn uniformly from [0, 1]. In this situa-
tion, it is never expected that the two trajectories x′ and

0 5 10 15
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FIG. 1. Temporal evolution of the distance δt ≡ |x′t − xt|
between two close-by initial conditions in the logistic map (9)
(see inset). The relative distance |x′t − xt|/δx(t) (actual di-
vided by predicted) is shown as a function of time. We first
choose one trajectory x with FTLE λ15(x) ≈ −0.15 < 0 and
choose another trajectory x′ = x+ 10−5 exp(−λ15(x)15). Up
to time ti = 9, the actual (numerically obtained) distance
|x′t−xt| is well described by δx(t) = δx(0) exp(λt(x)t) so that
δt/δx(t) ≈ 1. This dramatically changes at ti+1 = 10 be-
cause x(ti) ≈ 0.5 and the distance becomes much larger than
expected.

x are close within ∆ up to time t?, violating our initial
assumption.

The crucial violation here is related to the fact that the
Lyapunov exponent corresponds to a linear (first-order)
term that correctly describes the divergence of two tra-
jectories in time in the limit that their initial separation
goes to 0. The growth of the divergence of two trajecto-
ries separated by a finite distance δx(x) is not necessarily
well described by exp(−λt(x)t) (see Ref. [18] for more on
finite-size Lyapunov exponents). This violation is more
evident in trajectories x where λt(x) < 0. To see why,
consider a trajectory starting at x on which at time ti,
xti ≈ 1/2, and consider that all other xt are not close
to 1/2. Since the map is chaotic, up to ti, trajectories
starting from x′ distanced from x by δ0 exp(−λti(x)ti)
were approximately, at time ti, within δ0 of xti . How-
ever, at that particular point xti , the derivative is zero
and thus the first order approximation predicts that the
states xti+1 and x′ti+1 will be arbitrarily close to each
other: ∣∣x′ti+1 − xti+1

∣∣ ≈ ∣∣∣∣dFdx (xti)

∣∣∣∣ δ0 ≈ 0 . (10)

However, this prediction is might not be accurate because
when the first order term is zero, the second order term
is non-zero and dominates:

x′ti+1 − xti+1 ≈
1

2

∣∣∣∣d2F

dx2
(xti)

∣∣∣∣ δ2
0 = 4δ2

0 . (11)

We confirmed numerically the appearance of the be-
haviour described above, which is known as glytch [21].
We consider two trajectories initially separated by
∆ exp(−λt(x)t), and we compare the distance in time,
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FIG. 2. The open Pomeau-Maneville map. Left: the Pomeau-Maneville map and the exit region Λ in gray. Right: the escape
time function of the map. The landscape is fractal and the intervals with constant escape time te have a symbolic sequence
associated to them: each new interval at te + 1 is constructed to the left (L) or to the right (R) of an interval at te, except
when the interval at te was to the right from it’s own previous te− 1. It is thus a restricted symbolic dynamics s1s2s3...st with
the forbidden sequence RR.

δt ≡ |x′t − xt|, with the distance δx(t) = ∆ exp(λt(x)t)
expected based on the first order approximation (10).
A violation of the assumption happens when the ratio
r(t) ≡ δt/δx(t) is different from 1. Figure 1 shows a rep-
resentative example of this simulation, which confirms
that the ratio r(t) can change abruptly, becoming orders
of magnitude different from 1 (indicating that the dis-
tance |x′t−xt| is much larger than the expected distance
given by δx(t)). This could be fixed by decreasing the
initial distance ∆, but the crucial point here is that ∆
strongly depends on the particular x and can be orders of
magnitude different for different x (e.g. one with λt > 0
vs. one with λt < 0). In other words, the assumption
that is violated in the logistic map is that there is a ∆ in-
dependent of x that makes δx(x) in Eq. (8) to guarantee
a correlation time t? between any two trajectories. The
results above do not imply that Metropolis-Hastings can-
not be used in systems where λt < 0 for some states, they
imply that Eq. (8) has to be extended, e.g., to make ∆
dependent on x. In the next section we consider a similar
issue, arising when periodic orbits show zero Lyapunov
exponents.

B. Pomeau-Maneville map

One important approximation in the derivation of
t?(x) in point 2. of Sec. II above is that, for t > t?, x

′
t?

is independent of xt? . This approximation was based
on the notion that trajectories diverge exponentially and
thus two trajectories are separated by ∆ ≈ 1 at t = t? will
rapidly become independent of each other. This approx-
imation is naturally violated when the (local) divergence
of nearby trajectories is not exponential, and our goal
here is to explore the consequences of this violation to
our sampling method.

Let us analyze one simple one-dimensional sys-
tem where non-exponential divergence is present, the
Pomeau-Maneville map defined in Ω = Γ = [0, 1] by

xt+1 = F (xt) = xt + x2
t mod 1 . (12)

This map is a model for intermittency, a phenomenon on
which trajectories irregularly alternate between regular
and chaotic motion [23]. The intermittency in this sys-
tem appears because dF

dx = 1+2x and thus the fixed point
x = 0 = F (0) is a non-hyperbolic point. The ergodic in-
variant measure µ is non-normalizable as it diverges at
the fixed point as dµ ∼ 1

xdx [24]. More general Pomeau-
Maneville maps consider a generic power z instead of 2
in Eq. (12) [25]. From this point of view, the case treated
here (z = 2) is special because it lies at the border be-
tween normalizable and non-normalizable µ and it would
be interesting to generalize our results to z 6= 2.

The observable we are interested in is the time a tra-
jectory takes to escape an open Pomeau-Maneville map,
achieved leaking [22] the map by adding an exit region Λ
so that trajectories x ∈ Λ are removed (te = 0). Choos-
ing Λ = [`, 1] for the map (12), with

` =
1

2

(
−1 +

√
3 + 2

√
5

)
, (13)

ensures that the function relating the escape time te to
the initial condition x can be described by a symbolic
sequence with forbidden sequences, as shown in Fig. 2.
The distribution of escape times P (te) is known to have
a power-law tail P (te) ∼ t−αe with an exponent α = 2.
This implies that the average escape time 〈te〉 diverges, a
strong form of intermittency (or stickiness at the origin).
Since the escape time varies over orders of magnitude,
it is natural to consider as an observable the logarithm
of the escape time Ex = log te(x). The distribution of
Ex = log te(x) is then exponential with an exponent α′ =
α+1 = −1. Our interest is to estimate P (te) and sample
trajectories at the tail of this distribution.

Qualitatively, a typical long living trajectory can be
pictured by a trajectory that, for a time tchaos, behaves
as if it was a chaotic trajectory, and that at some time,
denoted here as a time ti, is injected close to the non-
hyperbolic point x = 0. The trajectory then spends a
long time tstick close to 0, until it eventually leaves the
region, returning to a chaotic movement. An example of
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such a trajectory is shown in Fig. 3a.
We now investigate how the recipe from Sec. II can be

used to construct an efficient proposal distribution for the
Pomeau-Maneville map, focusing on the main differences
between this map and other strongly chaotic system for
which the recipe has worked in the past. The two major
differences here are: a) the observable is E = log te, in-
stead of te; and b) there is a non-hyperbolic fixed point
at x = 0. We obtain numerical insights on this problem
by starting from a trajectory x with a high escape time
te(x) and searching for different x′, obtained adding to x
a small perturbation of typical size δx (see Appendix A
for details) given by

δx(x, t?) = ∆e−λt? t? . (14)

This equation is similar to Eq. (8), but here instead of us-
ing a theoretically derived t? we use it as a free-parameter
that defines a scale. Using this proposal, we measure
P (log t′e− log te|x) for different t?. The goal is to test the
hypothesis that proposing with Eq. (8) guarantees that
the two trajectories remain, on average, close together
up to time t?. If the assumption holds in this system,
choosing t? = qte, with 0 < q < 1, would imply that on
average te(x

′) ' t? = qte(x). In terms of the logarithm,
this would imply that

log te(x
′) ' log te(x) + log q (15)

The outcome of a numerical experiment that imple-
ments the ideas above is shown in Fig. 3. We focus on
a trajectory x with an escape time te(x) = 16458, or
log te ≈ 10 (Fig. 3, upper panel). The variation in the
observable P (log t′e − log te|x, t?) for different values of
t? shows (Fig. 3, middle panel) that, independently of
t?, most trajectories show a log t′e − log te much smaller
than the expected value from Eq. (15) (e.g., for q = 0.5,
t? = 0.5te, we would expect log te(x

′)−log te(x) ' −0.7).
In fact, independent of t?, almost 50% of all trajectories
shows log te(x

′) − log te(x) ≈ −6.5. This shows that the
assumption that Eq. (8) guarantees that the states are
close up to t? is violated here due to the non-hyperbolic
nature of the point x = 0. Still, our result does indi-
cate a dependence of log te(x

′) − log te(x) on t?, which
suggests that it may still be possible to derive a distance
between x′ and x that leads to a bounded acceptance. To
investigate this possibility, we repeat the approach done
previously for the logistic map (in Fig. 1) and plot (in
Fig. 3, lower panel) the expected divergence given by the
first order term of the Taylor expansion with the actual
distance between the trajectories, for different trajecto-
ries x′ generated with t? = 0.9te. We find that there
are many trajectories that largely deviate from x at the
time ti when the trajectory is injected close to the crit-
ical point x ≈ 0. Half of the trajectories quickly exit
the system (being responsible for the high peak around
log te(x

′) − log te(x) ≈ −6.5), they correspond to points
that in Fig. 3 have a low escape time te(x

′).
The numerical observations reported above can be un-

derstood analytically by focusing on the injection of the
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FIG. 3. Searching for local proposals in the open Pomeau-
Maneville map (12). (Top) Representation of | log dF/dx| of
a typical long-living trajectory: it starts in the chaotic re-
gion (high derivative), at ti = 31 it is injected very close to
x = 0 (low derivative), it then shows very slow divergence
until it leaves this region and eventually hits the exit region
and escapes at t = 16458. The FTLE of this trajectory is
the arithmetic mean of this curve, which shows large fluctu-
ations as a function of time due to the intermittency in the
trajectory. (Middle) P (log te(x′)− log te(x)|x), where x is the
trajectory represented in the top panel (te(x) = 16458) and
1000 different x′’s are generate according to δx(x) in Eq. (14),
for ∆ = 1 and different values of t? (see legend). (Bottom) In-
dividual trajectories starting at x′ (generated for t? = 0.9te)
nearby from x are shown as a thin black lines. Approximately
half of them escape a the time ti = 31, when x is injected to
the non-hyperbolic point 0 (see top panel).

chaotic trajectory into the trapping point x = 0. This
injection happens around the pre-image of x = 0, which
is x = 1/φ, where φ is the golden ratio. At 1/φ, the
map F in Eq. (12) is discontinuous. For a trajectory
to be long living, it must approximate 0, which requires
its pre-image to be very close but larger than 1/φ, i.e.,
x = 1/φ + ε (with ε > 0). The proposal distribution
is a normal distribution around x, and therefore half of
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the trajectories can be at x < 1/φ. These will not be
mapped close to 0 and therefore most likely they quickly
leave the system. The orbits mapped ε close to 0 evolve
initially as xt ≈ ε + tε2 (in order ε2). The escape time
te(x) is proportional to the time x takes from ε to 2ε
and therefore te ∝ 1/ε. The linear divergence close to
x ≈ 0 implies also that the total divergence of such tra-

jectory is D =
∑te(ε)
i=0 log(1 + 2xi) ≈

∑te(ε)
i=0 2xi ∝ t2e. We

performed numerical simulations that confirm these two
scaling and fix the pre-factors as te = 1/ε and D = 3.3t2e.

We now use the results discussed above to obtain an
expression for δx(x) that guarantees a given variation
of log te(x

′) − log te(x) – as required by Eq. (7) – and
that can thus be used to construct an efficient proposal
distribution g(x′|x). Let ε(x) be the smallest distance
of xt from 0 for all t = 1, ..., te(x), and let ti(x) + 1 be
the time at which this happens (i.e., at ti(x), x is injected
close to x = 0 ). Assuming that there are no re-injections,
the time from ti until the state crosses 1/φ, t∗e(x) is the
leading contribution to te(x), i.e. t∗e(x) ≈ te(x). Using
that te = 1/ε we can write ∆E(x) = E(ε(x′))− E(ε(x))
as

∆E(x) = log te(ε
′)− log te(ε) = log ε− log ε′ . (16)

Introducing δi(x) ≡ ε′ − ε in the equation above and
solving for it we find

δi(x) =
(
e−∆Ex − 1

) 1

te(x)
. (17)

To guarantee that the two states are within δi(x) at time
ti, the distance δx(x) between x′ and x at time t = 0
should be (according to Eq. (8))

δx(x) = ∆e−λti (x)tiδi(x) = ∆e−λti (x)ti
(
e−∆Ex − 1

) 1

te(x)
.

(18)
The result above depends on ti(x), while we would like
to express it as a function of our observable te(x). After
injection the divergence is very small, and thus we re-
place λtiti by λtete but we additionally multiply this ex-
pression by the total divergence D(ε) ∝ te(ε)

2 discussed
above (the total divergence D(x, te) is the product of the
divergence up to ti and the divergence from ti to te). Our
final results is then

δx(x) = ∆
(
e−∆Ex − 1

)
e−λte (x)tete(x) , (19)

which relates the scale that two states x and x′ should
be in order to achieve a given expected variation in the
observable E. This expression replaces Eq. (8) for the
Pomeau-Maneville map (12) considered here. The essen-
tial new feature is the appearance of the multiplying term
te(x). The term e−∆Ex − 1, which ideally should incor-
porate the desired ∆E computed using Eq. (7), does not
show a strong dependence on te(x) so that in practice we
considered it to be a constant (i.e., we incorporate it in
the proportionality constant ∆).

We test the accuracy and usefulness of the re-
sults above through numerical simulations of a flat-
histogram (3) simulation, as reported in Fig. 4. The
success on the estimation of P (te) can be seen on: (i)
the agreement with the traditional uniform sampling, not
only in the tail of P (te) but also for short times; and (ii)
the polynomial scaling of the computational efficiency
(round-trip scales as E2 for increasing E). This con-
firms that the proposal distribution derived in Eq. (19)
achieves its goal in obtaining an efficient Metropolis-
Hasting simulation. While the specific derivation pre-
sented here is valid for the Pomeau-Maneville map only,
for which analytical results exist, the reasoning of de-
riving a δx(x) that allows to change log te can be ap-
plied more generally to maps with marginally unstable
points. The main conclusion here is that the methodol-
ogy summarized in Sec. II is applicable to weakly chaotic
open systems with power-law distributions of the escape
time, and reinforces the thesis that the strength of this
methodology lies in its ability to construct the proposal
distribution from the properties of the dynamical system
under investigation.

C. Standard Map

The previous section considered an example of a
weakly chaotic system for which, due to its simplicity,
it was possible to derive a relationship between the dis-
tance of two trajectories x′−x and the difference in their
respective observables, Ex′ − Ex. This motivates us to
consider a more challenging problem, which shows a sim-
ilar type of survival probability distribution P (te) but
for which no analytical results are known. We consider
the area-preserving standard map (pt+1, θt+1) = F (pt, θt)
given by [23]

F (p, θ) =

{
p+K/(2π) sin(2πθ) mod 1

θ + p+K/(2π) sin(2πθ) mod 1
. (20)

This map is a paradigmatic example of the KAM scenario
of mixed phase-space Hamiltonian systems [23, 26]. For
the parameters K we use in our numerical investigations
(K ' 2), chaotic and regular components with non-zero
measure coexist in the phase space. Introducing an exit
region in the chaotic component, the escape time dis-
tribution of trajectories started in the same component
follow P (te) ∼ t−αe , as shown in Fig. 5 (which again mo-
tivates the observable Ex = log te(x)). The intermit-
tency (or stickiness) in the standard map is weaker than
the one observed in the Pomeau-Maneville map: there
is (normalizable) invariant measure µ (the phase space
area), the exponent is 2 < α < 3, and the average escape
time 〈te〉 exists. The existence of a universal asymptotic
exponent α has been long conjectured [27, 28] and the
subject of extensive theoretical and numerical investiga-
tions [26, 29, 30]. The numerical investigations in these
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FIG. 4. Efficient sampling of trajectories in an intermit-
tent map. (Top) The escape time distribution (P (log te)) of
the Pomeau-Maneville map (12). The black symbols were
obtained choosing initial conditions uniformly in Ω = [0, 1],
the red symbols are the results of our importance sampling
simulations, and the dashed line is the theoretical asymp-
totic scaling, t−1

e . The x axis is te in logarithmic scale and
the distribution was built using bin size one in E = log2 te.
The importance sampling simulation is a Metropolis-Hastings
with the Wang-Landau algorithm, using the proposal given by
Eq. (19). The lower plot shows the histogram m(t) flat in the
variable E = log2(te). The simulation used 10 Wang-Landau
refinement steps, with 5 round-trips on each refinement step.
We use Eq. (19) with ∆(e−∆Ex−1) = 0.1. (Bottom) The aver-
age round-trip time τ of Metropolis-Hastings scales polynomi-
ally with maximum E. A round-trip is defined as a movement
from Emin = 0 to Emax = E = log2 te, for various maximal
te. Each point is the average over 32 round-trips.

works considered uniformly chosen initial conditions and
our goal is to investigate whether more efficient choices of
initial conditions can be obtained through our approach.

We start repeating the steps performed for the two pre-
vious maps to investigate how the distance between x and
x′ changes with t? in Eq. (14). The results shown in Fig. 6
show that, contrary to what was observed in the previous
maps, trajectories remain close to xt at least up to a time
t?, as designed in original formulation (8). Comparing to
the results in Fig. 3 for the Pomeau-Maneville map, there
seems to be no special time ti at which trajectories be-
have fundamentally different.

The result above indicates that δx(x) in Eq. (8) can
be used to control the time up to which trajectories are
close. Even without a theoretical result indicating what
t?(x) should be used, we see from the results above that
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FIG. 5. Escape time distribution P (te) of area-preserving
maps with mixed phase-space systems shows power-law tails.
The system is the standard map (20) with K = 2.1 and exit
region Λ = [0, 1] × [0, 0.1], see the Inset for the iteration of
multiple trajectories in the phase space (notice the KAM is-
land around the elliptic fixed point at (0, 0.5)). The escape
time distribution P (te) was computed by starting 106 ini-
tial conditions uniformly on the first image of the exit region
(F (Λ)).

t? = 0.5te is an heuristic choice that guarantees x′ with
Ex′ both higher and lower than Ex for different values
of te(x). Implementing this into a Metropolis-Hastings
sampling method we systematically observe that the ac-
ceptance of our method approaches zero, ruining the ef-
ficiency of our sampling algorithm. To understand why
this happens, recall that that a crucial simplification in
the derivation of Eq. (7) was that of reversible proposal
distribution g(x’—x), Eq. (4). It will be argued below
that the proposal with t?(x) = 0.5te(x) in the standard
map guarantees a bounded π(Ex′)/π(Ex), but it fails to
guarantee a constant acceptance ratio, Eq. (1), because
of the mismatch in the proposal distributions g(x′|x) and
g(x|x′), in violation of assumption (4). In fact, results
in Fig. 6 suggest that, even though the escape time for
t? = 0.5te lead to similar log te, their respective FTLE
varies dramatically. For a local proposal drawn from a
half normal distribution – see Appendix A – the ratio of
the proposals g is given by

g(x|x′)
g(x′|x)

=
δx(x)

δx(x′)
exp

[
−π|x

′ − x|2

4δx(x)2

(
1− δx(x)2

δx(x′)2

)]
(21)

By definition, x′ is constructed to be drawn such that
|x′ − x| ≈ δx(x). Thus, the ratio g(x|x′)/g(x′|x) essen-
tially depends on the ratio R(x, x′) ≡ δx(x)/δx(x′). This
allows to write g(x|x′)/g(x′|x) = f(R(x, x′)) as

f(R) = R exp
[
−
(
1−R2

)
π/4

]
. (22)

This function fulfills f(1) = 1 and f(0) = 0, and de-
creases to zero for R� 1 and R� 1. Thus, the more the
distributions differ, the larger/smaller f(R) is (depending
on whether R < 1 or R > 1). To guarantee a constant ac-
ceptance, the proposal distribution also needs to guaran-
tee a bounded ratio g(x|x′)/g(x′|x), which thus equates
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FIG. 6. Searching for local proposal in the open standard
map (20) with K = 2.3. Starting from a randomly se-
lected trajectory x with escape time te (in the tail of P (te)),
we sample nearby trajectories in a neighborhood given by
exp(−λt?(x)t?) (Eq. 14, ∆ = 1) for different values of t?
(given as multiples of te). (Top) Single trajectory x (in black)
and multiple trajectories x′ obtained for t? = 0.1te(x) (red),
t? = 0.5te(x) (green) and t? = 0.9te(x) (blue). Trajectories
are plotted until they leave, i.e. the last time corresponds to
te(x′). The vertical dashed lines represent 0.1te(x), 0.5te(x)
and 0.9te(x) respectively. (Middle) The conditional probabil-
ity of te(x′) = t′e around a particular state x (randomly gen-
erated) with an escape time te(x) = 14995 (E = log2 te ≈ 3)
and different t? (see legend). (Bottom) Histograms for trajec-
tories x with six different values of te(x) (different colors, see
caption) and fixed t? = 0.5te. The distribution of distances
log te(x)′− log te(x) with x′ proposed with a correlation time
t?(x) = 0.5te(x) from x remains similar with increasing te(x).
All simulations were made with arbitrary precision [19]. The
λte(x) used in Eq. (8) was computed by generating a ran-
dom unitary vector h (same as the one used to generate x′)
and evolving it in the tangent space, by multiplying it by the
Jacobian matrix Jt.
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FIG. 7. Strong variation of the ratio of the proposal distri-
butions, responsible for the low acceptance rate. The sys-
tem is the open standard map with t?(x) = te(x)/2 and
te = 16437 ≈ 214 (as in Fig. 6). The x-axis shows log te
of te(x′) and te(x). The y-axis shows logR(x′, x), where
R(x′, x) = δx(x)/δx(x)(x′) is the ratio of the proposal widths
δ at x and x′. This is very different from 1 – contrary to ap-
proximation (4) – turning the acceptance rate (1) extremely
small.

to guarantee a bounded R(x′, x). Since there are no more
free parameters of the proposal distribution, what re-
mains to be analyzed is whether R(x′, x) is bounded or
not. Figure 7 illustrates the different values of R(x′, x)
obtained from the same points used to construct the his-
togram of Fig. 6, for the case te = 16437. As anticipated,
it indicates, that the ratio R(x′, x) is orders of magnitude
different from 1 specially with te(x

′) > te(x), which, from
the preceding discussion, leads to an arbitrarily small ac-
ceptance rate.

In summary, this section showed how the proposal dis-
tribution with t?(x) = 0.5te(x) in the open standard map
allows to propose states with an increasing log te(x

′).
This can be used, e.g., for algorithms that aim to find
long living trajectories. However, this proposal distribu-
tion leads to vanishing acceptance rate in a Metropolis-
Hastings simulation, which implies that it is not suit-
able to sample long living trajectories. To understand
the reason for the vanishing acceptance, consider a pro-
posed move from x to x′ that leads to the desired lo-
cal increase of E = log te. In order for this move to be
accepted, as discussed in Sec. II, the probability of the
reverse move (from x′ to x) should not be vanishingly
small (ideally, g(x|x′) ≈ g(x′|x)). However, a local move
in E = log te is a large move in te (for large E), which
is multiplied by the FTLE λt?(x) and exponentiated to
compute the characteristic search scale δx(x) in Eq. (8).
In the standard map, the FTLE is not sufficiently small
to compensate for this increase and therefore the value
of δx′(x′)� δx(x), leading to g(x|x′)� g(x′|x). The dif-
ference to the Pomeau-Maneville map is that the sticki-
ness in the standard map is weaker (α > 2, larger FTLE)
and more complicated [29, 30] (e.g., not a single trapping
point). A possible strategy to obtain an efficient sample
is to include the ratio of the proposal distributions on
the acceptance rate, potentially leading to an extension
of Eq. (7) which sets a tighter condition for a bounded
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acceptance rate.

IV. CONCLUSIONS

Sampling rare trajectories in chaotic systems invoslves
coupling two dynamical systems: the deterministic sys-
tem we aim to study and the stochastic sampling method
we construct. In a Metropolis-Hastings Monte Carlo
sampling, the efficiency of the sampling depends criti-
cally on how the coupling is set through the choice of
the proposal distribution. The ideas presented in this
paper show how to construct such proposal distribution
based on the properties of the deterministic system. In
particular, we discussed how weakly-chaotic properties of
the dynamics affect the proposal distribution under naive
assumptions of strong chaos.

The main computational problem we discussed was
to sample trajectories with very large escape time in
open (weakly-chaotic) systems. For the case of one-
dimensional maps with marginal points, we were able to
obtain an efficient Metropolis-Hasting method to sample
trajectories. For the case of area-preserving maps with
mixed phase space, we showed how our approach is able
to find long-living trajectories in the system but that the
Metropolis-Hasting method fails due to a low-acceptance
ratio. We hope these results will trigger further work on
the application of Monte Carlo methods in deterministic
dynamical systems, in particular to the open problem of
having an efficient sampling method to estimate the tails
of the survival probability in intermittent systems (e.g.,
Hamiltonian systems with mixed phase space in arbitrary
dimensions).
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Appendix A: Half-Gaussian local proposal

Our local proposal consists in perturbing x by a finite

amount ~δ, x′ = x+ ~δ, characterized by a direction δ̂ and

a norm δ, ~δ ≡ δ̂δ, g(x′|x) = x+ P (~δ|x). A common case
is when the probability distribution is separated in two
independent terms [15]:

P (~δ|x) = P (δ̂|x)P (δ|x), (A1)

P (δ̂|x) is uniformly distributed in the D directions, and
P (δ|x) has zero mean (i.e. an isotropic proposal). Ad-
ditionally, we consider that P (δ|x) is characterized by a
well defined scale, e.g. a half-normal distribution with
mean δx(x):

P (δ|x) =

√
2√

πδx(x)2
e
− πδ2

4δx(x)2 for δ > 0 . (A2)

The main motivation for this choice is that the proposal
distribution is described by a single function, δx(x), that
quantifies the distance x′ − x, E [|x′ − x||x] = δx(x).
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