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ABSTRACT Contrast enhancement is an important preprocessing technique for improving the performance
of downstream tasks in image processing and computer vision. Among the existing approaches based
on nonlinear histogram transformations, contrast limited adaptive histogram equalization (CLAHE) is a
popular choice for dealing with 2D images obtained in natural and scientific settings. The recent hardware
upgrade in data acquisition systems results in significant increase in data complexity, including their sizes
and dimensions. Measurements of densely sampled data higher than three dimensions, usually composed
of 3D data as a function of external parameters, are becoming commonplace in various applications in the
natural sciences and engineering. The initial understanding of these complexmultidimensional datasets often
requires human intervention through visual examination, which may be hampered by the varying levels of
contrast permeating through the dimensions. We show both qualitatively and quantitatively that using our
multidimensional extension of CLAHE (MCLAHE) simultaneously on all dimensions of the datasets allows
better visualization and discernment of multidimensional image features, as demonstrated using cases from
4D photoemission spectroscopy and fluorescence microscopy. Our implementation of multidimensional
CLAHE in Tensorflow is publicly accessible and supports parallelization with multiple CPUs and various
other hardware accelerators, including GPUs.

INDEX TERMS Contrast enhancement, histogram equalization, multidimensional data analysis, photoe-
mission spectroscopy, fluorescence microscopy.

I. INTRODUCTION
Contrast is instrumental for visual processing and under-
standing of the information content within images in various
settings [1]. Therefore, computational methods for contrast
enhancement (CE) are frequently used to improve the vis-
ibility of images [2]. Among the existing CE methods,
histogram transform-based algorithms are popular due to
their computational efficiency. Natural images with a high
contrast often contain a balanced intensity histogram, this
conception led to the development of histogram equaliza-
tion (HE) [3]. A widely adopted example in this class of
CE algorithms is the contrast limited adaptive histogram
equalization (CLAHE) [4], [5], originally formulated in 2D,
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which performs local adjustments of image contrast with low
noise amplification. The contrast adjustments are interpolated
between the neighboring rectilinear image patches called ker-
nels and the spatial adaptivity in CLAHE is achieved through
selection of the kernel size. The intensity range of the kernel
histogram (or local histogram) is set by a clip limit that
restrains the noise amplification in the outcome. Accounts
of the historical development are given in Section II. The
use cases of CLAHE and its variants range from underwater
exploration [6], breast cancer detection in X-ray mammogra-
phy [7], [8], biometric authentication [9], video forensics [10]
to charging artifact reduction in electron microscopy [11]
and multichannel fluorescence microscopy [12]. Due to
the original formulation, its applications are concentrated
almost exclusively in fields and instruments producing
2D imagery.
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However, the current data acquisition systems are capa-
ble of producing densely sampled image data at three or
higher dimensions at high rates [13]–[17], following the rapid
progress in spectroscopic and imaging methods in the charac-
terization ofmaterials and biological systems. Sifting through
the image piles to identify relevant features for scientific and
engineering applications is becoming an increasingly chal-
lenging task. Despite the variety of experimental techniques,
the parametric dependence (with respect to time, temperature,
pressure, wavelength, concentration, etc.) in the measured
system resulting from internal dynamics or external perturba-
tions are often translated into intensity changes registered by
the imaging detector circuit [18]. Visualizing and extracting
multidimensional image features from acquired data often
begin with human visual examination, which is influenced
by the contrast determined by the detection mechanism, spec-
imen condition and instrument resolution. To assist multidi-
mensional image processing and understanding, the existing
CE algorithms formulated in 2D should adapt to the demands
in higher dimensions (3D and above). Recently, a 3D exten-
sion of CLAHE acting simultaneously on all dimensions has
been described and shown to compare favorably over 2D
CLAHE for volumetric (3D) imaging data both in visual
inspection and in a contrast metric, the peak signal-to-noise
ratio (PSNR) [19].

The formulations of 2D [5] and 3D CLAHE [19] algo-
rithms include individual treatment of the image boundaries
(corners and the various kinds of edges), which becomes
tedious in higher dimensions. In addition, the scalable
computation of kernel histograms and intensity transforms
presents a major challenge in higher dimensions. In this work,
we formulate and implement multidimensional CLAHE
(MCLAHE), a flexible and efficient generalization of the
CLAHE algorithm to an arbitrary number of dimensions. The
MCLAHE algorithm introduces a unified formulation of the
image boundaries, allows the use of arbitrary-shape rectilin-
ear kernels and expands the spatial adaptivity of CLAHE to
the intensity domain with adaptive histogram range selection.
The parallelized implementation of MCLAHE also enables
hardware-dependent computational speed-up through the use
of multiple CPUs and GPUs. None of these aspects per-
taining to handling complex multidimensional imagery have
garnered attention in the original formulation of 2D [4], [5]
or 3D CLAHE [19]. Next, we demonstrate the effectiveness
of MCLAHE using visual comparison and computational
contrast metrics of two 4D (3D+time) datasets in materials
science by photoemission spectroscopy [20] and in biological
science by fluorescence microscopy [21], respectively. These
two techniques are representatives of the current capabilities
and complexities of multidimensional data acquisition meth-
ods in natural sciences. The use and adoption of CE in their
respective communities will potentially benefit visualization
and downstream data analysis. Specifically, in the photoemis-
sion spectroscopy dataset of electronic dynamics in a semi-
conductor material, we show that MCLAHE can drastically
reduce the intensity anisotropy and enable visual inspection

of dynamical features across the bandgap. In the fluorescence
microscopy dataset of a developing embryo [22], we show
that MCLAHE improves the visual discernibility of cellular
dynamics from sparse labeling. In addition, we provide a Ten-
sorflow [23] implementation of MCLAHE publicly accessi-
ble on GitHub [24], which enables the reuse and facilitates
the adoption of the algorithm in a wider community.

The outline of the paper is as follows. In Section II,
we highlight the developments in histogram equalization
leading up to CLAHE and the use of contrast metrics in
outcome evaluation. In Section III, we go into detail on
the differentiators of the MCLAHE algorithm from previ-
ous lower-dimensional CLAHE algorithms. In Section IV,
we describe the use cases of MCLAHE on 4D photoemission
spectroscopy and fluorescencemicroscopy data. In Section V,
we comment on the current limitations and potential improve-
ments in the algorithm design and the software implementa-
tion. Finally, in Section VI, we draw the conclusions.

II. RELATED WORK
Histogram transform-based CE began with the histogram
equalization algorithm developed by Hall in 1974 [3], where
a pixelwise intensity mapping derived from the normal-
ized cumulative distribution function (CDF) of the entire
image’s intensity histogram is used to reshape the histogram
into a more uniform distribution [3], [25]. However, Hall’s
approach calculates the intensity histogram globally, which
can overlook fine-scale image features of varying contrast.
Subsequent modifications to HE introduced independently
by Ketcham [26] and Hummel [27], named the adaptive his-
togram equalization (AHE) [4], addressed this issue by using
the intensity histogram of a rectangular window, called the
kernel, or the contextual region, around each pixel to estimate
the intensity mapping. However, AHE comes with signifi-
cant computational overhead because the kernel histograms
around all pixels are calculated. In performance, the noise in
regionswith relatively uniform intensities tends to be overam-
plified. Pizer et al. proposed a version of AHE [4] with much
less computational cost by using only the adjoining kernels
that divide up the image for local histogram computation.
The transformed intensities are then bilinearly interpolated
to other pixels not centered on a kernel. Moreover, they
introduced the histogram clip limit to constrain the intensity
redistribution and suppress noise amplification [4], [5]. The
3D extension of CLAHEwas recently introduced by Amorim
et al. [19] for processing medical images. Their algorithm
uses volumetric kernels to compute the local histograms and
trilinear interpolation to derive the voxelwise intensity map-
pings from nearest-neighbor kernels. Qualitative results were
demonstrated on magnetic resonance imaging data, showing
that the volumetric CLAHE leads to a better contrast than
applying 2D CLAHE separately to every slice of the data.

Evaluating the outcome of contrast enhancement requires
quantitative metrics of image contrast, which are rarely
used in the early demonstrations of HE algorithms [3], [4],
[26]–[29] because the use cases are predominantly in 2D
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and the improvements of image quality are largely intuitive.
In domain-specific settings involving higher-dimensional
(3D and above) imagery, intuition becomes less suitable for
making judgments, but computational contrast metrics can
provide guidance for evaluation in combination with user
objectives. The commonly known contrast metrics include
the mean squared error (MSE) or the related PSNR [30], [31],
the standard deviation (also called the root-mean-square con-
trast) [32] and the Shannon entropy (also called the grey-level
entropy) [33]. These metrics are naturally generalizable to
imagery in arbitrary dimensions [34] and are easy to compute.
We also note that despite the recently developed 2D image
quality assessment scores based on the current understand-
ing of human visual systems [30], [33] proved to be more
effective than the classic metrics we choose to quantify con-
trast, their generalization and relevance to the evaluation of
higher-dimensional images obtained in natural sciences and
engineering settings, often without undistorted references,
are not yet explored, so they are not used here for comparison
of results.

III. METHODS
A. OVERVIEW
Extending CLAHE to arbitrary dimensions requires to
address some of the existing limitations of the 2D (or 3D)
version of the algorithm. (1) The formulations of 2D [4], [5]
and 3D CLAHE [19] involve explicit enumerated treatment
of image boundaries, which becomes tedious and unscal-
able in arbitrary dimensions because the number of distinct
boundaries scales exponentially as 3D− 1 with respect to the
number of dimensionsD.We resolve this issue by introducing
data padding in MCLAHE as an initial step such that every
D-dimensional pixel has a neighborhood of the same size in
the augmented data (see Section III.B). The data padding also
enables the choice of kernels with an arbitrary size smaller
than the original data. (2) The formalism for calculating and
interpolating the intensity mapping needs to be generalized
to arbitrary dimensions. We present a unified formulation
using the Lagrange form of multilinear interpolation [35] that
includes the respective use of bilinear and trilinear interpo-
lation in 2D [4], [5] and 3D [19] versions of CLAHE as
special cases in lower dimensions (see Section III.C). (3) To
further suppress noise amplification in processing image data
containing vastly different intensity features, we introduce
adaptive histogram range (AHR), which extends the spatial
adaptivity of the original CLAHE algorithm to the intensity
domain. AHR allows the choice of local histogram range
according to the intensity range of each kernel instead of
using a global histogram range (GHR) (see Section III.D).

The MCLAHE algorithm is summarized graphically
in Fig. 1 and in pseudocode in Algorithm 1. It operates on
input data of dimension D, where D is a positive integer.
Let si be the size of data along the ith dimension, so i ∈
{0, . . . ,D − 1}. The algorithm begins with padding of the
input data around the D-dimensional edges. The padded

FIGURE 1. Schematic of the MCLAHE algorithm.

data are then kernelized, or divided into adjoining rectilin-
ear kernels with dimension D and a size of bi along the
ith dimension defined by the user. Next, in each kernel,
we separately compute and clip its intensity histogram and
obtain the normalized CDF. The intensity mapping at each
D-dimensional pixel is computed by multilinear interpolation
of the transformed intensities among the normalized CDFs
in the pixel’s nearest-neighbor kernels. Finally, the contrast-
enhanced output data are generated by applying the intensity
transform to every pixel in the input data.

B. MULTIDIMENSIONAL PADDING
Because of the exponential scaling of the distinct bound-
aries as 3D − 1 with respect to the data dimensionality D,
we use multidimensional padding to circumvent the enumer-
ated treatment of boundaries and ensure that the data can
be divided into integer multiples of the user-defined kernel
size. The padding is composed of two parts. We discuss
the case for D dimensions and illustrate with an example
for D = 2 in Fig. 2. Firstly, we require that the inten-
sity histogram of each kernel is computed with the same
number of D-dimensional pixels. Therefore, the size of the
padded data should be an integer multiple of the kernel size.
For each dimension, if si is not an integer multiple of bi,
a padding of bi − (si mod bi) is needed. To absorb the case
when si mod bi ≡ 0, we add a shift of−1 to the expression.
Therefore, the padding required along the ith dimension of
the kernel to make the data size divisible by the kernel size is
bi − 1− ((si − 1) mod bi). Secondly, we require that every
D-dimensional pixel in the original data has the same number
of nearest-neighbor kernels such that the pixels at the border
do not need a special treatment in the interpolation step.
Therefore, we need to pad, in addition, by the kernel size,
bi, along the ith dimension. To satisfy both requirements,
the total padding length along the ith dimension, pi, is

pi = 2bi − 1− ((si − 1) mod bi). (1)

This length is split into two parts, pi0 and pi1, and attached to
the start and end of each dimension, respectively.

pi0 = pi//2,

pi1 = (pi + 1)//2. (2)

VOLUME 7, 2019 165439



V. Stimper et al.: Multidimensional CLAHE

Algorithm 1 Formulation of the MCLAHE algorithm in
pseudocode. Here, // denotes the integer division operator,
CDF the cumulative distribution function, and map the
intensity mappings applied to the high dimensional pixels
Input: data_in
Parameters: kernel_size (array of integers for all kernel
dimensions), clip_limit (threshold value in [0, 1] for clipping
the local histograms), n_bins (number of bins of the local
histograms)
Output: data_out
1: pad_len = 2 · kernel_size - 1 + ((shape(data_in) - 1) mod

kernel_size)
2: data_hist = symmetric_padding(data_in, [pad_len // 2,

(pad_len + 1) // 2])
3: b_list = split data_hist into kernels of size kernel_size
4: for each b in b_list do
5: h = histogram(b, n_bins)
6: Redistribute weight in h above clip_limit equally

across h
7: cdf_b = cdf(h)
8: map[b] = (cdf_b - min(cdf_b)) / (max(cdf_b) -

min(cdf_b))
9: end for

10: for each neighboring kernel do
11: for each pixel p in data_in do
12: u = map[b in neighboring kernel of p](p)
13: for d = 0 . . .D-1 do
14: u = u · (coefficient of the neighboring kernel in

dimension d)
15: end for
16: Assign u to pixel p in data_out
17: end for
18: end for
19: return data_out

Here, the // sign denotes integer division. To keep the local
intensity distribution at the border of the image unchanged,
the padding is implemented by mirroring the intensities along
the boundaries of the data (symmetric padding). The padding
procedure is described in lines 1–2 in Algorithm 1.

C. MULTIDIMENSIONAL INTERPOLATION
To derive a generic expression for the intensity mapping
in arbitrary dimensions, we start with the example in 2D
CLAHE, where each pixel intensity In (n being the pixel
index) is transformed by a bilinear interpolation of the
mapped intensities obtained from the normalized CDF of the
nearest-neighbor kernels [4], [5]. We introduce the kernel
index i = (i0, i1) ∈ {0, 1}2. The values of 0 and 1 in the
binary alphabet {0, 1} represent the two sides (i.e. above and
below), respectively, in a dimension divided by the pixel in
consideration. For the 2D case, the index (i0, i1) can take any
value of (0, 0), (0, 1), (1, 0) and (1, 1), as shown in Fig. 2(b).
Letmi be the intensity mapping obtained from the kernel with

FIGURE 2. Illustration of the concepts related to the MCLAHE algorithm
in 2D. In (a)-(c) the image is equipartitioned into kernels of size (b0, b1)
bounded by solid black lines. The dotted black lines indicate regions with
pixels having the same nearest-neighbor kernels. Color coding is used to
specify the types of border regions, with the areas in green, orange and
magenta having four, three and two nearest-neighbor kernels,
respectively. (a) The original image data in 2D that are divided into
kernels. (b) A zoomed-in region of (a). The red square mark in
(b) represents a pixel under consideration and the four blue square
marks represent the closest kernel centers next to the red one. The
distances between the red pixel and the nearest-neighbor kernel centers
are labeled as d00, d01, d10, d11, respectively. (c) The padded image with
the original image now bounded by solid red lines and the padding
indicated by the hatchings. The padding lengths in 2D are labeled as p00,
p01, p10, p11 in (c) and their values are calculated using Eq. (2).

the index i, then

mi(In) = ĈDFi(In), (3)

where ĈDFi represents the normalized CDF obtained from
the clipped histogram of the kernel with the index i. As shown
in Fig. 2(b), the bilinear interpolations for the pixel in con-
sideration located at the red square mark are computed using
the four nearest-neighbor kernels centered on the blue square
mark. The interpolation coefficients, ci, are represented as
Lagrange polynomials [35], [36] using the kernel size (b0, b1)
and the distances (d00, d01, d10, d11) between the pixel and
the kernel centers in the two dimensions.

c00 =
(b0 − d00)(b1 − d10)

b0b1
, (4)

c01 =
(b0 − d00)(b1 − d11)

b0b1
, (5)

c10 =
(b0 − d01)(b1 − d10)

b0b1
, (6)

c11 =
(b0 − d01)(b1 − d11)

b0b1
. (7)
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The transformed intensity Ĩn from In is given by,

Ĩn = c00m00(In)+c01m01(In)+c10m10(In)+c11m11(In). (8)

Eq. (4)-(7) and (8) can be rewritten in a compact form using
the kernel index i introduced earlier,

Ĩn =
∑

i∈{0,1}2
cimi(In), (9)

ci =
1∏
j=0

bj − djij
bj

. (10)

In the 2D case, the term djij takes on the value dji0 or dji1 .
The choice of i0 and i1 from the binary alphabet {0, 1} in
djij follows that of the kernel index i. The special cases of
transforming the border pixels in the image are naturally
resolved in our case after data padding (see Section III.B).

In D dimensions, the kernel index i = (i0, i1, . . . , iD−1) ∈
{0, 1}D. Analogous to the two-dimensional case described
before, the intensity mapping of each D-dimensional pixel is
now calculated by multilinear interpolation between the 2D

nearest-neighbor kernels in all dimensions, mathematically,

Ĩn = c00...0m00...0(In)+ c00...1m00...1(In)

+ . . .+ c11...0m11...0(In)+ c11...1m11...1(In). (11)

Similarly, Eq. (11) and the corresponding expressions for the
interpolation coefficients can be written in a compact form
using the kernel index i as

Ĩn =
∑

i∈{0,1}D
cimi(In), (12)

ci =
D−1∏
j=0

bj − djij
bj

. (13)

The formalism introduced for the 2D case in Eq. (8)-(10)
generalizes to arbitrary dimensions with only an update to
the kernel index i. In Algorithm 1, the calculation of intensity
mappings through interpolation is described in lines 12–15.

D. ADAPTIVE HISTOGRAM RANGE
In the original formulation of CLAHE in 2D [4], [5], the local
histogram ranges for all kernels are the same, which works
well when the kernels contain intensities in a similarly wide
range. Tuning of the trade-off between noise amplification
and the signal enhancement is then achieved through selec-
tion of the kernel size and the clip limit [31]. However,
if different patches of the image data contain local features
within vastly different but narrow intensity ranges, they may
accumulate in very few histogram bins with values specified
globally. Accounting for the disparity in CLAHE will require
a high clip limit and therefore comes with the price of noise
amplification in many parts of the data. This problem may be
ameliorated by adaptively choosing the local histogram range
to lie within the minimum and maximum of the intensity
values of the kernel, while keeping the number of bins the
same for all kernels. An example use case of the AHR is
presented in Section IV.A.

IV. APPLICATIONS
We now apply the MCLAHE algorithm to two cases in
the natural sciences that involve large densely sampled 4D
(3D+time) data. Each example includes a brief introduction
of the background knowledge on the type of measurement,
the resulting image data features and the motivation for the
use of contrast enhancement, followed by discussion and
comparison of the outcome using MCLAHE. The perfor-
mance details are provided at the end of each example.

A. PHOTOEMISSION SPECTROSCOPY
1) BACKGROUND INFORMATION
In photoemission spectroscopy, the detector registers elec-
trons liberated by intense vacuum UV or X-ray pulses from
a solid state material sample [20]. The measurement is car-
ried out in the so-called 3D momentum space, spanned by
the coordinates (kx , ky,E), in which kx , ky are the electron
momenta and E the energy. The detected electrons form
patterns carrying information about the anisotropic electronic
density distribution within thematerial. The fourth dimension
in time-resolved photoemission spectroscopy represent the
waiting time in observation by photoemission since the elec-
tronic system is subject to an external perturbation (i.e. light
excitation). The negative time frames represent the observa-
tions taking place before the light excitation. In the image
data acquired in photoemission spectroscopy, the inhomo-
geneous intensity modulation from the experimental geom-
etry, light-matter interaction [37] and scattering background
creates contrast variations within and between the so-called
energy bands, which manifest themselves as intercrossing
curves (in 2D) or surfaces (in 3D) blurred by convolution
with the instrument response function and further affected
by other factors such as the sample quality and the dimen-
sionality of the electronic system, etc [20]. Visualization and
demarcation of the band-like image features are of great
importance for understanding the momentum-space elec-
tronic distribution and dynamics in multidimensional pho-
toemission spectroscopy [17]. However, in addition to the
physical limitations on the contrast inhomogeneities listed
before, the intensity difference between the lower bands
(or valence bands) and the upper bands (or conduction bands)
on the energy scale is on the order of 100 or higher and
varies by the materials under study and light excitation condi-
tions. To improve the image contrast in multiple dimensions,
we applied MCLAHE to a 4D (3D+time) dataset measured
for the time- and momentum-resolved electronic dynamics of
tungsten diselenide (WSe2), a semiconducting material with
highly dispersing electronic bands [38]. The 4D data were
obtained from an existing experimental setup [39] and pro-
cessed using a custom pipeline [40], [41] from detected single
photoelectron events. For comparison of contrast enhance-
ment, we applied both 3D and 4D CLAHE to the 4D pho-
toemission spectroscopy data. In the case of 3D CLAHE,
the algorithm was applied to the 3D data at each time frame
separately.
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FIGURE 3. Applications of MCLAHE to 4D (3D+time) photoemission spectroscopy data featuring the temporal evolution of the electronic
band structure of the semiconductor WSe2 during and after optical excitation (see Section IV.A). Four time steps in the 4D time series are
selected for visualization, including the raw data in (a)-(d), the 3D CLAHE-processed data in (e)-(h) and the 4D CLAHE-processed data in
(i)-(l). The adaptive histogram range (AHR) setting in the MCLAHE algorithm was included in the data processing. All 3D-rendered images
in (a)-(l) share the same color scaling shown in (l). The integrated dynamics in (n)-(o) over the region specified by the box in (m) in
the over the 3D momentum space show that the 4D CLAHE amplifies less noise while better preserves the dynamical timescale than the
3D CLAHE, in comparison with the original data.
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TABLE 1. Contrast metrics for photoemission spectroscopy data.

2) RESULTS AND DISCUSSION
Stills from the raw data and the results are compared
in Fig. 3, along with the contrast metrics computed and
listed in Table 1. The supplementary files include videos
1-3 and video 4 for comparing unprocessed and processed
data rendered in 2D slices and in 3D, respectively. As shown
in Fig. 3(a)-(d), the original photoemission spectroscopy data
are visualized poorly on an energy scale covering both the
valence (lower) and conduction (upper) bands. The situation
is much improved in theMCLAHE-processed data with AHR
setting shown in Fig. 3(e)-(l), where the population dynamics
in the conduction band ofWSe2 [42], [43] and the broadening
of the valence bands are sufficiently visible to be placed on
the same colorscale, allowing to identify and correlate fine
features of the momentum-space dynamics. The improve-
ment in contrast is also reflected quantitatively in Table 1
in the drastic changes in standard deviation [32] between
the unadjusted (smoothed) and processed data. On the other
hand, the GHR setting of MCLAHE cannot visualize the
upper bands well (see comparisons in supplementary videos
1-3) because the regions in the lower and upper bands con-
tain drastically different intensity features. Next, we com-
pare performance between 3D and 4D CLAHE under the
AHR setting. The decrease in MSE (0.1121 → 0.1050)
or, equivalently, the increase in PSNR (147.98 → 148.26)
shown in Table 1 indicates that 4D CLAHE is more suited
here because a smaller MSE implies closer resemblance to
the original data [31]. Furthermore, visual inspection of the
results in Fig. 3(e)-(l) and in supplementary videos 1-4 finds
less severe noise enhancement when applying 4D CLAHE to
the whole dataset than 3D CLAHE to each time frame.

To quantify the influence of contrast enhancement on the
dynamical features in the data, we calculated the integrated
intensity in the conduction band of the data in all three cases
and the results are summarized in Fig. 3(m)-(o). The standard
score in Fig. 3(o) is used to compare the integrated signals
in a scale-independent fashion. The dynamics represented
in the intensity changes are better preserved in 4D than 3D
CLAHE-treated data and the former are less influenced by
the boundary artifacts in the beginning and at the end of
the time delay range. The artefactual delays created by 3D
CLAHE in the onset and recovery of changes, around t1 and
t3 in Fig. 3(o), respectively, are shown even clearer in the
supplementary videos 1-4. These observations reinforce the

argument that 4D CLAHE is superior to its 3D counterpart
overall in content-preserving contrast enhancement.

3) PROCESSING DETAILS
The raw 4D photoemission spectroscopy data have a size
of 180 × 180 × 300 × 80 in the (kx , ky, E , t) dimensions.
They were first denoised using a Gaussian filter with standard
deviations of 0.7, 0.9 and 1.3 along the momenta, energy and
time dimensions, respectively. In the applications of both 3D
and 4D CLAHE, we set a clip limit of 0.02 and assigned
256 grey-level bins to the local histograms. The kernel size
for 4D CLAHE was (30, 30, 15, 20) and for 3D CLAHE
the same kernel size for the first three dimensions, or (kx ,
ky, E), was used. Both GHR and AHR settings were tested
for comparison. The processing ran on a server with 64 Intel
Xeon CPUs at 2.3 GHz and 254GB RAM. The total runtime,
including memory copy operations, for processing the whole
dataset with 4D CLAHE was about 5.3 mins. In addition,
we benchmarked the performance of 4D CLAHE on the GPU
(NVIDIA GeForce GTX 1070, 8GB RAM) of the server
using the first 25 time frames of the dataset. The total runtime
was 34 s with the GPU versus 104 s without the GPU,
representing a 3.1-fold speed-up.

B. FLUORESCENCE MICROSCOPY
1) BACKGROUND INFORMATION
In 4D fluorescence microscopy, the measurements are carried
out in the Cartesian coordinates of the laboratory frame,
or (x, y, z), with the fourth dimension representing the obser-
vation time t since fertilization. In practice, the photophysics
of the fluorophores [44], the autofluorescence background
[21] from the labeled and unlabeled parts of the sample
and the detection method, such as the attenuation effect
from scanning measurements at different depths or nonuni-
form illumination of fluorophores [45], pose limits on the
achievable image contrast in the experiment. The image fea-
tures in fluorescence microscopy data often include sparsely
labeled cells and cellular components such as the nuclei,
membranes, dendritic structures, and other organelles. The
limited contrast may render the downstream data annotation
tasks, such as segmentation, tracking and lineage tracing [46],
[47], challenging. Therefore, a digital contrast enhancement
method is potentially useful to improve the visibility of the
cells and their corresponding dynamics. We demonstrate the
use of MCLAHE for this purpose on a publicly available
4D (3D+time) fluorescence microscopy dataset [22] of the
embryo development of ascidian (Phallusia mammillata),
or sea squirt. The organism is stained and imaged in toto
to reveal its development from a gastrula to tailbud forma-
tion with cellular resolution [22]. During embryo develop-
ment, the fluorescence contrast exhibits time dependence
due to cellular processes such as division and differentia-
tion. We use the data from one fluorescence label channel
containing the nuclei and process through the MCLAHE
pipeline.

VOLUME 7, 2019 165443



V. Stimper et al.: Multidimensional CLAHE

FIGURE 4. Applications of MCLAHE to 4D (3D+time) fluorescence microscopy data of the embryo development of ascidian (Phallusia
mammillata), or sea squirt. Four time frames (hpf = hours post fertilization) in the 4D time series are visualized here for comparison,
including the raw data in (a)-(d), the 3D CLAHE-processed data in (e)-(h) and the 4D CLAHE-processed data in (i)-(l). All images in (a)-(l)
are rendered in 3D with the same axes, orientation and the same color scaling as in (l). Both 3D and 4D CLAHE-processed data show
drastic improvement in the image contrast, while the results from 4D CLAHE better preserves the dynamical intensity features from the
cellular processes.

TABLE 2. Contrast metrics for fluorescence microscopy data.

2) RESULTS AND DISCUSSION
The results are compared with the original data on the
same colorscale in Fig. 4 and the corresponding contrast
metrics are shown in Table 2. The supplementary files
include video 5 and video 6 for comparing the unprocessed
and processed data in a 2D slice and in 3D, respectively.
As shown in Fig. 4(a)-(d), the intensities in the raw fluores-
cence microscopy data are distributed very unevenly in the
colorscale. The MCLAHE-processed 4D time series show
significant improvement in the visibility of the cells against
the background signal (e.g. autofluorescence, detector dark
counts, etc). This is reflected in the surge in contrast repre-
sented by standard deviation as shown in Table 2. In con-
trast to the previous example, the AHR option in MCLAHE
was not used in processing the embryo development dataset
because the cellular feature sizes and their fluorescence

intensities are similar throughout the organism. Additionally,
the dynamic range of the data is limited (see the following
Processing details) and the changes in fluorescence during
development are relatively small. The initial high Shannon
entropy of the raw data in Table 2 is due to its high back-
ground noise, which is reduced after smoothing, as indicated
by the sharp drop in the entropy while the standard devia-
tion shows relative consistency. Then, the use of MCLAHE
increases the entropy again, together with the large changes
in other metrics, this time due to the contrast enhancement.
Similarly to the previous example, the 4D CLAHE outper-
forms its 3D counterpart overall because of the lower MSE
or, equivalently, the higher PSNR of the 4D results, indicating
a higher similarity to the raw data. In other contrast metrics
such as the standard deviation and the Shannon entropy,
the 4D and 3D results have very close values, indicating
the complexity of judging image contrast by a single metric.
Visualization of the dynamics in Fig. 4(e)-(l) also shows that
the 4D CLAHE-processed data preserve more of the fluores-
cence intensity change than its 3D counterpart, while main-
taining a high cell-to-background contrast. More complete
comparisons of unprocessed and processed data are presented
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in the supplementary videos 5-6. The contrast-enhanced
embryo development data potentially allow better tracking of
cellular lineage and dynamics [47], [48], which are challeng-
ing due to sparse fluorescent labeling.

3) PROCESSING DETAILS
The raw 4D fluorescence microscopy data have a size
of 512 × 512 × 109 × 144 in the (x, y, z, t) dimensions.
They were first denoised by a median filter with a kernel size
of (2, 2, 2, 1). In the application of 4D CLAHE, the kernel
size of choice was (20, 20, 10, 25) and the same kernel size
in the first three dimensions were used for 3D CLAHE to
enable direct comparison. For both MCLAHE procedures,
the clip limit was set at 0.25 and the number of histogram
bins at 256. The intensities in the raw data were given as
8 bit unsigned integers resulting in only 256 possible values.
Hence, only the GHR setting was used because the AHR
setting would result in bins smaller than the resolution of the
data. Processing with MCLAHE ran on the same server as
for the photoemission spectroscopy data (see Section IV.A).
The total runtime for processing the whole dataset using only
CPUs was about 26 mins. Similar to the photoemission case
study, the speed-up by GPU usage was tracked. The total
runtime for processing the first 8 time frames of the dataset
was 32 s on the GPU versus 85 s only on CPUs, representing
a 2.7-fold speed-up.

V. PERSPECTIVES
While we have presented the applications of the MCLAHE
algorithm to real-world datasets of up to multiple gigabytes
in size, its current major performance limitation is in the
memory usage, since the data needs to be loaded entirely
into the RAM (of CPUs or GPUs), which may be challeng-
ing for very large imaging and spectroscopy datasets on the
multi-terabyte scale that are becoming widely available [13].
Future improvements on the algorithm implementation may
include distributed handling of chunked datasets to enable
operation on limited hardware resource by loading each
time only a subset of the data. In addition, the number of
nearest-neighbor kernels currently required for intensitymap-
ping interpolation increases exponentially with the dimen-
sionality D of the data (see Section III.C). For datasets with
D < 10, this may not pose an outstanding issue, but for even
higher-dimensional datasets, new strategies may be devel-
oped for approximate interpolation of selected neighboring
kernels to alleviate the exponential scaling.

On the other hand, the applications of MCLAHE are not
limited by the examples given in this work but are open
to other types of data. It is especially beneficial to the
preprocessing of high dimensional data with dense sam-
pling produced by various fast volumetric spectroscopic and
imaging techniques [49]–[53] for improving the performance
of feature annotation and extraction tasks.

Furthermore, the call for extension of the image processing
toolkits in 2D and 3D to higher-dimensional imaging datasets
also motivates the dimensional extension of more recent CE

procedures, such as those in [8], [54], [55], whichwill provide
a wider choice of algorithms for multidimensional image
processing and comprehensive comparison of the algorithm
performance on data with various characteristics.

VI. CONCLUSION
We present a flexible and efficient generalization of the
CLAHE algorithm to arbitrary dimensions for contrast
enhancement of complex multidimensional imaging and
spectroscopy datasets. Our algorithm, the multidimensional
CLAHE, improves upon previous lower-dimensional equiv-
alents [4], [5], [19] by its unified treatment of image bound-
aries, flexible kernels size selection, adaptive histogram range
determination. Its parallelized implementation in Tensorflow
allows computational acceleration with multiple CPUs and
GPUs.We demonstrate the effectiveness of multidimensional
CLAHE by visual analysis and contrast quantification in
case studies drawn from different measurement techniques,
namely, 4D (3D+time) photoemission spectroscopy and 4D
fluorescence microscopy, with the capabilities of producing
densely sampled high dimensional data. In the example appli-
cations, our algorithm greatly improves and balances the visi-
bility of multidimensional image features in diverse intensity
ranges and neighborhood conditions. We further show that
the best overall performance in each case comes from the
simultaneous application of multidimensional CLAHE to all
data dimensions, in line with the observation for applying
CLAHE to 3D data [19]. In addition, we provide the imple-
mentation of multidimensional CLAHE in an open-source
codebase to assist its reuse and integration into existing image
analysis pipelines in various domains of natural sciences and
engineering.
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